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In this paper, we consider the Beta(2 -α, α)-coalescents with 1 < α < 2 and study the moments of external branches, in particular the total external branch length L (n)

ext of an initial sample of n individuals. For this class of coalescents, it has been proved that n α-1 T (n) (d) → T, where T (n) is the length of an external branch chosen at random, and T is a known non negative random variable. We get the asymptotic behaviour of several moments of L (n) ext . As a consequence, we obtain that for Beta(2 -α, α)-coalescents with 1 < α < 2, lim

(3 -α)Γ(4 -2α) .

1. Introduction 1.1. Motivation. In a Wright-Fisher haploid population model with size N , we sample n individuals at present from the total population, and look backward to see the ancestral tree until we get the most recent common ancestor (MRCA). If time is well rescaled and the size N of population becomes large, then the genealogy of the sample of size n converges weakly to the Kingman n-coalescent (see [START_REF] Kingman | The coalescent[END_REF], [START_REF] Kingman | Origins of the Coalescent 1974-1982[END_REF]). During the evolution of the population, mutations may occur. We consider the infinite sites model introduced by Kimura [START_REF] Kimura | The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations[END_REF]. In this model, each mutation is produced at a new site which is never seen before and will never be seen in the future. The neutrality of mutations means that all mutants are equally privileged by the environment. Under the infinite sites model, to detect or reject the neutrality when the genealogy is given by the Kingman coalescent, Fu and Li [START_REF] Fu | Statistical tests of neutrality of mutations[END_REF] have proposed a statistical test based on the total mutation numbers on the external branches and internal branches. Mutations on external branches affect only single individuals, so in practice they can be picked out according to the model setting. In this test, the ratio L (n) ext /L (n) between the total external branch length L (n) ext and the total length L (n) measures in some sense the weight of mutations occurred on external branches among all. It then makes the study of these quantities relevant.

For many populations, Kingman coalescent describes the genealogy quite well. But for some others, when descendants of one individual can occupy a big ratio of the next generation with non-negligible probability, it is no more relevant. It is for example the case of some marine species (see [START_REF] Arnason | Mitochondrial cytochrome b dna variation in the high-fecundity atlantic cod: trans-atlantic clines and shallow gene genealogy[END_REF], [START_REF] Boom | Mitochondrial dna variation in introduced populations of pacific oyster, crassostrea gigas, in british columbia[END_REF], [START_REF] Eldon | Coalescent processes when the distribution of offspring number among individuals is highly skewed[END_REF], [START_REF] Gnedin | On the number of collisions in Λ-coalescents[END_REF], [START_REF] Hedgecock | 2.5 does variance in reproductive success limit effective population sizes of marine organisms? Genetics and evolution of aquatic organisms[END_REF]). In this case, if time is well rescaled and the size of population becomes large, the ancestral tree converges weakly to the Λ-coalescent which is associated with a finite measure Λ on [0, 1]. This coalescent allows multiple collisions. It has first been introduced by Pitman [START_REF] Pitman | Coalescents with multiple collisions[END_REF] and Sagitov [START_REF] Sagitov | The general coalescent with asynchronous mergers of ancestral lines[END_REF]. Among Λ-coalescents, a special and important subclass is called Beta(a, b)-coalescents characterized by Λ being a Beta distribution Beta(a, b). The most popular ones are those with parameters 2 -α and α where α ∈ (0, 2).

Beta-coalescents arise not only in the context of biology. They also have connections with supercritical Galton-Watson process (see [START_REF] Schweinsberg | Coalescent processes obtained from supercritical Galton-Watson processes[END_REF]), with continuous-state branching processes (see [START_REF] Birkner | Alpha-stable branching and beta-coalescents[END_REF], [START_REF] Berestycki | A small-time coupling between λ-coalescents and branching processes[END_REF], [START_REF] Foucart | Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration[END_REF]), with continuous random trees (see [START_REF] Berestycki | Beta-coalescents and continuous stable random trees[END_REF]). If α = 1, we recover the Bolthausen-Sznitman coalescent which appears in the field of spin glasses (see [START_REF] Bolthausen | On Ruelle's probability cascades and an abstract cavity method[END_REF], [START_REF] Bovier | Much ado about Derrida's GREM[END_REF]) and is also connected to random recursive trees (see [START_REF] Goldschmidt | Random recursive trees and the Bolthausen-Sznitman coalescent[END_REF]). The Kingman coalescent is also obtained from the Beta(2 -α, α)-coalescent by letting α tend to 2.

For Beta(2 -α, α)-coalescents with 1 < α < 2, a central limit theorem of the total external branch length L (n) ext is known (see [START_REF] Kersting | The total external branch length of beta-coalescents[END_REF]). We should say that in this case, the moment method is not able to obtain the right convergence speed in the central limit theorem, which illustrates some limitations of moment calculations.

1.2. Introduction and main results. Let E be the set of partitions of N := {1, 2, 3, ...} and, for n ∈ N , E n be the set of partitions of N n := {1, 2, • • • , n}. We denote by ρ (n) the natural restriction on

E n : if 1 ≤ n ≤ m ≤ +∞ and π = {A i } i∈I is a partition of N m , then ρ (n) π is the partition of N n defined by ρ (n) π = {A i N n } i∈I .
For a finite measure Λ on [0, 1], we denote by Π = (Π t ) t≥0 the Λ-coalescent process introduced independently by Pitman [START_REF] Pitman | Coalescents with multiple collisions[END_REF] and Sagitov [START_REF] Sagitov | The general coalescent with asynchronous mergers of ancestral lines[END_REF]. The process (Π t ) t≥0 is a càd-làg continuous time Markovian process taking values in E with Π 0 = {{1}, {2}, {3}, ...}. It is characterized by the càd-làg Λ n-coalescent processes (Π

(n) t ) t≥0 := (ρ (n) Π t ) t≥0 , n ∈ N. For n ≤ m ≤ +∞, we have (Π (n) t ) t≥0 = (ρ (n) Π (m) t ) t≥0 (where Π (+∞) = Π). Let ν(dx) = x -2 Λ(dx). For 2 ≤ a ≤ b, we set λ b,a = 1 0 x a-2 (1 -x) b-a Λ(dx) = 1 0 x a (1 -x) b-a ν(dx).
Π (n) is a Markovian process with values in E n , and its transition rates are given by: for ξ, η ∈ E n , q ξ,η = λ b,a if η is obtained by merging a of the b = |ξ| blocks of ξ and letting the b -a others unchanged, and q ξ,η = 0 otherwise. We say that a individuals (or blocks) of ξ have been coalesced in one single individual of η. Remark that the process Π (n) is an exchangeable process, which means that, for any permutation

τ of N n , τ • Π (n) (d)
= Π (n) . The process Π (n) finally reaches one block. This final individual is called the most recent common ancestor (MRCA). We denote by τ (n) the number of collisions it takes for the n individuals to be coalesced to the MRCA.

We define by

R (n) = (R (n)
t ) t≥0 the block counting process of (Π

(n) t ) t≥0 : R (n) t = |Π (n)
t |, which equals the number of blocks/individuals at time t. Then R (n) is a continuous time Markovian process taking values in N n , decreasing from n to 1. At state b, for a = 2, ..., b, each of the b a groups with a individuals coalesces independently at rate λ b,a . Hence, the time the process (R (n) t ) t≥0 stays at state b is exponential with parameter:

g b = b a=2 b a λ b,a = 1 0 (1 -(1 -x) b -bx(1 -x) b-1 )ν(dx) = b(b -1) 1 0 t(1 -t) b-2 ρ(t)dt, (1) 
where

ρ(t) = 1 t ν(dx). We denote by Y (n) = (Y (n) k ) k≥0 the discrete time Markov chain associated with R (n)
. This is a decreasing process from Y (n) 0 = n which reaches 1 at the τ (n) -th jump. The probability transitions of the Markov chain Y (n) are given by: for

b ≥ 2, k ≥ 1 and 1 ≤ l ≤ b -1, (2) p b,b-l := P(Y (n) k = b -l|Y (n) k-1 = b) = b l+1 λ b,l+1 g b ,
and 1 is an absorbing state. We introduce the discrete time process

X (n) k := Y (n) k-1 -Y (n) k , k ≥ 1 with X (n) 0
= 0. This process counts the number of blocks we lose at the k-th jump. For i ∈ {1, . . . , n}, we define

T (n) i := inf t| {i} / ∈ Π (n) t
as the length of the i-th external branch and T (n) the length of a randomly chosen external branch.

By exchangeability, T

= T (n) . We denote by L

(n) ext := n i=1 T (n) i
the total external branch length of Π (n) , and by L (n) the total branch length.

For several measures Λ, many asymptotic results on the external branches and their total external lengths of the Λ n-coalescent are already known.

(1) If Λ = δ 0 , Dirac measure on 0, Π (n) is the Kingman n-coalescent. Then, (a) nT (n) converges in distribution to T which is a random variable with density f T (x) = 8 (2+x) 3 1 x≥0 (See [START_REF] Blum | Minimal clade size and external branch length under the neutral coalescent[END_REF], [START_REF] Caliebe | On the length distribution of external branches in coalescence trees: genetic diversity within species[END_REF], [START_REF] Janson | On the total external length of the kingman coalescent[END_REF]). (b) L

(n)
ext converges in L 2 to 2 (see [START_REF] Fu | Statistical tests of neutrality of mutations[END_REF], [START_REF] Durrett | Probability models for DNA sequence evolution[END_REF]). A central limit theorem is also proved in [START_REF] Janson | On the total external length of the kingman coalescent[END_REF].

(2) If Λ is the uniform probability measure on [0, 1], Π (n) is the Bolthausen-Sznitman n-coalescent.

Then (log n)T (n) converges in distribution to an exponential variable with parameter 1 (see [START_REF] Freund | On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent. Markov Process[END_REF], [START_REF] Yuan | On the measure division construction of Λ coalescents[END_REF]). For moment results of L

(n)

ext , we refer to [START_REF] Dhersin | On the external branches of coalescents with multiple collisions[END_REF] and for central limit theorem, we refer to [START_REF] Kersting | Total internal and external lengths of the bolthausen-sznitman coalescent[END_REF].

(3) If ν -1 = 1 0 x -1 Λ(dx) < +∞, which includes the case of the Beta(2 -α, α)-coalescent with 0 < α < 1, then (a) T (n) converges in distribution to an exponential variable with parameter ν -1 (see [START_REF] Gnedin | On asymptotics of exchangeable coalescents with multiple collisions[END_REF][START_REF] Möhle | Asymptotic results for coalescent processes without proper frequencies and applications to the twoparameter Poisson-Dirichlet coalescent[END_REF]). (b) L (n) /n converges in distribution to a random variable L whose distribution coincides with that of +∞ 0 e -Xt dt, where X t is a certain subordinator (see page 1405 in [START_REF] Drmota | Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent[END_REF] and [START_REF] Möhle | On the number of segregating sites for populations with large family sizes[END_REF] ), and

L (n)
ext /L (n) converges in probability to 1 (see [START_REF] Möhle | Asymptotic results for coalescent processes without proper frequencies and applications to the twoparameter Poisson-Dirichlet coalescent[END_REF]).

(4) If ρ(t) = C 0 t -α + O(t -α+ζ ), C 0 > 0, ζ > 1 -1/α, 1 < α < 2, when t → 0, which includes the Beta(2 -α, α)-coalescents with 1 < α < 2 (with C 0 = 1 Γ(α+1)Γ(2-α) ), n α-1 T (n)
converges in distribution to T which is a random variable with density function (see [START_REF] Dhersin | On the length of an external branch in the beta-coalescent[END_REF])

(3) f T (x) = αC 0 Γ(2 -α) (α -1) (1 + C 0 Γ(2 -α)x) -α α-1 -1 1 x≥0 .
In the case of Beta(2 -α, α)-coaelscents with 1 < α < 2, we refer to [START_REF] Kersting | The total external branch length of beta-coalescents[END_REF][START_REF] Kersting | The asymptotic distribution of the length of beta-coalescent trees[END_REF] for central limit theorems of L (n)

ext and L (n) . In this paper, we consider the processes which satisfy the following assumption:

(4) ρ(t) = C 0 t -α + C 1 t -α+ζ + o(t -α+ζ ), C 0 > 0, C 1 ∈ R, ζ > 0, t → 0.
The aim is to study the moments of the total external branch length L

(n)

ext of these processes. We assume from now on that 1 < α < 2 and T is a random variable with density (3). Here is our main result.

For s ∈ R, we define (5) ν (s) (dx) = (1 -x) s ν(dx), and ω (s) = sup{u ≥ 0; ∀0 < y < 1,

1 y (1 -x) -u ν (s) (dx) < +∞}.
We define in particular ω = ω (0) and notice that ν (0) = ν. The quantity ω (s) gives the information on the singularity of the measure ν (s) near 1.

Theorem 1.1. We assume that ρ(t) satisfies ( 4) and that α -1 < ζ, and 2(α -1) < ω (1) .

(1) The total external branch length

L (n) ext satisfies lim n→+∞ n 3α-5 E[(L (n) ext -n 2-α E[T ]) 2 ] = ∆(α) 2 ,
where

E[T ] = α -1 C 0 Γ(2 -α) , and 
∆(α) = 1 0 ((1 -x) 2-α -1) 2 ν(dx) 3 -α α -1 C 0 Γ(2 -α) 3 .
In particular, for the Beta(2 -α, α)-coalescent

lim n→+∞ n 3α-5 E[(L (n) ext -n 2-α E[T ]) 2 ] = ((α -1)Γ(α + 1)) 2 Γ(4 -α) 2(3 -α)Γ(4 -2α) , with E[T ] = α(α -1)Γ(α).
(

) As a consequence, n α-2 L (n) ext (L 2 ) → E[T ]. 2 
Remark 1.1.

• For the second part of the theorem, the convergence in probability and almost surely can be deduced from [START_REF] Berestycki | Beta-coalescents and continuous stable random trees[END_REF], [START_REF] Berestycki | Recent progress in coalescent theory[END_REF], [START_REF] Berestycki | Asymptotic sampling formulae and particle system representations for lambda-coalescents[END_REF] by Berestycki et al for a slightly different class of Λ coalescents.

• The first part of the theorem gives n (5-3α)/2 as the convergence speed for L (n) ext tending to n 2-α E[T ] in the sense of second moment. But as shown in [START_REF] Kersting | The total external branch length of beta-coalescents[END_REF] for Beta(2 -α, α)-coalescents,

L (n) ext -n 2-α E[T ] n 1/α+1-α (d) → α(2 -α)(α -1) 1/α+1 Γ(α) Γ(2 -α) 1/α ζ,
where ζ is a stable random variable with parameter α. Our moment method fails to get the right speed of convergence in distribution.

To prove this result, the first idea is to write

(6) E[(L (n) ext -n 2-α E[T ]) 2 ] = nV ar(T (n) 1 ) + n(n -1)Cov(T (n) 1 , T (n) 2 ) + (nE[T (n) 1 ] -n 2-α E[T ]) 2 .
Hence we have to get results on the moments of the external branches. This is given by the next theorems. The first one gives the asymptotic behaviour for the covariance of two external branch lengths.

Theorem 1.2. We assume that ρ(t) satisfies ( 4) and that α -1 < ζ, and 2(α -1) < ω (1) . Then the asymptotic covariance of two external branch lengths is given by:

lim n→+∞ n 3(α-1) Cov(T (n) 1 , T (n) 2 ) = ∆(α).
Remark 1.2. We will prove a more general result: This theorem is the case (3) of Corollary 3.2. Notice that ∆(α) is strictly positive implies that Cov(T

(n) 1 , T (n) 2 ) is of order n 3-3α and T (n) 1 , T (n) 2
are positively correlated in the limit which is similar to Boltausen-Sznitman coalescent and opposite of Kingman coalescent (negatively correlated) (see [START_REF] Dhersin | On the external branches of coalescents with multiple collisions[END_REF]). To prove this theorem, we have to give the asymptotic behaviours of E[T

(n) 1 T (n) 2 ](Theorem 3.1) and E[T (n)
1 ] (Theorem 2.1). We also get from Theorem 2.1 that the third term in ( 6) satisfies [START_REF] Blum | Minimal clade size and external branch length under the neutral coalescent[END_REF] (nE[T

(n) 1 ] -n 2-α E[T ]) 2 = O(n 6-4α
). The second one gives the asymptotic behaviour of moments of one external branch length, hence we can estimate nV ar(T (n) 1 ). Theorem 1.3. We assume that ρ(t) satisfies ( 4) and that 2(α -1) < ω (1) , and

ζ > 1 -1/α. (1) If 0 ≤ β < α α-1 , β(α -1) < ω (1) , then lim n→+∞ E[(n α-1 T (n) 1 ) β ] = E[T β ]. (2) If β ≥ α α-1 , then lim n→+∞ E[(n α-1 T (n) 1 ) β ] = +∞. Remark 1.3. Under the assumptions of Theorem 1.1, we can apply Theorem 1.3. Since α α-1 > 2, ω (1) > 2(α -1), Theorem 1.3 with β = 1, 2 leads to lim n→+∞ V ar(n α-1 T (n) 1 ) = V ar(T ) < +∞.
Hence nV ar(T

(n) 1 ) = O(n 3-2α ). Recall that (nE[T (n) 1 ] -n 2-α E[T ]) 2 = O(n 6-4α ) (see (7)) and n(n - 1)Cov(T (n) 1 , T (n) 2 ) = O(n 5-3α )(Theorem 1.2). Notice that we have 5 -3α > 6 -4α > 3 -2α. Hence we deduce that n(n -1)Cov(T (n) 1 , T (n) 1
) is the dominant term in [START_REF] Birkner | Alpha-stable branching and beta-coalescents[END_REF] . Theorem 1.1 is then proved. For the Beta(2 -α, α)-coalescent, Theorem 1.3 gives:

Corollary 1.4. For Beta(2 -α, α)-coalescent, we have (1) If 0 ≤ β < α α-1 , then lim n→+∞ E[(n α-1 T (n) 1 ) β ] = E[T β ]. (2) If β ≥ α α-1 , then lim n→+∞ E[(n α-1 T (n) 1 ) β ] = +∞.
1.3. Organization of this paper. We consider the Λ-coalescents which satisfy assumption (4). This includes Beta(2 -α, α)-coalescents. In sections 2 and 3, we give estimates of E[T

(n) 1 ] and E[T (n) 1 T (n) 2 ] respectively. Both E[T (n) 1 ] and E[T (n) 1 T (n)
2 ] satisfy the same kind of recurrence which allows to get their estimates and they lead to an estimate of Cov(T

(n) 1 , T (n)
2 ) in section 3. The main tool is Lemma 5.1 given in appendix A. In section 4, we deal with Theorem 1.3. Section 5 is the appendix where are given some proofs omitted before.

First moment of T (n) 1

by recursive method 2.1. The main result. Theorem 2.1. We assume that ρ(t) satisfies (4).

( (1) , then

) If 0 < ζ < α -1, α -1 + ζ < ω 1 
E[T (n) 1 ] = α -1 C 0 Γ(2 -α) n 1-α - C 1 Γ(2 -α + ζ)(α -1) 2 (C 0 Γ(2 -α)) 2 (α -1 -ζ) n 1-α-ζ + o(n 1-α-ζ ).
( (1) , then (1) , then

) If ζ = α -1, 2(α -1) < ω 2 
E[T (n) 1 ] = α -1 C 0 Γ(2 -α) n 1-α - (α -1) 2 C 1 (C 0 Γ(2 -α)) 2 n 2(1-α) ln n + o(n 2(1-α) ln n). (3) If ζ > α -1, 2(α -1) < ω
E[T (n) 1 ] = α -1 C 0 Γ(2 -α) n 1-α + (α -1) 2 C 0 Γ(3 -α) ( 1 0 ((1 -x) 1-α -1 -(α -1)x)ν (1) (dx) C 0 Γ(2 -α) + (α -1)C (1) 2 -C 2 C 0 Γ(2 -α) )n 2(1-α) + o(n 2(1-α) ),
where

C 2 = lim t→0 1 t ρ(r)dr - C 0 t 1-α α -1 , C (1) 
2 = lim t→0 1 t ρ (1) (r)dr - C 0 t 1-α α -1 , ρ (1) (t) = 1 t ν (1) (dx).
Remark 2.1. For the Beta(2 -α, α)-coalescent, we have ω (1) = α + 1, ζ = 1. Hence we are in case [START_REF] Berestycki | Asymptotic sampling formulae and particle system representations for lambda-coalescents[END_REF].

The idea is to use the recurrence satisfied by T (n) 1 (see [START_REF] Dhersin | On the external branches of coalescents with multiple collisions[END_REF]):

(8) E[T (n) 1 ] = 1 g n + n-1 k=2 p n,k k -1 n E[T (k) 1 ].
All the three cases in Theorem 2.1 will be proved in the same way. To give an idea of what should be done, we take case (1) as example. By defining

L = α-1 C0Γ(2-α) , Q = C1Γ(2-α+ζ)(α-1) 2 (C0Γ(2-α)) 2 (α-1-ζ)
, we transform the recurrence [START_REF] Bolthausen | On Ruelle's probability cascades and an abstract cavity method[END_REF] to

E[n α-1 T (n) 1 ] -L n ζ + Q = n α-1 g n -(1 - n-1 k=1 p n,k k -1 n ( n k ) α-1 )L n ζ + Q(1 - n-1 k=1 p n,k k -1 n ( n k ) α-1+ζ ) + n-1 k=2 ( n k ) α-1+ζ p n,k k -1 n k ζ (E[k α-1 T (k) 1 ] -L) + Q . (9)
Hence we get a recurrence [START_REF] Bovier | Much ado about Derrida's GREM[END_REF] a

n = b n + n-1 k=2 q n,k a k , with a n = E[n α-1 T (n) 1 ] -L n ζ + Q, b n = n α-1 g n -(1 - n-1 k=2 p n,k k -1 n ( n k ) α-1 )L n ζ + Q(1 - n-1 k=2 p n,k k -1 n ( n k ) α-1+ζ ), q n,k = ( n k ) α-1+ζ p n,k k -1 n .
Then we should prove that lim n→+∞ a n = 0. It is natural to think about estimating b n as n tends to infinity. To this aim, we should get asymptotics of g n , 1 gn , and

n-1 k=1 p n,k (k-1) l (n) l ( n k ) r with r ≥ 0 and l ∈ N, where (n) l is (the same for (k -1) l ): (n) l = n(n -1)(n -2) • • • (n -l + 1) if n ≥ l ≥ 1, 0 if l > n ≥ 1. 2.2. Asymptotics of 1/g n . For any c, d ∈ R, we have (11) Γ(n + c) Γ(n + d) = n c-d (1 + n -1 (c -d) c + d -1 2 + O(n -2 )).
This is the straightforward consequence of Stirling's formula:

(12) Γ(z) = √ 2πz z-1/2 e -z (1 + 1 12z + O( 1 z 2 )), z > 0.
It is then easy to get: For real numbers a and b > -1,

(13) 1 0 (1-t) n+a t b dx = Γ(n + a + 1)Γ(b + 1) Γ(n + a + b + 2) = Γ(b+1)n -1-b (1+n -1 (-1-b) b + 2a + 2 2 +O(n -2 )).
Recall that g n = n(n -1)

1 0 t(1 -t) n-2 ρ(t)dt.
Hence using (13), we get the following lemma. Lemma 2.2.

(1) If ρ(t) satisfies the condition:

(14) ρ(t) = C 0 t -α + o(t -α ), C 0 > 0.
Then

g n = C 0 Γ(2 -α)n α + o(n α ), and 
1 g n = 1 C 0 Γ(2 -α) n -α + o(n -α ).
(2) If ρ(t) satisfies (4), then

g n = C 0 Γ(2 -α)n α - α(α -1) 2 C 0 Γ(2 -α)n α-1 + C 1 Γ(2 -α + ζ)n α-ζ + o(n α-ζ ) + O(1), and 
(15) 1 g n =          1 -C1Γ(2-α+ζ) C0Γ(2-α) n -ζ + o(n -ζ ) n -α C0Γ(2-α) if 0 < ζ < 1, 1 + ( α(α-1) 2 -C1Γ(2-α+ζ) C0Γ(2-α) )n -1 + o(n -1 ) n -α C0Γ(2-α) if ζ = 1, 1 + α(α-1) 2 n -1 + o(n -1 ) n -α C0Γ(2-α) if ζ > 1 . 2.3. Calculus of n-1 k=1 p n,k (k-1) l (n) l ( n k ) r , r ≥ 0, l ∈ N.
For any s ∈ R, we denote by

g (s) n = 1 0 (1 -(1 -x) n -nx(1 -x) n-1 )ν (s) (dx),
the collision rates of the Λ-coalescent associated with the measure ν (s) . We recall that ν (s) is defined in [START_REF] Berestycki | Recent progress in coalescent theory[END_REF]. Notice that g

(0) n = g n .
Lemma 2.3. Consider any Λ-coalescent process with measure ν. Let l ∈ {1, 2, • • • , n -2} fixed. Then for any real function f :

n-1 k=1 p n,k (k -1) l (n) l f (k) = E[ (n -1 -X (n) 1 ) l (n) l ]E ν (l) [f (n -X (n-l) 1
)],

where E ν (l) [ * ] means that the Λ-coalescent is associated with the measure ν (l) .

Proof. Recall the definitions of g n and p n,k (see ( 1), ( 2)). We have

n-1 k=1 p n,k (k -1) l (n) l = n-1 k=l+1 1 0 n-l n-k+1 x n-k+1 (1 -x) k-1 ν(dx) g n = n-1 k=l+1 1 0 n-l n-k+1 x n-k+1 (1 -x) k-1-l ν (l) (dx) g n = n-1-l k=1 1 0 n-l n-k-l+1 x n-k-l+1 (1 -x) k-1 ν (l) (dx) g n = g (l) n-l g n . (16) 
Then,

n-1 k=1 p n,k (k -1) l (n) l f (k) = n-1 k=1 p n,k (k -1) l (n) l n-1 k=1 p n,k (k-1) l (n) l f (k) n-1 k=1 p n,k (k-1) l (n) l = E[ (n -1 -X (n) 1 ) l (n) l ] n-1 k=l+1 1 0 n-l n-k+1 x n-k+1 (1 -x) k-1-l f (k)ν (l) (dx) g (l) n-l = E[ (n -1 -X (n) 1 ) l (n) l ] n-1-l k=1 1 0 n-l n-k-l+1 x n-k-l+1 (1 -x) k-1 f (k + l)ν (l) (dx) g (l) n-l = E[ (n -1 -X (n) 1 ) l (n) l ]E ν (l) [f (Y (n-l) 1 + l)] = E[ (n -1 -X (n) 1 ) l (n) l ]E ν (l) [f (n -X (n-l) 1 
)].

This achieves the proof of the lemma.

In consequence,

n-1 k=1 p n,k (k -1) l (n) l ( n k ) r = E[ (n -1 -X (n) 1 ) l (n) l ]E ν (l) [( n n -X (n-l) 1 (17) 
) r ].

We have to study E[

(n-1-X (n) 1 ) l (n) l ] and E ν (l) [( n n-X (n-l) 1
) r ]. The latter is very close to Proposition 5.4 in appendix B. The following lemma studies the former.

Lemma 2.4. We assume that ρ(t) satisfies [START_REF] Berestycki | Beta-coalescents and continuous stable random trees[END_REF].

Let l ∈ {1, 2 • • • , n -2} fixed. (1) If 0 < ζ < α -1, then E[ (n -1 -X (n) 1 ) l (n) l ] = 1 - lα n(α -1) - lC 1 Γ(2 -α + ζ)ζ C 0 (α -1)Γ(2 -α)(α -1 -ζ) n -ζ-1 + o(n -ζ-1
).

(

) If ζ = α -1, then E[ (n -1 -X (n) 1 ) l (n) l ] = 1 - lα n(α -1) - lC 1 C 0 Γ(2 -α) n -α ln n + o(n -α ln n). 2 
(

) If ζ > α -1, then E[ (n -1 -X (n) 1 ) l (n) l ] = 1 - lα n(α -1) +   l j=2 l j (-1) j 1 0 jx j-1 ρ(x)dx C 0 Γ(2 -α) - C 2 l C 0 Γ(2 -α)   n -α + o(n -α ), 3 
where C 2 is the same as in Theorem 2.1.

Proof. We have

E[ (n -1 -X (n) 1 ) l (n) l ] = E[1 - l-1 i=0 X (n) 1 + 1 n -i + l j=2 i1,i2,••• ,ij all different (-1) j (X (n) 1 + 1) j (n -i 1 )(n -i 2 ) • • • (n -i j )
].

For

E[ l-1 i=0 X (n) 1 +1
n-i ], we use Lemma 5.2 in appendix B. While using Lemme 5.3, we get

E[ l j=2 i1,i2,••• ,ij all different (-1) j (X (n) 1 + 1) j (n -i 1 )(n -i 2 ) • • • (n -i j ) ] = n -α l j=2 l j (-1) j 1 0 jx j-1 ρ(x)dx C 0 Γ(2 -α) + O(n -min{1+α,j} ). (18) 
Then we conclude.

Now we can finally give the estimate of

n-1 k=1 p n,k (k-1) l (n) l ( n k ) r .
Proposition 2.5. We assume that ρ(t) satisfies [START_REF] Berestycki | Beta-coalescents and continuous stable random trees[END_REF]. Let l ∈ {1, 2, • • • , n -2} fixed and r ∈ [0, ω (l) ).

(

) If 0 < ζ < α -1, then n-1 k=1 p n,k (k -1) l (n) l ( n k ) r = 1 + r -lα n(α -1) + (r -l)C 1 Γ(2 -α + ζ)ζ C 0 (α -1)Γ(2 -α)(α -1 -ζ) n -ζ-1 + o(n -ζ-1 1 
).

(

) If ζ = α -1, then n-1 k=1 p n,k (k -1) l (n) l ( n k ) r = 1 + r -lα n(α -1) + (r -l)C 1 C 0 Γ(2 -α) n -α ln n + o(n -α ln n). 2 
(

) If ζ > α -1, then n-1 k=1 p n,k (k -1) l (n) l ( n k ) r =1 + (r -lα) n(α -1) + ( 1 0 ((1 -x) -r -1 -rx)ν (l) (dx) C 0 Γ(2 -α) + l j=2 l j (-1) j 1 0 jx j-1 ρ(x)dx C 0 Γ(2 -α) + rC (l) 2 -lC 2 C 0 Γ(2 -α) )n -α + o(n -α ), 3 
where C 2 is the same as in Theorem 2.1 and

C (l) 2 = lim t→0 1 t ρ (l) (r)dr - C 0 t 1-α α -1 .
Proof. The proof is a consequence of (17) and Remark 5.2.

Remark 2.2. The Remark 5.3 following Proposition 5.4 implies that if r ≥ ω (r) , this proposition is not valid at least in case [START_REF] Berestycki | Asymptotic sampling formulae and particle system representations for lambda-coalescents[END_REF]. Since this proposition is critical for the proof of Theorem 2.1(this will be shown in subsection 2.4), the assumptions about α and ω (1) made in Theorem 2.1 are necessary.

2.4. Proof of Theorem 2.1.

(1) Recall the transformation (9) and the associated recurrence [START_REF] Bovier | Much ado about Derrida's GREM[END_REF]. The aim is to prove that lim n→+∞ a n = 0 for a n in [START_REF] Bovier | Much ado about Derrida's GREM[END_REF]. Under the assumptions 0 < ζ < α -1, and α -1 + ζ < ω (1) , using Proposition 2.5, we get

1 - n-1 k=1 p n,k k -1 n ( n k ) α-1 = 1 n(α -1) - (α -2)C 1 Γ(2 -α + ζ)ζ C 0 (α -1)Γ(2 -α)(α -1 -ζ) n -ζ-1 + o(n -ζ-1 ), 1 - n-1 k=1 p n,k k -1 n ( n k ) α-1+ζ = 1 -ζ n(α -1) - (α -2 + ζ)C 1 Γ(2 -α + ζ)ζ C 0 (α -1)Γ(2 -α)(α -1 -ζ) n -ζ-1 + o(n -ζ-1 ),
and then b n = o(n -1 ) by [START_REF] Dhersin | On the length of an external branch in the beta-coalescent[END_REF]. Let ε > 0 such that α -1 + ζ + ε < ω (1) . Then we have 1 -

n-1 k=1 p n,k k-1 n ( n k ) α-1+ζ+ε = O(n -1 ) > 0.
Hence the recurrence (10) satisfies the assumptions of Lemma 5.1 which leads to lim n→+∞ a n = 0. Then we can conclude.

(2) Similarly, we transform recurrence [START_REF] Bolthausen | On Ruelle's probability cascades and an abstract cavity method[END_REF] to

n α-1 ln n E[n α-1 T (n) 1 ] -L + Q = n α-1 ln n n α-1 g n -(1 - n-1 k=1 p n,k k -1 n ( n k ) α-1 )L + Q 1 - n-1 k=1 p n,k k -1 n ( n k ) 2(α-1) ln k ln n + n-1 k=2 ln k ln n p n,k k -1 n ( n k ) 2(α-1) k α-1 ln k (E[k α-1 T (k) 1 ] -L) + Q , where L = α-1 C0Γ(2-α) , Q = (α-1) 2 C1 (C0Γ(2-α)) 2 .
Again, we denote by

a n = n α-1 ln n E[n α-1 T (n) 1 ] -L + Q, b n = n α-1 ln n n α-1 g n -(1 - n-1 k=1 p n,k k -1 n ( n k ) α-1 )L + Q 1 - n-1 k=1 p n,k k -1 n ( n k ) 2(α-1) ln k ln n , q n,k = ( n k ) 2(α-1) ln k ln n p n,k k -1 n , so that a n = b n + n-1 k=2 q n,k a k .
Here the only thing that we do not know is the estimate of

n-1 k=1 p n,k k-1 n ( n k ) 2(α-1
) ln k ln n . Using the same idea as in Proposition 2.5, we prove that : If ρ(t) satisfies condition (4) with

ζ = α -1, for l fixed in {1, 2, • • • , n -2} and r ∈ [0, ω (l) ), (19) n-1 k=1 p n,k (k -1) l (n) l ( n k ) r ( ln k ln n ) β = 1+ r -lα n(α -1) - β (α -1)n ln n + (r -l)C 1 C 0 Γ(2 -α) n -α ln n+o(n -α ln n).
Every step is identical to the proof of the first case to get lim n→+∞ a n = 0. We deduce that

E[T (n) 1 ] = Ln 1-α -Qn 2(1-α) ln n + o(n 2(1-α) ln n).
(3) This case is similar to the first case, so we skip it for simplicity.

Estimate of Cov(T

(n) 1 , T (n) 2 )
Using Theorem 1.1 of [START_REF] Dhersin | On the external branches of coalescents with multiple collisions[END_REF], we have ( 20)

E[T (n) 1 T (n) 2 ] = 2E[T (n) 1 ] g n + n-1 k=1 p n,k (k -1) 2 (n) 2 E[T (k) 1 T (k) 2 ]. The estimate of E[T (n) 1 T (n) 2
] can be obtained in the same way as in the proof of Theorem 2.1. At first, we give an estimate of

2E[T (n) 1
] gn which is the consequence of ( 15) and Theorem 2.1. We assume that ρ(t) satisfies ( 4).

(

) If 0 < ζ < α -1, α -1 + ζ < ω (1) , then 2E[T (n) 1 ] g n = 2n 1-2α C 0 Γ(2 -α) ( α -1 C 0 Γ(2 -α) - C 1 Γ(2 -α + ζ)(α -1)(2α -2 -ζ) (C 0 Γ(2 -α)) 2 (α -1 -ζ) n -ζ + o(n -ζ )). 1 
(

) If ζ = α -1, 2(α -1) < ω (1) , then 2E[T (n) 1 ] g n = 2n 1-2α C 0 Γ(2 -α) ( α -1 C 0 Γ(2 -α) - C 1 (α -1) 2 (C 0 Γ(2 -α)) 2 n 1-α ln n + o(n 1-α ln n)). (3) If ζ > α -1, 2(α -1) < ω (1) , then 2E[T (n) 1 ] g n = 2n 1-2α C 0 Γ(2 -α) α -1 C 0 Γ(2 -α) + (α -1) 2 C 0 Γ(3 -α) ( 1 0 ((1 -x) 1-α -1 -(α -1)x)ν (1) (dx) C 0 Γ(2 -α) + (α -1)C (1) 2 -C 2 C 0 Γ(2 -α) )n 1-α + o(n 1-α ) . 2 
We give the result and leave the proof to the reader.

Theorem 3.1. We assume that ρ(t) satisfies ( 4).

(1) If 0 < ζ < α -1, (α -1) + ζ < ω (1) , then

E[T (n) 1 T (n) 2 ] = ( α -1 C 0 Γ(2 -α) ) 2 n 2(1-α) - 2C 1 Γ(2 -α + ζ) α -1 -ζ ( α -1 C 0 Γ(2 -α) ) 3 n 2(1-α)-ζ + o(n 2(1-α)-ζ ).
( (1) , then

) If ζ = α -1, 2(α -1) < ω 2 
E[T (n) 1 T (n) 2 ] = ( α -1 C 0 Γ(2 -α) ) 2 n 2(1-α) - 2C 1 (α -1) 3 (C 0 Γ(2 -α)) 3 n 3(1-α) ln n + o(n 3(1-α) ln n).
( (1) , then

) If ζ > α -1, 2(α -1) < ω 3 
E[T (n) 1 T (n) 2 ] = ( α -1 C 0 Γ(2 -α) ) 2 n 2(1-α) + α -1 3 -α ( α -1 C 0 Γ(2 -α) ) 2 B + 2(α -1)C (2) 2 + 1 0 2tρ(t)dt -2C 2 C 0 Γ(2 -α) + 2 2 -α (A + (α -1)C (1) 2 -C 2 C 0 Γ(2 -α) ) n 3(1-α) + o(n 3(1-α) ),
where C 2 and C (l)

A = 1 0 ((1 -x) 1-α -1 -(α -1)x)ν (1) (dx) C 0 Γ(2 -α) , B = 1 0 ((1 -x) 2(1-α) -1 -2(α -1)x)ν (2) (dx) C 0 Γ(2 -α) .
Now combining Theorem 2.1 and 3.1, we can get the estimate of Cov(T

(n) 1 , T (n) 
2 ).

Corollary 3.2. We assume that ρ(t) satisfies ( 4).

(

) If 0 < ζ < α -1, α -1 + ζ < ω (1) , then Cov(T (n) 1 , T (n) 2 ) = o(n 2(1-α)-ζ ). (2) If ζ = α -1, 2(α -1) < ω (1) , then Cov(T (n) 1 , T (n) 2 ) = o(n 3(1-α) ln n). (3) If ζ > α -1, 2(α -1) < ω (1) , then Cov(T (n) 1 , T (n) 2 ) = ∆(α)n 3(1-α) + o(n 3(1-α) ), 1 
where

∆(α) = 1 0 ((1-x) 2-α -1) 2 ν(dx) 3-α ( α-1 C0Γ(2-α) ) 3 .
Proof. We skip the easy cases ( 1) and ( 2). For case (3), we get from Theorem 2.1 and 3.1 that Cov(T

(n) 1 , T (n) 2 ) = n 3(1-α) 3 -α (α -1) 3 (C 0 Γ(2 -α)) 2 (B -2A + 2(α -1)(C (2) 2 -C (1) 
2 ) +

1 0 2tρ(t)dt C 0 Γ(2 -α) ) + o(n 3(1-α) ). Hence (21) ∆(α) = (α -1) 3 (3 -α)(C 0 Γ(2 -α)) 2 (B -2A + 2(α -1)(C (2) 2 -C (1) 
2 ) +

1 0 2tρ(t)dt C 0 Γ(2 -α)
).

Notice that

B -2A = 1 0 (1 -x) 2(2-α) -2(1 -x) 2-α + 1 -x 2 + 2(α -1)x 2 (1 -x) ν(dx) C 0 Γ(2 -α) .
By definition, C

= lim t→+∞ 1 t (ρ (2) (x) -ρ (1) (x))dx = lim t→0 1 t x(ν (2) (dx) -ν (1) (dx)) = 1 0 -x 2 (1 -x)ν(dx), (2) 2 -C (1) 2 
1 0 2tρ(t)dt = 1 0 x 2 ν(dx). and 
Then we get the result.

3.1. Beta(2-α, α). For the Beta(2-α, α)-coalescent, we have ζ = 1, ω (1) = 1+α, so ζ > α-1, ω (1) 
> 2(α-1). Hence this process is in the case (3) of Corollary 3.2. We can compute explicitly the constants

C 2 , C (1) 2 , C 
2 , A, B in Theorem 3.1:

(1) C 2 = 1 1-α , C (1) 2 
= α 1-α , C (2) 
2 = α 2 +α 2(1-α) . (2) A = α(α 2 -α -1)Γ(α -1), B = 1 (α-1) ( Γ(4-α) Γ(4-2α) + (α 2 -α -1)Γ(α + 2)). (3) ∆(α) = ((α-1)Γ(α+1)) 2 Γ(4-α) (3-α)Γ(4-2α) .
Proof.

(1) For Beta(2 -α, α)-coalescent, we have for C 0 = 1 αΓ(α)Γ(2-α) and for l = 0, 1, 2,

ν (l) (dx) = 1 Γ(α)Γ(2 -α) x -1-α (1 -x) α-1+l dx, and ρ (l) (t) = 1 αΓ(α)Γ(2 -α) t -α + O(t 1-α ).
Using integration by parts,

1 t ρ (l) (x)dx = -tρ (l) (t) + 1 Γ(α)Γ(2 -α) 1 t x -α (1 -x) α-1+l dx = - 1 αΓ(α)Γ(2 -α) t 1-α + 1 (α -1)Γ(α)Γ(2 -α) t 1-α + α + l -1 (1 -α)Γ(α)Γ(2 -α) 1 t x 1-α (1 -x) α+l-2 dx + O(t 2-α ) = C 0 α -1 t 1-α + Γ(α + l) Γ(l + 1)Γ(α)(1 -α) + O(t 2-α ).
The choices l = 0, 1, 2, give (1). (2) Recall that

A = 1 0 ((1 -x) 1-α -1 -(α -1)x)ν (1) (dx) C 0 Γ(2 -α) = α Γ(2 -α) 1 0 ((1-x) 1-α -1-(α-1)x)x -1-α (1-x) α dx.
Using integration by parts two times,

A = α Γ(2 -α) 1 α(α -1) 1 0 x 1-α -α(α -1)(1 -x) α-2 + 2α(α -1)(1 -x) α-1 -α(α -1) 2 x(1 -x) α-2 dx = 1 Γ(2 -α)(α -1) (-Γ(α + 1)Γ(2 -α) + 2(α -1)Γ(α + 1)Γ(2 -α) -(α -1)Γ(3 -α)Γ(α + 1)) = α(α 2 -α -1)Γ(α -1). 
B can be computed directly using integration by parts two times. (3) Notice that ∆(α) has the expression [START_REF] Fu | Statistical tests of neutrality of mutations[END_REF]. Hence it can be calculated since we know A, B, C

(2) 2 . We omit the very detailed calculus. Lemma 4.11 of [27] and Problem 14 in section 8.3 [START_REF] Breiman | Probability, classics in applied mathematics[END_REF]). Then we need only to prove that for

Proof of Theorem 1.3

Notice that n α-1 T (n) 1 (d) → T and if β ≥ α α-1 , one gets E[T β ] = +∞, hence E[(n α-1 T (n) 1 ) β ] converges to +∞ (see Lemma 4.11 of [27]). If 0 ≤ β 1 < β 2 < α α-1 and (E[(n α-1 T (n) 1 ) β2 ], n ≥ 2) is bounded. Then ((n α-1 T (n) 1 ) β1 , n ≥ 2) is uniformly integrable (see
β ∈ [2, α α-1 ), (E[(n α-1 T (n) 1 ) β ], n ≥ 2) 
is bounded. We will prove by induction on n that there exists a constant C > 0 such that for all n ≥ 2,

(E[n α-1 T (n) 1 ]) β ≤ C. We first assume that, for all 2 ≤ k ≤ n -1, (E[k α-1 T (k) 1 ]) β ≤ C and then will prove that (if C is large enough) (E[n α-1 T (n) 1 ]) β ≤ C. Writing the decomposition of T (n) 1
at the first coalescence, we have

T (n) 1 = e 0 g n + n-1 k=2 1 {H n,k } T (k) 1 ,
where:

• H n,k is the event: {From n individuals, we have k individuals after the first coalescence, and individual 1 is not involved in this collision}, 2 ≤ k ≤ n -1;

• e 0 is a unit exponential random variable, T

= T (k)

1 , and all these random variables e 0 , T (k) 1 , 1 {H n,k } are independent. One notices that P(H n,k ) = p n,k k-1 n , compared to [START_REF] Bolthausen | On Ruelle's probability cascades and an abstract cavity method[END_REF].

Thanks to Lemma 5.8 in Appendix C, we have the following inequality.

E[(T

(n) 1 ) β ] = E[(( e 0 g n + n-1 k=2 1 {H n,k } T (k) 1 )) β ] ≤ I n,1 + I n,2 + I n,3 + I n,4 (22) 
where

I n,1 = E[( e 0 g n ) β ], I n,2 = E[( n-1 k=2 1 {H n,k } T (k) 1 ) β ], I n,3 = E[β2 β-1 e 0 g n ( n-1 k=2 1 {H n,k } T (k) 1 ) β-1 ] and I n,4 = E[β2 β-1 ( e 0 g n ) β-1 n-1 k=2 1 {H n,k } T (k) 1 ].
We first bound I n,1 . Recall that g n ∼ C 0 Γ(2 -α)n α , hence there exists a constant K 1 > 0 such that for β ≥ 2 > 1 and n ≥ 2,

n (α-1)β I n,1 ≤ K 1 n . ( 23 
)
We now consider I n,2 . Notice that (α -1)β < ω (1) . Hence, using Proposition 2.5, we have

n (α-1)β I n,2 = n -(α-1)β n-1 k=2 p n,k k -1 n ( n k ) (α-1)β E[(k α-1 T (k) 1 ) β ] (24) ≤ C n-1 k=2 p n,k k -1 n ( n k ) (α-1)β (25) = C(1 - α -(α -1)β n(α -1) + o(n -1 )) ≤ C(1 - α -(α -1)β 2n(α -1)
), [START_REF] Janson | On the total external length of the kingman coalescent[END_REF] for n ≥ N, where N is a fixed positive integer.

We now proceed to I n,3 . Notice that for 2

≤ k ≤ n -1, E[(k α-1 T (k) 1 ) β-1 ] ≤ (E[(k α-1 T (k) 1 ) β ]) β-1 β ≤ C β-1
β . Hence we have

n (α-1)β I n,3 = n (α-1)β E[β2 β-1 e 0 g n n-1 k=2 1 {H n,k } ( T (k) 1 ) β-1 ] ≤ C β-1 β β2 β-1 n α-1 g -1 n n-1 k=2 p n,k k -1 n n k (α-1)(β-1) = C β-1 β n α-1 β2 β-1 g -1 n (1 - α -(α -1)(β -1) n(α -1) + o(n -1 )) ≤ C β-1 β K 2 n , (27) 
where K 2 is a positive constant. In the second equality, we have used Proposition 2.5.

While for any n ≥ 2,

n (α-1)β I n,4 = n (α-1)β E[β2 β-1 ( e 0 g n ) β-1 n-1 k=2 1 {H n,k } T (k) 1 ] ≤ β2 β-1 E[e β-1 0 ](g n ) 1-β n (α-1)(β-1) E[n α-1 T (n) 1 ] ≤ K 3 n β-1 ≤ K 3 n , ( 28 
)
where K 3 is a positive constant. We have used Lemma 2.1 to bound E[n α-1 T (n) 1 ]. Using ( 22),( 23),( 24),( 27), [START_REF] Kersting | The asymptotic distribution of the length of beta-coalescent trees[END_REF], we have proved that for any n, n ≥ N , if there exists C > 0 such that for all 2

≤ k ≤ n -1, E[ k α-1 T (k) 1 β ] ≤ C, then (29) E[(n α-1 T (n) 1 ) β ] ≤ C + K 1 -C α-(α-1)β 2(α-1) + C β-1 β K 2 + K 3 n .
Let C large enough such that

(30) K 1 -C α -(α -1)β 2(α -1) + C β-1 β K 2 + K 3 < 0, Then E[(n α-1 T (n) 1
) β ] ≤ C, which allows to conclude.

Appendix

A) The main recurrence tool Lemma 5.1. We consider the recurrence a n = b n + n-1 k=1 q n,k a k . We assume that b n = o(n -1 ) and that there exist ε > 0 and C > 0 such that 1 -

n-1 k=1 q n,k ( n k ) ε ≥ Cn -1 for n large enough. Then lim n→+∞ a n = 0.
Proof. Let (c n ) n≥1 be an increasing sequence such that lim n→+∞ cn = +∞; lim n→+∞ nb n cn = 0. Define another sequence (c n ) n≥1 by: c 1 = c1 . For n ≥ 1,

c n+1 = min{c n ( n + 1 n ) ε , cn+1 },
Then we have lim

n→+∞ c n = +∞, c n b n = o(n -1
) and for any 1

≤ k ≤ n -1, cn c k ≤ ( n k ) ε . In consequence, 1 - n-1 k=1 q n,k cn c k ≥ Cn -1
for n large enough. We suppose that there exist n 1 > 0 such that for n > n 1 , we have 1 -

n-1 k=1 q n,k cn c k > C n and c n b n < C 2n .
We can find a number C ′ such that C ′ > max{1, c k a k ; 1 ≤ k ≤ n 1 }. We transform the original recurrence to

c n a n = c n b n + n-1 k=1 q n,k c n c k c k a k . Then c n1+1 a n1+1 ≤ C 2(n1+1) + (1 -C n1+1 )C ′ ≤ C ′ .
By induction, we prove that the sequence (c n a n ) n≥1 is bounded by C ′ . Since c n tends to the infinity, we get lim n→+∞ a n = 0. Remark 5.1. This kind of recurrence relationships is very frequent in probability. We refer to [START_REF] Marynych | Stochastic recurrences and their applications to the analysis of partition-valued processes[END_REF] for a rather detailed survey.

B) Asymptotic behaviours of X (n) 1

Lemma 5.2. We assume that ρ(t) satisfies (4).

(

) If 0 < ζ < α -1, then E[X (n) 1 ] = 1 α-1 (1 + C1Γ(2-α+ζ)ζ C0Γ(2-α)(α-1-ζ) n -ζ ) + o(n -ζ ). (2) If ζ = α -1, then E[X (n) 1 ] = 1 α-1 (1 + C1(α-1) C0Γ(2-α) n 1-α ln n) + o(n 1-α ln n). 1 
(

) If ζ > α -1, then E[X (n) 1 ] = 1 α-1 (1 + C2(α-1) C0Γ(2-α) n 1-α ) + o(n 1-α ), where C 2 = lim t→0 1 t ρ(r)dr - C 0 t 1-α α -1 . 3 
Proof. We have:

E[X (n) 1 ] = 1 0 (1 -t) n-2 ( 1 t ρ(r)dr)dt 1 0 (1 -t) n-2 tρ(t)dt
(see [START_REF] Delmas | Asymptotic results on the length of coalescent trees[END_REF]). Hence we should give the values of (1 -t) n-2 tρ(t)dt. For that, we use the estimation [START_REF] Breiman | Probability, classics in applied mathematics[END_REF].

(

) If 0 < ζ < α-1, 1 t ρ(r)dr = 1 t C 0 r -α +C 1 r -α+ζ +o(r -α+ζ )dr = C0 α-1 t 1-α + C1 α-1-ζ t -α+ζ+1 + o(t -α+ζ+1 1 
). Then using that α -ζ -1 > 0, [START_REF] Breiman | Probability, classics in applied mathematics[END_REF] and ( 13), we have

1 0 (1 -t) n-2 ( 1 t ρ(r)dr)dt = C 0 α -1 Γ(n -1)Γ(2 -α) Γ(n + 1 -α) + ( C 1 α -1 -ζ + o(1)) Γ(n -1)Γ(2 -α + ζ) Γ(n + 1 -α + ζ) = C 0 Γ(2 -α) α -1 n α-2 (1 + O(n -1 )) + ( C 1 α -1 -ζ + o(1))Γ(2 -α + ζ)n α-2-ζ (1 + O(n -1 )) = C 0 Γ(2 -α) α -1 n α-2 + C 1 Γ(2 -α + ζ) α -1 -ζ n α-2-ζ + o(n α-2-ζ ), and 
1 0 (1 -t) n-2 tρ(t)dt = C 0 Γ(n -1)Γ(2 -α) Γ(n + 1 -α) + (C 1 + o(1)) Γ(n -1)Γ(2 -α + ζ) Γ(n + 1 -α + ζ) = C 0 Γ(2 -α)n α-2 (1 + O(n -1 )) + (C 1 + o(1))Γ(2 -α + ζ)n α-2-ζ (1 + O(n -1 )) = C 0 Γ(2 -α)n α-2 + C 1 Γ(2 -α + ζ)n α-2-ζ + o(n α-2+ζ ). Hence E[X (n) 1 ] = 1 α-1 (1 + C1Γ(2-α+ζ)ζ C0Γ(2-α)(α-1-ζ) n -ζ + o(n -ζ )). (2) If ζ = α -1, 1 t ρ(r)dr = C0 α-1 t 1-α -C 1 ln t + o(ln t). Then 1 0 (1 -t) n-2 ( 1 t ρ(r)dr)dt = C 0 α -1 Γ(n -1)Γ(2 -α) Γ(n + 1 -α) + (-C 1 + o(1)) 1 0 
(1 -t) n-2 ln tdt.

Let a n = 1 0 (1 -t) n ln tdt. By integration by parts, (n + 1)

a n = na n-1 -1 n+1 . So a n = -n+1 i=2 1/i n+1 = -ln n n + O(n -1 ). In consequence, 1 0 (1 -t) n-2 ( 1 t ρ(r)dr)dt = C 0 Γ(2 -α) α -1 n α-2 (1 + O(n -1 )) + (-C 1 + o(1))( -ln(n -2) n -2 + O(n -1 )) = C 0 Γ(2 -α) α -1 n α-2 + C 1 ln n n + o( ln n n ).
Moreover,

1 0 (1 -t) n-2 tρ(t)dt = C 0 Γ(2 -α)n α-2 + C 1 n -1 + o(n -1 ). Hence, E[X (n) 1 ] = 1 α-1 (1 + C1(α-1) C0Γ(2-α) n 1-α ln n) + o(n 1-α ln n).
Hence, using Lemma 5.3, for m > 2,

n α P 2 (m, n, s) ≤ n α m i=0 (r + i) m! (1 -s) -r-1 E[(X (n) 1 /n) m+1 ] = (1 -s) -r-1 m i=0 (r + i) m! ( 1 0 (m + 1)t m ρ(t)dt C 0 Γ(2 -α) + O(n -1 )).
Using Lemme 5.6 in Appendix C, we have

1 0 (m + 1)t m ρ(t)dt = 1 0 x m+1 ν(dx) = 1 0 x m+1 (1 -x) r ν(dx) (1 -x) r = 1 0 x m+1 (1 -x) r ν (-r) (dx) ≤ K 5 m -r ,
where K 5 is a positive real number depending only on r and ν. (1-t) -r-m-1 ( X

(n) 1 n -t) m dt] = 0.
This convergence together with Lemma 5.2 and 5.3 yield this proposition.

Remark 5.2. Using the same arguments, it is easy to prove that if l ∈ N, E[( n n-X (n-l) 1

) r ] has also the decomposition given by Proposition 5.4. More precisely, write ). This proposition also shows that

n α E[ +∞ k=2 k-1 i=0 (r + i) k! ( X (n-l) 1 n ) k ] ≤ n α E[ +∞ k=2 k-1 i=0 (r + i) k! ( X (n-l) 1 n -l ) k ] m→+∞ -→ 0.
Then we can conclude.

Remark 5.3. If we move farther to Remark 5.4, we will see that in the case of Beta(2 -α, α), if r ≥ ω, we have

lim m→+∞ lim n→+∞ n α m i=0 (r + i) m! E[ X (n) 1 n 0 (1 -t) -r-m-1 ( X (n) 1 n -t) m dt] ≥ C,
where C > 0 is defined in Remark 5.4. Then in the third case of this Proposition 5.4, the expression of E[( n n-X

(n) 1

) r ] will be changed. So the constraint r ∈ [0, ω) is necessary.

C) Some results necessary to prove those in Appendix B Lemma 5.5. Let B n,x be a binomial random variable with parameter (n, x), n ≥ 2, 0 ≤ x ≤ 1. Let k be an integer such that 2 ≤ k ≤ n. Then

nx + n(n -1) • • • (n -k + 1)x k ≤ E[B k n,x ] ≤ (nx) k + k 2 n k-1 x 2 ,
ns ≥ n -1 and it follows that

P 1 (m, n, s) ≥ E[ n n -X (n) 1 r -1 -r X (n) 1 n - m k=2 k-1 i=0 (r + i) k! ( X (n) 1 n ) k 1 X (n) 1 =n-1 ] = P(X (n) 1 = n -1) n r -1 -r n -1 n - m k=2 k-1 i=0 (r + i) k! ( n -1 n ) k = 1 0 x n ν(dx) g n n r -1 -r n -1 n - m k=2 k-1 i=0 (r + i) k! ( n -1 n ) k ∼ Cn -2α n r -1 -r n -1 n - m k=2 k-1 i=0 (r + i) k! ( n -1 n ) k
where C is a strictly positive number. Hence, if r ≥ ω = α, then lim inf n→+∞ n α P 1 (m, n, s) ≥ C, ∀0 < s < 1.

This result is not compatible with the lemma with 0 ≤ r < ω. remark justifies the constraint 0 ≤ r < ω. Proof. If 0 ≤ m ≤ 1, then

(1 + m) β ≤ 1 + β2 β-1 m ≤ 1 + m β + β2 β-1 m + β2 β-1 m β-1 .
We use that the function m → (1 + m) β is convex and that β2 β-1 is the derivative of (1 + m) β at m = 1. If 1 < m, then

(1 + m) β = m β (1 + 1 m ) β ≤ (m) β (1 + β2 β-1 1 m ) ≤ 1 + m β + β2 β-1 m + β2 β-1 m β-1 .
Hence for all m > 0, (1 + m) β ≤ 1 + m β + β2 β-1 m + β2 β-1 m β-1 . Then for all a > 0, b > 0, This achieves the proof.

1 0 ( 1 - 1 t

 111 t) n-2 ( ρ(r)dr)dt and 1 0

  m+r+1) Γ(r)Γ(m+1) ∼ m r Γ(r) . Hence (33) P 2 (m, n, s) ≤ n -α (1 -s) -r-1 m r (O(m -r ) + o(n -1 )).Combining (32) and (33), we deduce that lim m→+∞ lim sup n→+∞ n α (P 1 (m, n, s)+P 2 (m, n, s))

For any k ≥ 1 , 1 n

 11 Lemma 5.2 and 5.3 give E[( -l ) k ] + O(n -2
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 58 ) Results that are used to prove Theorem 1.3. Let a > 0, b > 0, β > 2. Then 0 < (a + b) β ≤ a β + b β + β2 β-1 ab β-1 + β2 β-1 ba β-1 .

  (a + b) β = a β (1 + b a ) β ≤ a β (1 + ( b a ) β + β2 β-1 b a + β2 β-1 ( b a ) β-1 ) = a β + b β + β2 β-1 ab β-1 + β2 β-1 ba β-1 .

(1 -t) n-2 (

and,

Hence we get E[X

Lemma 5.3. We assume that ρ(t) satisfies [START_REF] Dhersin | On the external branches of coalescents with multiple collisions[END_REF].

Proof. Let B n,x denote a binomial random variable with parameter (n, x), n ≥ 2, 0 ≤ x ≤ 1. Recall that for 2 ≤ i ≤ n, P(X

In the second equality, we have used g n ∼ C 0 Γ(2 -α)n α and also the fact that

. This achieves the proof. Proposition 5.4. We assume that ρ(t) satisfies (4) and r ∈ [0, ω).

).

(

(

, where C 2 is the same as in Theorem 2.1.

Proof. By Taylor expansion formula, for m ≥ 2, we have,

Then we get: ( 31)

Thanks to Lemma 5.2 and 5.3, we have the asymptotic behaviours of E[

In consequence,

we need only to estimate

which is the sum of two terms P 1 (m, n, s) and P 2 (m, n, s) with 0 < s < 1 and

]. We first focus on P 1 (m, n, s). By Lemma 5.7 in Appendix C, we have

where r ∈ (r, ω) and K 4 is a number depending only on r and ν(it is important to notice that it does not depend on s).

We now give an upper bound for P 2 (m, n, s). We have

For t ∈ [0, x) with 0 < x ≤ 1, we have:

So we deduce that

where

Then we can conclude.

Lemma 5.6. We assume that ρ(t) satisfies condition [START_REF] Dhersin | On the external branches of coalescents with multiple collisions[END_REF]. Then for every s ≥ 0,

, where K 6 is a positive constant which depends only on s and ν.

Proof. It is clear that there exists K 7 > 0 such that ρ(t) ≤ K 7 t -α , for all 0 < t ≤ 1. Then

for some K 6 which only depends on K 7 and s. This achieves the proof of the lemma.

The upper bound of P 1 (m, n, s) is given by the next lemma.

Lemma 5.7. We assume that ρ(t) satisfies condition [START_REF] Dhersin | On the external branches of coalescents with multiple collisions[END_REF]. Let r ∈ [0, ω) and r ∈ (r, ω). Then there exists a constant K 11 depending only on r and ν such that for all s ∈ (0, 1),

Proof. It is easy to observe that

So by [START_REF] Breiman | Probability, classics in applied mathematics[END_REF], there exist two positive constants K 8 , K 9 such that for all k ∈ {1, 2, . . . , n -1},

Moreover using integration by parts, for 1 ≤ l ≤ n -1 and 0 ≤ x ≤ 1, we have:

Let r ∈ (r, ω), ν (-r) (dx) = ν(dx) (1-x) r , and ρ (-r) (t) = 1 t ν (-r) (r)dr. It is easy to see that ρ (-r) (t) = C 0 t -α + o(t -α ). Then there exists K 10 > 0, such that ρ (-r) (t) ≤ K 10 t -α for all t ∈ (0, 1].

where for the first inequality, we use [START_REF] Marynych | Stochastic recurrences and their applications to the analysis of partition-valued processes[END_REF] with l = ⌈ns⌉, in the second inequality, we have used an argument of integration by parts and for the third inequality, we bound ρ (-r) (x) by K 10 x -α and we also use Lemma 5.6. For the last inequality, we use [START_REF] Breiman | Probability, classics in applied mathematics[END_REF]. Here K 11 is a constant which depends only on r and ν. Hence for all n ≥ 2,

This achieves the proof of the lemma.

Remark 5.4. If r ≥ ω, this lemma is false. Take Beta(2 -α, α) as example. We have ν(dx) = 1 Γ(α)Γ(2-α) x -1-α (1 -x) α-1 dx and ω = α. Then for any fixed 0 < s < 1 and n ≥ 1 1-s , we have