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Abstract

An unsupervised clustering problem is studied in this paper. The originality
of this problem lies in the data, which consist of the positions of five separate
x-ray beams on a circle. The five x-ray beam ”projectors” are positioned around
each patient on a predefined circle. However, similarities exist in positioning for
certain groups of patients, and we aim to describe these similarities with the
goal of creating pre-adjustment settings that could help save time during x-ray
positioning. We therefore performed unsupervised clustering of observed x-ray
positions. Because the data for each patient consists of five angle measurements,
Euclidean distances are not appropriated. Furthermore, k-means algorithm,
usually used for minimising corresponding distortion can not be computed be-
cause centers of clusters are not calculables. We present here solutions to these
problems. First, we define a suitable distance on the circle. Then, we adapt an
algorithm based on simulated annealing to minimize distortion. This algorithm
is shown to be theoretically convergent. Finally, simulations on simulated and
real data are presented.

Keywords: Unsupervised clustering, Circular data, Radiotherapy machine
data.

1. Introduction

Over the past few years, cancer treatment via intensity-modulated radiation
therapy (IMRT) has improved. The patient’s radiation oncologist prescribes
the appropriate treatment volume and dosage. The medical radiation physicist
and the dosimetrist determine how to deliver the prescribed dose and calculate
the amount of time it will take the accelerator to deliver that dose. Radiation
therapists operate the linear accelerator and give patients their daily radiation
treatments. When a ray is projected onto a target area using the linear ac-
celerator, such as a tumor, the healthy tissue it crosses is also irradiated. The
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previous generation of radiotherapy machines helped solve this problem by using
two rays that intersected on the target area; thus, the target area received the
appropriate therapeutic amount of radiation, while non-target tissues received
only half that dose. The latest generation of machines projects five rays, and
following the same principle, non-target tissues receive only weak doses of radi-
ation. Multiplying beams concentrates radiation on the tumor while avoiding
the massive irradiation of healthy areas, and thus reducing side effects. Recent
clinical studies have demonstrated the superiority of these techniques partic-
ularly as concerns cardiac side effects associated with lung tumors. However,
the five beams are fixed on a circle in the transverse plane around the patient,
and their re-positioning on the circle, i.e. their angles in degrees, is required for
each patient. Repositioning for the five beam machine takes sufficiently longer
as compared to the two beam machine that fewer patients are treated with the
new machines. Several algorithms have been developed to make an exhaustive
search and determine the best beams compositions (see for instance [1-4]) which
are different for each patients. But the pratical implementation of these meth-
ods is hindered by the excessive computing time associated with the calculation.
There is no others tools to assist the selection of beam orientations other than
the therapist’s experience and intuition whereas it could be very helpful [5] and
accelerate previous algorithms. These algorithms could be sped up by using
appropriate initial presets. The purpose of this work is to provide such effec-
tive presets. For this, we performed unsupervised clustering of observed x-rays
positions. Then, each center of a cluster could be an efficient preset and each
new patient should be affected to a cluster using a prior probability which is
proportionnal to the number of patients in each cluster.

So, our data are a circular data set. Directional or circular data arise quite fre-
quently in many natural and physical sciences. For instance, biologists studying
bird-migrations record the flight directions of just-released birds as they disap-
pear over the horizon. The first experiment was made by Schmidt-Koenig [6]
over homing pigeons. He collects the data on the vanishing angles of birds
released singly. Batschelet [7] gives an account of some applications on Biol-
ogy. From another part, Jammalamadaka and al. [8] discuss a medical appli-
cation where the angle of knee flexion was measured to assess the recovery of
orthopaedic patients. Geologists also analyze paleomagnetic directions of the
earth’s magnetic pole to investigate the phenomenon of pole-reversal [9]. This
brief review is not exhaustive and there is a lot of others applications of direc-
tionnal, circular or spherical data. It has also been studied from a theoretical
point of view in Mardia and Jupp [10]. Even if our problem has similarities with
some previously treated, the specificity of our data requires a specific method.
Data are defined by the ballistic of the five angles {xi1, xi2, xi3, xi4, xi5}. To de-
fine sets of recurrent angles used by radiotherapy technicians, and so predefine
settings, we used an unsupervised clustering method to obtain patient groups
with homogeneous ballistics.

The k-means algorithm [11, 12] is habitually used for this kind of problem in-
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volving Euclidean distances. We can see in Section 2 that Euclidean distances
are not appropriate for this case. So, we defined a suitable distance d for our
problem, and a criterion was derived from this distance. However, there is no
explicit solution for optimizing this criterion, again because the distances in-
volved are non-Euclidean. The k-medoids clustering methods, like PAM [13]
or CLARANS [14], can solve this problem using the most central data of the
cluster as centroids (for a large review of clustering methods, we refer the reader
to Xu and Wunsch [15]). But, because our real data set is small, we fear that
few of the data will be next to their centroids. This can produce bad clustering.
For these reasons, and also because these methods only identify local optima,
we chose not to use k-medoids clustering methods. Instead we use a simulated
annealing type algorithm described below, which can find a better approxima-
tion of the cluster centers.

In the present paper, we present a general method for solving this problem.
Distance and distortion choices are described in the next section. Section 3 gives
the clustering algorithm whose proof of convergence is joined in the Appendix.
Section 4 includes empirical results first on simulated data and then on the real
data set which motivates the present work.

2. Distance choice

In this section, we must consider two problems: the importance of the mod-
ulo 2π in the distance between two points on the circle and the permutations
between two subsets, which is a novel feature, and is detailed below.

Data can be viewed as subset of five points on the circle. First, we define a
distance δ between two points on the circle as follows :

δ(a, b) = min
k∈Z
|a− b+ k2π| for all a, b ∈ R

where a and b denotes the angle in radians with respect to an arbitrary origin.
Note that δ can be viewed as a L1-distance on the circle. Also note that the
fact that points are angles is immaterial in the rest of this paper and only af-
fects metric δ. So, the following method could be used for any configurations of
points lying in any space that has a distance defined between points.
Then, we define a distance between two subsets of five points on the circle.
The chosen distance has to test all the permutations between the two sub-
sets. For example, the distance between x1 = {x11, x12, x13, x14, x15} and
x2 = {x12, x13, x14, x15, x11} must be zero. Taking into account these speci-
ficities, we propose the following function between two items x1 and x2 :

d(x1, x2) = inf
σ∈F

5∑
l=1

δ
(
x1σ(l), x2l

)
,

where F is the set of permutations.
The function d is shown to be a distance in Lemma Appendix A.1 joined in the
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Appendix. This definition allows us to test all permutations between two angle
sets and retain that which corresponds to the smallest distance.

If x1, x2, . . . , xn denote the n observations to be classified in J clusters, the
problem consists in determining the set of cluster centers Ω = {c1, c2, . . . , cJ}
which minimizes the distortion D defined by :

D(Ω) =

n∑
i=1

min
c∈Ω

d(xi, c).

If we set
Cj = {xi : d (xi, cj) = min

c∈Ω
d (xi, c)},

note that

D(Ω) =

J∑
j=1

∑
xi∈Cj

d (xi, cj)

and that C1, . . . , CJ defines a partitition of {x1, x2, . . . , xn}.
As discussed in the introduction, using a classical algorithm like k-means or
k-medoids is not appropriate. So, the clustering algorithm has to approach op-
timal centers of clusters without the possibility of computing effective centers
at each iteration.

3. Clustering algorithm and convergence result

Given the chosen distance and its characteristics mentioned above, we use,
with a fixed number of clusters J , a clustering algorithm based on simulated
annealing [16]. The ν − 1th iteration of the algorithm ends giving us a set of J
centers Ωa. We describe below the νth iteration :

1. Each data is assigned to its nearest center according to distance d. This
provides us with a distortion Da

ν defined by

Da
ν(Ωa) =

n∑
i=1

min
c∈Ωa

d(xi, c).

2. A cluster j with center cj = {cj1, cj2, cj3, cj4, cj5} is randomly chosen
according to a discrete Uniform distribution. Then, a new center c′j is

proposed for this cluster, with coordinates c′js ∼ Nw(cjs, σ
2
a) for 1 ≤ s ≤ 5.

3. The new distortion

Db
ν(Ωb) =

n∑
i=1

min
c∈Ωb

d(xi, c)

is computed with Ωb = {c1, . . . , cj−1, c
′
j , cj+1, . . . , cJ}.
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(a) The new center is accepted with probability 1 ∧
exp

(
−(Db

ν −Da
ν)/(tν))

)
, where tν is the so-called temperature,

and we return to step 1.
(b) If rejected, we return to step 2 and another center is taken.

The distribution Nw(cjs, σ
2
a) is the wrapped normal distribution on the circle

[10]. It is obtained by wrapping a common normal distribution N(cjs, σ
2
a) onto

the circle. Its probability density function is

f(x; cjs, σ
2
a) =

1√
2πσa

∞∑
l=−∞

exp

{
− (x− cjs + 2lπ)2

2σ2
a

}
.

This distibution is unimodal and symmetric about its mode cjs.
The set of centers {c1, . . . , cJ} which provides the lowest distortion D over all
the chain is retained. This algorithm requires that the user sets in advance
the number of clusters J , the shape of the temperature tν and the variance of
normal distributions σ2

a.
We are now in position to study the convergence of the algorithm from a theoret-
ical point of view. Let K be the transition kernel associated with the described
algorithm. We provide this transition kernel in the Appendix. And let us define
oscK(D) as follows

osc
K

(D) = sup{|D(x)−D(y)|, x ∈ E, y ∈ suppK(x, .)}

where suppK(x, .) denotes the support of K(x, .).
We state the following Proposition 3.1 whose proof is joined in the Appendix.

Proposition 3.1. Taking tν = C0

log(ν+e) with C0 > J oscK(D), then, for all

ε > 0, Pr(xν ∈ Dε)→ 1 as ν →∞ where

Dε = {x ∈ E,D(x) ≤ essinf
λ

(D)+ε} and essinf
λ

(D) = sup{a ≥ 0, λ(a ≤ D) = 1}.

The choice of C0 is a known problem for the convergence of the algorithm. If
C0 is chosen too large, the algorithm will take a long time to converge because
the denominator is log(ν+ e). On the other hand, if C0 is chosen too small, the
algorithm converges too quickly and does not sufficiently explore the space of
possible values to find the optimal clustering. In our problem, it is clear that
we have oscK(D) ≤ 5nπ, which leads us to the sufficient condition C0 > 25nπ.
This is a rather crude bound, but we cannot obtain a better one without making
strong assumptions about the data distribution. In order to reasonably estimate
C0, we run a chain of ν0 sets of centers Ω and we calculate the variation of the
distortion D at each iteration which leads to the following estimate of oscK(D) :

ôscK(D) = sup
1≤h≤ν0

|D(Ωh)−D(Ωh+1)|

where Ωh+1 ∼ K(Ωh, .). This enables us to estimate C0.
Note that in our algorithm only one randomly chosen center is updated. This
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provides us with an acceptable trade-off between exploration and convergence.
Other strategies could be considered like updating all the centers at each itera-
tion. In any case, the variance σ2

a of the proposal distribution must be carefully
chosen in order to balance between exploration and convergence.

4. Results

4.1. Simulated data

Before using our algorithm on real data, we test it on simulated data. We
randomly generate a number of clusters J between 2 and 20, the five coordinates
of the J centers cj on [0, 2π] and the number of data of each cluster between 2
and 30. Each coordinate s of the elements xi of the cluster j are independently
generated according to a wrapped normal distribution Nw(cjs, σ

2
g), with fixed

σ2
g . Note the difference between σ2

g and σ2
a, the variance of the wrapped normal

distribution from which new centers in the algorithm are generated. Finally,
we run the algorithm on a thousand of these data sets, with beginning centers
taken randomly on [0, 2π] and we obtain results presented in Table 1.

Table 1: Percentage of correct classification of our algorithm on simulated data according to
σg and σa.

σg = 0.10 σg = 0.17 σg = 0.24 σg = 0.35 σg = 0.52
σa = 0.10 99 94 88 78 54
σa = 0.17 99 95 90 76 55
σa = 0.24 99 95 90 75 54

Our algorithm performs well. Note that, according to Table 1, the choice of σa
according to σg has little effect on the final results.

4.2. Real data set

We then apply the algorithm to the real data set, which come from post-
operative treatment of liver cancer at the Institute of Sainte Catherine in Avi-
gnon, France (Table A.2).
The clinicians informed us they believe that there are two different groups of
patients. Running our algorithm with J = 2 we find the following two groups :
one containing data 1,2,6,9 and 12, the second containing data 3,4,5,7,8,10,11,13
and 14. These results are relatively independent of the input parameters, such
as initial centers or variance of wrapped normal distributions σa. Indeed, they
have little effect on the clustering. We obtained two presets corresponding to
the centers of our two groups:

c1 = {π/4, π/2, π, 1.81π, 1.99π} and c2 = {π/4, 0.51π, 3/4π, π, 1.88π}.
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We remark that the two centers have three common angles : π/4, π/2 and
π and one slightly different from 1.85π. The principal difference resides in only
one angle whose presets are π/4 or 0. Thus, using these preset positions should
be fairly easy for praticians, with four fixed values and two choices for the last
one. They should only have to make a few minor adjustments around these
presets to correctly position beams. Each new patient should be affected to the
first cluster with a probability 5/14 and to the second with a probability 9/14.
In the first tests, the practitians will realize quickly a possible wrong assignment
of a patient and have just a few quick changes to be done to correct this.

5. Conclusion

To solve our problem, we first defined a distance between two data on the
ray-positioning circle. Secondly, we used the latter distance to establish the
distortion we needed to minimize in order to have the best clustering. Then
we built a convergent algorithm to find the minimizer of this distortion. This
is a simulated annealing like algorithm and it includes an empirical search for
cluster centres. Finally, we obtained, using this algorithm, good results both on
simulated and real data sets. However, the algorithm can be improved. Includ-
ing an automated search for the number of clusters would be interesting and
useful. Measuring covariables on the patients could also help us to refine the
prior probabilities of assignment in each cluster.

Acknowledgment : The authors greatly thank an anonymous referee for his
useful comments and suggestions.

Appendix A. Proofs

Proof of Proposition 3.1:
Let K be a transition kernel on E×E and denote by (xν) the Markov chain of the
simulated annealing algorithm with transition kernel K. The proof of Proposi-
tion 3.1 is based on the following proposition of Bartoli and Del Moral [16].

Proposition Appendix A.1. Assume that:
(1) there exists λ a probability measure on E, such that λ(dx)K(x, dy) =
λ(dy)K(y, dx),
(2) there exists an integer p > 0, ε > 0 and γ, a probability measure on E, such
that, for all (x,A) ∈ E × E ,Kp(x,A) ≥ εγ(A).
Take βν = C−1

0 log(ν + e) with C0 > p oscK(D). Then, for all ε > 0,
Pr(xν ∈ Dε)→ 1 as ν →∞ where

Dε = {x ∈ E,D(x) ≤ essinf
λ

(D)+ε} and essinf
λ

(D) = sup{a ≥ 0, λ(a ≤ D) = 1}.

We now proceed with studying the convergence of the algorithm defined above.
Denote by x = {x1, . . . , xJ} the subset of the centers of the clusters where
xi = (xi1, xi2, . . . , xi5).
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The Markov chain associated with the algorithm is based on the transition kernel
K defined below. For all, x, y ∈ E, let

K(x, dy) =
1

J

J∑
j=1

K̃j(x, dy)

with

K̃j(x, dy) =

∏
g 6=j

1{xg=dyg}

Kj (xj , dyj)

and

Kj (xj , dyj) =

5∏
s=1

f
(
yjs;xjs, σ

2
g

)
dyjs

where f
(
yjs;xjs, σ

2
g

)
is the density of the wrapped normal distribution defined

in Section 3. Then, we verify (1) and (2) for our algorithm.
To state (1), it is sufficient to prove that K̃j(x, dy)λ(dx) = K̃j(y, dx)λ(dy) for
all j ∈ {1, . . . , J}. Note that

K̃j(x, dy)λ(dx) = κ−1

[
5∏
s=1

f
(
yjs;xjs, σ

2
g

)]∏
g 6=j

1{xg=dyg}dxg

 dyjdxj ,
as

λ(dx) = κ−1
J∏
j=1

dxj

with κ =
∫
E
dx1dx2 . . . dxJ .

As f
(
yjs;xjs, σ

2
g

)
is symmetric on x and y, (1) is verified.

It is also clear that (2) is checked with ε = J !/JJ , γ the product of J wrapped
normal densities on the circle and p = J . �

Lemma Appendix A.1. The function d is a distance.

Proof of Lemma Appendix A.1:
First, for all subsets of five angles x, y it is clear that d(x, y) = 0 implies that
∀s ∈ {1, ..., 5} : δ(xs, ys) = 0 for a σ ∈ F which gives us x = y [2π].
It is also clear that for all x, y we have δ(x, y) = δ(y, x) because making permu-
tations on x or on y gives the same results.
Finally, it is easy to see that, for all x, y, z ∈ R, we have δ(x, z) ≤ δ(x, y)+δ(y, z).
This relation gives us

inf
σ1∈F

5∑
s=1

δ(xσ1(l), zl) = inf
σ1,σ2∈F

5∑
s=1

δ(xσ1(l), zσ2(l)) ≤ inf
σ1,σ2∈F

(∑5
s=1 δ(xσ1(l), yl)

+
∑5
s=1 δ(zσ2(l), yl)

)
which leads us to the conclusion. �

8



References

1. Wang Z, Zhang X, Dong L, Liu H, Wu Q, Mohan R. Development of
methods for beam angle optimization for imrt using an accelerated exhaus-
tive search strategy. International Journal of Radiation Oncology, Biology,
Physics 2004; 60.

2. Liu H, Jauregui M, Zhang X, Wang Z, Dong L, Mohan R. Beam angle
optimization and reduction for intensity-modulated radiation therapy of
non-small-cell lung cancers. International Journal of Radiation Oncology,
Biology, Physics 2006; 65.

3. Lei J, Li Y. An approaching genetic algorithm for automatic beam angle
selection in imrt planning. Computer Methods and Programs in Biomedicine
2009; 93.

4. Lee E, Fox T, Crocker I. Simultaneous beam geometry and intensity map
optimization in intensity-modulated radiation therapy. International Jour-
nal of Radiation Oncology, Biology, Physics 2006; 64.

5. Pugachev A, Li G, Boyer A, Hancock S, Le QT, Donaldson S, Xing L. Role
of beam orientation optimization in intensity-modulated radiation therapy.
International Journal of Radiation Oncology, Biology, Physics 2001; 50.

6. Schmidt-Koenig K. Circular Statistics in Biology. Springer-Verlag, Berlin,
1975.

7. Batschelet E. Circular Statistics in Biology. Academic Press, London, 1981.

8. Jammalamadaka S, Bhadra N, Chaturvedi D, Kutty T, Majumdar P, Po-
duval G. Functionnal assessment of knee and ankle during level walking. In
Krishnan T, ed., Data Analysis in the Life Sciences, 21–54. Indian Statisti-
cal Institute, Calcutta, 1986; .

9. Fuller S, Butcher S, Cheng R, Baker T. Three-dimensional reconstruction
of icosahedral particles-the uncommon line. Journal of Structural Biology
1996; 116.

10. Mardia K, Jupp P. Directional Statistics. John Wiley & Sons, New-York,
2000.

11. MacQueen J. Some methods for classification and analysis of multivariate
observations. In Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability. Berkeley, University of California Press, 1967; .

12. Hartigan J, Wong M. A k-means clustering algorithm. Journal of the Royal
Statistical Society 1979; 28.

13. Kaufman L, Rousseeuw P. Finding Groups in Data: an Introduction to
Cluster Analysis. John Wiley & Sons, New-York, 1990.

9



14. Ng R, Han J. Efficient and effective clustering method for spatial data
mining. In Proceedings of the 20th International Conference on Very Large
Data Bases. San Francisco, 1994; .

15. Xu R, Wunsch D. Survey of clustering algorithms. IEEE Transactions on
Neural Network 2005; 16.

16. Bartoli N, Del Moral P. Simulations et algorithmes stochastiques : une
introduction avec applications. CEPADUES, Toulouse, 2001.

10



Table A.2: Real data set in radians.

Data 1stangle 2ndangle 3rdangle 4thangle 5thangle
1 1.81π 0 π/4 π/2 π
2 1.78π 0 π/4 π/2 π
3 1.89π π/4 π/2 3/4π π
4 1.94π 0.28π 0.56π 3/4π 0.97π
5 -0.17π π/2 π/4 3/4π π
6 1.69π -0.06π π/4 π/2 π
7 3π/4 0.28π 95 3/4π π
8 1.86π 0.06π π/2 3/4π π
9 π/2 π 1.81π 0 π/4
10 0.31π 0.56π 3/4π 1π/2 -0.19π
11 1.81π 0.1π π/2 3/4π π
12 π/4 π/2 π 1.81π 0
13 0.72π π -0.08π π/4 π/2
14 0.22π 0.56π 3/4π π 1.89π
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