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Bragg scattering and wave-power

extraction by an array of small buoys

By Xavier Garnaud† & Chiang C. Mei‡
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Future designs of systems for power extraction from ocean waves will likely involve
a periodic array of absorbing units. We report an asymptotic theory of scattering
and radiation by a linear array of heaving buoys in a channel and attached to
power-takeoff devices. The spacing between buoys is assumed to be comparable to
the incident wavelength and sea depth but much greater than the buoy size. The
effects of extraction rate on the buoy motion, transmission and reflection coefficients
for a range of frequencies in and outside the band gap are studied. It is found that
strong reflection for frequencies inside the band gap of Bragg resonance reduces
the extraction efficiency significantly. For comparison an alternate theory for the
efficiency away from the band gap is derived by using Froude-Krylov approximation.
The predictions confirms and complements the asymptotic theory.

Keywords: Periodic buoy array, Multiple scattering and radiation, Bragg

resonance, Wave power extraction, Homogenisation.

1. Introduction

Extensive theoretical studies have been devoted to the potential of power extraction
from sea waves by an isolated unit such as a buoy, a raft or an oscillating water
column (see reviews by Newman (1979); Falnes (2002); Mei et al. (2005); Cruz
(2008); McCormick (1980)). To achieve power output comparable to a conventional
power plant or a wind-turbine farm, a large array of absorbing units is necessary.
The possible effects of hydrodynamic interactions among units in any geometrical
deployment are therefore of design interest.

Several methods have been developed to compute the scattering and radiation by
a finite number of stationary or floating bodies. In particular Falnes (1980); Falnes
and Budal (1982); Falnes (1984) have examined the case of large separation where
hydrodynamic interactions between bodies are weak. Kagemoto and Yue (1986)
have used eigenfunction expansions and addition theorems of Bessel functions to
derive a numerical method to treat scattering by a few fixed vertical cylinders of
circular cross sections. Infinite and semi-infinite lines of vertical cylinders have been
treated semi-numerically by Linton and Evans (1992); Linton and Mclver (1996)
using multipole expansions. Numerical studies of a finite number of cylinders have
been reported by Linton and Mclver (1996); Chamberlain (2007); Peter et al.

(2006); Peter and Meylan (2007); McIver (2002); Siddorn and Eatock Taylor
(2008) and Mavrakos and McIver (1997) who also considered wave power extraction
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Figure 1. A sparse array of buoys attached to energy absorbers.

without giving numerical results. These methods can in principle deal with several
cylinders of different sizes, but become computationally intensive for a large number
of cylinders.

It is well known that, if resonated, a single buoy with one degree of freedom
(e.g., heave) can absorb all the energy within the length of 1/k of the incoming wave
front. If roll is also allowed and optimized then the length can be doubled. Thus
for high efficiency the ideal spacing d between adjacent buoys is 1/k, i.e., kd = 1.
For environmental and navigational considerations, future wave-power farms will
likely involve two-dimensional arrays with much larger spacing. Now it is known
in general physics that when kd = nπ where n is an integer, waves are strongly
scattered due to Bragg resonance. It is therefore of interest to predict the effect of
Bragg resonance on energy absorption and buoy response.

In this article, we shall first extend the multiple-scale analysis of Li and Mei
(2007a) for a periodic array of fixed slender piles to small movable buoys which
scatter, radiate and absorb energy by its heave motion only. To simulate their
potential for power absorption we assume that each buoy is attached to a linear
device which converts the mechanical energy of the buoy to electricity. No phase
control of the power-takeoff system is assumed. Analytical results for the scattering
coefficients, energy absorption rate and buoy motion will be derived and discussed.

2. Scales and normalization

Consider a linear array of small buoys in a long channel of constant width d and
mean depth h, as shown in figure 1. Simple harmonic waves arrive from one end
of the channel x ∼ −∞. In the framework of potential theory for inviscid and
incompressible fluid, the mathematical problem is equivalent to an infinitely long
strip of buoys in an rectangular lattice, attacked by a plane wave with crests parallel
to the edge of the strip.

The geometry has three sharply different length scales: the small radius a of the
buoy, the water depth h, and the large horizontal extent of the array. These scales
will be respectively referred to as the micro-scale for the near field, the meso-scale
for the intermediate field, and the macro-scale for the far field. In all three fields the
vertical displacements of the free surface (η) and of the buoys (ζ) are characterized
by the incident wave amplitude A. Let us first introduce the following dimensionless
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Buoy array and wave-power extraction 3

variables, distinguished by primes, for the intermediate field,

Φ = A
√
ghΦ′, p = ρgAp′, (η, ζ) = A(η′, ζ′), (2.1)

(x, y, z, d) = h(x′, y′, z′, d′), t = t′

√
h

g
. (2.2)

We shall assume that the wavelength, mean depth and buoy separation are of the
same order of magnitude, so that

k′ = kh = O(1), d′ =
d

h
= O(1), (2.3)

are both of order unity but the buoy radius and drafts are small:

a

h
≡ µ≪ 1, and

H

h
= O(µ) ≪ 1. (2.4)

In the near field of a buoy the physics is controlled by the much smaller radius a,
hence it is proper to employ the micro-scale coordinates, distinguished by bars and
defined by

(x̄, ȳ, z̄) =
1

a
(x, y, z) =

1

µ
(x′, y′, z′). (2.5)

It is known that the scattered wave from a small cylinder is smaller than the incident
wave by a factor of order (ka)2, as in the case sound (see, e.g., Mei et al. (2005)). It
will also be shown in the next section that a small heaving buoy extracts a fraction
(ka)2 of the incoming energy. Therefore, significant scattering and radiation effects
can be expected to accumulate in an array with O(1/µ2) buoys, or after a distance
of h/µ2. We therefore define the following macro-scale coordinates for the far-field
to describe the evolution of wave envelopes:

(X,Y, T ) = µ2(x′, y′, t′). (2.6)

3. Away from Bragg resonance

As a reference for later comparison, we first study the performance of an array
of buoys well separated from each other without Bragg resonance. In this case,
interaction between buoys can be neglected as a first approximation. Consider one
small buoy in a plane incident wave of frequency ω and amplitude A. The potential
of the incoming wave is

ΦI = φIe
−iωt with φI =

Ag

iω

coshk(z + h))

cosh(kh)
eikx, (3.1)

where ω and k are related by the dispersion relation

ω2 = gk tanh(kh). (3.2)

Because of the small size of buoys, the scattered and radiated waves are negligible.
Froude-Krylov approximation can be applied so that the hydrodynamic pressure on
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4 Xavier Garnaud & Chiang C Mei

each buoy is dominated by the undisturbed incoming wave (see Newman (1979)).
The vertical exciting force on the buoy is therefore

iρω

∫∫

SB

φI(0, 0, 0) dS = ρgAπa2. (3.3)

Let us assume that an energy extraction device is attached to each buoy and exerts
a load force iωλgζ where λg denotes the extraction rate. Since the added buoyancy
force due to heave is −πa2ρgζ, Newton’s law gives

−Mω2ζ = πρga2A+ iωλgζ − πρga2ζ, (3.4)

where M = ρπa2H by Archimedis principle. It follows that

ζ

A
=

1

1 − iωλg

ρgπa2 − ω2H
g

=
1

1 − iωλg

ρgπa2

+O(µ). (3.5)

Use has been made of the fact that ω2H/g ∼ kH = O(µ) ≪ 1. Thus the inertia of
a small buoy is relatively unimportant. As a consequence, the draft of the buoy H
is much less relevant than its lateral dimension a. The time-averaged rate of energy
extraction by a single buoy is given by

λg

[
∂

∂t
Re (ζe−iωt)

]2

=
1

2
ω2λg|ζ|2. (3.6)

The fraction of power extracted by one buoy from the incident energy flux across
a channel width d is then

E =
E

Einc

=
1
2ω

2λg|ζ2|
1
2ρgA

2Cgd
, (3.7)

where Einc denotes the rate of energy influx over a width d and

Cg =
ω

2k

(
1 +

2kh

sinh(2kh)

)
(3.8)

is the group velocity of the incident wave.
Let the normalised frequency and extraction rate be denoted by

ω′ ≡ ω√
g
h

, λ′g ≡ λg

πρa2
√
gh
,

then in dimensionless form

ω′2 = k′ tanh(k′), C′
g =

ω′

2k′

(
1 +

2k′

sinh 2k′

)
,

and

ζ′ =
1

1 − iω′λ′g
+O(µ) (3.9)

Consider now a large number of buoys along the centreline of a channel and
spaced at the same distance d. On the macro-scale of the total array, the mathe-
matical effect of many point absorbers can be replaced by a continuous distribution.
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Figure 2. Energy extraction efficiency E0 vs. k′ for a square array with d′ = 1. (a) Effects
of the extraction rates λ′

g = 0.1, 0.5, 1, 2 for L = 1 (b) Effects of complete optimization for
every frequency using (3.13) for L = 0.25, 0.5, 1, 2.

The fraction of the incoming energy absorbed within a unit distance of the macro-
scale coordinates must be

h

d

πa2

h2

λ′
2
gω

′2|ζ̄|2
d′C′

g

= µ2 πā

d′2C′
g

λ′gω
′2

1 + ω′2λ′2g
≡ µ2

D. (3.10)

In terms of the macro coordinate X = µ2x′, the spatial rate of change of E(X) is

dE

dX
= −D E, i.e. E(X) = e−DX . (3.11)

Thus the fraction of energy remaining at the end of the arrayX = L (i.e. x′ = L/µ2)
is E(L) = e−DL and the extraction efficiency is

E0 ≡ 1 − E(L) = 1 − e−DL. (3.12)

Clearly the efficiency depends on the number of buoys N = L/(µ2d′), the frequency
of the incoming wave through ω′ and C′

g, and the extraction rate λ′g. For sufficiently
large L, E0 approaches unity. The dependence of efficiency on k′ and the extraction
rate is plotted in figure 2(a) for a fixed L = 1. For a given L, the optimal extraction
rate for maximum efficiency is found from

dE0

dλ′g
= 0, or equivalently

dD

dλ′g
= 0,

which gives the optimal extraction rate

λ′g,opt =
1

ω′
. (3.13)

Thus the optimum extraction rate should be higher for longer waves. Figure 2(b)
shows the efficiency for a few L/d′, when the extraction rate is optimized for every
k′. One sees that at high frequencies, a long enough array can extract all the
incoming energy, and a larger array is better for low-frequency waves.

We now turn to the physics of Bragg resonance.
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Figure 3. A unit cell surrounding a buoy.

4. Scattering by an array of fixed buoys

(a) Linearised dimensionless equations

As it is standard in linearised theories, the problem of wave-body interaction
is equivalent to the sum of two hydrodynamic problems : scattering by station-
ary bodies and radiation by body motion. The two problems are coupled by the
dynamics of the floating bodies. Let us first study the diffraction of a wave-train
by fixed buoys. The following symbols for different parts of the physical domains
are employed: ΩF for the fluid domain, SF for the free surface, SW for the lateral
surface of the buoys, and SB for the bottom surface of the buoys. The seabed is
the entire horizontal plane z′ = −1. In terms of the meso-scale coordinates, the
dimensionless governing equations for the scattering potential Φ′ is

∆′Φ ≡ ∂2Φ′

∂x′2
+
∂2Φ′

∂y′2
+
∂2Φ′

∂z′2
= 0, x

′ ∈ ΩF , (4.1a)

(
∂

∂z′
+

∂2

∂t′2

)
Φ′ = 0, x

′ ∈ SF , (4.1b)

∂Φ′

∂z′
= 0, x

′ ∈ SB, (4.1c)

∂Φ′

∂r′
= 0, x

′ ∈ SW , (4.1d)

∂Φ′

∂z′
= 0, z′ = −1, (4.1e)

∂Φ′

∂y′
= 0, y′ = ±d

′

2
. (4.1f)

We shall now find the law for the slow evolution of the envelope from the fast
variations between buoys, by the method of multiple scales (homogenization).
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Buoy array and wave-power extraction 7

(b) Envelope equations by multiple-scale analysis

Substituting into (4.1) the following expansion

Φ′
S =

(
φ0 + µ2φ1 + · · ·

)
e−iω′t′ , (4.2)

with φn, n = 0, 1, 2, · · · being dimensionless functions of (x′, y′, z′;X ;T ), we get
from (4.1a) and (4.1b) the following equations

(
∆′ + 2µ2 ∂2

∂X∂x′
+ µ4 ∂2

∂X2

) (
φ0 + µ2φ1 + · · ·

)
= 0, x

′ ∈ ΩF , (4.3a)

(
∂

∂z′
− ω′2 − 2µ2iω′ ∂

∂T
− µ4 ∂2

∂T 2

) (
φ0 + µ2φ1 + · · ·

)
= 0, x

′ ∈ SF . (4.3b)

From successive orders of these and the remaining equations in (4.1) we obtain
boundary-value problems for the wave-scale variations in a unit cell. Because each
cell is one period in vary large array, we invoke Bloch’s theorem (Ashcroft and
Mermin (1976)) which states that the solution φn should be of the form e±ikx′

f(x′)
where f(x′) is periodic in x′ with the period d′. Since we shall focus on the state
of Bragg resonance with kd′ = π, Bloch’s theorem implies

φn

(
−d

′

2
, y′

)
= φn

(
d′

2
, y′

)
, and

∂φn

∂x′

(
−d

′

2
, y′

)
= − ∂φ

∂x′

(
d′

2
, y′

)
. (4.4)

(i) Leading order

At the leading order O(µ0), the governing equations are homogeneous:

∆′φ0 = 0, x
′ ∈ ΩF , (4.5a)

(
∂

∂z′
− ω′2

)
φ0 = 0, x

′ ∈ SF , (4.5b)

∂φ0

∂z′
= 0, z′ = −1, (4.5c)

∂φ0

∂y′
= 0, y′ = ±d′/2. (4.5d)

As reasoned in Li and Mei (2007a,b), since µ = a/h ≪ 1, H ′ ≪ 1 and d′ = O(1),
the areas of the buoy surfaces SB and SW are of order O(µ2). Hence the buoys have
negligible effects on the waves at the leading order, i.e., the boundary conditions
on SB and SW are ineffective until at higher orders. The formal solution is the sum
of left- and right-going plane waves in free space

φ0 = α+(X,T )Z(z′)eik′x′

+ α−(X,T )Z(z′)e−ik′x′

, (4.6)

where

Z(z′) =
1

iω′

cosh(k′(z′ + 1))

cosh(k′)
. (4.7)

The no-flux boundary conditions at y = ±d/2 and Bloch conditions (4.4) are triv-
ially satisfied. The envelope functions α±(X,T ) are yet to be found.
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8 Xavier Garnaud & Chiang C Mei

(ii) First order

From (4.3) the first order O(µ) meso-scale problem in the unit cell is inhomo-
geneous, and governed by

∆′φ1 = −2
∂2φ0

∂X∂x′
, x

′ ∈ ΩF , (4.8a)
(
∂

∂z′
− ω′2

)
φ1 = 2iω′∂φ0

∂T
, x

′ ∈ SF , (4.8b)

∂φ1

∂z′
= − 1

µ2

∂φ0

∂z′
, x

′ ∈ SB, (4.8c)

∂φ1

∂r′
= − 1

µ2

∂φ0

∂r′
, x

′ ∈ SW , (4.8d)

∂φ1

∂z′
= 0, z′ = −1, (4.8e)

∂φ1

∂y′
= 0, y′ = ±d

′

2
, (4.8f)

together with the Bloch conditions (4.4). Despite the large factor µ−2, the integrated
effects of the boundary value in (4.8c) and (4.8d) are of order 1 since the area of the
buoy surface is of order µ2. An important estimate of φ1 near and on the buoy may
be deduced. In terms of the meso-scale coordinates, we have, in the neighborhood
of the buoy,

∂φ1

∂n′
∼ φ1

µ
≫ φ1.

Now (4.8c) and (4.8d) imply that

∂φ1

∂n′
∼ 1

µ2
, (4.9)

hence

φ1 ∼ 1

µ
(4.10)

in the neighbourhood of the buoy.
We next apply Green’s formula to φ1 and the homogeneous solutions

ψ∓ ≡ Z(z′) exp(±ik′x′) (4.11)

over the volume of cell ΩF :

∫∫∫

ΩF

[
φ1∆

′ψ∓ − ψ∓∆′φ1

]
dV ′ =

∫∫

∂ΩF

[
φ1
∂ψ∓

∂n′
− ψ∓ ∂φ1

∂n′

]
dS′, (4.12)

which can be rewritten after using the boundary conditions in (4.8) as

2

∫∫∫

ΩF

Z(z′)e∓ik′x′ ∂2φ0

∂X∂x′
dV ′ = −2iω′

∫∫

SF

ψ∓ ∂φ0

∂T
dS′

+

∫∫

SB∪SW

[
1

µ2
ψ∓ ∂φ0

∂n′
+ φ1

∂ψ∓

∂n′

]
dS′. (4.13)
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Buoy array and wave-power extraction 9

This is the solvability condition for the inhomogeneous problem of φ1 and gives a
constraint on φ0. To the leading order, the left hand side of (4.13) can be simplified
to

2

∫∫∫

ΩF

= ±2ik′d′2
∂α±

∂X

∫ 0

−1

Z(z′)2 dz′ +O(µ3).

The integral over the free surface on the right hand side gives

∫∫

SF

= −2d′2

iω′

∂α±

∂T
+O(µ2).

In view of (4.10), the second term in the surface integral over the buoy can be
neglected with an error of O(µ). The remaining surface integral on the buoy is

∫∫

SB∪SW

≈ 1

µ2

∫∫

SB∪SW

ψ∓ ∂ [α+ψ+ + α−ψ−]

∂n′
dS′

= − 1

µ2

∫∫

SW

ik′ψ∓
(
α+ψ+ − α−ψ−

)
er.ex dS′

+
1

µ2

∫∫

SB

ψ∓ dZ(z′)

dz′

(
α+eik′x′

+ α−e−ik′x′

)
dS′.

Let us now use the fact that the buoy draft is small H ′ ≡ H/h = O(µ) so that

Z ≈ 1

iω′
and

dZ

dz′
≈ −iω′ on SW ∪ SB (4.14)

from (4.7). In terms of the micro-scale variables r̄ = r/a and z̄ = z/a so that
dS′/µ2 = dS̄, we have

∫∫

SB∪SW

≈ −(α+ − α−)

∫ 2π

0

∫ 0

−H̄

ik′ cos(θ) dz̄ dθ

− (α+ + α−)

∫ 2π

0

∫ 1

0

r̄ dr̄ dθ

≈ −π(α+ + α−).

Hence (4.13) becomes

2d′2

iω′

∂α±

∂T
± 2ik′d′2

∂α±

∂X

∫ 0

−1

Z(z)2 dz = −π
(
α+ + α−

)
,

which can be simplified to the coupled-mode equations on the macro-scale

∂α±

∂T
± C′

g

∂α±

∂X
= −iΩ0

(
α+ + α−

)
(4.15)

where Ω0 is the dimensionless coupling constant

Ω0 =
πω′

2d′2
. (4.16)
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Figure 4. Dispersion relation in an infinite periodic array. Real values are plotted in solid
lines, and imaginary values in dashed line.

Equation (4.15) can be rewritten in physical coordinates as

∂α±

∂t
± Cg

∂α±

∂x
= −i

ωa2

2d2

(
α+ + α−

)
(4.17)

These equations govern the envelopes of the forward and backward waves in
an array of fixed small buoys, and are similar to those for wave propagation in an
array of slender piles or over a periodic seabed (see Li and Mei (2007a,b); Naciri
and Mei (1988)). The difference with Li and Mei (2007a,b) is due to the fact that
in the present problem the scattering effect comes from the bottom of the buoy and
not from the lateral wall.

(c) Macro-scale dispersion relation and band gap

As the first application of (4.15) let us consider periodically modulated wave
envelopes in an infinite array,

α± ∝ ei(±KSX−ΩT ), (4.18)

where Ω corresponds to a frequency detuning of µ2Ω. The homogeneous equations
(4.15) have non-trivial solutions only if

C′2
g K

2
S = Ω(Ω − 2Ω0), (4.19)

which is plotted in figure 4. For real Ω three regions can be distinguished. In either
Ω ≤ 0 or Ω ≥ 2Ω0, KS is real, hence waves propagate. However, inside the band
gap defined by 0 ≤ Ω ≤ 2Ω0, KS is imaginary, hence propagation is forbidden.
The wave train can only decay in distance. The spatial rate of amplitude decay is
proportional to Im(KS), which is maximum at Ω = Ω0.

The presence of the band gap and its limits have been confirmed by numerical
computation of the band structure but without the small-buoy assumption, using
a standard numerical approach of solid-state physics (Garnaud (2009)).

(d) Scattering by an array of finite width

Let there be a finite array of fixed buoys in 0 < X < L, where L corresponds
to the physical width (L/µ2)h. An incoming wave slightly detuned from Bragg

Article submitted to Royal Society



Buoy array and wave-power extraction 11

resonance

φin = Z(z′)eik′x′

ei(K0X−ΩT ) (4.20)

arrives from X ∼ −∞ with K0 ≡ C′
gΩ. Let the scattering potential be

φ0 =
(
eik′x′

eiK0X + CRe−ik′x′

e−iK0X
)
Z(z′)e−iΩT , X < 0, (4.21)

on the incidence side and

φ0 = CT eik′x′

eiK0(X−L)Z(z′)e−iΩT , X > L, (4.22)

on the transmission side. CR and CT are respectively the complex reflection and
transmission coefficients. The potential inside the array is

φ0 = Z(z′)
(
α̂+(X)eik′x′

+ α̂−(X)e−ik′x′

)
e−iΩT , (4.23)

where α̂± are defined by

α± = α̂±e−iΩT . (4.24)

By differentiating (4.15), we find

d2α̂±

dx2
+K2

Sα̂
± = 0, (4.25)

with

KS ≡ ΩS

C′
g

and ΩS ≡
√

Ω(Ω − 2Ω0). (4.26)

Requiring continuity of the leading-order pressure and horizontal velocity at the
edges of the array, we must have

φ0|X=0− = φ0|X=0+ , φ0|X=L− = φ0|X=L+ , (4.27a)

∂φ0

∂x′

∣∣∣∣
X=0−

=
∂φ0

∂x′

∣∣∣∣
X=0+

,
∂φ0

∂x′

∣∣∣∣
X=L−

=
∂φ0

∂x′

∣∣∣∣
X=L+

, (4.27b)

where L+ means slightly greater than L and L− slightly less that L. Using (4.21)
and (4.23) in (4.27) we obtain

1 + CR = α̂+(0) + α̂−(0), CT = α̂+(L) + α̂−(L), (4.28a)

1 − CR = α̂+(0) − α̂−(0), CT = α̂+(L) − α̂−(L). (4.28b)

It follows that

α̂−(L) = 0, α̂+(0) = 1. (4.29a)

The general solutions of (4.25) are of the form

α̂± = C±
1 cos(KSX) + C±

2 sin(KSX).
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Figure 5. Coefficients of reflection and transmission for fixed buoys as functions of the
detuning frequency, for two array lengths.

The six coefficients CR, CT , C
±
1 and C±

2 can be found from the four conditions
(4.28a), (4.28b) and the coupled equations (4.15). Finally the amplitudes inside the
array are given by

α̂+(X) =
i(Ω − Ω0) sin(KS(X − L))) + ΩS cos(KS(X − L))

−i(Ω − Ω0) sin(KSL) + ΩS cos(KSL)
(4.30a)

and

α̂−(X) =
iΩ0 sin(KS(X − L))

−i(Ω − Ω0) sin(KSL) + ΩS cos(KSL)
(4.30b)

In the open sea, the transmission and reflection coefficients are

CT = α̂+(L) =
ΩS

−i(Ω − Ω0) sin(KSL) + ΩS cos(KSL)
, (4.31a)

and

CR = α̂−(0) =
−iΩ0 sin(KSL)

−i(Ω − Ω0) sin(KSL) + ΩS cos(KSL)
. (4.31b)

The numerical results are qualitatively similar to those for vertical piles. As
shown in figure 5, the scattering coefficients depend strongly on the detuning fre-
quency Ω. Outside the band gap, Ω/Ω0 < 0 or Ω/Ω0 > 2, the scattering effects
of the array are weak, as CR is small and CT is close to unity. Both are oscilla-
tory in Ω/Ω0. Inside the band gap, 0 ≤ Ω/Ω0 ≤ 2, propagation is inhibited. The
reflection coefficient is close to 1 and the transmission coefficient close to 0. Inside
the array the free surface profile is oscillatory in space if Ω is outside the gap and
exponentially attenuating if inside, as shown in figure 6.

Next let us examine the effects of buoy motion on waves.

5. Envelope of radiated waves

In this section, we allow the small buoys to heave either freely or partially con-
strained by energy-absorbing devices. Since k′d′ = π, if one buoy goes up then
its immediate neighbours must go down, and vice versa. Across the wide array
of many buoys, the amplitude of waves and buoy displacements will be a slowly
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Figure 6. Wave amplitude inside the buoy array (0 < X < L) around Bragg resonance
for d′ = 1 and Ω = Ω0 (inside the band gap) and Ω = −2Ω0 (outside of the band gap).

varying function of space. The normalised heave amplitude of the mth buoy can
therefore be expressed as

ζ′(m) = (−1)m
(
ζ0(X,T ) + µ2ζ1(X,T ) + · · ·

)
e−iω′t′ . (5.1)

The buoy displacement ζ0(X,T ) is yet unknown and will be found later by addi-
tional account of the buoy dynamics. Let the centre of the mth buoy be located at
x′m = md′. For mathematical convenience, we express the term (−1)m as

(−1)m = eik′x′

m = eimπ (5.2)

in the kinematic boundary conditions on the buoys. Denoting the radiation potential
by ΦR and expanding

Φ′
R =

(
Φ0 + µ2Φ1 + · · ·

)
e−iω′t′ , (5.3)

the governing equations become
(

∆′ + 2µ2 ∂2

∂X∂x′
+ µ4∆

) (
Φ0 + µ2Φ1 + · · ·

)
= 0, x

′ ∈ ΩF , (5.4a)

(
∂

∂z′
− ω′2 − 2µ2iω′ ∂

∂T
− µ4 ∂2

∂T 2

) (
Φ0 + µ2Φ1 + · · ·

)
= 0, x

′ ∈ SF , (5.4b)

∂
(
Φ0 + µ2Φ1 + · · ·

)

∂z′
+iω′eik′x′

m

(
ζ0 + µ2ζ1 + · · ·

)
= 0, x

′ ∈ S
(m)
B , (5.4c)

∂
(
Φ0 + µ2Φ1 + · · ·

)

∂z′
= 0, z′ = −1, (5.4d)

(
∂

∂r′
+ µ2 ∂

∂R

) (
Φ0 + µ2Φ1 + · · ·

)
= 0, x

′ ∈ S
(m)
W . (5.4e)

where S
(m)
B and S

(m)
W are respectively the bottom and lateral boundaries of the mth

buoy. As shown in figure 3, we require the radiation potential to be anti-periodic
in x′ with the period d′,

Φi(x
′ + d′, y′, z′) = −Φi(x

′, y′, z′),
∂Φi

∂x′
(x′ + d′, y′, z′) = −∂Φi

∂x′
(x′, y′, z′). (5.5)
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14 Xavier Garnaud & Chiang C Mei

for i = 1, 2, · · · .
From (5.4), it is evident that the zeroth order radiation potential is of the form

Φ0 =
[
β+(X,T )eik′x′

+ β−(X,T )e−ik′x′

]
Z(z′), (5.6)

where the long-scale functions β± represent the unknown amplitudes of the prop-
agating waves. The first-order problem is governed by

∆′Φ1 = −2
∂2Φ0

∂X∂x′
, x

′ ∈ ΩF , (5.7a)

∂Φ1

∂z′
− ω′2Φ1 = 2iω′ ∂Φ0

∂T
, x

′ ∈ SF , (5.7b)

∂Φ1

∂z′
=

−iω′ζ0e
ik′x′

n

µ2
− 1

µ2

∂Φ0

∂z′
, x

′ ∈ S
(m)
B , (5.7c)

∂Φ1

∂z′
= 0, z′ = −1, (5.7d)

∂Φ1

∂r′
= − 1

µ2

∂Φ0

∂r′
, x

′ ∈ S
(m)
W . (5.7e)

Note that as the buoy radii and drafts are of order µ, we have x′ = x′m + O(µ)

for x
′ ∈ S

(m)
W ∪ S(m)

B . The problem (5.7) is similar to the scattering problem (4.8)
except for the additional term proportional to the buoy displacement, which is also
anti-periodic with a period d′.

As in the scattering problem, we derive the solvability condition for Φ1 by
applying Green’s formula to Φ1 and ψ± = Z(z′) exp(±ik′x′) over a cell ΩF .

It is easily checked that the only change is in the surface integral over the buoys

∫∫

SB∪SW

≈ 1

µ2

∫∫

SB∪SW

ψ∓ ∂ [β+ψ+ + β−ψ−]

∂n′
dS′

− 1

µ2

∫∫

SB

ψ∓iω′ζ0e
ik′x′

m dS′

= − 1

µ2

∫∫

SW

ik′ψ∓
(
β+ψ+ − β−ψ−

)
er.ex dS′

+
1

µ2

∫∫

SB

ψ∓ dZ(z′)

dz′

(
β+eik′x′

m + β−e−ik′x′

m

)
dS′

− 1

µ2

∫∫

SB

ψ∓iω′ζ0e
ik′x′

m dS′. (5.8)

where SB ≡ ∪mS
(m)
B . Using (4.14), we get

∫∫

SB∪SW

≈ −(β+ − β−)

∫ 2π

0

∫ 0

−H̄

ik′ cos(θ) dz̄ dθ

− (β+ + β− − ζ0)

∫ 2π

0

∫ 1

0

r̄ dr̄ dθ

≈ −π(β+ + β− − ζ0). (5.9)
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This finally gives us the envelope equations

∂β±

∂T
± C′

g

∂β±

∂X
= −iΩ0

(
β+ + β− − ζ0

)
(5.10)

where Ω0 was defined in (4.16). In physical terms, (5.10) reads

∂β±

∂t
± Cg

∂β±

∂x
= −i

ωa2

2d2

(
β+ + β− − ζ0

A
.

)
(5.11)

The pair of equations in (5.10) expresses the coupling between the amplitude of the
right- and left-going waves and the unknown buoy motion.

We must now examine the buoy displacement induced by the waves, in order to
relate ζ0 to α± and β± in (5.10).

6. Buoy dynamics

The forcing term ζ′ in the long-scale equation for the radiation problem are related
to the scattering and radiation potentials, given respectively by (4.6) and (5.6). By
Froude-Krylov approximation, the leading order vertical forces on a buoy by the
scattering and radiation potentials are given respectively by

f ′
m = iω′

∫∫

S
(m)
B

φ0 dS = iπµ2ω′ (−1)m

iω′

(
α+ + α−

)
, (6.1)

F ′
m = iω′

∫∫

S
(m)
B

Φ0 dS = iπµ2ω′ (−1)m

iω′

(
β+ + β−

)
, (6.2)

where the forces are normalised according to

(fm, Fm) = ρgh2A(f ′
m, F

′
m). (6.3)

Use is made of the fact that the neighboring buoys move in opposite phases.
Let us assume that the energy extraction device exerts a force

λ′g
∂ζ′(m)

∂t′
(6.4)

on the mth buoy. Applying Newton’s law to the mth buoy, we get

Mω2ζ′(m) = fm + Fm + iωλ′gζ
′(m) − πρa2ζ′(m), (6.5)

which gives us in dimensionless form

− ω′2µ3πH̄ζ0(−1)m = πµ2
(
α+ + α−

)
(−1)m + πµ2

(
β+ + β−

)
(−1)m

+ iπω′µ2ζ0(−1)mλ′g − πµ2ζ0(−1)m. (6.6)

Again the mass of the buoy can be ignored so that

ζ0 = G
[(
α+ + α−

)
+

(
β+ + β−

)]
, (6.7)
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where for brevity we denote

G ≡ 1

1 − iω′λ′g
+O(µ), (6.8)

which is the same as (3.9). Using (6.7) we can rewrite (5.10) as:

∂β±

∂T
± C′

g

∂β±

∂X
= −iΩ0

[
(1 − G)(β+ + β−) − G(α+ + α−)

]
(6.9)

which couple the radiation and scattering components. The scattering amplitudes
α± are already found in the previous section and serve as forcing terms here.

We can now study the envelopes due to waves interacting with a finite array of
energy-extracting buoys.

7. Radiation by a finite array of energy-extracting buoys

(a) Solution for radiation amplitudes

Consider again an array of finite but large width (L/µ2)h forced to oscillate
by the incident and scattered waves and subjected to the reactive forces from the
extractors and from the buoy motion. The potential outside the array must satisfy
the radiation condition, hence

Φ0 = C−Z(z′)e−ik′x′

e−iKXe−iΩT , X < 0, (7.1a)

Φ0 = C+Z(z′)eik′x′

eiK(X−L)e−iΩT , X > L, (7.1b)

where the complex coefficients C+ and C− are yet unknown. As in the scattering
problem, we introduce β̂± by defining β± = β̂±e−iΩT and assume the solution
inside the array to be of the form

Φ0 =
(
β̂+(X)eik′x′

+ β̂−(X)e−ik′x′

)
Z(z′)e−iΩT . (7.2)

Continuity of pressure and horizontal velocity are required at the edges of the array

Φ0|X=0− = Φ0|X=0+ , Φ0|X=L− = Φ0|X=L+ , (7.3a)

∂Φ0

∂x′

∣∣∣∣
X=0−

=
∂Φ0

∂x′

∣∣∣∣
X=0+

,
∂Φ0

∂x′

∣∣∣∣
X=L−

=
∂Φ0

∂x′

∣∣∣∣
X=L+

. (7.3b)

Using (7.1) and (7.2), we get

C− = β̂+(0) + β̂−(0), C+ = β̂+(L) + β̂−(L), (7.4a)

−C− = β̂+(0) − β̂−(0), C+ = β̂+(L) − β̂−(L). (7.4b)

It follows that

β̂−(L) = 0, β̂+(0) = 0, (7.5a)

Article submitted to Royal Society



Buoy array and wave-power extraction 17

which imply C− = β̂−(0) and C+ = β̂+(L). To complete the analytical solution,
let us write the forcing term in (6.9) as

α̂+ + α̂− = Cg

(
A+eiKSx + A−e−iKSx

)
. (7.6)

Using (4.30), we find

A+ = e−iKSL KS +K

2 (−i(Ω − Ω0) sin(KSL) + Ω1 cos(KSL))
, (7.7a)

A− = eiKSL KS −K

2 (−i(Ω − Ω0) sin(KSL) + Ω1 cos(KSL))
. (7.7b)

To find β̂±, it is simpler to use linearity and just to solve first for one of the
complex exponentials on the right-hand side of (6.9). Let the response to the forcing

(eiKSX , e−iKSX) be denoted by (β̂±
1 , β̂

±
2 ) respectively, then

−iKβ̂+
1 +

∂β̂+
1

∂X
= −iK0(1 − G)(β̂+

1 + β̂−
1 ) + eiKSX , (7.8a)

−iKβ̂−
1 − ∂β̂−

1

∂X
= −iK0(1 − G)(β̂+

1 + β̂−
1 ) + eiKSX , (7.8b)

where K ≡ Ω/C′
g and K0 ≡ Ω0/C

′
g. By cross-differentiation these two equations

can be decoupled to give

d2β̂+
1

dX2
+K2

Rβ̂
+
1 = i (K +KS) eiKSX , (7.9a)

d2β̂−
1

dX2
+K2

Rβ̂
−
1 = i (K −KS) eiKSX , (7.9b)

with
KR ≡

√
K [K − 2K0(1 − G)] (7.10)

being the natural wave number of the radiated wave. As G is complex for any non
zero λ′g, KR will be likewise, implying spatial attenuation. Since KR 6= KS , the
spatial period of the forcing term differs from the natural period in (6.9) and no
resonance is expected. Variations of the real and imaginary parts are shown in figure
7 as functions of the detuning frequency Ω and the extraction rate λ′g. One sees
that there is no band gap and that all radiated waves are spatially attenuated. The
special case of free buoys without extractors will be treated later.

The general solutions of (7.9) are,

β̂+
1 = C

(1)
1 eiKRX + C

(2)
1 e−iKRX + i

K +KS

K2
R −K2

S

eiKSX , (7.11a)

β̂−
1 = C

(3)
1 eiKRX + C

(4)
1 e−iKRX + i

K −KS

K2
R −K2

S

eiKSX . (7.11b)

For brevity we let

B+
1 =

K +KS

K2
R −K2

S

, B−
1 =

K −KS

K2
R −K2

S

.

Article submitted to Royal Society



18 Xavier Garnaud & Chiang C Mei

−4 −2 0 2 4 6
−10

−5

0

5

10

Ω/Ω0

K
R

C
′ g
/
Ω

0

−4 −2 0 2 4 6
−10

−5

0

5

10

Ω/Ω0

K
R

C
′ g
/
Ω

0

(a) λ′

g = 1/4 (b) λ′

g = 1/2

−4 −2 0 2 4 6
−10

−5

0

5

10

Ω/Ω0

K
R

C
′ g
/
Ω

0

−4 −2 0 2 4 6
−5

0

5

Ω/Ω0

K
R

C
′ g
/
Ω

0

(c) λ′

g = 1 (d) λ′

g = 2

Figure 7. Dispersion relation for the radiation problem. The real part of KRC′

g/Ω0 is
represented in solid line, the imaginary part in dashed line. d′ = 1.

Because of the coupling by (7.8), only two of the four coefficients C
(i)
1 , i = 1, 2, 3, 4

are independent. Two relations among them can be found by invoking (7.8) at any
X ∈ [0, L], say X = 0,

−iKβ̂+
1 (0) +

∂β̂+
1

∂X
(0) = −iK0(1 − G)(β̂+

1 (0) + β̂−
1 (0)) + 1, (7.12)

−iKβ̂−
1 (0) − ∂β̂−

1

∂X
(0) = −iK0(1 − G)(β̂+

1 (0) + β̂−
1 (0)) + 1, (7.13)

which give

−i(K −KR −KG)C
(1)
1 − i(K +KR −KG)C

(2)
1 + iKG(C

(3)
1 + C

(4)
1 ) =

1 + (−K +KS +KG)B+
1 +KGB

−
1 , (7.14a)

iKG(C
(1)
1 + C

(2)
1 ) − i(K +KR −KG)C

(3)
1 − i(K −KR −KG)C

(4)
1 =

1 +KGB
+
1 + (−K −KS +KG)B−

1 , (7.14b)

with KG ≡ K0(1 − G). From the two boundary conditions (7.5) , we get

C
(1)
1 + C

(2)
1 = −iB+

1 , (7.14c)

C
(3)
1 eiKRL + C

(4)
1 e−iKRL = −iB−

1 eiKSL. (7.14d)
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We can now solve for C
(i)
1 for all i = 1, 2, 3, 4:

C
(1)
1 = −i

[
KR

(
B+

1 (KR +KS) +B−
1 KG + 1

)
cos(KRL) −A−

1 KGKReiKSL

+i
(
−B+

1 (K −KG)(KR +KS) +A−
1 KGKS −K

)
sin(KRL)

]

[2KR (KR cos(KRL) − i(K −KG) sin(KRL))]−1 , (7.15a)

C
(2)
1 = i

[
KR

(
B+

1 (KS −KR) +B−
1 KG + 1

)
cos(KRL) −B−

1 KGKReiKSL

+i
(
−B+

1 (K −KG)(−KR +KS) +B−
1 KGKS −K

)
sin(KRL)

]

[2KR (KR cos(KRL) − i(K −KG) sin(KRL))]
−1
, (7.15b)

C
(3)
1 = −i

B−
1

(
(KR −K +KG)eiKSL + (KS +K −KG)e−iKRL

)
− e−iKRL

2 (KR cos(KRL) − i(K −KG) sin(KRL))
,

(7.15c)

C
(4)
1 = i

−B−
1

(
(KR +K −KG)eiKSL − (KS +K −KG)eiKRL

)
− eiKRL

2 (KR cos(KRL) − i(K −KG) sin(KRL))
. (7.15d)

Corresponding to the forcing exp(−iKSx), the responses β̂±
2 can be treated simi-

larly. Let the solution be of the form

β̂+
2 = C

(1)
2 eiKRX + C

(2)
2 e−iKRX + i

K −KS

K2
R −K2

S

eiKSX , (7.16a)

β̂−
2 = C

(3)
2 eiKRX + C

(4)
2 e−iKRX + i

K +KS

K2
R −K2

S

eiKSX . (7.16b)

The coefficients C
(j)
2 , j = 1, 2, 3, 4 can be obtained by replacing KS by −KS in Cj

1 ,
i,e.,

C
(j)
2 (KR,KS) = C

(j)
1 (KR,−KS), j = 1, 2, 3, 4. (7.17)

It is now easy to see that

β̂+ = iΩ0G
(
A+β̂+

1 + A−β̂+
2

)
, (7.18a)

β̂− = iΩ0G
(
A+β̂−

1 + A−β̂−
2

)
, (7.18b)

are the solutions of the radiation problem, satisfying (6.9) as well as the boundary
conditions (7.5). We have also confirmed these formulas by direct numerical solution
by the Finite Volume method.

(b) Freely floating buoys

In the limiting case of freely floating buoys, λ′g = 0 so that G = 1. The evolution

equations for β± are no longer coupled. After omitting the factor e−iΩT , we get
simply

−iKβ̂+ +
∂β̂+

∂X
= −iK0(α̂

+ + α̂−), (7.19)

−iKβ̂− − ∂β̂−

∂X
= −iK0(α̂

+ + α̂−). (7.20)

Article submitted to Royal Society



20 Xavier Garnaud & Chiang C Mei

These decoupled first order ordinary differential equations have solutions of the
form

β̂+ = C1e
iKX − K0A+

K −KS

eiKSX − K0A−

K +KS

e−iKSX , (7.21)

β̂− = C2e
−iKX − K0A+

K +KS

eiKSX − K0A−

K −KS

e−iKSX , (7.22)

with constants C1 and C2 to be determined. Note that

K0

K −KS

+
K0

K +KS

= 2
K0K

K2 −K2
S

= 1 (7.23)

after using the fact that the scattering wave number is given byKS =
√
K2 − 2KK0,

so that

Φ0 =
(
β̂+ + β̂−

)
e−iΩT = (C1 − α̂+)ei(KX−ΩT ) + (C2 − α̂−)e−i(KX+ΩT ).

This gives the total potential

φ0 + Φ0 = Z(z′)
(
α̂+ + α̂− + β̂+ + β̂−

)
e−iΩT

= Z(z′)
(
C1e

i(KX−ΩT ) + C2e
−i(KX+ΩT )

)
, (7.24a)

and thus
ζ0 = η0 = C1e

i(KX−ΩT ) + C2e
−i(KX+ΩT ), (7.24b)

where η0 is defined in a similar way as ζ0. Matching directly the total potential
φ0 + Φ0 with the potential outside the array, we find

C1 = 1, C2 = 0, (7.25)

so
η0 = ζ0 = ei(KX−ΩT ). (7.26)

Hence the buoys move with the same amplitude and phase as the surrounding free
surface and to the leading order a sparse array of small freely floating buoys does not
affect the incoming wave. This result is expected as the consequence of negligible
buoy inertia.

8. The combined effects of scattering, radiation and

extraction

The combined effect of scattering, radiation and energy extraction on the free sur-
face and buoy displacements are presented in figures 8 and 9. Two representative
values of the detuning are chosen here: one outside the band gap of the scattering
problem (Ω = −Ω0) and one inside (Ω = Ω0). One sees in figure 9 that the effect
of the length is minor. In contrast, the effect of the extraction force shown in fig-
ure 8 has much stronger influence, as shown for the the two limits of fixed and free
buoys. The displacements of the free surface and the buoys decrease faster through
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Figure 8. Free surface elevation η0 and buoy displacement ζ0 in the array. L = 1, d′ = 1
and λ′

g = 0.1, 0.5, 1 as marked next to the curves. In figures (a) and (b), the dashed curve
represent the limiting case of fixed buoys, i.e. λ′

g → ∞. As shown in §7(b), the free surface
amplitude is constant and equal to 1 in the limiting case of free buoys λ′

g = 0.

the array for frequencies inside the band gap, and as the extraction rate increases.
Understandably the displacement of the buoy is always smaller than that of the
water surface. Note that there is no resonance.

In order to characterize the waves outside of the array, let us introduce trans-
mission and reflection coefficients for the complete problem, denoted respectively
by T and R – such that the free surface in the open water regions is given by

η0 = ei(KX−ΩT ) + Re−i(KX−ΩT ), X <0, (8.1a)

η0 = T ei(KX−ΩT ), X >L. (8.1b)

In terms of the scattering and radiation problems studied previously, the coefficients
are given by

T = α−(0) + β−(0) = CT + C+, (8.2a)

R = α+(L) + β+(L) = CR + C−. (8.2b)

Analytical formulas can be obtained from the results in §4 and §7. While scattering
is negligible for freely floating buoys when there is no power extracted as shown in
§7(b), for moving and energy-extracting buoys |R| is close to 1 when the detuning
frequency is within the band gap 0 ≤ Ω ≤ 2Ω0, as shown in figures 10 and 11.
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Figure 9. Effects of detuning frequencies and array length on free surface elevation η0 and
buoy displacement ζ0 for λ′

g = 0.5 and d′ = 1. L = 0.25 (diamond), L = 0.5 (square) and
L = 1 (triangle).

In particular reflection increases with the energy extraction rate λ′g and with the
length of the array, and is of course the greatest for fixed buoys, which is equivalent
to λ′g → ∞. In comparison with fixed buoys, the detuning corresponding to the
maximum reflection is shifted slightly from Ω = Ω0 towards Ω = 0.

9. Energy extraction

Now the flow and buoy displacements are known. The period-averaged rate of energy
extracted by the jth buoy is given, in physical form, by:

Ej ≡ 1

2
ω2λg|ζ(j)|2. (9.1)

The total energy extracted by N buoys is therefore

E =

N∑

j=1

Ej =
1

d

N∑

j=1

Ejd. (9.2)
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Figure 10. Reflection and transmission coefficients for different L. The energy extraction
rate is set at λ′

g = 1/2 and d′ = 1.

Since N ≫ 1, the above series can be approximated by an integral:

E ≈ 1

2d
ω2λg

∫ L

0

|ζ|2 dx

=

(
1

2
ρ
√
gh

3
A2

)
π

d′
ω′2λ′g

∫ L

0

|ζ0|2 dx′. (9.3)

Dividing by the energy flux rate of the incident wave across the width d : 1
2ρ

√
gh

3
A2C′

gd
′,

the efficiency of power absorption is found in terms of the buoy displacement:

E ≡ π

d′2C′
g

ω′2λ′g

∫ L

0

|ζ0|2 dx. (9.4)

As a check, the absorbed energy can also be calculated from the difference of
the incoming and outgoing energy flux rates at x ∼ ±∞. From the radiation and
scattering coefficients, we can find

E ≡ 1 −
(∣∣∣α̂−(0) + β̂−(0)

∣∣∣
2

+
∣∣∣α̂+(L) + β̂+(L)

∣∣∣
2
)
. (9.5)

It is shown the appendix that (9.4) and (9.5) are the same.
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Figure 11. Reflection and transmission coefficients for different λ′

g. The length of the
array is L = 1/2 and d′ = 1.

−4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

0.1

0.25
0.5

Ω/Ω0

E

−4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

0.1

0.51

Ω/Ω0

E

Figure 12. (a) Efficiency over a range of Ω/Ω0 for d′ = 1. (a): λ′

g = 1/2 and
L = 0.1, 0.25, 0.5. (b) : L = 1/2 and λ′

g = 0.1, 0.5, 1.0. The horizontal lines give the
results obtained by (3.12).

Figure 12 shows how the extracted energy varies with the detuning, the length
of the array and the energy extraction rate. Note first that when the detuning
frequency is outside the band gap of the pure scattering problem (0 < Ω/Ω0 < 2),
the energy extraction efficiency E tends to the same constant value predicted by
the approximate value E0 given by (3.12) based on Froude-Krylov approximation.
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Figure 13. Influence of L and λ′

g on the the minimum energy extracted due to Bragg
resonance. d′ = 1 and λ′

g = 0.25, 0.5, 1, 2.

The good agreement shows the robustness of the asymptotic theory here despite its
intended realm in the small neighbourhood of Bragg resonance.

It is clear that within the band gap, the extraction efficiency is substantially
reduced by Bragg resonance. The reduction is the greatest around Ω = 0 (perfect
tuning) and is larger for wider arrays (see figure 12(a)) and greater extraction rate
(see figure 12(b)).

Although the maximum efficiency over most of the detuning frequencies is ap-
proximately equal to E0 which increases with the length of the array, it is interesting
that shorter arrays can yield more energy for small detuning, as shown in figure 13.

10. Conclusions

We have developed an asymptotic theory for wave interaction with a periodic array
of small buoys in order to gain a better understanding of its potential as a wave-
power farm.

We showed that fixed cylindrical buoys of small dimensions produce scattering
effect of the same order of magnitude as vertical piles of the same radius but ex-
tending across the entire depth. It can easily be shown that the results derived here
can be extended to small buoys of arbitrary geometry. In particular, we have shown
that hemi-spherical buoys have the same influence as circular cylindrical buoys.
We have extended the work of Li and Mei (2007a) and deduced analytically the
frequency band gap within which one dimensional wave propagation is inhibited.

By multiple-scale analysis we have further solved the radiation problem of an
array of movable buoys partially constrained by energy absorbing devices. The ab-
sorber is modeled as a damping force proportional to the velocity of the buoy. We
have shown that Bragg resonance reduces the potential for energy extraction, some-
what similar to viscous damping in wall boundary layers studied recently by Tabaei
and Mei (2009). While the present theory is designed only for the immediate vicin-
ity of Bragg resonance, it agrees with the approximate theory valid far outside the
band gap. Therefore it may be a practical tool for analyzing random incident waves
with a broad frequency band. Modifications for shorter waves satisfying the Bragg
condition kd = nπ appears straightforward. For practical design of arrays of en-
ergy converters with complex phase control of the power-takeoff system, numerical
techniques would be necessary.
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Future extensions may include oblique incidence on a wide array. In this case,
the wave physics of multiple scattering is two dimensional. Approximation used
here can be extended as in Li and Mei (2007a); Tabaei and Mei (2009) for piles.

This research has been supported by a grant from MASDAR Institute of Science and
Technology in the program of MIT-Abu Dhabi Alliance. CCM also received partial support
from US -Israel Bi-National Science Foundation and from Earth Systems Initiative at MIT.

Appendix A. Energy extraction from a sparse array

To prove that the two expressions of the energy extracted given in §9 are equal, let
us recall the governing equations of the scattering and radiation amplitudes:

C′
g

∂α̂+

∂X
= −iΩ0

(
α̂+ + α̂−

)
+ iΩα̂+, (A 1a)

−C′
g

∂α̂−

∂X
= −iΩ0

(
α̂+ + α̂−

)
+ iΩα̂−, (A 1b)

C′
g

∂β̂+

∂X
= −iΩ0

[
(1 − G)(β̂+ + β̂−) − G(α̂+ + α̂−)

]
+ iΩβ̂+, (A 1c)

−C′
g

∂β̂−

∂X
= −iΩ0

[
(1 − G)(β̂+ + β̂−) − G(α̂+ + α̂−)

]
+ iΩβ̂−. (A 1d)

The corresponding buoy displacement is given by:

ζ̂0 = G
[(
α̂+ + α̂−

)
+

(
β̂+ + β̂−

)]
. (A 2)

Let us introduce
ξ̂ = G

[(
α̂+ + β̂+

)
−

(
α̂− + β̂−

)]
. (A 3)

Taking (A 1a) − (A 1b) + (A1c) − (A 1d), we find that

C′
g

dζ̂0
dX

= iΩξ̂.

Similarly, by taking (A 1a) + (A1b) + (A1c) + (A 1d), we find

C′
g

dξ̂

dX
= −i (2Ω0 (1 − G) − Ω) ζ̂0.

Denoting their complex conjugates of ζ̂0, ξ̂ by ζ̂†0 , ξ̂
† respectively, we get

C′
g

dζ̂†0 ξ̂

dX
= −i (2Ω0 (1 − G) − Ω) |ζ̂0|2 − iΩ|ξ̂2|,

and

C′
g

dζ̂0ξ̂
†

dX
= i

(
2Ω0

(
1 − G†

)
− Ω

)
|ζ̂0|2 + iΩ|ξ̂2|,

which can be summed up to give

C′
g

d
(
ζ̂†0 ξ̂ + ζ̂0ξ̂

†
)

dX
= 2iΩ0

(
G − G†

)
|ζ̂0|2.
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Recall that

G =
1

1 − iω′λ′g
,

so that

G − G† =
2iω′λ′g

1 + ω′2λ′2g
.

Since

ζ̂†0 ξ̂ + ζ̂0ξ̂
† = −2|G|2

(∣∣∣α̂− + β̂−
∣∣∣
2

−
∣∣∣α̂+ + β̂+

∣∣∣
2
)
,

we finally get

d

dX

[∣∣∣α̂− + β̂−
∣∣∣
2

−
∣∣∣α̂+ + β̂+

∣∣∣
2
]

= 2Ω0λ
′
gω

′|ζ̂0|2.

and, after integration,

2Ω0λ
′
gω

′

C′
g

∫ L

0

|ζ̂0|2 dX = Ω0

[∣∣∣α̂− + β̂−
∣∣∣
2

−
∣∣∣α̂+ + β̂+

∣∣∣
2
]L

0

. (A 4)

Recall that the boundary conditions (4.29) and (7.5) give

α̂+(0) = 1, α̂−(L) = β̂+(0) = β̂−(L) = 0,

so (A 4) reduces to

2λ′gω
′

C′
g

∫ L

0

|ζ̂0|2 dX =
∣∣∣α̂−(L) + β̂−(L)

∣∣∣
2

−
∣∣∣α̂−(0) + β̂−(0)

∣∣∣
2

−
∣∣∣α̂+(L) + β̂+(L)

∣∣∣
2

+
∣∣∣α̂+(0) + β̂+(0)

∣∣∣
2

= 1 −
(∣∣∣α̂−(0) + β̂−(0)

∣∣∣
2

+
∣∣∣α̂+(L) + β̂+(L)

∣∣∣
2
)
. (A 5)
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