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ON THE CONVERGENCE TO EQUILIBRIUM FOR

DEGENERATE TRANSPORT PROBLEMS

ÉTIENNE BERNARD AND FRANCESCO SALVARANI

Abstract. We give a counterexample which shows that the asymptotic
rate of convergence to the equilibrium state for the transport equation,
with a degenerate cross section and in the periodic setting, cannot be
better than t

−1/2 in the general case. We suggest moreover that the
geometrical properties of the cross section are the key feature of the
problem and impose, through the distribution of the forward exit time,
the speed of convergence to the stationary state.

1. Introduction

The long-time behaviour of kinetic transport equations – on periodic do-
mains or on bounded domains with specular reflection on the boundary –
is well known when the cross sections are bounded from below by a strictly
positive constant.

In this case, the exponential decay in time of the solutions to the unique
equilibrium state of the system can be obtained, with explicit rates, by the
method of hypocoercivity as in [7, 11].

This result has, however, no obvious extension in the case of cross sections
vanishing in a portion of the domain. Such a transport problem is said to
be degenerate, and the characterization of the long-time asymptotic in the
general case is still an open problem.

Indeed, in the regions where the cross section is zero, the problem is
reduced to the free transport equation, which has no equilibrium state in a
periodic setting or when the problem is defined on a bounded domain with
specular reflection.

A partial answer to this question has been obtained by Desvillettes and
Salvarani in [3] in a special situation, namely when the cross section vanishes
at a finite number of points.

The key point of the proof in [3] is the use of the Desvillettes-Villani
lemma, based on a pair of differential inequalities that allows to prove a
polynomial (in time) speed of convergence towards equilibrium for the solu-
tion of the transport problem [4].

We note that there exist other phenomena that can lead to the conver-
gence to equilibrium of the solutions of free transport equations: we cite,
for example, the interaction with the boundary of the domain that induces
diffuse reflection [1, 10] or the presence of a dissipating obstacle (see [9] and
the references therein).
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In this note, we consider a situation when the cross section vanishes on
a set of strictly positive measure, and give a counterexample which shows
that the L2-convergence cannot decay better than t−1/2.

2. The problem

The problem we are looking for is the long-time asymptotics of the non-
homogeneous (in space) transport equation

(2.1)
∂f

∂t
+ v · ∇xf = σ(x) (f̄ − f),

where f := f(t, x, v) represents the density of particles which at time t ∈ R
+

and point x ∈ T
d move with velocity v ∈ Sd−1.

Here Sd−1 denotes the hypersphere of radius 1 in the space of velocities
R
d (d ∈ N, d ≥ 2) and

f̄(t, x) =
1

|Sd−1|

∫

Sd−1

f(t, x, v) dv,

where |Sd−1| is the total surface of the hypersphere.
The equation is set in a periodic domain with respect to all components

of x, that is x ∈ T
d := R

d/Zd and satisfies the initial condition

(2.2) f(0, x, v) = f in(x, v) ∈ L∞(Td × Sd−1),

where f in ≥ 0 for a.e. (x, v) ∈ T
d × Sd−1.

The nonnegative function σ(x) designates the cross-section of the prob-
lem. We suppose here that

(1) σ(x) ∈ L∞(Td) and is nonnegative (that is σ(x) ≥ 0 for all x ∈ T
d);

(2) ∥σ∥L1(Td) > 0.

Since problem (2.1)-(2.2) is a Lipschitzian perturbation of the free trans-
port equation, there exists a unique mild solution f of the problem (see, for
example, [8]).

It is also straightforward to prove that the constants are stationary solu-
tions of Equation (2.1), and that f∞ = ∥f in∥L1(Td×Sd−1)/|Sd−1| is the unique
constant solution with the same mass of the initial data.

3. A counterexample

We give here a case of degenerate transport problem where the conver-
gence towards equilibrium is algebraic, which therefore excludes the expo-
nential convergence under the assumptions above and without supplemen-
tary requirements.

By following [5], for all r ∈ (0, 1/2) we consider the domain

Zr = {x ∈ R
d : dist(x,Zd) > r}

and, subsequently, we define the domain Yr = Zr/Z
d.

A crucial tool in studying Equation (2.1) is the forward exit time for a
particle starting from x ∈ Zr in the direction v ∈ Sd−1, defined as

τr(x, v) = inf{t > 0 : x+ tv ∈ ∂Zr}.
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The forward exit time can be extended on the space Yr × Sd−1 thanks to
the invariance under Zd-translations of Zr, namely

τr(x+ k, v) = τr(x, v) for all (x, v) ∈ Zr × Sd−1 and k ∈ Z
d.

On the measurable space Yr × Sd−1, equipped with its Borel σ-algebra, we
define µr as the probability measure proportional to the Lebesgue measure
on Yr × Sd−1, that is

dµr(y, v) =
dydv

|Yr| |Sd−1| .

We finally define the distribution of τr under µr by

Φr(t) := µr

(

{(x, v) ∈ Yr × Sd−1 : τr(y, v) ≥ t}
)

.

The distribution of forward exit time satisfies, in the periodic case, both
a lower and an upper bound. This property, proved by Bourgain, Golse and
Wennberg in [2] and by Golse and Wennberg in [6], is summarized in the
following theorem:

Theorem 3.1. Let d ≥ 2. Then there exist two positive constants C1 and

C2 such that, for all r ∈ (0, 1/2) and each t > 1/rd−1

C1

rd−1
t−1 ≤ Φr(t) ≤

C2

rd−1
t−1.

We are now ready to describe our counterexample, which uses only the
lower bound of Theorem 3.1. We underline that the lower bound is based
on the fact that a particle can never meet the scattering region because of
the existence of the so-called infinite channels [2].

We choose σ(x) = 1Td\Yr′
, 0 < r′ < r, and f in(x, v) = f in(x) = 1Yr in

(2.1)-(2.2).
It is easy to show that the only stationary solution of Equation (2.1) with

the same mass of f in is the constant function f∞ = |Yr|.
Let us now consider

(3.1)
∫

Td×Sd−1

(f − f∞)2 dxdv ≥
∫

Yr×Sd−1

(f − f∞)2 dxdv =

∫

Yr×Sd−1

1τr(x,−v)≥t(f − f∞)2 dxdv +

∫

Yr×Sd−1

1τr(x,−v)<t(f − f∞)2 dxdv.

The first integral in the right-hand side of the previous equation being de-
fined only when τr(x,−v) ≥ t, we have obviously that, in the aforementioned
region of the space-time, f(t, x, v) ≥ f in(x− vt, t) = 1. Hence
∫

Yr×Sd−1

1τr(x,−v)≥t(f−f∞)2 dxdv ≥ (1−|Yr| |Sd−1|)2
∫

Yr×Sd−1

1τr(x,−v)≥t dxdv.

We have by Theorem 3.1
∫

Yr×Sd−1

1τr(x,−v)≥t dxdv = meas
(

{(x, v) ∈ Yr × Sd−1 | τr(x,−v) ≥ t}
)

≥ C1

rd−1
|Yr| |Sd−1| t−1.
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Therefore
∫

Yr×Sd−1

1τr(x,−v)≥t(f − f∞)2 dxdv ≥ (1− |Yr| |Sd−1|)2 C1

rd−1
|Yr| |Sd−1| t−1.

Since
∫

Yr×Sd−1

1τr(x,−v)<t(f − f∞)2 dxdv ≥ 0,

(3.1) implies
∫

Td×Sd−1

(f − f∞)2 dxdv ≥ C1

rd−1
(1− |Yr| |Sd−1|)2|Yr| |Sd−1| t−1.

or equivalently

∥f − f∞∥L2(Td×Sd−1) ≥
C√
t
.

This particular example shows that the convergence cannot be better than
polynomial in the general case. Here the L2-norm of the difference between
the time-dependent solution and the corresponding stationary state evolves
at best like t−1/2.

Remark 3.2. The counterexample has been produced by considering an ini-

tial condition f in(x, v) ∈ L∞(Td × Sd−1) and a cross section σ(x) of class

L∞(Td).
The same computations can be performed also for regular initial data and

cross section and lead to the same result. For example, we can suppose

that σ(x) = 0 on Yr′ , σ(x) = 1 on T
d \ Yr′−ε, 0 < ε < r′, and with a C∞-

connection between the two regions, and that f in(x, v) = 1 on Yr, f
in(x, v) =

0 on T
d \ Yr−ε, and with a C∞-connection between the two regions.

Hence, the regularity properties of the cross section or the initial data do

not play here any role in governing the convergence speed towards equilib-

rium.

On the contrary, the distribution of the forward exit time, induced by the

geometrical properties of the scattering region, is the key ingredient in the

computations.

Hence, further hypotheses on the cross-section are necessary in order to
improve the convergence rate.
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