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aDivision of Solid Mechanics, Linköping University, SE-58183 Linköping, Sweden
bStructural Impact Laboratory (SIMLab), Department of Structural Engineering,
Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Abstract

Conventionally optimized structures may show a tendency to be sensitive

to variations, for instance in geometry and loading conditions. To avoid

this, research has been carried out in the field of robust optimization where

variations are taken into account in the optimization process. The overall

objective is to create solutions that are optimal both in the sense of mean

performance and minimum variability. This work presents an alternative

approach to robust optimization, where the robustness of each design is as-

sessed through multiple sampling of the stochastic variables at each design

point. Meta models for the robust optimization are created for both the

mean value and the standard deviation of the response. Furthermore, the

method is demonstrated on an analytical example and an example of an alu-

minium extrusion with quadratic cross section subjected to axial crushing.

It works well for the chosen examples and it is concluded that the method is

especially well suited for problems with a large number of random variables,
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since the computational cost is essentially independent of the number of ran-

dom variables. In addition, the presented approach makes it possible to take

into consideration variations that cannot be described with a variable. This

is demonstrated in this work by random geometrical perturbations described

with the use of Gaussian random fields.

Key words: Robust optimization, Geometric imperfections, Meta model,

Robustness

1. Introduction

To study the axial buckling of a straight profile is challenging. Small

perturbations of the design or loading conditions may create large variations

in structural responses, as seen in for instance Fyllingen et al. [1]. Structures

that strongly change their behaviour when subjected to small variations are

not robust, and this property is rarely sought. Traditional deterministic

optimization methods applied to structures subjected to impact loading may

also create non-robust designs. This problem can be resolved by accounting

for variations in the design variables and environmental conditions when

performing the optimization, i.e. performing a robust optimization. This

rather fast growing research area is summarised by e.g. Beyer et al. [2].

The concept of robust design is to find an optimal design, which is not only

optimal in the sense of mean response value, but also has a minimal varia-

tion of the response when subjected to stochastic variations. However, there

are several ways to account for variations, i.e. different ways of including

the variations in the optimization formulation. Several papers have included

uncertainties in the constraints by changing the constraints from being al-
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ways fulfilled to being fulfilled to some probability chosen. These methods

with probabilistic inequality constraints are denoted Reliability-Based De-

sign Optimization approaches (RBDO), see e.g. Gu et al. [3]. According

to for instance Beyer et al. [2], there is no consensus in the literature as to

whether RBDO should be regarded as robust optimization or not, since the

formulation does not imply a minimisation of the response variations, but

rather an inclusion of a safety margin in the constraints. In order to explic-

itly minimise the variations of a response, this entity must either be present

in the objective function, e.g. as in Doltsinis et al. [4], or be given an upper

limit in a constraint so that the variations in the response is minimised in

order to satisfy the constraint.

The grand challenge lies in evaluating the responses and their variations

for computationally costly applications. Responses from impact loading con-

ditions generally require long computing times and it is common to use meta

models for approximating the responses. The meta models are built from

carefully selected response evaluations, where the chosen sets of variable val-

ues are denoted the Design Of Experiments (DOE). Using the meta models,

it is then possible to get an approximation of the non-evaluated designs.

Several papers extend the usage of the constructed meta models to making

approximative evaluations of response dispersion data, typically Monte Carlo

analyses performed on the meta models, e.g. Lee et al. [5], Sinha et al. [6]

and Ait Brik et al. [7]. In order for this methodology to be accurate, the

meta model must also be accurate. For a complete assessment of the disper-

sions, one must also consider the uncertainties in the meta model itself, e.g.

as in the work of Martin et al. [8].
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Inspired by the work of Vining et al. [9] and [10], several other recent

papers use the dual response surface approach in which two response surfaces

are created, one for the mean and one for the variance or standard deviation

of a response. In contrast to meta model-based Monte Carlo analyses, e.g.

Kovach et al. [11] and Shin et al. [12] use replicates of the same design in

order to obtain estimates of the variances for the different responses.

Our work presents an alternative approach to robust optimization. Two

meta models are used, one for the mean and one for the standard deviation

of the response. Random (uncontrollable) variables are not included in the

variable space. Instead, in each design point, an assessment of the mean and

standard deviation of a response is made based on a predetermined set of

random samples for the stochastic variables, i.e. the random variables and

the design variables that are non-deterministic. The mean and the standard

deviation of the response are approximated over the design variable space

using Artificial Neural Network (ANN) meta models. Standard optimiza-

tion strategies implemented in the software LS-OPT are then applied to the

robust optimization formulation in order to find an optimal robust design.

The novelty in this work is the combination of several factors; the robust

optimization formulation, using the same random samples throughout the

optimization, the calculation of robustness in each design, the use of random

fields and the optimization procedure.

Two examples of the proposed robust optimization approach are pro-

vided, one analytical design example and one Finite Element (FE) example,

where the objective is to find the robust optimal size and position of a buck-

ling trigger on a square aluminium tube subjected to impact loading. For
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the latter, a similar problem setup has been presented by e.g. Missoum

[13] and [14], but the solution techniques are different, as he maximises the

probability that the mean response is above a certain value, whereas in this

work, the variance in each design is also studied and used as an objective in

the optimization. Finally, it is concluded that the method proposed here is

especially well suited for problems with a large number of random variables.

2. Objective

The objective of this work is twofold. First, an alternative approach to

robust optimization is presented. The method is not necessarily restricted

to usage in a structural impact context, but the chosen structural example

serves as a good demonstrator. Advantages and restrictions of the proposed

approach are presented in the discussion, as well as possible fields of appli-

cation. Second, the approach is applied to the robust optimization problem

of finding the optimal size and placement of a buckling trigger on an axially

crushed aluminium profile. In this example, it is shown why a small trigger

should be placed at one end of the axially crushed beam.

3. Theory

The following sections briefly present the theories that constitute the basis

for this work.

3.1. Robust optimization

A robust optimization is an optimization where dispersions of the vari-

ables and responses are taken into account. Thus, the optimization problem
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can be formulated as a multiobjective problem with the minimum of the

dispersion as an additional objective.

min
x

[µ (f(x)) , σ (f(x))] (1)

with appropriate constraints. A common approach is to weight the two

objectives linearly, i.e.

min
x

f̄(x) = α
µ (f(x))

µ0 (f(x0))
+ (1 − α)

σ (f(x))

σ0 (f(x0))
(2)

where the new objective function f̄ is a linear combination of the mean, µ,

and the standard deviation, σ, of a stochastic response f(x). By perform-

ing a normalisation, introducing µ0 and σ0 denoting the mean and standard

deviation of the initial designs response, the trade-off situation becomes inde-

pendent of the size of the two terms in the objective function. The robustness

of the optimal solution design will then only depend on the choice of the pa-

rameter α. This is not required when the mean value and the standard

deviation are of comparable magnitude.

The formulation above has been selected for this paper. However, true

expressions for mean and standard deviation of responses are generally not

known, and these entities must be replaced by approximations that are valid

over the design domain. The robust optimization formulation changes to

min
x

f̃(x) = α
µ̃ (f(x))

µ0 (f(x0))
+ (1 − α)

σ̃ (f(x))

σ0 (f(x0))
(3)

where µ̃ and σ̃ are meta model approximations of the true responses.

Since f̃ now is a smooth function, any standard optimization algorithm

can be used for this problem. This work uses the Leapfrog Optimizer for
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Constrained optimization (LFOPC) in conjunction with two different types

of neural networks as meta models, as implemented in LS-OPT, see Stander

et al. [19].

3.2. Meta modelling

Meta models are constructed approximations of the responses over the

design space. The approximations are built up from evaluations of response

values for a carefully selected set of designs, denoted the Design Of Experi-

ments (DOE). Meta models are most commonly used when each evaluation

of the response is computationally costly and when a global or local ap-

proximation may increase the efficiency, e.g., in traditional optimization or

sensitivity analysis. It is important to note that the robust optimization ap-

proach presented here is independent of the choice of meta model. However,

since every design point in this method requires several costly evaluations, it

is wise to choose a meta model where the results from every design evaluation

are saved and reused, and where, consequently, the meta model is refined for

each iteration in the optimization procedure.

In this work, a meta model based on a Neural Network which meets

the above criteria is used. Moreover, according to e.g. Redhe [17], Neural

Networks are also capable of capturing local changes of the response, such

as a bifurcation in the buckling mode where the energy absorption changes

rapidly with a small change in the design. This is not the case when a

polynomial meta model is used over the entire region of interest.
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3.3. Artificial Neural Network

A Neural Network, or more precisely, an Artificial Neural Network (ANN),

may be used to approximate complex relations between input and output

data, and thus serve as a meta model. An ANN consists of neurons, i.e.

small computing devices, that are connected. The output yk from neuron k

is calculated as

yk(x) = f

(

d
∑

i=0

wkixi

)
∣

∣

∣

∣

∣

x0=1

= f(a) (4)

where f is the activation function and wki is the weight of the corresponding

input signal xi. The latter is either an input variable value or an output

value from a previous neuron in the network. The term wk0 corresponds to

the bias parameter and it may be included in the summation by adding an

input signal x0 = 1.

The nature of the connection topology between the neurons, the weights

and the type of activation functions, together determine the type of ANN

used. The two most common approaches for function approximation are the

multilayer feedforward (FF) network and the radial basis function (RBF)

network. In a multilayer FF network, no information travels backward in the

network, i.e. the output of each layer serves as an input to the next. Fur-

thermore, the activation functions in the hidden layers are usually sigmoidal

functions

f(a) =
1

1 + e−a
(5)

and the input and output layers are usually linear, i.e. f(a) = a.

9



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

The network is called an RBF network using Gaussian basis functions

when the following mapping is used

yk(x) =

d
∑

i=1

wkiφi(x) + wk0

φi(x) = exp

(

−
||x − ci||

2
2

2σ2
ci

)
(6)

where || . . . ||22 denotes the square of the Euclidian distance, and where ci and

σci
are the center and width of the i:th Gaussian basis function, respectively.

Both multilayer FF and RBF networks are used in this work. More

information regarding ANN in the context of function approximation is found

in e.g. Bishop [18].

3.4. Random Fields

The finite element model of the axially crushed aluminium profile, which

will be used here to demonstrate the method of robust optimization, is based

on the model developed by Fyllingen et al. [1]. By stochastic simulations,

Fyllingen et al. investigated the influence of assumed random geometrical

imperfections on the behaviour of a slender aluminium profile subjected to

axial crushing. As in that model, the geometrical imperfections, in this work

only the perturbations of the position of the wall sides, will be modelled by

the use of Gaussian random fields.

The algorithms which were used for implementation of the Gaussian zero

mean homogenous random fields were adopted from Shinozuka and Deodatis

[15] and Stefanou and Papadrakakis [16]. It was chosen to use the following

autocorrelation function Rff , which yields quite smooth realizations
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Rff (x1, x2) = s2 exp

[

−

(

x1

b1

)2

−

(

x2

b2

)2
]

(7)

where s denotes the standard deviation for the stochastic field and b1 and

b2 are parameters, which are proportional to the correlation distance of the

stochastic field along the x1 and x2 axis, respectively.

4. Work procedure

The work procedure is presented in Figure 1. To describe the variations

in a model, it is assumed that m different stochastic variables are required.

Random samples of these m variables are generated n times in the beginning

of the optimization, creating n different sets with different values of the

stochastic variables. The same random variations are used throughout the

optimization, and the reason for this will be explained later.

The next step is to choose an initial DOE, after which the iteration loop

for the optimization begins with evaluating every design n times, once for

every set of random variations. From the n evaluations of a design, it is

possible to evaluate the mean and the standard deviation of the response,

which is done for all designs. Next, two meta models are created to approx-

imate the mean and the standard deviation over the region of interest. A

standard optimization approach is then applied to the robust optimization

formulation, Equation (3), where the iterations stop when convergence has

been reached.
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Generate n sets of stochastic

variable values.

Choose a

base DOE.

Evaluate all designs n times, i.e. once

for each set of stochastic variables.

Evaluate the mean and the standard

deviation for all designs.

Create meta models approximating the

mean and the standard deviation.

Apply the robust optimization formulation

and an arbitrary optimization approach.

Convergence?

Solution

Choose new

designs.

Yes

No

Set up problem

Figure 1: Flow chart for the methodology used.

5. Analytical example

In order to demonstrate the proposed approach, a one-dimensional ana-

lytical example is used. The problem is formulated according to Equation

(3) as follows
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min
x

f̃(x) = α · µ̃ (f(x)) + (1 − α) · σ̃ (f(x))

s.t. 0 ≤ x ≤ 1

where

f(x) = g(x) + ε(x)

g(x) = (x − 0.6)2 · (2 − sin (3.5π(x − 0.55)))

ε(x) = k(x) · ”random field, N(0, 1)”

k(x) = 0.1 (1.4 + sin (2π(x − 0.4)))

α = 0.3

(8)

A robust optimization of the stochastic response f(x) is to be performed,

where x is the only design variable. The objective is to minimise a linear

combination of the mean performance and the variability. The response

function f(x) is a sum of a mean function g(x) and some random error ε(x),

which causes the dispersion. The random error is represented by a one-

dimensional Gaussian random field that is normally distributed with zero

mean and variance one, N(0, 1). The random fields that are generated are

further multiplied with a weight function k(x), creating the error function

ε(x), which consequently has different dispersion levels for different x-values.

The random error of the function f(x) will therefore also depend on x. The

functions g(x) and k(x) are shown in Figure 2.

50 samples of the random field are generated (n = 50), creating the 50

response curves seen in Figure 3. It may be noted that the generated re-

sponse functions f(x) are normally distributed around g(x), and that the

dispersion is larger where k(x) is large. The stochastic variations are ap-

plied directly to the response function in this analytical example, thereby

13
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Figure 2: Values of g(x) and k(x) for the analytical function.

simulating variations induced by random variables.

In order to find a robust design with the robust optimization formulation

in Equation (8), the response is evaluated 50 times for certain values of x,

i.e. the value of the 50 different curves are extracted for given values of x.

Basic statistics yield approximations of the mean value and the standard

deviation for those values of x, and the mean value and standard deviation

can be approximated over the entire design space by the use of meta models,

µ̃ and σ̃. Standard optimization procedures may then be applied to find the

optimum in a robustness sense.

Moreover, the same 50 curves of f(x) are used throughout the optimiza-

tion for all design evaluations of the response, i.e. the stochastic samples

14
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Figure 3: 50 randomly generated analytical curves f(x).

are only generated once. The reason for this is that the chosen optimiza-

tion algorithm might behave in a non-robust manner if new perturbations

are used for every design. If the same perturbations are used all the time,

the error with which the mean and the variance are estimated for different

designs will not depend on the specific samples that have been generated

for that specific evaluation. This issue becomes more relevant when fewer

samples are used for the estimation of the stochastic values. An alternative

interpretation of this approach may be that the optimization depends on a

broader spectrum of deterministic simulations that are selected in order to

represent a stochastic behaviour of the model.
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5.1. Solution

The optimization problem is solved using RBF networks as meta models.

The initial DOE is retrieved using a space filling algorithm with the number

of designs set to the default value 4. Successive designs are chosen by the

internal optimization algorithm.

(a) Mean value approximation, itera-

tion 1.

(b) Mean value approximation, itera-

tion 2.

(c) Mean value approximation, itera-

tion 3.

(d) Mean value approximation, itera-

tion 4.

Figure 4: Mean approximations in analytical problem.

As seen in Figures 4 and 5, the meta models better approximate the given
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analytical curves with an increased number of evaluations. However, the

meta models will not converge to the true analytical curves as the mean and

standard deviation values calculated in each design x are only approximations

made from 50 randomly generated samples. A comparison between the given

analytic expressions and the approximations based on the 50 samples is given

in Figure 6.

(a) Standard deviation approxima-

tion, iteration 1.

(b) Standard deviation approxima-

tion, iteration 2.

(c) Standard deviation approxima-

tion, iteration 3.

(d) Standard deviation approxima-

tion, iteration 4.

Figure 5: Mean approximations in analytical problem.
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From Figure 6, it can also be noted that the accuracies of the approxima-

tions are higher where the dispersions are low, i.e. k(x) has a low value. This

is in accordance to basic statistical theory, stating that the number of sam-

ples required to estimate a mean value or a standard deviation accurately,

increases with higher dispersion in the samples. For instance, the confidence

interval of the mean value Im is given by

Im =
[

x̄ − tβ/2 · d , x̄ + tβ/2 · d
]

(9)

where d is the estimated standard deviation and tβ/2 is a number given by

the Student’s t-distribution, which depends on the confidence level β and

the number of samples chosen, see e.g. Casella et al. [20]. For example, a

95% confidence interval has β = 0.05 and if the number of samples are 20,

tβ/2 = 2.09. Nevertheless, the confidence interval will be larger with a larger

dispersion (larger d) and consequently the approximated mean value will be

more uncertain. The behaviour of the confidence interval for the standard

deviation is similar.

A solution to this problem could be to let the number of samples vary

from design to design. The width of the confidence interval could be used

as a stopping criterion, indicating when enough samples have been used for

that design. However, an implementation of this is not within the scope of

this work. It is also uncertain how that approach would work in conjunction

with an optimization algorithm, see the discussion in the last paragraph of

the previous section. Instead, we make sure that the number of samples used

is sufficient. It is also possible to check the robustness of the final design by

performing more evaluations, i.e. use more than n samples for that design.
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(a) Comparisons of g(x) and k(x). (b) Comparison of f̃(x) for α = 0.3.

Figure 6: Comparison of the true given analytic expressions and the approximations based

on the 50 samples.

The optimal analytical solution to this problem is x ≈ 0.1596, whereas

the optimization algorithm with 50 samples gives x ≈ 0.1525 within four

iterations. The convergence criteria for the optimization was set to 0.001 for

change both in design and objective.

6. Square aluminium tube example

Next, the robust optimization approach is applied to the problem of a

thin walled aluminium extrusion with a quadratic cross section subjected to

axial crushing. The example is essentially picked from Fyllingen et al. [1]

and Jensen et al. [21]. In this work, the problem is used to exemplify the

robust optimization approach, while the predictability of the FE model is

not emphasized.

The objective is to demonstrate the presented method on the problem

19
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of finding a robust optimal placement of a buckling trigger. The purpose

of the trigger is to improve the predictability of the buckling as a result

of axial loading, i.e. increase the robustness, while maintaining good energy

absorption properties. From an engineer’s point of view, a robust and efficient

crash absorbing component buckles in a progressive mode rather than in a

global mode every time.

6.1. Model description

The test set-up is given in Table 1. A mass of 600 kg impacts the profile

at an initial velocity of 20 m/s. The profile is fixed to a reaction wall. The

length of the fixation (Lfix) is 100 mm and the free length (L) of the profile

is 1500 mm. The profile is made of the aluminium alloy 6060 T6, with a

cross section of 80 mm × 80 mm, and its nominal thickness is 2.5 mm.

Table 1: Test set-up.

Test set-up Parameters

Dynamic Wall thickness

�
�
�
�
�
�
�

�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

Lfix L Impacting mass

v0

2.5 mm

Cross section

80 mm × 80 mm

Free length

1500 mm

Impact velocity and mass

20 m/s and 600 kg

Both the local and global geometric imperfections are applied in the same
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way as in Fyllingen et al. [1]. The local imperfections are represented by four

independent fields, one field for each of the extrusion walls. The field values

are generated at the same locations as the FE nodes, and the intersection of

the different fields at the corners are found by use of linear extrapolation of

the intersecting fields. The x1 direction is directed perpendicular to the lon-

gitudinal direction and the x2 direction is directed parallel to the longitudinal

direction.

The global geometric imperfections are represented by two independent

stochastic fields generated on two perpendicular planes. The field on one

wall is generated in the same way as for the local geometric imperfections,

and then the parallel wall is given the same geometric imperfections in the

same direction. The perpendicular walls are given a sideways geometric

imperfection equal to the geometric imperfections at the corners. Examples

of the local and global geometric imperfections can be seen in Figure 7.

(a) (b)

Figure 7: Examples of the geometric imperfections that are added to the model. (a) Local

imperfections; (b) Global imperfections.
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Measurements of initial geometrical imperfections on aluminium extru-

sions of AA6060 T6 with a cross section of 80 mm × 80 mm and a nominal

thickness of 2.5 mm have been performed by Clausen and Remseth [22]. It

was not possible to estimate the parameters of the spectral density functions

using these measurements. However, after some trial and error, a similar

shape and size in the local and global imperfections in the model were ob-

tained. The chosen parameters for the spectral density function for the local

and global geometrical imperfections are given in Table 2.

Table 2: Parameters of the autocorrelation function for the local and global imperfection.

Imperfection b1[mm] b2[mm] s[mm]

Local 40 400 0.07

Global 1500 1500 2.0

By introducing geometrical triggers, the performance of the profile may

be improved. It was chosen to use a geometrical trigger which consists of a

product of trigonometric waves:

f(u, v) = A sin

(

π
u − u1

w

)

sin

(

π
v − v1

a

)

(10)

One half sine wavelength was used both in the width (u-direction) and

in the axial direction (v-direction), and all four walls of the profile were

triggered. The trigger points outwards on two of the parallel walls, while

it points inwards on the remaining two parallel walls, see Figure 8(b). The

amplitude A was chosen to be 10 mm.

In Figure 8(a), a schematic view of the profile with the geometrical trigger
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is shown. The position of the trigger is given as b, while the size of one half-

wavelength in the axial direction is denoted a. Optimal values of these two

variables, in the robust optimal sense, are sought in the robust optimization.
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Lfix L − a − b a b

Trigger

(a) (b)

Figure 8: (a) Schematic view of the profile; (b) Geometric trigger.

It was chosen to use an FE mesh with Belytschko-Tsay shell elements,

five integration points through the thickness and 16 square shaped elements

across the width of the profile. At the clamped part of the member, which has

a length of Lfix =100 mm, all degrees of freedom were constrained, except

for the longitudinal translation, in order to allow deformation in the axial

direction. The lower end of the specimen was fixed by constraining all six

degrees of freedom. To account for contact between the impactor and the

profile, a single surface contact algorithm was used, while the self contact

was modelled using an automatic surface to surface contact algorithm. The

friction coefficients were set to 1.05 and 0.61 for the self contact and contact

between the impactor and profile, respectively.

The material was assumed to be elastic-viscoplastic with an anisotropic

yield criterion and isotropic hardening, see material model 103 in LS-DYNA,

Hallquist [23]. However, the parameters of the yield criterion were chosen

such that it was equivalent to the von Mises yield criterion. The extended
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Voce isotropic hardening rule was used, see Equation 11, with the following

coefficients: σ0 = 148 MPa, Q1 = 48 MPa, C1 = 10492, Q2 = 49 MPa and

C2 = 22.

σ = σ0 +
2
∑

i=1

Qi (1 − exp (−Ciε
p)) (11)

The density was set to 2700 kg/m3, Young’s modulus to 70 GPa and

Poisson’s ratio to 0.33. The impactor was modelled as a 400 mm × 400 mm

× 2 mm plate of cubic solid elements and rigid body material.

6.2. Response

The response chosen for this model was a measure of the energy absorp-

tion of the beam. As the energy absorption strongly depends on the different

buckling modes, i.e. global, mixed mode or progressive buckling, it is a suit-

able response to use in the optimization process, cf. Fyllingen et al. [1].

Figure 9 shows the three different buckling modes obtained experimentally

and one simulation result where unlike in the experiments, a trigger has been

introduced in the model.

By integrating the force that acts on the impactor as it travels a dis-

tance of 60% of the free length of the beam, the absorbed energy response is

retrieved, see Figure 10.

6.3. Problem formulation

Again, the robust optimization problem is formulated according to the

principle in Equation (3), more precisely
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(a) (b) (c) (d)

Figure 9: The three different possible experimental buckling modes and one example of a

simulation deformation mode. (a) Progressive buckling mode; (b) Mixed buckling mode;

(c) Global buckling mode; (d) Mixed buckling mode (simulation).

Force [N ]

Displacement [mm]

Figure 10: The definition of the energy absorption response as the shaded region in the

graph.

max
a,b

f̃(a, b) = α
µ̃ (f(a, b))

µ0 (f(a0, b0))
− (1 − α)

σ̃ (f(a, b))

σ0 (f(a0, b0))

s.t. 10 ≤ a ≤ 200

10 ≤ b ≤ L − (10 + a)

(12)
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In this robust optimization, the objective is to maximise the mean and min-

imise the variability of the energy absorption f(a, b). Size and position (a

and b) of the trigger are the two deterministic design variables and the ge-

ometric perturbations described by the random fields are the only random

variables. Constraints for the design variables are given in mm.

Depending on the relative priorities between the energy absorption and

its variations, it is presumed that different solutions may be obtained by

changing the value of α. This was tested with the RBF network meta model

in order to study the trade-off between maximising the energy absorption

and minimising the variability. α = 0.8 was tested for both meta models.

15 samples were used to estimate the mean value and the standard devi-

ation of the energy absorption, i.e. 15 different samples of the random fields

were generated in the beginning of the optimization (n = 15). The same

geometrical perturbation fields were used throughout the optimization, as

in the analytical example. A convergence study was conducted on the least

robust design point found in the optimization, the design where the standard

deviation in the response was the largest, as this design governs the number

of samples that are required. This design was evaluated for 100 samples and

it was concluded that the values of the mean and standard deviation of the

response had reached sufficiently accurate values already after 15 samples,

thereby showing that 15 samples were sufficient for this analysis.

6.4. Solution

The optimization problem was solved testing two different available ANN

meta models: FF networks and RBF networks. For the RBF networks, dif-

ferent values of the weighting parameter α were also tried. The initial values
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of the variables a and b were set to 105 mm and 697.5 mm, respectively,

representing the midpoint of the design space, i.e. a medium size trigger

placed at the middle of the free length. The initial DOE was retrieved using

a space filling algorithm with the number of designs set to 5, and the suc-

cessive designs were chosen by the optimization algorithm. The tolerance for

termination was chosen to 0.001 for both change in design and objective.

Table 3: Solutions of the optimization problem for optimal placement of the trigger.

Type of ANN α-value Iterations Optimum (a,b)

FF 0.8 15 (10.0, 1480)

RBF 0 4 (10.0, 10.0)

RBF 0.8 4 (10.0, 10.0)

RBF 1 2 (10.0, 263)

The number of iterations and the optimal solutions are presented in Table

3 and the optimization evolutions are seen in Figure 11. The optimal solu-

tions indicates a small trigger at one of the ends of the beam. From studying

the design evaluations more closely, it can be concluded that there are only

small differences in energy absorption properties between placing the small

trigger in one end or the other. To which end the optimization converges de-

pends on the first steps of the optimization loop. Choosing another starting

point for the optimization would also affect to which of the two solutions the

optimization would converge.

In all the optimal designs suggested, all 15 samples buckled in a progres-

sive mode, which were improvements compared to the initial design where
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Figure 11: Evolution of variables and responses for the square aluminium tube robust

optimization example. The response values shown are actual design point evaluations.

11 samples buckled in a progressive mode and 4 in a mixed mode. In the

case where α = 1, the optimization stops after only 2 iterations. This is due

to the fact that the change in the predicted objective value happens to be

less than the given tolerance of 0.001. If this tolerance had been changed,

the optimum design would probably had changed too, most certainly to one

of the other suggested optima in Table 3.

The results further show that in this example, there is not really a trade-

off situation present between maximising the mean energy absorption and
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minimising the standard deviation of the energy absorption. An increase in

the mean response is because of fewer profiles buckling in the mixed mode

and more in the progressive mode. The standard deviation of the response

simultaneously decreases, as most of the profiles initially buckle in a pro-

gressive mode. The absence of the tradeoff situation is established in Table

3, where it is seen that the solutions are independent of the parameter α.

However, if a majority of the initial designs had buckled in a mixed mode

instead, which for instance could be achieved by using a longer beam, there

would have been a trade-off situation present.

Examples of final RBF meta models are shown in Figure 12. As this

example problem involves only two variables, it is possible to illustrate how

the stochastic values of the response vary over the design space. It may,

however, be noted that in design regions where few evaluations are made,

the meta models should not be trusted.

6.5. Error analysis

To check the validity of the meta models, the root mean square (RMS)

error was studied

RMS =

√

√

√

√

P
∑

i=1

(ŷi − yi)
2

P
(13)

where ŷi is the predicted response by the meta model, yi is the actual response

from a design point evaluation and P is the number of design points.

The RMS error summarises the overall error of the model. An error mea-

surement of this kind is appropriate as this work aims at improving a global

fit sequentially. One downside of the RMS error is that rapid changes in
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b a

(a) Meta model for mean.

b a

(b) Meta model for standard deviation.

Figure 12: Final meta models for mean and standard deviation of the energy absorption

with a normalised design variable space. These figures show the final meta models for

the optimization conducted with the RBF network and α = 0.8. The variable space is

normalised so that both design variables vary between 0 and 1.
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the response may cause large residuals at certain points affecting the mea-

sure, as the meta model is unable to reflect these steep changes satisfactory.

Large local approximation errors is the prize you pay for trying to maintain

a global approximation. These errors may be avoided if the region of interest

is decreased sequentially in the optimization, as in for instance sequential

response surface methods (SRSM), e.g. Stander et al. [19].

The RMS error for the meta models for the optimizations above are pre-

sented in Tables 4 and 5, where the relatively large errors are due to large

residuals in design points located where there is a transition between pro-

gressive and mixed buckling modes. This error is pronounced in the standard

deviation meta models, as the local residuals have almost the same magni-

tudes as the response value range of the meta model.

7. Discussion

The main advantage of the proposed approach to robust optimization is

that it essentially is computationally independent of the number of random

variables used. This makes the method well suited for problems with a large

number of random variables and relatively few design variables, as each design

point is more computationally expensive to evaluate. Normally, random

variables are included in the variable space, but here the dimension of the

variable space is reduced as it only includes the design variables. This may

make up for the increase in computational cost due to the many evaluations

that are made on the same design. The choices of random variables for the

method are of course not restricted to variables that require random fields.

The approach presented is an extension of classic optimization strate-

31



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

Table 4: RMS errors for the mean value meta models for the different optimizations

performed.

Iteration α = 0, RBF α = 0.8, RBF α = 1, RBF α = 0.8, FF

1 4.44 % 4.44 % 4.44 % 0.000549 %

2 1.51 % 1.52 % 1.51 % 0.445 %

3 7.19 % 4.92 % 1.15 %

4 6.51 % 4.48 % 1.63 %

5 5.48 %

6 5.57 %

7 9.79 %

8 11.9 %

9 14.0 %

10 14.4 %

11 14.2 %

12 14.4 %

13 13.8 %

14 13.5 %

15 13.2 %

gies and require no additional knowledge from the field of optimization. As

mentioned, arbitrary standard optimization strategies are applicable and the

presented approach is also easy to use and implement in any optimization

environment. However, as the number of samples to be used must be set by

the user, an evaluation of the required number of samples, in order to get
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Table 5: RMS errors for the standard deviation meta models for the different optimizations

performed.

Iteration α = 0, RBF α = 0.8, RBF α = 1, RBF α = 0.8, FF

1 27.0 % 27.0 % 27.0 % 69.4 %

2 24.5 % 24.5 % 24.5 % 16.0 %

3 60.9 % 66.8 % 9.23 %

4 69.9 % 67.9 % 14.7 %

5 50.2 %

6 48.8 %

7 56.5 %

8 77.7 %

9 76.5 %

10 78.5 %

11 82.6 %

12 84.0 %

13 86.4 %

14 88.7 %

15 89.6 %

good approximations of the mean value and the standard deviation, must be

performed. It is advisable to study the least robust design, as this design

governs the numbers of samples needed.

Before applying random variations to a simulation model, the real varia-

tions must be known a priori, preferably from real measurements. If random

33



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

fields are used, e.g. for geometry imperfections, appropriate range parame-

ters (”wave lengths”) and amplitudes must be set. However, the simulation

result’s dependency on the quality of the input dispersion data is similar to

that found in all other sensitivity or robustness studies. Furthermore, the

presented approach makes it possible to apply variations as they are seen in

measurements, exemplified by the geometry perturbations in the FE exam-

ple above. It is not possible to set these kind of variations as variables in a

traditional way.

Both the examples of robust optimization presented assume that the de-

sign variables are deterministic. For non-deterministic design variables, these

dispersions should definitely be taken into account in the random sampling

phase by generating random perturbations to the variables.

Furthermore, when searching for a global optimum, it is customary to

try different starting points for the optimization algorithm, since only local

convergence is guaranteed. This is not done here, but it should be considered

in a more comprehensive analysis.

Through a robust optimization procedure, it has also been shown here

that the best way of using a single trigger to improve the robustness of an

axial buckling process, is by making it small and placing it at one end of the

axially crushed beam.

8. Conclusions

An approach to robust optimization has been presented and tested on

both an analytical example and on the problem of an axially crushed alu-

minium profile. The method works well for the examples presented and the
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main advantage of the method is that it is well suited for problems with

a large number of random variables. Moreover, the approach is applicable

when different impact deformation modes occur.
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