Nathalie Villa
email: nathalie.villa@math.ups-tlse.fr

Fabrice Rossi
email: fabrice.rossi@inria.fr

A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph

Keywords: kernel SOM, dissimilarity, graph

Flexible and efficient variants of the Self Organizing Map algorithm have been proposed for non vector data, including, for example, the dissimilarity SOM (also called the Median SOM) and several kernelized versions of SOM. Although the first one is a generalization of the batch version of the SOM algorithm to data described by a dissimilarity measure, the various versions of the second ones are stochastic SOM. We propose here to introduce a batch version of the kernel SOM and to show how this one is related to the dissimilarity SOM. Finally, an application to the classification of the vertices of a graph is proposed and the algorithms are tested and compared on a simulated data set.

Introduction

Despite all its qualities, the original Self Organizing Map (SOM, [START_REF] Kohonen | Self-Organizing Maps, 3rd Edition[END_REF]) is restricted to vector data and cannot therefore be applied to dissimilarity data for which only pairwise dissimilarity measures are known, a much more general setting that the vector one. This motivated the introduction of modified version of the batch SOM adapted to such data. Two closely related dissimilarity SOM were proposed in 1996 [START_REF] Kohonen | Self-organizing maps of symbol strings[END_REF][START_REF] Ambroise | Analyzing dissimilarity matrices via Kohonen maps[END_REF], both based on the generalization of the definition of the mean or median to any dissimilarity measure (hence the alternative name Median SOM). Further variations and improvements of this model are proposed in [START_REF] Kohohen | Self-Organizing maps of symbol strings[END_REF][START_REF] Conan-Guez | Fast algorithm and implementation of dissimilarity selforganizing maps[END_REF][START_REF] Golli | Une adaptation des cartes autoorganisatrices pour des données décrites par un tableau de dissimilarités[END_REF].

Another way to build a SOM on non vector data is to use the kernelized version of the algorithm. Kernel methods have become very popular in the past few years and numerous learning algorithm (especially supervised ones) have been "kernelized": original data are mapped into an high dimensional feature space by the way of a nonlinear feature map. Both the high dimensional space and the feature map are obtained implicitly from a kernel function. The idea is that difficult problems can become linear ones while being mapped nonlinearly into high dimensional spaces. Classical (often linear) algorithms are then applied in the feature spaces and the chosen kernel is used to compute usual oper-ations such as dot products or norms; this kernelization provides extensions of usual linear statistical tools into nonlinear ones. This is the case, among others, for Support Vector Machine (SVM, [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]) which corresponds to linear discrimination or Kernel PCA ([START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF]) which is built on Principal Component Analysis. More recently, kernelized version of the SOM has been studied: [START_REF] Graepel | Selforganizing maps: generalizations and new optimization techniques[END_REF] first proposes a kernelized version of SOM that aims at optimizing the topographic mapping. Then, [START_REF] Andras | Kernel-Kohonen networks[END_REF][START_REF] Donald | The kernel self organising map[END_REF] present kernel SOM that applies to the images of the original data by a mapping function; they obtain improvements in classification performances of the algorithm. [START_REF] Lau | Kernel selforganising maps for classification[END_REF][START_REF] Yin | On the equivalence between kernel selforganising maps and self-organising map mixture density networks[END_REF] also studied these algorithms: the first one gives a comparison of various kernel SOM on several data sets for classification purposes and the second proves the equivalence between kernel SOM and self-organizing mixture density network.

In this work, we present a batch kernel SOM algorithm and show how this algorithm can be seen as a particular version of the dissimilarity SOM (section 2). We target specifically non vector data, more precisely vertices of a graph for which kernels can be used to define global proximities based on the graph structure itself (section 3.1). Kernel SOM provides in this context an unsupervised classification algorithm that is able to cluster the vertices of a graph into homogeneous proximity groups. This application is of a great interest as graphs arise naturally in many settings, especially in studies of social networks such as World Wide Web, scientific network, P2P network ([START_REF] Bornholdt | Handbook of Graphs and Networks -From the Genome to the Internet[END_REF]) or medieval peasant community ([START_REF] Boulet | Partitionnement d'un réseau de sociabilité à fort coefficient de clustering. In 7èmes Journées Francophones[END_REF][START_REF] Villa | Clustering a medieval social network by SOM using a kernel based distance measure[END_REF]). We finally propose to explore and compare the efficiency of these algorithms to this kind of problems on a simulated example (section 3.2).

A link between kernel SOM and Dissimilarity SOM

In the following, we consider n input data, x 1 , . . . , x n from an arbitrary input space, G. In this section, we present self-organizing algorithms using kernels, i.e. functions k :

G × G → R such that are symmetric (k(x, x ′) = k(x ′ , x))
and positive (for all m ∈ N, all x 1 , . . . , x m ∈ G and all α 1 , . . . , α m ∈ R, m i=1 α i α j k(x i , x j) ≥ 0). These functions are dot products of a mapping function, φ, which is often nonlinear. More precisely, it exists an Hilbert space, (H, ., .), called a Reproducing Kernel Hilbert Space (RKHS), and a mapping function φ : G → H such that k(x, x ′) = φ(x), φ(x ′) . Then, algorithms that use the input data by the way of their norms or dot products are easily kernelized using the images by φ of the original data set: φ and H are not explicitely known as the operations are defined by the way of the kernel function.

On-line kernel SOM

A kernel SOM based on the k-means algorithm has been first proposed by [START_REF] Donald | The kernel self organising map[END_REF]. The input data of this algorithm are the images by φ of x 1 , . . . , x n and, as in the original SOM, they are mapped into a low dimensional grid made of M neurons, {1, . . . , M }, which are related to each others by a neighborhood relationship, h. Each neuron j is represented by a prototype in the feature space H, p j , which is a linear combination of {φ(x 1), . . . , φ(x n)}:

p j = n i=1 γ ji φ(x i).
This leads to the following algorithm: Algorithm 1: On-line kernel SOM

(1) For all j = 1, . . . , M and all i = 1, . . . , n, initialize γ 0 ji randomly in R;

(2) For l = 1, . . . , L, do [START_REF] Bornholdt | Handbook of Graphs and Networks -From the Genome to the Internet[END_REF] assignment step: x l is assigned to the neuron, f l (x l) which has the closest prototype:

f l (x l) = arg min j=1,...,M φ(x l) -p l-1 j (4)
representation step: for all j = 1, . . . , M , the prototype pj is recomputed: for all i = 1 . . . , n,

γ l ji = γ l-1 ji + α(l)h(f l (x l), j) δ il -γ l-1 ji
End for.

where step (3) leads to the minimization of

n i,i ′ =1 γ l-1 ji γ l-1 ji ′ k(x i , x i ′) -2 n i=1 γ l-1 ji k(x i , x l).
As shown in [START_REF] Yin | On the equivalence between kernel selforganising maps and self-organising map mixture density networks[END_REF], the kernel SOM can be seen as a result of minimizing the energy

E = n j=1 h(f (x), j) φ(x) -p j 2 stochastically.
Another version of the kernel SOM is also proposed by [START_REF] Andras | Kernel-Kohonen networks[END_REF]: it uses prototypes chosen in the original set and then computes the algorithm with the images by φ of this prototype. It comes from the minimization of the following energy

E = n j=1 h(f (x), j) φ(x) -φ(p j) 2 .

Dissimilarity SOM with dissimilarities based on kernels

Dissimilarity SOM ([START_REF] Kohohen | Self-Organizing maps of symbol strings[END_REF][START_REF] Conan-Guez | Fast algorithm and implementation of dissimilarity selforganizing maps[END_REF][START_REF] Golli | Une adaptation des cartes autoorganisatrices pour des données décrites par un tableau de dissimilarités[END_REF]) is a generalization of the batch version of SOM to data described by a dissimilarity measure. We assume given, for all i, i ′ = 1, . . . , n, a measure δ(x i , x i ′), that is symmetric (δ(x, x ′) = δ(x ′ , x)), positive (δ(x, x ′) ≥ 0) and such that δ(x, x) = 0. The Dissimilarity SOM proceeds as follows:

Algorithm 2: Dissimilarity SOM

(1) For all j = 1, . . . , M , initialize p 0 j randomly to one of the element of the data set {x1, . . . , xn};

(2) For l = 1, . . . , L, do (3) assignment step: for all i = 1, . . . , n, xi is assigned to the neuron, f l (xi) which has the closest prototype:

f l (xi) = arg min j=1,...,M δ(xi, p l-1 j) (4)
representation step: for all j = 1, . . . , M , the prototype pj is recomputed:

p l j = arg min x∈(x i ′) i ′ =1,...,n n i=1 h(f l (xi), j)δ(xi, x)
End for.

As shown in step (4), the purpose is to choose prototypes in the data set that minimize the generalized energy [START_REF] Conan-Guez | Fast algorithm and implementation of dissimilarity selforganizing maps[END_REF][START_REF] Golli | Une adaptation des cartes autoorganisatrices pour des données décrites par un tableau de dissimilarités[END_REF] propose variants of this algorithm: the first one allows the use of several prototypes for a single neuron and the second describes a faster version of the algorithm.

E = M j=1 n i=1 h(f (x i), j)δ(x i , p j).
In [START_REF] Villa | Clustering a medieval social network by SOM using a kernel based distance measure[END_REF], a dissimilarity based on a kernel is described: it is designed for the clustering of the vertices of a graph. To construct their dissimilarity, the authors take advantage of the fact that the kernel can be interpreted as a norm; then computing the distance induced by this norm leads to the definition of a dissimilarity measure on {x 1 , . . . , x n }:

δ med (x, x ′) = φ(x) -φ(x ′) (1) = k(x, x) + k(x ′ , x ′) -2k(x, x ′).
We can also define a variant of this dissimilarity measure by, for all x, x ′ in G,

δ mean (x, x ′) = φ(x) -φ(x ′) 2 (2) = k(x, x) + k(x ′ , x ′) -2k(x, x ′).
We now show that the dissimilarity SOM based on this last measure can be seen as a particular case of a batch version of the kernel SOM.

Batch kernel SOM

Replacing the value of the dissimilarity (2) in the representation step of the Dissimilarity SOM algorithm leads to the following equation:

p l j = arg min x∈(x i ′) i ′ =1,...,n n i=1 h(f l (x i), j) φ(x i) -φ(x) 2 .
In this equation, the prototypes are the images by φ of some vertices; if we now allow the prototypes to be linear combinations of {φ(x i)} i=1,...,n as in the kernel SOM (section 2.1), the previous equation becomes p

l j = n i ′ =1 γ l ji ′ φ(x i ′)
where

γ l j = arg min γ∈R n n i=1 h(f l (x i), j) φ(x i) - n i ′ =1 γ i ′ φ(x i ′) 2 .
(3) Equation (3) has a simple solution:

p j = n i=1 h(f l (x i), j)φ(x i) n i=1 h(f l (x i), j) (4)
which is the weighted mean of the (φ(x i)) i . As a consequence, equation (3) is the representation step of a batch SOM computed in the feature space H. We will call this algorithm kernel batch SOM:

Algorithm 3: Kernel batch SOM
(1) For all j = 1, . . . , M and all i = 1, . . . , n, initialize γ 0 ji randomly in R;

(2) For l = 1, . . . , L, do (3) assignment step: for all i = 1, . . . , n, xi is assigned to the neuron, f l (xi) which has the closest prototype:

f l (xi) = arg min j=1,...,M φ(xi) -p l-1 j (4)
representation step: for all j = 1, . . . , M , the prototype pj is recomputed:

γ l j = arg min γ∈R n n i=1 h(f l (xi), j) φ(xi)- n i ′ =1 γ i ′ φ(x i ′) 2
End for.

where, as shown in (4), the representation step simply reduces to

γ l ji = h(f l (x i), j) n i ′ =1 h(f l (x i ′ , j))
.

Like in the on-line version, the assignment is run by directly using the kernel without explicitly defining φ and H: in fact, and all x ∈ {x i , . . . , x n }, it leads to the minimization on j ∈ {1, . . . , M } of

n i,i ′ =1 γ ji γ ji ′ k(x i , x i ′)- 2 n i=1 γ ji k(x, x i).
Then, the kernel batch SOM is simply a batch kernel SOM performed in a relevant space so it shares its consistancy properties [START_REF] Cottrell | Batch and median neural gas[END_REF].

Finally, we conclude that the dissimilarity SOM described in section 2.2 can be seen as the restriction of a kernel batch SOM to the case where the prototypes are elements of the original data set. Formally, dissimilarity SOM is the batch kernel SOM for which the feature space is not Hilbertian but discrete.

Application to graphs

The fact that the prototypes are defined in the feature space H from the original data {x 1 , . . . , x n } allows to apply the algorithms described in section 2 to a wide variety of data, as long as a kernel can be defined on the original set G (for which no vector structure is needed). In particular, this algorithm can be used to cluster the vertices of a weighted graph into homogeneous proximity groups using the graph structure only, without any assumption on the vertices set. The problem of clustering the vertices of a graph is of a great interest, for instance as a tool for understanding the organization of social networks ([START_REF] Bornholdt | Handbook of Graphs and Networks -From the Genome to the Internet[END_REF]). This approach has already been tested for the dissimilarity SOM on a graph extracted from a medieval database ([START_REF] Villa | Clustering a medieval social network by SOM using a kernel based distance measure[END_REF]).

We use in the rest of the paper the following notations. The dataset {x 1 , . . . , x n } consists in the vertices of a graph G, with a set of edges in E. Each edge (x i , x i ′) has a positive weight w i,i ′ (with w i,i ′ = 0 ⇔ (x i , x i ′) / ∈ E). Weights are assumed to be symmetric (w i,i ′ = w i ′ ,i). We call d i the degree of the vertex x i given by

d i = n i ′ =1 w i,i ′ .

The Laplacian and related kernels

In [START_REF] Smola | Kernels and regularization on graphs[END_REF], the authors investigate a family of kernels based on regularization of the Laplacian matrix. The Laplacian of the graph is the positive matrix L = (L i,i ′) i,i ′ =1,...,n such that

L i,i ′ = -w i,i ′ if i = i ′ d i if i = i ′
(see [START_REF] Chung | Spectral Graph Theory[END_REF][START_REF] Kondor | Diffusion kernels on graphs and other discrete structures[END_REF] for a comprehensive review of the properties of this matrix). In particular, [START_REF] Smola | Kernels and regularization on graphs[END_REF] shows how this discrete Laplacian can be derived from the usual Laplacian defined on continuous spaces. Applying regularization functions to the Laplacian, we obtain a family of matrices including

• Regularized Laplacian: for β > 0, K β = (I n + βL) -1 ; • and Diffusion matrix: for β > 0, K β = e -βL ; These matrices are easy to compute for graphs having a few hundred of vertices via an eigenvalue decomposition: their eigensystem is deduced by applying the regularizing functions to the eigenvalues of the Laplacian (the eigenvectors are the same). Moreover, these matrices can be interpreted as regularizing matrices because the norm they induced penalizes more the vectors that vary a lot over close vertices. The way this penalization is taken into account depends on the regularizing function applied to the Laplacian matrix.

Using these regularizing matrices, we can define associated kernel by k β (x i , x i ′) = K β ii ′ . Moreover, the diffusion kernels (see also [START_REF] Kondor | Diffusion kernels on graphs and other discrete structures[END_REF]) can be interpreted as the quantity of energy accumulated after a given time in a vertex if energy is injected at time 0 in the other vertex and if the diffusion is done along the edges. It has then become very popular to summarize both the global structure and the local proximities of a graph (see [START_REF] Vert | Extracting active pathways from gene expression data[END_REF][START_REF] Schölkopf | Kernel methods in computational biology[END_REF] for applications in computational biology). In [START_REF] Fouss | An experimental investigation of graph kernels on a collaborative recommendation task[END_REF], the authors investigate the distances induced by kernels of this type in order to rank the vertices of a weighted graph; they compare them to each others and show their good performances compared to standard methods.

Simulations

In order to test the 3 algorithms presented in section 2 for clustering the vertices of a graph, we simulated 50 graphs having a structure close to the ones described in [START_REF] Boulet | Partitionnement d'un réseau de sociabilité à fort coefficient de clustering. In 7èmes Journées Francophones[END_REF][START_REF] Villa | Clustering a medieval social network by SOM using a kernel based distance measure[END_REF]. We made them as follow:

• We built 5 complete sub-graphs (C i) i=1,...,5 (cliques) having (n i) i=1,...,5 vertices where n i are generated from a Poisson distribution with parameter 50; • For all i = 1, . . . , 5, we generated l i random links between C i and vertices of the other cliques: l i is generated from a uniform distribution on the set {1, . . . , 100n i }. Finally, multiple links are removed; thus the simulated graphs are "non-weighted" (i.e.

w i,i ′ ∈ {0, 1}).
A simplified version of these types of graphs is shown in Figure 1: we restricted the mean of x i to 5 and l i is generated from a uniform distribution on {1, . . . , 10n i } in order to make the visualization possible. Algorithms 1 to 3 were tested on these graphs by using the diffusion kernel and the dissimilarities (equations (1) and (2)) built from it. The grid chosen is a 3×3 rectangular grid for which the central neuron has a neighborhood of size 2, as illustrated in Figure 2.

We ran all the algorithms until the stabilization is obtained, which leads to:

• 500 iterations for the on-line kernel SOM (algorithm 1); • 20 iterations for the dissimilarity SOM with both dissimilarities (algorithm 2); • 10 iterations for the batch SOM (algorithm 3).

Then, to avoid the influence of the initialization step, the algorithms were initialized randomly 10 times. For each graph and each algorithm, the best classification, which Table 1: Computation times the on-line kernel SOM is very slow because it needs a high number of iterations to stabilize. For the batch kernel SOM, we initialize the prototypes with random elements of the data set (as in the dissimilarity SOM) in order to obtain a good convergence of the algorithm. Finally, we tested three parameters for the diffusion kernel (β = 0.1, β = 0.05 and β = 0.01). Higher parameters were not tested because we had numerical instabilities in the computation of the dissimilarities for some of the 50 graphs. In order to compare the classifications obtained by the different algorithms, we computed the following criteria:

• the mean energy (except for the dissimilarity SOM with dissimilarity (1) which does not have a comparable energy). Notice also that the energies computed for different values of β can also not be compared; • the standard deviation of the energy;

• the mean number of classes found by the algorithm;

• after having associated each neuron of the grid to one of the cliques by a majority vote law, the mean pourcentage of good classified vertices (vertices assigned to a neuron associated to its clique); • the number of links divided by the number of possible links between 2 vertices assigned to 2 neurons having distance 1 (or 2, 3, 4) between them on the grid.

The results are summarized in Tables 2 to 5 and an example of a classification obtained for the batch kernel SOM for the graph represented in Figure 1 is given in Figure 3.

First of all, we see that the quality of the classification heavily depends on the choice of β. For this application, performances decrease with β, with very bad performances for all the algorithms with the parameter β = 0.01. Then, we can also remark that the performances highly depend on the graph: the standard deviation of the energy is high compared to its mean. In fact, 5 graphs always obtained very bad performances and removing them divides the standard deviation by 20.

Comparing the algorithms to each others, we see that the batch kernel SOM seems to find the best clustering for the vertices of the graph: this is the one for which the mean number of classes found by the algorithm is the closest to the number of cliques [START_REF] Chung | Spectral Graph Theory[END_REF]. It has also the best pourcentage of good classified vertices and the smallest number of links for all neighborhoods, proving that the vertices classified in the same cluster are also frequently in the same clique. Then comes the on-line kernel SOM that suffers from a long computational time and finally, the dissimilarity SOM with slightly better performances for the dissimilarity (2). Comparing the first three Tables, we can say that the performance gain of the on-line kernel SOM is really poor compared to the computational time differences between the algorithms. Moreover, interpretation of the clusters mean- ing can take benefit of the fact that prototypes are elements of the data set. On the contrary, dissimilarity SOM totally fails in decreasing the number of relevant classes (the mean number of clusters in the final classification is always the biggest possible, 9); this leads to a bigger number of links between two distinct neurons than in the both versions of kernel SOM.

β = 0.1 β = 0.05 β = 0.

Conclusions

We show in this paper that the dissimilarity SOM used with a kernel based dissimilarity is a particular case of a batch kernel SOM. This leads us to the definition of a batch unsupervised algorithm for clustering the vertices of a graph. The simulations made on randomly generated graphs prove that this batch version of kernel SOM is both efficient and fast. The dissimilarity SOM, which is more restricted, is less efficient but still have good performances and produces prototypes that are more easily interpretable. We also emphasized the importance of a good choice of the parameter 1 of the kernel, a problem for which an automatic solution would be very useful in practice.

Figure 1 :

 1 Figure 1: Example of a simulated graph: the vertices of the 5 cliques are represented by different labels (+ * x o)

Figure 2 :

 2 Figure 2: SOM grid used (dark gray is the 1-neighborhood and light gray the 2-neighborhood of the central neuron)

Figure 3 :

 3 Figure 3: Example of a classification obtained for the batch kernel SOM on graph represented in Figure 1

Table 2 :

 2 Performance criteria for the on-line kernel SOM

		β = 0.1 β = 0.05 β = 0.01
	Mean energy	0.10	3.21	196
	Sd of energy	0.40	4.7	39
	Mean nb of classes	8.04	8.92	9
	Mean % of	79.84	78.28	39.72
	good classif.			
	% of links for	54.5	58.4	51.3
	1-neighborhood			
	% of links for	39.1	40.0	48.0
	2-neighborhood			
	% of links for	34.9	33.1	45.6
	3-neighborhood			
	% of links for	24.2	28.9	43.8
	4-neighborhood			
		β = 0.1 β = 0.05 β = 0.01
	Mean energy	NA	NA	NA
	Sd of energy	NA	NA	NA
	Mean nb of classes	9	9	9
	Mean % of	77.34	40.49	29.56
	good classif.			
	% of links for	48.6	45.4	52.5
	1-neighborhood			
	% of links for	42.0	45.5	55.8
	2-neighborhood			
	% of links for	38.0	48.1	57.1
	3-neighborhood			
	% of links for	34.8	51.5	57.0
	4-neighborhood			

Table 3 :

 3 Performance criteria for the dissimilarity SOM (dissimilarity (1))

Table 4 :

 4 Performance criteria for the dissimilarity SOM (dissimilarity (2)) β = 0.1 β = 0.05 β = 0.01

	01

Table 5 :

 5 Performance criteria for batch kernel SOM

Acknowledgements

This project is supported by "ANR Non Thématique 2005 : Graphes-Comp". The authors also want to thank the anonymous referees for their helpful comments.