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Abstract

This paper aims to demonstrate that the strategic approach to link formation can generate networks
that share some of the main structural properties of most real social networks. For this purpose, we
introduce a spatialized variation of the Connections model (Jackson and Wolinsky 1996) to describe
the strategic formation of links by agents who balance the benefits of forming links resulting from
imperfect knowledge flows against their costs, which increase with geographic distance. We show,
for intermediate levels of knowledge transferability, clustering occurs in geographical space and a few
agents sustain distant connections. Such networks exhibit the small world property (high clustering
and short average relational distances). When the costs of link formation are normally distributed
across agents, asymmetric degree distributions are also obtained.
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1 Introduction

There is an increasing consensus in the economic literature to recognize that network structures
significantly influence the outcomes of many social and economic activities. Such networks are often
strategically shaped by the participating agents, as recently highlighted by the theoretical economic
literature (Jackson and Wolinsky 1996, Bala and Goyal 2000). Models of this type encompass various
contexts such as job-contact networks (Calvó-Armengol 2004), oligopolies and R&D collaborations
(Goyal and Moraga 2001, Goyal and Joshi 2003), buyer-seller networks (Kranton and Minehart 2000),
and so on. Nevertheless, since the networks obtained exhibit very simple structures (such as empty,
star or complete networks), the study of the conditions that may lead to the emergence of more
realistic networks remains on the agenda.

What do we know about the structure of real social networks? A series of contributions showed
that most of them, though they are complex and heterogeneous in many respects, share some common
structural features. Real networks are proven to be very short in the sense that, when counting the
minimal number of inter-individual social connections (that is the social distance) between them,
the agents are, on average, very close to one another (Milgram 1967). At the same time, they
are highly clustered: the probability that an agent’s neighbors are also neighbors to one another
is high (Newman 2001, Kogut and Walker 2001). In addition to those structural properties, some
authors have recently studied the spatial distribution of networks and show that some of them tend
to correlate with geography (e.g. Gastner and Newman 2006). Indeed, earlier studies had already
documented the strong inverse relationship between geographical distance and social ties formation
(e.g. Bossard 1932, Zipf 1946).

How do such complex networks form? Watts and Strogatz (1998) proposed a simple process
that allows them to construct networks that share these properties. They begin with a regular one-
dimensional lattice network that can be interpreted as a locally connected network (all agents are
connected to their four closer neighbors). Then they depart from this network by deleting each link
with a small probability and reallocate it to one of the two agents it was attached to and one other
agent chosen at random in the population. They show that randomly allocating a few “short cuts”
between local clusters is sufficient to minimize the average social distance. The resulting networks,
which are both short and highly cliquish, are said to be small worlds à la Watts and Strogatz.
Nevertheless, this model does not view network formation as the outcome of the explicit decentralized
behavior of agents1. As a matter of fact, the authors do not explain why most connections remain
local while some are formed at a distance.

This paper first aims to demonstrate that the strategic approach to network formation can lead
to the emergence of complex networks that share these properties2. Therefore, we propose an ex-
planation of why networks with this type of structure come to be formed. For these purposes, we
introduce a strategic model of network formation built on a simple variation of the Connections
model of Jackson and Wolinsky. Myopic self-interested agents form costly links so as to benefit from
agents with whom they are directly or indirectly connected in a network. The longer the distance in

1This statement applies also to many other models that also incorporate, in various extents, randomness and ad-hoc

settings (Erdös and Rényi 1960, Watts and Strogatz 1998, Price 1965, Barabá and Albert 1999). Survey papers on this

literature are Strogatz (2001) and Albert and Barabási (2002).
2This aim is shared by Carayol and Roux (2004), Jackson and Rogers (2005) and Galeotti et al. (2006).
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the relational network, the weaker the positive externality. Moreover, the costs of direct connections
increase linearly with the geographic distance separating agents (in a close way to that chosen by
Johnson and Gilles 2000).

This model typically applies to knowledge flows in interpersonal connections between inventors
for instance. Indeed, it has been repeatedly asserted that invention activity is far from being the
outcome of isolated agents efforts but that of interactive and collective processes (e.g. Allen 1983,
von Hippel 1989) in which networks of interpersonal relations play a key role by improving and
facilitating information and knowledge transfers. Very recently, empirical evidence has shown that
inter-individual connections are the support of knowledge spillovers and that knowledge flow decreases
sharply with social distance between individuals (e.g. Singh 2005, Breschi and Lissoni 2007). In the
model, the decay parameter can be interpreted as the quality of knowledge transmission through
interpersonal relations. In this context, a straightforward issue relates to how the relative degree of
tacitness vs. codification generates qualitatively different network architectures. Thus, whereas the
theoretical literature has mainly focused on how some fixed network structures affect information,
knowledge or technology diffusion (for example, David and Foray 1994, Valente 1996, Young 2002,
Cowan and Jonard 2003), our model highlights that the structure of networks depends on the nature
of knowledge.

We study the structural attributes of efficient and pairwise stable networks according to the decay
parameter (knowledge transferability). A unique upper bound condition is provided, which shows
that the more intermediate the value of this parameter, the denser the local connectivity of efficient
and pairwise stable networks since the returns to direct connections are higher than the returns to
indirect connections. When the population is not too small, this result applies for a large range of
the value of the decay. Though agents have disincentives to connect directly with agents they already
(indirectly) benefit from, clustering still occurs at the local level because local relations are much less
costly. Nevertheless, at this stage, we still do not know if distant connections are formed in the long
term equilibrium and to what extent.

Therefore, we propose a dynamic time-inhomogeneous process of network formation, which allows
us to examine numerically the structure of emergent networks. We show that indeed, for a large region
of intermediate levels of knowledge transferability, the stochastic process leads to emergent networks
that share the Small World property: they are highly clustered and exhibit a low average distance
thanks to the existence of some distant connections. Such distant connections are also “weak ties”
(Granovetter 1973) or “bridging links” (Burt 1992) since they are formed between separated and
distant communities. This also explains why such costly distant connections are formed: they allow
the agents who establish them to gain access and then benefit from relationships with a set of socially
distant agents. Moreover, when a distant connection is formed, it dissipates the incentives to form
more of these relations. This is the reason why most connections are local (implying high clustering)
and some of the short cut relations are endogenously formed, which makes the network short. Thus,
the model offers a strategic foundation for the formation of social networks that share the small
world property often observed in empirical studies. Lastly, as an extension, we introduce a normal
(Gaussian) heterogeneity among agents in the costs of direct connections. Emergent networks are
then also characterized by asymmetric distributions of neighborhood sizes: a few agents have many
links while most others are weakly connected, an additional characteristic they have in common with

2
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real social networks (Albert and Barabási 1999).
The paper is organized as follows. Section 2 presents basic formal definitions. Section 3 is

devoted to the static features of the model and to the presentation of some analytical results on
pairwise stability and efficiency. In Section 4 we introduce the dynamic stochastic process and the
methodology we use. The results obtained for the dynamics are presented in Section 5. The last
section concludes.

2 Basics on graphs and network formation

We begin with some basic notions on graphs and next provide formal definitions of networks stability
and efficiency.

2.1 Graphs

Consider a finite set of n agents, N = {1, 2, ..., n} with n ≥ 3, and let i and j be two members of
this set. Agents are represented by the nodes of a non-directed graph the edges of which represent
the links between them. The graph constitutes the relational network between the agents. A link
between two distinct agents i and j ∈ N is denoted ij. A graph g is a list of non-ordered pairs of
connected and distinct agents. Formally, {ij} ∈ g means that ij exists in g. The complete graph
gN = {ij | i, j ∈ N} is the set of all subsets of N of size 2, where each agent is connected with all
others. Let g ⊆ gN be an arbitrary collection of links on N . We define G =

{
g ⊆ gN

}
as the finite

set of all possible graphs between the n agents.
Let g′ = g + ij = g ∪ {ij} and g′′ = g − ij = g\ {ij} be the graph obtained by adding ij and

the one obtained by deleting ij from the existing graph g respectively. Graphs g and g′, as well as
the graphs g and g′′, are said to be adjacent. For any g, we define N(g) = {i | ∃j : ij ∈ g}, the set of
agents who have at least one link in the network g. We also define Ni(g) as the set of i’s neighbors,
that is, Ni(g) = {j | ij ∈ g} . The cardinal of that set ηi(g) = #Ni(g) is called the degree of node i.
The total number of links in the graph g is η(g) = #g.

A path in a non-empty graph g ∈ G connecting i to j is a sequence of edges between distinct
agents such that {i1i2, i2i3, ..., ik−1ik} ⊂ g where i1 = i, ik = j. A cycle is a path such that i1 = ik. A
network is acyclic if it does not contain any cycles. Otherwise it is cyclic. The length of a path is the
number of edges it contains. Let i←→g j be the set of paths connecting i and j on graph g. The set
of shortest paths between i and j on g noted i←̃→gj is such that ∀k ∈ i←̃→gj, then k ∈ i←→g j and
#k = minh∈i←→gj #h. The geodesic distance between two agents i and j is the number of links on
the shortest path separating them: d(i, j) = dg(i, j) = #k, with k ∈ i←̃→gj. When there is no path
between i and j, then their geodesic distance is conventionally infinite: d(i, j) =∞. A graph g ⊆ gN

is said to be connected if there exists a path between any two vertices of N (g). It is fully connected
if there exists a path between any two vertices of N (it is connected and there is no isolated agents).
The subgraph g′ ⊂ g is a connected component of g, if for all i ∈ N(g′) and j ∈ N(g′) with i 6= j,
there exists a path in g′ connecting i and j and if i ∈ N(g′) and j /∈ N(g′), with i 6= j, there is no
path in g connecting i and j.

Agents have fixed positions in a given space, representing for example their geographic location.
We consider that agents are located on a circle (or a ring) with fixed intervals. They are ordered

3
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according to their index such that i is the immediate geographic neighbor of agent i+1 and agent i−1
except in the case of agent 1 and agent n who are also direct geographic neighbors. Let’s define the
operator l(i, j), which simply counts the minimal number of inter-individual intervals along the ring
separating i and j. As a consequence, l(i, j) = min {|i− j| ;n− |i− j|}. Without loss of generality,
we assume that the maximum geographical distance on the circle (the distance between any agent
and the most distant other agent, the one located on the other side of the circle) is equal to unity.
Therefore, the geographic distance between i and j is simply given by sij = l(i, j) dn/2e−1, with
dn/2e the smallest integer higher than or equal to n/2.3 Notice that the distance between i and j

varies negatively with the number of agents n simply because agents are located on a ring of a fixed
unitary dimension with uniform intervals. Thus clearly, the larger the number of agents, the higher
the density of the population, and thus the less the size of these intervals.

Several typical graphs can be described. First of all, the empty graph, denoted g∅, is such that
it does not contain any links. The ring g◦ is a network in which all agents are connected and only
connected with their two closest geographic neighbors. A chain gc is a connected subset of the ring
(gc ⊂ g◦) so that ∀i, j ∈ N(gc),#i ←→gc j = 1. This definition implies that the ring cannot be a
chain since the ring is cyclic: in the ring, there are always two paths between any two agents. Let gmc

be a maximally connected chain such that #gmc = #g◦ − 1. If gc is such that #gc ≤ #gmc, there is
always one and only one path between two connected agents i and j (the set i←→gc j is a singleton).
The double ring denoted g2◦ is a network such that all agents are only connected with their four
closest geographic neighbors. In the triple ring, denoted by g3◦, all agents are only connected with
their six closest neighbors. Finally, a star, denoted g?, is such that #g? = n− 1 and there exists an
agent i ∈ N such that if jk ∈ g?, then either j = i or k = i. Agent i is called the center of the star.
It should be noted that there are n possible stars, since each node can be the center.

Let the (geographically) covering graph gcg of a network g be built as follows: for all i, j ∈ N :
if ij ∈ g then k ⊂ gcg, with k a path in i←̃→g◦j. If g is connected, then gcg is a chain or the ring.
Otherwise, gcg can either be a chain, a set of disconnected chains, or the ring. Note that i←̃→g◦j

is always a singleton except when l(i, j) = n/2. Then, the set i←̃→g◦j is a couple. If one finds such
a link in g, it is assumed that only one of the two paths is retained (i.e. the one that has the most
edges in common with the covering graph of g\ {ij}). If this criterion does not make it possible to
distinguish the two paths, then one of the two is chosen without any consequence since the network
is fully symmetric on both sides of edge ij. Therefore also, all non-empty networks have one and
only one covering graph. Finally, a network g is characterized by regional overlap if ∃i ∈ N(g) and
∃jh ∈ g, with j, h 6= i, such that i ∈ N(gcg−i), with gcg−i the covering graph of g−i = g\ { ij| j ∈ N (g)} .

2.2 Networks stability and efficiency

We consider a network formation game in which pairs of agents meet and decide to form, maintain,
or break, links. The formation of a link requires the consent of both agents but the deletion of the
link can result from a unilateral decision. Moreover, agents are myopic: they make their decisions
on the basis of the immediate impacts on their current payoffs. Formally, let πi :

{
g | g ⊆ gN

}
→ R,

the payoffs received by i from his position in the network g, with πi(∅) = 0.
Jackson and Wolinsky introduce the notion of pairwise stability, which departs from the notion

3In the circle metric, the maximum number of interindividual connections is given by maxi,j∈N l(i, j) = dn/2e.
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of Nash equilibrium since the process of network formation is both cooperative and non-cooperative.
A network is said to be pairwise stable if no incentive exists for any two agents to form a new link
or for any agent to break one of his existing links. The formal definition of the pairwise stability
notion follows. A network g ⊆ gN is pairwise stable if i) for all ij ∈ g, πi(g) ≥ πi(g − ij) and
πj(g) ≥ πj(g − ij), and ii) for all ij /∈ g, if πi(g + ij) > πi(g) then πj(g + ij) < πj(g).

As far as network efficiency is concerned, we use the ‘strong’ notion introduced by Jackson and
Wolinsky. It is based on the computation of the total value of a graph g given by π (g) =

∑
i∈Nπi (g).

A network g is then said to be efficient if it maximizes this sum on the set of all possible graphs{
g | g ⊆ gN

}
, that is, π(g) ≥ π(g′) for all g′ ⊆ gN . It should also be noted that several networks can

lead to the same maximal total value. For example, if we consider strictly homogeneous agents, any
isomorphic graph of an efficient network is also efficient.

3 The spatialized connections model

In this section, we present our model, which is a simple variation of the Connections model introduced
by Jackson and Wolinsky, and provide some analytical results obtained on the structure of pairwise
stable and efficient networks.

3.1 The model

In this model, agents benefit from knowledge that flows through bilateral relationships. Neverthe-
less, the communication is not perfect: the positive externality deteriorates with relational distance.
Formally, there is a decay parameter representing the quality of knowledge transfer through each
bilateral connection. In a given network, agents cannot strategically control the circulation of knowl-
edge. Moreover, agents bear the costs of maintaining direct connections. We let the costs of links
increase linearly with the geographic distance between the agents on the circle4. Our underlying
assumption is that geographically distant research collaborations are as effective as geographically
close connections per se but require more monitoring and costly interactions.5

The net profit received by any agent i is given by the following expression:

πi (g) =
∑
j∈N\i

δd(i,j)ωij −
∑
j:ij∈g

cij , (1)

where d(i, j) is the geodesic distance between i and j and cij the costs borne by i for a direct
connection with j. ωij denotes the “intrinsic value” of individual j’s knowledge to individual i. For
simplicity, it is assumed that such value is fixed across agents and is normalized to unity: ∀i 6= j :
ωij = ω = 1. The parameter δ ∈ ]0, 1[ is the decay parameter representing the share of knowledge
effectively transmitted through each edge. It may be associated with the characteristics of knowledge:

4Johnson and Gilles first introduced such costs but consider a linear world. Jackson and Rogers have considered

separate islands. Our circular specification allows us to avoid ex ante asymmetry between agents. For instance, on

a line, the two agents at the far ends are, by assumption, in the periphery while agents in the middle of the line are

offered a central position.
5This feature stresses a specific impact of geography on network formation that traces back to Stouffer (1940) and

Zipf (1946), who, thought they did not explicitly model the (individual) benefits and costs of connections formation,

assume and interpret their results as geographical distance affecting positively connection costs.

5
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communication quality is likely to decrease with the degree of tacitness of knowledge, while it should
increase with the codification of knowledge. The effective positive impact of agent j on i’s payoffs
(δd(i,j)) is geometrically decreasing with geodesic distance since δ is less than the unity. Note that if
there is no path between i and j, d(i, j) = ∞ and then δd(i,j) = 0. Thus, the first part of the right
side of (1) expresses the gross payoffs obtained by i thanks to the knowledge flows he receives through
all his direct and indirect connections (assuming no time lag for simplicity). We further assume a
one-to-one relation between distance and link costs (in a similar fashion as in Johnson and Gilles) so
that the costs of maintaining a direct connection between i and j is simply equal to the geographic
distance separating them, that is, cij = sij = l(i, j) dn/2e−1.

3.2 Efficiency and stability

The analytical results obtained on networks efficiency and stability in the model described above are
summed up in the following two propositions. The main results in this section concern the manner
in which efficient and pairwise stable networks relate to geography, so we focus our attention on this
question.

Proposition 1 Efficiency
i) If δ + (n−2)

2 δ2 < dn/2e−1, the empty network g∅ is the only efficient network.
ii) The value of any non-empty acyclic graph g that exhibits no regional overlap is less than its

associated covering graph gcg.
iii) If δ − δ2 > k dn/2e−1 , ∀k ∈ N∗, then the efficient network(s) g̃ contain(s) all the links it is

possible to form between agents located at a geographic distance less or equal to k dn/2e−1.

Proofs. See Appendix.

Proposition 2 Stability
i) If δ < dn/2e−1, the empty graph is the unique acyclic pairwise stable graph and no network

containing a peripheral agent (has only one connection) is pairwise stable. If δ = dn/2e−1, the empty
graph is pairwise stable. If δ > dn/2e−1, the empty graph g∅ is never pairwise stable.

ii) If δ − δ2 > k dn/2e−1 ,∀k ∈ N∗, then any pairwise stable network g contains all the links that
can be formed between agents located at geographic distance less or equal to k dn/2e−1.

iii) The star g? and the complete network gN are never pairwise stable.

Proofs. See Appendix.
The statements in iii)-Proposition 1 and in ii)-Proposition 2 have straightforward implications

regarding the existence of cycles in efficient and pairwise stable networks. Indeed, if δ−δ2 > dn/2e−1,
then any efficient network and any pairwise stable network contain the ring that itself contains a
cycle. They also indicate that the more intermediate δ is (close to 1/2), the greater the need for
direct connections from both the social and individual points of view, and thus the more beneficial
it is for geographical neighbors to be directly connected. To appreciate the extent to which the cost
structure imposes the formation of local connections for a significantly large range of intermediate
values of δ, let us consider the following numerical example.

6
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Example 1 Let n = 20. Then iii)-Proposition 1 and ii)-Proposition 2 imply that any efficient or
pairwise stable equilibrium must contain all links that can be formed between agents geographically
distant the ones from the others by one interindividual interval when δ ∈ ]0.112, 0.887[. The collection
of these links is the ring g◦, that is included in any pairwise stable and efficient network g when the
condition on δ is verified (g◦ ⊆ g). When δ ∈ ]0.276, 0.723[, any pairwise stable and efficient network
g must contain all the links that can be formed between agents geographically distant the ones from
the others by one or two interindividual intervals. Thus the double ring, which is the collection of
such local links, is included in these networks as a subset (g2◦ ⊆ g).

When n increases, the links formation costs decrease, and thus the local connectivity increases.
Nevertheless, the upper bound expression in iii)-Proposition 1 and ii)-Proposition 2 indicates that
the number of locally connected agents is a fixed proportion of the total population. To see this, let
us assume, for simplicity, that n is even. The right term of the inequality then equals 2k/n. It can
be interpreted as the fixed fraction of agents to whom any agent is connected and who are found in
his closest geographic neighborhood.

Our results are incomplete in that we do not know much about the formation of distant con-
nections, in addition to the local connections when δ is intermediary. The existence of distant
connections, their proportion among all links, in relation with their impact on individual payoffs are
of special interest to us in the context of the equilibrium. Indeed, the literature on social networks
highlights that a few of these connections are formed (Granovetter 1973, Burt 1992). It also high-
lighted that such bridging connections are critical for all agents in that a few of these links enable
mostly locally connected networks to reduce significantly the average social distance (Watts and
Strogatz 1998). We next introduce a dynamic approach to the formation of networks, which, applied
to our model, will allow us to explore the structural attributes of the networks that are formed for
the different values of the decay and in particular to investigate fully the issue of the distant links
formation.

4 The dynamic process of networks formation

This section is a self-contained presentation of our dynamic model. We first introduce the standard
perturbed stochastic process of network formation and then focus on the terms that differentiate our
process from the standard one.

4.1 The standard perturbed stochastic process of network formation

Let gt ∈ G denote the state of the social network at period t (with t = 1, 2, ...). At each time period,
two agents i and j ∈ N are randomly selected. If they are directly connected, they can jointly decide
to maintain their relation or unilaterally decide to sever the link between them. If they are not
connected, they can jointly decide to form a link, or each agent can unilaterally decide against it.
Formally, these two situations are the following:

i) if ij ∈ gt, the link is maintained if πi(gt) ≥ πi(gt− ij) and πj(gt) ≥ πj(gt− ij). Otherwise,
the link is deleted.

ii) if ij /∈ gt, a new link is created if πi(gt + ij) ≥ πi(gt) and πj(gt + ij) ≥ πj(gt),with a strict
inequality for one of them.

7
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The evolution of the system at any time t depends only on the present state of the system
given by the graph structure gt. Thus the stochastic process is Markovian. The evolution of the
system {gt, t > 0} can be described by the probability matrix (P) describing the one-step transition
probabilities between all possible states of the finite state space G.

Jackson and Watts (2002) introduce small random perturbations ε > 0 that invert agents’ correct
decisions to create, maintain or delete links. These perturbations may be understood as mistakes
or as mutations. For low but non-null values of ε, it can be shown that the discrete-time Markov
chain associated to the transformed transition matrix P(ε) is irreducible and aperiodic and thus
has a unique corresponding stationary distribution µ (ε) that is the solution of µ (ε)×P(ε) = µ (ε).
Such perturbed stochastic process is ergodic. Intuitively ergodicity occurs when it is possible to shift
directly or indirectly between any two states in a potentially very long period of time. It allows the
long run equilibrium (µ (ε)) of the system to be unique and independent of the initial conditions.

Usually, the modeler computes µ∗ = limε→0 µ (ε) and a state g (a network here) is said to be
a stochastically stable state (Young 1993) if it has a non-null probability of occurrence in the limit
stationary distribution. Thus the set of stochastically stable states is G∗ =

{
g ∈ G

∣∣µ∗g > 0
}

. In the
network formation context, Jackson and Watts show that stochastically stable networks are either
pairwise stable or part of a closed cycle (of the unperturbed process).

4.2 A time-inhomogeneous process of network formation

In practice the precise computation of the stochastically stable networks requires the identification
of all the recurrent classes of the unperturbed process (Young 1998) that, in the network context, are
likely to be extremely numerous. To make that point clear, we shall remind the reader that there is a
recurrent class for each pairwise stable network and that in models such as the Connections model or
the spatialized connections model presented in Section 3, thousands of networks are possibly pairwise
stable. Thus, the standard process described above is not well designed for our purpose.

We propose to let the error term decrease in time according to the following simple rule:

εt = 1/ (t+ 1) + ε , (2)

with ε > 0. This rule ensures that a significant noise affects the dynamics at the beginning while it
decreases monotonically with time down to a small strictly positive limit: limt→∞ εt = ε. According
to Robles (1998), the long run equilibrium ψ (ε) of such a time-inhomogeneous Markov chain exists,
is unique, and is equal to the equilibrium of the Markov chain perturbed by the constant error ε :
ψ (ε) = µ(ε) 6. It is then obviously ergodic, thus enabling us to examine with good confidence the
long run behavior of the system through simulations (Vega-Redondo 2006). Note that the assumption
of the time-inhomogeneity of noise is more satisfactory than that of time-homogeneity: agents are
likely to make fewer and fewer errors over time, but a very small error probability persists in the long
run. Moreover, the time-inhomogeneity of noise is interesting since it makes numerical experiments
more tractable.

We call the networks on which the process stabilizes in the long run emergent networks. For-
mally the set of emergent networks is Ĝ = {g ∈ G |ψg(ε) > 0}. This set is broader than the set of

6See Proposition 3.1 of Robles (p. 211).
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stochastically stable networks defined above that is included in Ĝ. That is, for all g such that, if
limε→0 µg(ε) > 0, then ψg(ε) > 07.

5 Results: The structural properties of emergent networks

In this section we study the emergent networks selected by the stochastic process described in the
previous section. We use Monte Carlo experiments to generate networks that are on the support
of the unique limiting stationary distribution ψ(ε) (of networks) of the perturbed dynamic process.
The limit error term is ε = 10−4. The size of the network is set to n = 20 agents because this value
of n is sufficiently high to obtain local connectivity for a large space of δ values (cf. Example 1). All
experiments are stopped at T = 20, 000, a period after which the process is proven to have almost
certainly stabilized on a given pairwise stable state8. We shall focus on the characterization of the
structural properties of emergent networks depending on the decay parameter δ, which is interpreted
as the quality of knowledge transfer in the context of our application. For this purpose we ran 1,500
experiments performed with values of δ randomly drawn over its value space ]0, 1[.

5.1 How is density affected by knowledge transferability?

In order to provide a first synthetic characterization of the structural properties of networks, we
compute the average neighborhood size (or average degree as it is usually referred to in the literature
on networks) as follows:

η̂(g) = 2η(g)/n. (3)

Let us first examine how the average degree η̂(g) is affected by δ. As shown in Figure 1, the average
degree is null when δ ≤ dn/2e−1 = 0.1; the process converges to the empty graph that is pairwise
stable for such values of the parameters (see Proposition 2). However when δ becomes close to 0.1,
some non-empty networks begin to be selected. These networks are somehow in a phase transition
between the empty graph and networks for which agents have in average two connections (average
degree equal to unity). This structure is mostly selected for 0.1 ≤ δ ≤ 0.2. The average degree of
the network then increases up to nearly η̂(g) = 3 for δ ≈ 0.55. From δ ≈ 0.6, the average degree
decreases down to a value slightly below unity when δ reaches its maximum.

Let us remember that the transferability of knowledge δ can be associated with the characteristics
of knowledge: the quality of communication is likely to decrease with the degree of tacitness of
knowledge while it should increase with the codification of knowledge. Thus, our model provides a
prediction of how the nature of knowledge could affect the density of emergent networks. We find
that in the case when knowledge is highly tacit (δ close to 0) and in the case when it is highly codified

7This can be easily proved by recalling the Freidlin and Wentzell (1984) theorem that states ∀g, ψg(ε) = µg(ε) is of

the form ψg(ε) = υg(ε)/
∑

g′ υg′(ε) with υg(ε) a polynomial in ε.
8In average, non-pairwise stable networks are rarely found after 20,000 periods (less than 4%). Let us be precise

that emergent networks are not necessarily pairwise stable. They can also be part of a closed cycle in the associated

time-homogeneous unperturbed process (εt = 0). We also cannot exclude that some non-pairwise stable networks are

just emergent networks since ε > 0. Nevertheless, in practice, when such a non pairwise stable network was found,

it was because an error recently affected the system. Then, we dropped these experiments to ensure that the results

are not contingent to recent arbitrary changes. Thus, our approximations of the emergent networks distributions are

restricted to the emergent networks that are pairwise stable.
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Figure 1: Average degree η̂(g) of emergent networks for 1,500 simulations with randomly drawn
values of δ ∈ ]0; 1[.

(δ close to 1), the emergent networks are weakly connected. In both cases, the marginal returns from
direct distant and/or local overlapping connections do not make up for their associated costs. When
the quality of knowledge transfers is very high, agents do not need to build direct connections since
indirect connections are almost as effective. Conversely, when the quality is weak, only cheap local
ties are formed due to the low amount of knowledge sourced through direct connections. Thus, in
both cases, only local minimally connected networks emerge (when knowledge is extremely tacit, no
connection is formed). It is when knowledge is neither highly codified nor highly tacit that such
private returns are sufficiently high for the network average degree to increase. Then, the difference
between the private returns to direct connections and the returns to indirect ties is the greatest.

5.2 When do small worlds emerge?

Behind the dots of Figure 1, one can find networks with many different structures. This diversity
calls for a statistical analysis of the structural properties of emergent networks. For this purpose,
we compute two dedicated indexes. The former is the average distance (or average path length) of
(directly or indirectly) connected agents. It is given by

d (g) =

∑
i

∑
j 6=i d (i, j)× 1 {i↔g j 6= ∅}

# {i, j |i 6= j ∈ N, i↔g j 6= ∅}
, (4)

if η (g) > 0, with # {·} denoting the cardinal of the set defined into brackets and 1 {·} , the indicator
function that is equal to unity if the condition in brackets is verified and zero otherwise. This index
allows us to appreciate the extent to which directly or indirectly connected agents are “relationally”
distant.

The second index is the average clustering (or average cliquishness as it is often referred to in
Physics). It indicates the extent to which neighborhoods of connected agents overlap. It is given by

c (g) =
1
n

∑
i∈N ;ηi(g)>1

# {jl ∈ g |j 6= l ∈ Ni(g)}
# {j, l |l 6= j ∈ Ni(g)}

. (5)

In words, this index measures the propensity with which an agent’s neighbors are also neighbors to
one another.

The two indicators presented above are affected by the average degree of the network (η̂(g)),
which is likely to vary with δ. Therefore, these indicators are somehow biased, and we must find for
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Figure 2: Average distance (black circles: d (g) /d
(
grd
)
), average clustering (grey triangles:

c (g) /c
(
grd
)
) and their fitted values of emergent networks for 1,500 simulations with randomly drawn

values of δ ∈ ]0, 1[.

an efficient way of controlling for the average degree. In the spirit of Watts and Strogatz, we associate
control random graphs with emergent networks characterized by the same number of agents and links
(thus the same average degree). Such random networks are simply built by allocating a given number
of edges to randomly chosen pairs of agents (Erdös and Rényi). For each given number of edges of
emergent networks, the average distance and the average clustering are numerically computed and
averaged over 1, 000 such random graphs. Thus, instead of looking at c (g) , where g is an emergent
network, we compute the ratio c (g) /c

(
grd
)
, where c

(
grd
)

denotes the mean average clustering of
the 1, 000 random networks that have exactly the same average degree as g. Similarly we compute
d (g) /d

(
grd
)
. These ratios are plotted in Figure 2.

Such ratios can be used to identify a specific but frequently observed network structure called a
small world (by Watts and Strogatz). It is characterized by the two following properties:

c (g) /c
(
grd
)
� 1 and d (g) /d

(
grd
)
≈ 1. (6)

Small world networks are highly clustered as compared to random graphs, and simultaneously their
average distance is close to that of random graphs, which are known to have very short average path
length. We observe that the average distance of emergent networks becomes close to unity when δ

reaches 0.35 and then retains this value until δ ≈ 0.9. The average clustering ratio also decreases
quite sharply with δ > 0.2. Nevertheless, the clustering of emergent networks remains significantly
higher than their corresponding random networks, at least until δ ≤ 0.7. Therefore, we conclude that
small world configurations are selected for the whole region characterized by δ ∈ [0.35, 0.7] .

5.3 The spatial structure of emergent networks

We shall now address the question of the typical structures of emergent networks. Figure 3 provides
some intuitions about typical networks shapes obtained for several values of the parameter δ. When
0.09 . δ ≤ 0.2, it is the ring g◦ that emerges most often (characterized by an average degree equal to
one in Figure 1 and a null average clustering in Figure 2). Thus agents not only have two neighbors
in average, but they are all connected to their two closest geographic neighbors. When δ is equal
to 0.3, networks in which all agents are connected to their four closest geographic neighbors are
likely to emerge. Such a situation corresponds to the double geographic ring g2◦. These results

11
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The last network has been generated with the standard connections model of Jackson and Wolinsky
with δ = 0.7 and a connection cost equal to 0.5 (A (fixed) link cost in the standard connections
model set to 0.5 is approximately equal to the average (potential) link cost borne in the spatialized
connections model with 20 agents).

are fully consistent with the upper bound condition in ii)-Proposition 2 for k = 1, 2 on pairwise
stability, numerically computed for n = 20 in Example 1. At the other far end of the spectrum,
emergent networks tend to become maximal chains (gmc): when δ approaches unity, direct and
indirect connections are likely to provide the same wealth, and thus overlapping connections become
redundant. Between both these extremes, when 0.35 ≤ δ ≤ 0.7, we find structurally distinguishable
configurations characterized by the conjunction of i) a prevalence of local connections, and ii) the
existence of some short cut connections. The specificity appears clearly when one compares these
structures with the typical networks obtained with the standard connections model.

In order to provide a systematic analysis of the correlation of social connections with the ring-like
geography, we propose to study p(·), the density distribution of direct connections according to the
number of inter-individual intervals between two linked agents. It is formally defined as

p (h) =
1

η (g)

∑
ij∈g

1 {l(i, j) = h} , (7)

for all h = 1, ..., bn/2c, with b·c meaning “the highest integer smaller than or equal to”.
In order to explore the distribution in cases when the emergent networks have the small world

structure, we perform 100 additional numerical experiments for each of the following values of δ : δ =
0.35, 0.5, 0.7. Averaged distributions for each value of δ are presented in Figure 4. Unsurprisingly,
networks do correlate with the geographic metric. Indeed, between 70% and 80% of links connect
two agents distant of at most two inter-individual intervals. Clustering is thus achieved in local
space. Nevertheless, the networks also exhibit distant connections that make the distribution p(·)
long tailed on the upper side of the spectrum. The originality of these networks clearly relies on the
fact that they are both correlated with space and have some uncorrelated connections. The result
provides the missing information mentioned in Section 3: when δ is intermediate, not only are the
networks fully locally connected (and thus clustered in space), but some distant connections are also
formed.

Overall, the propensity to connect decreases with geographical distance when it is greater or
equal to three. Notice that there is a specific reduced probability that connections are made at four
inter-individual intervals, particularly when δ equals 0.5 or 0.7. Agents do not find it profitable to
establish such medium distance connections because they already benefit from agents at distance four
with one intermediary (since the double ring is there). They prefer to connect with agents located

12
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Figure 4: Distribution of links p(·), according to the number of inter-individual intervals l(i, j)
between the two directly connected agents (averaged over 100 experiments for each value of δ =
0.35, 0.5, 0.7).

further away to reach beyond the local cluster from which they already benefit.
This result supports the idea that sustainable short cuts are not made at a random distance (and

cost), as in Watts and Strogatz, but are driven by some strategic behavior. Since distant connections
are necessary to obtain the small world property and since these distant connections are also very
costly, a naturally arising question is why some agents bear such costs? In other words: does it pay
to sustain shortcuts?

In order to answer this question, we record for each of the experiments computed for δ ∈
{0.35, 0.5, 0.7} the individual payoffs (πi) and li, defined as the longest connection of i measured
by counting the number of inter-individual intervals: li ≡ maxj∈Ni(g) l(i, j). Two-way plotted results
are presented in Figure 5. The latter shows that individual payoffs decrease on average when agents
sustain a connection that is longer or equal to four intervals. Therefore we can conclude that it
does not pay to sustain short cuts in the long run,9 especially when such connections are very long
distance ones. Nevertheless, for any shortcut to exist, it has to remain advantageous to sustain it:
payoffs must increase with rather than without it. As a matter of fact, the agents who sustain a
distant connection are locked in, in that they are better off with this connection although they can-
not appropriate the full social value it generates, which is to a large extent captured by their local
neighbors. If the latter (sustaining no distant connection) have higher payoffs, it is clearly because
they indirectly benefit from these connections while they do not bear their high associated costs:
they free ride.

5.4 The heterogeneity of agents and degree distribution

Small worlds à la Watts and Strogatz are characterized by a low average path length and a high
average clustering. Another generic attribute of real social networks is that their degree distribution
is usually right asymmetric. In short, this means that many agents have only a few connections and
that very few agents have many connections. In the model presented in equation (1) agents have
no incentive to form many connections. Rather they have incentives to be connected to a “star”.
This is why we naturally do not find some densely connected agents among emergent networks as

9A simple econometric estimation confirms the inverse-U relation between li and payoffs when we control for network

density, which explains much of the variance observed in Figure 5. Due to space constraints, we did not report it here.
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ordinates) in relation to li (in abscises). 2, 000 agents are considered for each of the three values of
δ: 0.35 (left), 0.5 (middle), 0.7 (right).

Figure 6: Distribution of ai among agents.

observed in most real networks. Therefore, we now explore whether slight modifications of the payoff
function might increase the disparity in neighborhood sizes. A natural question rises: is a normal
heterogeneity of agents sufficient to generate a right asymmetry in the degree distribution, or is it
necessary to assume the distribution of agents abilities to be also asymmetric?

Let us consider that the costs agents bear for link formation are heterogeneous. The payoff
function (1) thus becomes

πi (gt) =
∑
j∈N\i

δd(i,j)ωij − ai
∑
j:ij∈gt

cij , (8)

where still ωij = ω = 1 and with ai > 0, its mean 〈ai〉 equalling 1 to keep consistency with (1).
This implies that the costs borne by two agents to be linked together (aicij , ajcij) may now differ.
Moreover, we assume that the ai are distributed in a Gaussian fashion, numerically given in Figure
6. The ai are randomly allocated to agents independently of geography.

Let ρ(k) denote the degree distribution. It is defined as

ρ(k) =
1
n

∑
i∈N(g)

1 {ηi(g) = k} , (9)

for all k = 0, ..., n− 1.
As in the previous subsection, we perform, with the heterogeneous agents model (the distribution

of the ai is presented in Figure 6), 100 additional numerical experiments for each of the following
values of δ : δ = 0.35, 0.5, 0.7. For each of these values, the averaged degree distributions are computed
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Figure 7: Degree distribution ρ (k) averaged over 100 experiments for each value of δ : 0.35 (top), 0.5
(middle), 0.7 (bottom), for the two models described in (1) (homogeneous agents, left graphs) and
(8) (heterogeneous agents, right graphs).

and plotted in Figure 7, which also presents the averaged degree distributions for the homogeneous
agents model (ai = 1).

We find that while most agents have 4, 5 or 6 connections in the homogeneous model10, the
degree distribution is indeed much more dispersed when agents are heterogeneous. Unsurprisingly,
the agents who bear lower costs are much more inclined to form numerous connections. Moreover,
the Gaussian distribution of costs across agents generates an asymmetric and long tailed degree
distribution. Though we consider a limited number of agents, this result is consistent with the
skewed degree distributions often observed in most social networks. Moreover, it should be noted
that unreported experiments (due to space constraints) performed with the heterogeneous agents
model and random values of δ ∈ ]0; 1[ show that the small world property is fully preserved for
0.35 ≤ δ ≤ 0.711. Therefore, all three characteristics (short average path length, high average
clustering and skewed degree) are then simultaneously observed on emergent networks.

6 Conclusion

In this paper, we introduced a model of network formation in which agents, arranged on a circle,
myopically decide to establish, maintain or sever links. For this purpose, they balance the benefits
of obtaining knowledge that flows imperfectly through bilateral relationships (positive externalities

10Bimodality on 4 and 6 neighbors is found when δ = 0.35.
11On the contrary, it tends to increase slightly the range of relevant values of delta for which a small world à la Watts

and Strogatz is found. Numerical results are available from the authors on request.
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deteriorate with relational distance) against the costs of maintaining direct connections, which lin-
early increase with geographic distance. We also proposed an original time-inhomogeneous stochastic
process to study the structural properties of networks that emerge in the long run.

We showed that this simple model of strategic network formation, which is a spatialized variation
of the Connections model developed by Jackson and Wolinsky, leads to emergent networks that share
the main structural properties of most real social networks. Indeed, for a large region of intermediate
values of the parameter that accounts for the decay of externalities along connections, we found
emergent networks that have the small world configuration, characterized by both a high average
clustering and a short average social distance.

Clustering occurs through a high local connectivity thanks to the lower costs. This result is
consistent with the empirical literature on the suggested application to knowledge networks, which
shows that most links are established in the local space (Saxenian 1994, Almeida and Kogut 1999,
Singh 2005, Breschi and Lissoni 2007), generating, in turn, a higher level of local knowledge diffusion
(Jaffé et al. 1993). It is also when the decay has intermediate values, which can be interpreted as the
knowledge being neither highly tacit nor highly codified, that networks are likely to be more dense,
a hypothesis that needs testing empirically.

The short average social distance is obtained thanks to the formation of some distant connections.
As stressed in the empirical literature, costly bridging connections are formed to gain significant
returns from accessing some other local communities: bridging links are associated with a higher
probability of finding a job (Granovetter 1974), a higher rate of good ideas generation for Burt
(2004), and obtaining faster promotions for Burt (1997). Nevertheless, the agents who sustain such
connections are locked in: their net returns are lower than their neighbors who free ride on their
distant connections. This also explains why such links are strategically formed with parsimony:
the neighbors of agents sustaining shortcuts have no incentive to duplicate distant connections with
communities of agents they already benefit from indirectly.

We further studied, for this region, the effects of introducing agents’ heterogeneity in terms
of their connection costs (distributed in a Gaussian manner). We found that emergent networks
are, in addition, characterized by an asymmetric distribution of neighborhood sizes. Therefore, we
conclude that the three characteristics of a short average distance, a high average clustering and an
asymmetric degree distribution are simultaneously gathered for a large and intermediate region of
the decay parameter. Such properties have been repeatedly found as structural properties of real
networks, in particular for networks of collaboration for scientific knowledge production (Newman
2001, Goyal et al. 2006).
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are ours alone.

8 Appendix

8.1 Proof of Proposition 1

Part i) The proof proceeds as follows. We give an upper bound expression for connected networks
value of k ≥ n − 1 links. We show that this expression is at its maximum when k = n − 1 links.
We then derive the condition under which this expression (with k = n − 1) is negative. Lastly, we
demonstrate that the value of any network having k < n − 1 links is negative if no more connected
adjacent network has a positive value. Since the value of the empty graph is zero, it is certainly the
efficient network under the given condition (for which all networks have negative value).

An upper bound value of a network of k ≥ n− 1 links may be given by

πmax(g |#g = k ) = 2kδ + [n(n− 1)− 2k] δ2 − 2k dn/2e−1 .

This expression considers that all the agents who are not directly connected benefit from each other
just as they were at relational distance 2. It also assumes that bonds costs are minimal (as if all links
were connecting immediate geographic neighbors).

Let us now see how the upper bound expression of the network value behaves when k varies.
Adding a link, from k to k + 1 links, the upper bound value varies as follows:

πmax(g |#g = k + 1)− πmax(g |#g = k ) = 2δ − 2δ2 − 2 dn/2e−1 ,

which is independent of k and strictly negative when δ − δ2 < dn/2e−1. Thus, given that k ≥ n− 1,
the upper bound value is maximal when k = n− 1. Now assuming that k = n− 1, the upper bound
network value becomes

πmax(g |#g = n− 1) = 2(n− 1)
(
δ +

(n
2
− 1
)
δ2 − dn/2e−1

)
. (A1)

It is negative when

δ +
(n− 2)

2
δ2 < dn/2e−1 . (A2)

Now let us assume that there is no network with n−1 links that has a positive value. This occurs
for instance when condition (A2) applies. Then, no network with n − 2 links can have a positive
value. To see this, let us simply consider that any one of these networks is necessarily adjacent to
at least one network with n− 1 links that can be built by adding an edge of (geographical) distance
equal to one interval and would connect to a component an agent who would otherwise remain alone.
The marginal social value of this bond is greater than any of the other links of the component while it
can be less or equal but not more costly. Thus all graphs with n− 2 links necessarily have a negative
value if all graphs composed of n − 1 links also have a negative value. We can apply this reasoning
recurrently to all networks of connectivity k = n − 2, n − 3, ..., n − (n − 1). Thus, under condition
(A2), all networks with k links such that n − 1 > k > 0 have a negative value. Thus, the empty
network is the efficient network. This completes the proof. �

Part ii) Any non-empty acyclic graph is a tree or a set of disjoint trees (with potentially some
isolated agents). A tree of m nodes always has k = m− 1 links. A tree of m+ u− 1 nodes generates
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more utility than a graph composed of two distinct trees of m and u nodes; that is, because with
the same number of links, it generates several more indirect connections. Thus we can restrict our
analysis to connected acyclic graphs that are necessarily trees. Consider now the trees that do not
exhibit any regional overlap. In this situation, any link ij in g generates a cost equal to its covering
graph while it generates less utility since fewer agents are thus directly or indirectly connected. This
applies for all bonds with no regional overlap. Thus the value of such network is always below the
one of its associated covering graph. This completes the proof. �

Part iii) The gross social value of any link is at least equal to 2δ − 2δ2, while their costs are
equal to 2k dn/2e−1 when they are formed at geographic distance k dn/2e−1 with k ∈ N∗. It is
straightforward to infer that the formation of any link at geographic distance k dn/2e−1 or less is
increasing social surplus when δ − δ2 > k dn/2e−1. Therefore, these links must be included in the
efficient network. �

8.2 Proof of Proposition 2

Part i) When δ < dn/2e−1, it is easy to show that the empty network is always stable. Being on the
empty net, no agent has any interest in forming a link even with his direct (geographic) neighbors
since this connection will always cost him more than the (direct) gross payoff it may bring to him.
Moreover, as showed by Jackson and Wolinsky, in such a situation, stability implies no loose end
(i.e. no agent i is connected to only one other agent j). That is because j will always find interest
in severing this connection. Since all acyclic networks but the empty graph always have loose ends,
the empty network is the only acyclic pairwise stable network. When δ = dn/2e−1, no agent will
may find strictly beneficial to form a link. Finally, when δ > dn/2e−1, the empty graph is trivially
unstable since two geographic neighbors always have interest in forming a connection. �

Part ii) An under bound expression for the gross individual returns of any direct connection is
δ − δ2. Thus, if δ − δ2 > k dn/2e−1 ,∀k ∈ N∗, then any agent has an incentive to be connected to
her neighbors located at geographic distance equal or below k dn/2e−1, because the costs of doing so
are at max equal to k dn/2e−1. Then, any pairwise stable network must contain all links that can be
formed at a geographic distance less or equal to k dn/2e−1. Otherwise, they would be unstable, since
at least two unconnected agents located at geographic distance k dn/2e−1 or less from one another
would be mutually willing to form such a link.

Part iii) In the star network, the center of the star is never interested in maintaining a link with
his most distant neighbor. This link costs him 1, which is strictly more than his gross utility, which
is simply δ < 1. In the complete network, no agent has an incentive to maintain his most distant
connection since its deletion would reduce costs by 1, while gross utility would decrease by only
δ − δ2 < 1. Then, neither the star nor the complete graphs are pairwise stable.�
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