
HAL Id: hal-00674092
https://hal.science/hal-00674092v1

Preprint submitted on 24 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic approach for graph-based description of
dynamically reconfigurable architectures

Cédric Eichler, Ismael Bouassida Rodriguez, Thierry Monteil, Patricia Stolf,
Khalil Drira

To cite this version:
Cédric Eichler, Ismael Bouassida Rodriguez, Thierry Monteil, Patricia Stolf, Khalil Drira. Generic ap-
proach for graph-based description of dynamically reconfigurable architectures. 2012. �hal-00674092�

https://hal.science/hal-00674092v1
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

Generic approach for graph-based

description of dynamically reconfigurable

architectures.†

CÉDRIC EICHLER1,2,3, ISMAEL BOUASSIDA RODRIGUEZ, THIERRY MONTEIL1,3

PATRICIA STOLF2,3, KHALIL DRIRA1,3

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

2 IRIT; 118 Route de Narbonne, F-31062 Toulouse, France

3 Univ de Toulouse, UPS, INSA, F-31400, UTM, F-31100 Toulouse, France

Received

Architectural adaptation is studied for handling adaptation in autonomic distributed

systems. It is achieved by implementing a model-based approach for managing

reconfiguration of dynamic architectures. Describing such architectures includes defining

rules for describing both architectural styles and theirs reconfiguration mechanisms.

Within this research context, the work presented in this paper is conducted using formal

specification based on graphs and graph rewriting appropriately for tackling

architectural adaptation problems. A graph-based general approach for describing

architectures and handling their dynamic reconfiguration is introduced. Our approach is

illustrated in the context of a distributed hierarchical application. The formal models

that allow the generation of a graph grammar for dynamic architecture description and

the automatic definition of transformation rules for achieving intern self-protecting

during the adaptation are elaborated.

1. Introduction

The description of evolving architectures cannot be limited to the specification of a

unique static topology but must cover the scope of all the correct configurations. We

develop, in this paper, the concept of characterization of architectural styles to achieve

this goal. We elaborate and specify the architectural style for the design of applications.

For this purpose we develop an appropriate formal framework using graph grammars.

Our approach enables generating architectures in conformance with a given style.

Suitable description languages and formalisms for avoiding ambiguities are neces-

sary for correct architectural design, management and analysis. Many architecture

description languages were introduced providing rigorous syntax and semantic to define

† This paper has been produced in the context of SOP project ANR-11-INFR-001

Cédric EICHLER et al. 2

architectural entities and relations. Several researches focuses on Architecture Descrip-

tion Languages (ADLs). p-Method (Oquendo, 2006), Rapid (Luckham et al., 1995),

Wright (Allen and Garlan, 1997), and ACME (Garlan et al., 2000) provide modelling

tools that help the designers to structure a system and to compose its elements.

Often, ADLs allow to describe predefined dynamics. That is, they are interested

in systems having a finite number of configurations known in advance. Few of them

(Allen and Garlan, 1997; Garlan et al., 2000; Oquendo, 2006) allow various architectural

styles to be distinguished. ADLs can be classified as language-oriented works, whereas

this paper introduces a model-oriented approach which provides a more abstract view

of a software architecture. ADLs rather offer an architecture view which is closer

to the implementation. Additionally, ADLs allow to design architectural styles from

the scratch, whereas what is proposed in this paper is a correct by design formal

approach based on the pattern composition. It should be stressed that this article do not

propose an alternative to ADLs approaches. The models presented in this paper can be

integrated into p-Method (p-ADL) or into other ADLs. Functional languages have also

been proposed. They introduce abstract notations allowing to describe dynamic software

architectures in terms of properties. Semantic ADLs using ontologies (Zhou et al., 2007)

and ADLs (Architecture Description Languages) uses XML deployment languages

in (Dashofy et al., 2002). ADLs can be proprietary or implementing the formal and

the semantic architecture description models. These ADLs are used to guarantee the

architecture evolving and correctness during the different predictable and unpredictable

changes in the systems environment. C2SADL (Taylor et al., 1995) is an architecture

description language that allows the definition of architectural styles. A style is defined

by declaring its component and connector types. C2SADL is based on a generic style

called C2.

According to a past study (Kacem et al., 2005), we noted that ADLs

(Medvidovic and Taylor, 2000) suffer from several insufficiencies for modeling and

analyzing software architectures. We underlined that the majority of ADLs are con-

centrated on the structural description of architectures whereas the dynamic aspect of

architecture is not well supported.

In ((de Paula et al., 2000), the authors developed a formal framework, specified in Z,

to describe the dynamic configuration of software architectures. They did not address

the design phase.

Designing and describing software models using UML (OMG, 2005) is a common

practice in the software industry. UML descriptions of software architecture not only

provide a standardized definition of system structure and terminology, but also facilitate

a more consistent and broader understanding of the architecture (Selonen and Xu, 2003).

To specify the software architectural change and the architectural styles it is possible

to use the formal approaches (Bradbury et al., 2004). The multi-Formalismes ap-

proaches (Loulou et al., 2004), (Kandé and Strohmeier, 2000) seek to combine different

Graph-based description of dynamically reconfigurable architectures 3

formalisms with UML notations in order to describe the software architecture. They try

to define relations between ADLs and UML (Roh et al., 2004), (Medvidovic et al., 2002)

focusing on mapping the concepts of the former into the visual notation of the latter.

Others, seek to combine UML notations and graph transformation in order to specify

architectural change (Heckel et al., 2004). However, these researches do not offer a

simple notation and metamodels for easily specifying architecture changes.

Other works (Hirsch et al., 1999; Le Métayer, 1998) are based on graph grammar tech-

niques. Graph grammars consist in using graphs for representing software architectures.

They are appropriate for formal modelling dynamic structures and software architec-

tures. In this context, (Le Métayer, 1998) describes the software architectural style us-

ing a context-free graph grammar and verifies the conformity of an architecture to its

style. Authors in (Chassot et al., 2006) present another model based method using graph

grammars to adapt cooperative information systems to situation changes at the commu-

nication level.

2. Background: basic definitions

In the following, key concepts related to graph transformations will be presented. The

definition of a homomorphism requires the definition of elements unification. To achieve

such an unification, each attributes of the elements have to be unifiable. This produces

a set of identification that has to be consistent.

2.1. Graph

The object manipulated in this paper are directed graph with multi-labelled vertices and

multi-tagged edges. Each label or tag might be either constant or variable.

Definition 1. (Graph with constant and variable multi-labelled nodes and

edges) A graph is defined by the system G = (V, E, Lab, Tag)

(i) V and E correspond to the set of vertices and edges of the graph,

(ii) |V| (resp. |E|) are the cardinality of V (resp. E),

(iii) Lab (resp. Tag) is a set of |V| (resp. |E|) sets Labv (resp. Tage). Labv (resp. Tage)

represents the labels of the vertex v and their domain of definition (resp. the tags of

the edge e), |Labv| is the number of labels for the node v (resp. |Tage| the number of

tags for edge e),

(iv) Labvi (resp. Tagei) represents the i-th label of the vertex v (resp. the i-th tag of the

edge e) and can be a constant or a variable,

(v) Dlabvi (resp. Dtagei) is the set of possible values of Labvi (resp. Tagei): Lab
v
i ∈ Dlabvi

(resp. Tagei ∈ Dtagei),

(vi) Labv (resp. Tage) is the set of couples (Labvi , Dlabvi) (resp. (Tag
e
i , Dtagei)).

Convention 1.

(i) An attribute is a global term designing either a label or a tag.

Cédric EICHLER et al. 4

(ii) To distinguish between constant and variable attributes, a constant attribute will be

noted within quotation marks.

Convention 2. In order to lighten the notations, we adopt the following convention :

(i) A vertex v may be described as v(Labv).

(ii) An edge from v to v’ may be noted v
Tag(v,v′)

−−−−−−→v’.

(iii) A graph G may be described by (V, E) where V and E respectively correspond to

the set of its vertices and edges as described above.

Example 1. A graph G = (V, E, Lab, Tag) where V = {v1, v2}, Labv1 = {(”1”,N),

(x,N), (z,N)}, Labv2 = {(w,N)}, E = {e1=(v1,v2)} and Tage1 = {(a,{a,b})} can be

described as G = (V, E) where E = {v1((”1”,N),(x,N), (z,N)), v2((w,N))} and V = {

v1
(”a”,{a,b})
−−−−−−−→v2}. Such a graph can be graphically represented as shown in the figure 1.

Figure 1. An example of graph

2.2. Graph morphism

Definition 2. (Joker) Two kinds of “jokers” attribute or super-variable are defined:

— v(*) is a vertex representing any vertex.

—
∗
−→is an edge representing any edge.

Definition 3. (Set of identification) A set of identification I is a set of couple of

attributes. I is said to be basic if ∀ (ai, aj) ∈ I, ai is constant ∨ aj is constant.

Definition 4. (Attributes unification) Two attributes ai and aj with the domains of

definition Dai and Daj are unifiable if and only if

(i) they have the same type : Dai = Daj ,

(ii) if they are both constant, then they have the same value.

If the attributes are unifiable and not both constant then the result of this unification is

the set of identification {(ai, aj)} else it is empty.

Example 2. x and y with the domain of definition N are unifiable and the result of this

unification is {(x, y)}.

Definition 5. (Consistent set of identification) If I is a basic set of identification I

is consistent if ∀ ((x1, ”value1”),(x2, ”value2”)) ∈ I2 one of the two following conditions

is verified :

— x1 and x2 are two different variables,

Graph-based description of dynamically reconfigurable architectures 5

— x1 and x2 correspond to the same variable and value1 = value2.

If I is a set of identification and I is not basic, I is consistent if for any couple (x,y) in I

where x and y are variable I’ = { (ai, aj) | (ai, aj) ∈ I ∧ ai 6= y ∧ aj 6= y } ∪ { (x,ai) | (

(y,ai) ∈ I ∨ (ai,y) ∈ I) ∧ ai 6= x } is consistent.

Example 3. The set of identification I = {(y, ”1”), (x, y), (z, y) } is consistent as I’ =

{(x, ”1”), (z, x)} is consistent as I” = {(x, ”1”)} is consistent.

Definition 6. (Elements unification) Two vertices v1 and v2 (resp. two edges e1 and

e2) are unifiable if one of the two vertices is ni(*) (resp.
∗
−→) or if the three following

conditions are verified :

(i) |Labv1 | = |Labv2 | (resp. |Tage1 | = |Tage2 |).

(ii) These attributes are unifiable two at a time considering the order of their occurrences.

(iii) The union of the result of each unification of attributes is consistent.

Example 4. The vertex v1((”1”,N), (x,N), (z,N)) from the example 1 and v3((y,N),

(y,N), (y,N)) are unifiable as the set of identification I = {(y, ”1”), (x, y), (z,y)} is

consistent as seen in example 3.

Definition 7. (Affectation) For any consistent set of identification I, an affectation

AffI is an application from the set of considered graphs to itself such as for any graph G

= (V, E, Lab, Tag), AffI(G) is G integrating I :

— If I is basic,

(i) ∀ (v, i) ∈ (V, N), Labvi ∈ Labv, if ∃ (Labvi , ”value”) ∈ I then Lab’vi = ”value”,

else Lab’vi = Labvi . Let Lab’
v = {(Lab’v1, Dlabv1),. . . ,(Lab’

v
|Labv|, Dlabv|Labv|)}. Let

Lab’ = {Lab’v1 ,. . . , Lab’v|V |}.

(ii) ∀ (e, i) ∈ (E, N), Tagei ∈ Tage, if ∃ (Tagei , ”value”) ∈ I then Tag’ei = ”value”, else

Lab’ei = Labei . Let Tag’
e = {(Tag’e1, Dtage1),. . . ,(Tag’

e
|Tage|, Dlabe|Tage|)}. Let Tag’

= {Tag’e1,. . . , Tag’e|E|}.

(iii) AffI(G) = (V, E, Lab’, Tag’).

— If I is not basic, for any couple (x, y) ∈ I where x and y are variable,

(i) ∀ (v, i) ∈ (V, N), Labvi ∈ Labv, if ∃ Labvi = y then Lab’vi = x, else Lab’vi = Labvi .

Let Lab’v = {(Lab’v1, Dlabv1),. . . ,(Lab’
v
|Labv|, Dlabv|Labv|)}. Let Lab’ = {Lab’v1,. . . ,

Lab’v|V |}.

(ii) ∀ (e, i) ∈ (E, N), Tagei ∈ Tage, if ∃ Tagei = y then Tag’ei = x, else Lab’ei = Labei .

Let Tag’e = {(Tag’e1, Dtage1),. . . ,(Tag’
e
|Tage|, Dlabe|Tage|)}. Let Tag’ = {Tag’e1,. . . ,

Tag’e|E|}.

(iii) Let I’ = { (ai, aj) | (ai, aj) ∈ I ∧ ai 6= y ∧ aj 6= y } ∪ { (x,ai) | ((y,ai) ∈ I ∨

(ai,y) ∈ I) ∧ ai 6= x }

(iv) AffI(G) = AffI′((V, E, Lab’, Tag’)).

Cédric EICHLER et al. 6

Example 5. With the set of identification I defined in example 3 and the graph G =

(V, E) defined in example 1, AffI(G) = (V’, E’) where V’ = {v1((”1”, N), (”1”, N), (”1”,

N)), v2((w,N))} and E’ = { v1
(”a”,{a,b})
−−−−−−−→v2}

Definition 8. (Graph homomorphism with variable label) Two graphs G and G’

such as G = (V, E, Lab, Tag) and G’ = (V’, E’, Lab’, Tag’) are homomorph -noted G →

G’- if and only if there is an affectation AffI and an injective function f : V → V’, such

as :

(i) For any couples of vertices (vi, vj) ∈ V2 and (v’i, v’j) ∈ (V’)2 with f(vi) = v’i and f(vj)

= v’j , if (vi, vj) ∈ E, then (v’i, v’j) ∈ E’ and Tag(vi,vj) is unifiable with Tag(v
′
i,v

′
j).

(ii) Each vertices associated by f are unifiable.

(iii) The set of identification I resulting from each unification is consistent.

The resulting homomorphism is characterised by the couple (f, AffI). If f is bijective and

(f−1, AffI) is a homomorphism, then G and G’ are isomorph.

Example 6. Let G’ = ({v3((y,N), (y,N), (y,N))}, ∅) and G = (V, E) the graph defined

in example 1. Let f : V’ → V such as f(v3) = v1. As seen in example 4 these vertices are

unifiable and the result of this unification is the consistent set of identification I, so that

h = (f, AffI) is a homomorphism from G’ to G.

Definition 9. (Compatible graphs) For two graphs G = (V, E, Lab, Tag) and G’ =

(V’, E’, Lab’, Tag’), G and G’ are said to be (f, AffI , VS , V’S)-compatible if and only

if there exists VS ⊆ V, V’S ⊆ V’, an affectation AffI and a bijective function f : VS →

V’S such as :

(i) For any couples of vertices (v1, v2) ∈ VS
2 and (v’1, v’2) ∈ V’S

2 with f(v1) = v1’

and f(v2) = v2’, if (v1, v2) ∈ E and (v1’, v2’) ∈ E’ then Tag(v1,v2) is unifiable with

Tag(v
′
1,v

′
2).

(ii) Each vertices associated by f are unifiable.

(iii) The set of identification I resulting from each unification is consistent.

Remark 1. If G and G’ are (f, Aff, VS , V’S) compatible, then G’ and G are (f−1, Aff,

V’S , VS) compatible.

Example 7. Figure 2 shows an example of two compatible graphs. For readability sake,

the tags of the edges have not been represented and will all be considered equals. Let VS

be the set of vertices named 1, 2 and 3 in the figure, V’S be the set of vertices named 3’,

2’ and 4’, I = {(a, x), (b, ”2”)} and f : VS → V′
S associating the vertices named 1 to 2’,

2 to 4’ and 3 to 3’. As the edges (2,1) and (4’,2’) as well as (1,3) and (2’,3’) are unifiable,

G and G’ are (f, AffI , VS , V’S)-compatible.

Definition 10. (Homomorphic common sub-graph) A graph H is an h-

homomorphic common sub-graph of two graphs G and G’ if H is an induced sub-graph

of G and there exists a homomorphisms h = (f, Aff) : H → G’.

Property 1. If H is a (f, Aff)-homomorphic sub-graph of G and G’, then there exists

f’, VS and V’S such as G and G’ are (f’, Aff, VS , V’S)-compatible.

Graph-based description of dynamically reconfigurable architectures 7

Figure 2. Two compatible graphs

Proof 1. Let f’ : VG → f(VG) such as ∀ v ∈ VG f’(v) = f(v). By definition, f is injective,

f’ is thus bijective. By definition of a graph homomorphism, G and G’ are (f’, Aff, Vg,

f(VG))-compatible.

2.3. A new approach for graph transformation

The approach used in this paper is based on the Double PushOut (DPO) (Ehrig, 1987)

with multiple negative application conditions (NACs). The suspension condition is no

longer considered and the dangling edges are handled as in the Single PushOut (SPO)

method -i.e. suppression.

Definition 11. (Graph rewriting rule) A graph rewriting rule is a 4-tuple (L, K, R,

NACs) where L and R are two graphs, K -called the Inv zone- is a sub-graph of both L

and R and NACs is a set of graph specifying the negative application conditions such as

∀ NAC ∈ NACs, L is a sub-graph of NAC. L\K is called the Del zone and R\K is called

the Add zone.

A rule is applicable on a graph G if there is a homomorphism h : L → G and if ∀ NAC

∈ NACs there is no homomorphism h’ : NAC → G such as ∀ n ∈ L h’(n)=h(n). Its

application consist in erasing h(L\K), deleting the potential dangling edges and adding

an isomorph copy of R\K integrating the affectation obtained with h.

Example 8. Figure 3 offers an example of how a transformation is handled in the

approach previously defined approach. To lighten the figure, the tags of the edges have

not been represented and will all be considered equals. The NAC is automatically valid

because of NACs’ emptiness. Moreover considering that L and G1 are homomorph, the

transformation R can be applied to G1. The graph corresponding to the Del zone is

removed leading to the apparition of an unique dangling edge -which used to link the

Cédric EICHLER et al. 8

Figure 3. An example of graph transformation

node named 4 to the node named 3. This edge is suppressed and an isomorph copy of

the Add zone is then added.

Convention 3. The following notations will be adopted :

(i) r h(G) is the result of the application of a graph rewriting rule r to the graph G

considering the homomorphism h : L → G.

(ii) r2 h2.r1 h1(G) is the result of a the sequence r2 applied to the result of r1 applied to

G with the matching h1 in regard of the matching h2.

Remark 2. Yet another graph transformation model

A notable characteristic of this model is its superior expressiveness regarding the com-

mon DPO approach.

The suspension condition can be expressed through NACs. Any rule (L,K,R) expressed

in the DPO formalism can be expressed using the approach introduced in this paper with

(L,K,R,NACs) where NACs is constructed as follow. Let (V, E) = L and m = |V|. For each

Graph-based description of dynamically reconfigurable architectures 9

ni ∈ V, let NAC1(vi)=(V∪{vm+1(*)}, E∪{(vi
∗
−→ vm+1)} and NAC2(vi)=(V∪{vm+1(*)},

E∪{(vm+1
∗
−→ vi)}. NACs =

⋃

vi∈V

{NAC1(vi), NAC2(vi)}.

Definition 12. (Restriction ↓) Let G and G’ be two (f, Aff, VS , V’S)-compatible

graphs. For any sub-graphs Gsub = (VGsub
, EGsub

, LabGsub
, TagGsub

), G’sub = (VG′
sub

,

EG′
sub

, LabG′
sub

, TagG′
sub

),

(i) let Vrestric = { vi | vi ∈ VS ∩ VGsub
∧ f(vi) ∈ VG′

sub
},

(ii) let Erestric = { (vi,vj) | (vi, vj) ∈ V2
restric ∧ (vi, vj) ∈ EGsub

∧ (f(vi),f(vj)) ∈ EG′
sub

},

(iii) let Labrestric = { LabvGsub
| v ∈ Vrestric },

(iv) and let Tagrestric = { TageGsub
| e ∈ Erestric },

The restriction relation is defined by Gsub ↓(f,Aff,VS,V
′
S
)G’sub = Aff((Vrestric, Erestric,

Labrestric, Tagrestric)).

Example 9. With G, G’, f, Aff, VS and V’S defined in the example 7, the result of

G↓(f,Aff,VS ,V ′
S
)G’ is represented in figure 4.

Figure 4. G↓(f,Aff,VS ,V ′
S)G’

Definition 13. (Expansion ↑) Let G and G’ be two (f, Aff, VS , V’S)-compatible graphs.

For any sub-graphs Gsub = (VGsub
, EGsub

, LabGsub
, TagGsub

), G’sub = (VG′
sub

, EG′
sub

,

LabG′
sub

, TagG′
sub

),

(i) let Vexpan = { vi | vi ∈ VGsub
∨ (vi ∈ VG′

sub
∧ vi /∈ V ′

S) } ,

(ii) let Eexpan = { (vi,vj)) | (vi, vj) ∈ Eexpan ∧ ((vi, vj) ∈ EGsub
∨ (f(vi), f(vj)) ∈ EG′

sub

∨ (vi, vj) ∈ EG′
sub

∨ (f(vi), vj) ∈ EG′
sub

∨ (vi, f(vj)) ∈ EG′
sub

)},

(iii) let Labexpan = { LabvGsub
| v ∈ VGsub

} ∪ { LabvG′
sub

| v ∈ Vexpan ∧ v ∈ VG′
sub

},

(iv) and let Tagexpan = { TageGsub
| e ∈ Eexpan } ∪ { Tag

(vi,vj)

G′
sub

| (vi, vj) ∈ Eexpan }

∪ { Tag
(f(vi),f(vj))

G′
sub

| (vi, vj) ∈ Eexpan } ∪ { Tag
(f(vi),vj)

G′
sub

| (vi, vj) ∈ Eexpan } ∪ {

Tag
(vi,f(vj))
G′

sub

| (vi, vj) ∈ Eexpan }.

The expansion relation is defined by : Gsub ↑(f,Aff,VS ,V ′
S
)G’sub = Aff((Vexpan, Eexpan,

Labexpan, Tagexpan)).

Example 10. With G, G’, f, Aff, VS and V’S defined in the example 7, the result of

G↑(f,Aff,VS ,V ′
S
)G’ is represented in figure 5.

Remark 3. For any (f, Aff, VS , V’S)-compatible graphs G and G’ and any sub-graphs

Gsub and G’sub, Gsub → Gsub ↑(f,Aff,VS,V
′
S
)G’sub and G’sub → Gsub ↑(f,Aff,VS,V

′
S
)G’sub

Cédric EICHLER et al. 10

Figure 5. G↑(f,Aff,VS ,V ′
S
)G’

2.4. Graph rewriting rule composition

For any pair (p,q) of graph transformation rules expressed in the previously exposed

formalism two binary operators for composition are defined.

Definition 14. (Graph rewriting rule composition considering a specific

homomorphic common sub-graph) For any graph G h-homomorphic common

sub-graph of Lp and (VRq
, ERq

∪ E’, LabRq
, TagRq

∪ Tag’) where h = (f, Aff) and E’

is a set of edges from VKq
to VKq

tagged by Tag’, let r1 = (G, G ↓(f,Aff,VG,f(VG)) Kq,

G ↓(f,Aff,VG,f(VG)) Kq, ∅). If r1 (id, Aff∅)(Lp) does not lead to the apparition of any

dangling edge, then p◦(G,h)q is the rewriting rule described by

(i) Let M = r1 (id,Aff∅)(Lp). M is Lp deprived of the part of G not identified with Kq

via h which is the part of G added when q is applied.

Lp◦(G,h)q = M ↑(f,Aff,V(G↓f,Aff,VG,f(VG)Kq),VKq
Lq.

(ii) Let r1’ = ((G, G ↓(id,Aff∅,VG,VG) Kp, G ↓(id,Aff∅,VG,VG) Kp, ∅) and M’ = r1’ h(Rq).

M’ is Aff(Rq) deprived of the part of h(G) not belonging to h(Kp) which is the part

of G suppressed when p is applied.

Rp◦(G,h)q = Rp ↑(h,VKp ,VG↓(id,Aff∅,VG,VG)Kp)
M’.

(iii) Kp◦(G,h)q = Lp◦(G,h)q ∩ Rp◦(G,h)q,

(iv) Let f’ : VLq
→ VLq

\VKq
∪ f−1(VKq

), if v ∈ VLq
\VKq

f’(v) = v else, if v ∈ VKq

f’(v) = f−1(v). Let NACSqrelated = { NAC | ∃ NACq ∈ NACsq, NAC = NACq

↑(f ′,Aff,VLq ,VLq\VKq∪f−1(VKq))
Lp◦(G,h)q}.

Let NACsprelated = { NAC↑(id,Aff,VLp ,VLp)
Lp◦(G,h)q | ∃ NACp ∈ NACsp,

r1 (id,∅)(NACp) does not lead to the apparition of any dangling edge and NAC =

r1 (id,∅)(NACp) }.

NACsp◦(G,h)q = NACsqrelated ∪ NACsprelated

E’ and Tag’ come from the graph on which the rule is going to be applied.

Graph-based description of dynamically reconfigurable architectures 11

Definition 15. (Graph rewriting rule composition) The second binary operator ◦

is defined by p◦q = {r |∃ ◦(G,h), r = p◦(G,h)q }

Property 2. For any graph G, any pair of graph rewriting rules (p,q) and any couple

of homomorphisms (hp, hq), ∃ r∈p◦q, ∃ a homomorphism hr, p hp.q hq(G) = r hr(G).

Proof 2. Let G = (V, E, Lab, Tag), hp = (fp, Affp), hq = (fq , Affq), q hq(G) = (Vq,

Eq, Labq, Tagq) and p hp.q hq(G) = (Vpq , Epq, Labpq, Tagpq). Let VG′ = { v ∈ VLp

| fp(v) /∈ V ∨ (∃ v’ ∈ Kq, fp(v) = fq(v’)) }. Let G’ be the sub-graph of Lp induced by VG′ .

By construction of VG′ , a vertex of G’ is either part of what has been added to G

while applying q hq - VRq\Kq
- , or part of the part of G identified with VLq

and still

present in q hq(G) - hq(VKq
). Let f’ : VG′ → VRq

, ∀v ∈ VG′ , fp(v) ∈ V =⇒ f’(v) =

f−1
q (fp(v))) ∧ (∀v ∈ VG′ , fp(v) /∈ V =⇒ f’(v) = v). By hypothesis Lp and q hq(G)

are homomorph, thus - G’ being an induced sub-graph of Lp - G’ and q hq(G) are

homomorph and G’ is an homomorphic common sub-graph of Lp and q hq(G). Hence,

there exists E’ a set of edges from VKq
to VKq

- present in Lp q hq(G) but not in Kq -

and tagged by Tag’ such as G’ is a (f’, Affp◦ Affq)-homomorphic common sub-graph of

Lp and (VRq
, ERq

∪ E’, LabRq
, TagRq

∪ Tag’).

Let r = p ◦(G′,(f ′,Affp◦Affq)) q. Let fr : VLr
→ VG, ∀v ∈ VLr

, ((v ∈ Lp ∧ fp(v) ∈

VG) =⇒ fr(v) = fp(v)) ∧ ((v ∈ Lp ∧ fp(v) /∈ VG) =⇒ fr(v) = fr(fp(v))) ∧ (v /∈ Lp

=⇒ fr(v) = fq(v)). hr = (fr , Affp◦ Affq) is a homomorphism from Lr to G.

As no expansion of hq is a homomorphism from a NAC in NACsq to G and no expan-

sion of hp is a homomorphism from a NAC in NACp to q hq(G) then by definition no

expansion of hr is a homomorphism from a NAC in NACsr to G. r is thus applicable to G.

The vertices associated by fr are exactly the vertices associated by fp and fq and the

affectation Affp◦ Affq is exactly the application of Affq followed by the application of Affp.

Besides considering the definition of Rr - Rp expanded to the part of Rq not deleted while

applying p with the homomorphism hp- p hp.q hq(G) = r hr(G).

Property 3. For any graph G and any sequence of application of graph rewriting rule

rn hn.(. . .).r1 h1(G), there exists a sequence of graphs (Gm)m∈[|1,n−1|] and a sequence of

homomorphisms (h’l)l∈[|0,n−1|] such as (rn ◦(Gn−1,h
′
(n−1)

) (. . . (r2◦(G1,h
′
1)
r1). . .) h’0(G) =

rn hn.(. . .).r1 h1(G)

Proof 3. By structural induction, let P(n) be the proposition “for any sequence of

application of n graph rewriting rules rn hn.(. . .).r1 h1(G), there exists a sequence

of graphs (Gm)m∈[|1,n−1|] and a sequence of homomorphisms (h’l)l∈[|0,n−1|] such as

(rn ◦(Gn−1,h
′
n−1)

(. . . (r2◦(G1,h
′
1)
r1). . .) h’0(G) = rn hn.(. . .).r1 h1(G)”.

According to proposition 2, P(2) is true.

Cédric EICHLER et al. 12

Suppose P(n) true. Then, for any sequence of application of n+1 graph

rewriting rules rn+1 hn+1.rn hn.(. . .).r1 h1(G), as P(n) is true, there ex-

ists a sequence of graphs (Gm)m∈[|1,n−1|] and a sequence of homomorphisms

(h’l)l∈[|0,n−1|] such as rn+1 hn+1.(rn ◦(Gn−1,h
′
n−1)

(. . . (r2◦(G1,h
′
1)
r1). . .) h’0(G) =

rn+1 hn+1.rn hn.(. . .).r1 h1(G).

According to proposition 2, there exists a couple of homomorphisms

h’n, h”0 and a graph Gn such as rn+1◦(Gn,h′
n)

(rn ◦(Gn−1,h
′
n−1)

(. . . (r2◦(G1,h
′
1)
r1). . .) h”0(G) = rn+1 hn+1.(rn ◦(Gn−1,h

′
n−1)

(. . . (r2◦(G1,h
′
1)
r1). . .) h’0(G)

= rn+1 hn+1.rn hn.(. . .).r1 h1(G). Thus, P(n+1) is true.

Hence, proposition 3 is true.

3. Characterizing architectural style

This section introduces both graph grammar foundations and the graph grammar based

approach that is used for architectural application model. An architectural style will be

characterized by a graph grammar, and each of its instance will then be represented by

a graph. An example of graph grammar characterizing a collaborative application will

finally be proposed.

3.1. Generic case

Graph grammars constitute an expressive formalism dynamic structure description. Fol-

lowing the commonly used conventions for standard graphical descriptions, one considers

that vertices represent services or architectural components and edges correspond to

their related interdependencies. The use of graphs is relevant since this paper addresses

the specification of architectural styles where declarative aspects corresponding to the

description of all the possible instances can be correctly specified by graph grammars.

Moreover, theoretical work on this field provides formal means to specify and check

structural constraints and properties (Rozenberg, 1997; Ehrig and Kreowski, 1991).

Inspired from Chomsky’s generative grammars (Chomsky, 1956), graph grammars are

defined, in general, as a classical system < AX ;NT ;T ;P >, where AX is the axiom,

NT is the set of the non-terminal vertices, T is the set of terminal vertices, and P is the

set of graph rewriting rules, also called grammar productions. An instance belonging to

the graph grammar is a graph containing only terminal vertices and is obtained starting

from axiom AX by applying a sequence of productions in P . The following slightly

different definitions will be considered.

Definition 16. (Graph Grammar)A graph grammar is defined by the 4-tuple

(AX,NT, T, P) where

(i) AX is the axiom,

(ii) NT is the sets of non-terminal arch-vertices or archetypes of vertices,

(iii) T is the set of terminal arch-vertices or archetypes of vertices,

Graph-based description of dynamically reconfigurable architectures 13

(iv) P is the set of graph rewriting rules belonging to the graph grammar.

Each vertex occurring in a graph rewriting rule in P or in a graph obtained by applying a

sequence of productions ∈ P to the axiom is then unifiable with at least one arch-vertex

in NT or T . This means that for any of these vertices v that is not a joker, ∃v′ ∈ NT ∪T ,

|Labv| = |Labv
′

| ∧ ∀i ∈ [|1, . . . , |Labv||], Dlabvi = Dlabv
′

i .

Definition 17. (Instance belonging to the graph grammar) An instance belonging

to the graph grammar (AX,NT, T, P) is a graph whose vertices and edges have only

constant attributes and obtained by applying a sequence of productions in P to AX .

Definition 18. (Consistent instance belonging to the graph grammar) A con-

sistent instance belonging to the graph grammar (AX,NT, T, P) - or consistent instance

of the architectural style modelled by (AX,NT, T, P) - is an instance of (AX,NT, T, P)

not containing any vertex unifiable with an arch-vertex from NT

To model the generation of the instances of a graph grammar, graph whose vertices rep-

resents the instances a graph grammar is introduced. Its edges represents the application

of a graph rewriting rule.

Definition 19. (Generation graph) For any graph grammar GG = (AX,NT, T, P),

(i) Let Ins be the the set of instances of GG.

(ii) Let E be a set of edges tagged with Tag from Ins to Ins such as :

(i) ∀e ∈ E, |Tage| = 2∧Dtage1 = P ∧Dtage2 is the set of grah homomorphism ∧Tage1
and Tage2 are constant,

(ii) ∀(c, c′) ∈ Ins2, (c, c′) ∈ E ⇒ Tag
(c,c′)
1 Tag

(c,c′)
2 (c) = c′.

(iii) The generation graph of GG is G = (Ins, E, ∅, Tag).

3.2. A collaborative application used for further example

DIET (Caron and Desprez, 2006) stands for Distributed Interactive Engineering

Toolbox. It is a hierarchical load balancer for dispatching computational jobs over a

distributed infrastructure (like a grid or cloud). DIET architecture consists of a set of

agents: some Master Agents (MA) manage pools of computational SErver Deamons

(SED) through none, one or several layers of Local Agents (LA). These servers can

achieve specialized computational services. Communications between agents are driven

by the omniORB system (OMNI). MAs listen to client requests and dispatch them

through the architecture to the best SED that can carry out this service.

A description of this application using class diagrams (Sharrock et al., 2010) has been

proposed; however such an approach lack of expressiveness. For example, the fact that

a LA can manage another LA could not be taken into consideration whereas this is not

an issue while employing graph grammars.

A simplified architecture with the following constraints will be considered :

Cédric EICHLER et al. 14

(i) An instance of the architectural style comports exactly one MA and one OMNI.

(ii) While being deployed, each component record itself to the OMNI. This will be

modelled by an edge labelled Keeps Track Of (“kto”).

(iii) Each LA and each SED has a hierarchical superior.

(iv) The MA and each LA manage at least one LA or one SED - this condition could be

trivially extended to any number of minimum managed entities.

Let IdMachine be a set of identifiers for each machine on which an architectural

component might be deployed specifying both the machine and the component, and

IdServices a set of identifiers for services that might be carried out by a SED.

Let TDIET = {N((nature, {“MA”, “LA”}), (id, IdMachine)),

N((“SeD”,id), (id, IdMachine), (services, IdServices)),

N((“OmniNames”, {“OmniNames”}))},

NTDIET = {N(“TempComponent”, {“TempComponent”})},

PDIET = {r1,. . . , r4 } where each graph rewriting rule is defined below and

GGDIET={AXDIET ,NTDIET , TDIET , PDIET }.

Considering the arch-vertices defined for DIET and the absence of ambiguity for

the domains of definition for the labels, they will be implied in the following sec-

tion. Each terminal vertex represents an architectural component of the application.

The non-terminal archetype is meant to represent either a LA or a SED. It is used

to verify the fourth constraint and to handle the fact that a LA may manage another LA.

Initialisation, which consists in deploying the OMNI and the MA and thus validating

the first constraint -as this production is the only one introducing and a MA or a OMNI

and that it can not be applied more than once-, is realised by this first graph rewriting

rule.

r1 = (L={AXDIET };

K={};

R\K={N1(“OmniNames”), N2(“MA”, id), N3(“TempComponent”),

N1
“kto”
−−−→N2, N2

“manages”
−−−−−−−→N3};

NACs=∅)

What has to be done now is offering the possibility to add a additional SED or LA on

any agent MA or LA. As a “TempComponent” represents either a SED or a LA, this is

equivalent to add such a non-terminal vertex on a MA or a LA.

r2 = (L={N1(nature, id)}

K={N1(nature, id)};

R\K={N2(“TempComponent”), N1
“manages”
−−−−−−−→N2};

NACS=∅)

Finally, the graph grammar has to describe how a non-terminal vertex will be

Graph-based description of dynamically reconfigurable architectures 15

instantiated into a LA or a SED. The case SED is simple, as it can not manage any

other component and has no specific constraint except recording itself and having a

manager.

r3 = (L={N1(“OmniNames”), N2(nature, id1), N3(“TempComponent”),

N1
“kto”
−−−→N2, N2

“manages”
−−−−−−−→N3};

K={N1(“OmniNames”), N2(nature, id), N1
“kto”
−−−→N2};

R\K={N4(“SED”,id2), N2
“manages”
−−−−−−−→N4, N1

“kto”
−−−→N4 };

NACS=∅)

Concerning a LA, the graph rewriting rule is very similar, except for the fact that a

LA has to be introduced with a managed entity, modelled by a non-terminal vertex.

r4 = (L={N1(“OmniNames”), N2(nature, id1), N3(“TempComponent”),

N1
“kto”
−−−→N2, N2

“manages”
−−−−−−−→N3};

K={N1(“OmniNames”), N2(nature, id), N1
“kto”
−−−→N2,

N3(“TempComponent”)};

R\K={N4(“LA”,id2), N2
“manages”
−−−−−−−→N4, N1

“kto”
−−−→N4, N4

“manages”
−−−−−−−→N3 };

NACS=∅)

Example 11.

An example of the generation of a consistent instance of a graph grammar is repre-

sented in figure 6. The domains of definition of the labels as well as the homomorphisms

according to which the rules have been applied have not been represented as there is no

ambiguity. Every tags have the same domain of definition {“kto”, “manages”}.

4. Handling dynamicity : consistent reconfiguration

In this section, an approach to tackle the dynamic behaviour of applications previously

characterized employing graph grammars will be introduced . Such an approach can be

semi-automatized and guarantees some “good” properties. Besides the expressiveness,

this method presents the notable advantage of being correct by construction whereas the

approach described in (Sharrock et al., 2010) requires verification in runtime.

4.1. Induced rules

As seen previously in this paper, a graph grammar defined by the 4-tuple (AX, NT,

T, P) models an architectural style. In order to take the dynamic aspect of an applica-

tion into account, this graph grammar is extended to the 5-tuple (AX,NT,T,P,Preconf)

where Preconf is the set of atomic graph transformations that represents the architectural

evolution of the considered application during its execution.

Definition 20. (Reciprocal rule) A graph rewriting rule r−1 is the reciprocal of a

graph rewriting rule r Kr−1 = Kr ∧ Rr−1 = Lr ∧ Lr−1 = Rr ∧ NACsr−1 = ∅.

Cédric EICHLER et al. 16

Figure 6. An example of graph generation using a graph grammar

Remark 4. Trivially, for any graph graph rewriting rule r, graph G and homomorphism

h there exists a homomorphism h’ such as r−1 h’.r h(G) = Affh(G) - h’ is the canonical

homomorphism associating Lr−1 = Rr and the isomorph copy of Rr introduced while

applying r h on G.

Besides, if G is a graph whose vertices and edges have only constant attributes - such as

a instance of a graph grammar-, for any graph graph rewriting rule r and homomorphism

h there exists a homomorphism h’ such as r−1 h’.r h(G) = G.

Graph-based description of dynamically reconfigurable architectures 17

Example 12. The reciprocal rule of r−1
3 previously defined for the graph grammar

modelling characterizing DIET is defined by :

r−1
3 = (L={N1(“OmniNames”), N2(nature, id), N1

“kto”
−−−→N2, N4(“SED”,id2),

N2
“manages”
−−−−−−−→N4, N1

“kto”
−−−→N4};

K={N1(“OmniNames”), N2(nature, id), N1
“kto”
−−−→N2};

R\K={ N3(“TempComponent”), N2
“manages”
−−−−−−−→N3};

NACS=∅)

Definition 21. (Induced rule) An induced graph rewriting rule of a graph grammar

(AX,NT, T, P) is a rule r such as r ∈ P ∨ ∃ r’ ∈ P, r is the reciprocal of r’.

The following definition shows how to navigate between consistent instances of any

graph grammar GG = (AX,NT, T, P) without any non-consistent intermediate step

considering the extended graph grammar (AX,NT, T, P, Preconf) where Preconf is the

set of induced rules of GG.

Definition 22. (Induced reconfiguration graph) For any graph grammar GG =

(AX,NT, T, P),

(i) Let CIns be the set of consistent instances of GG.

(ii) Let Ggener = (Ins, Egener , ∅, Taggener) be the generation graph of GG.

(iii) Let Erecip = { (vi, vj) ∈ Ins2 | (vj , vi) ∈ Egener }.

(iv) Let Tagrecip = { (Tagrecip)
(vi,vj) = { ((Tagrecip)

(vi,vj)
1 , Preconf), ((Tagrecip)

(vi,vj)
2 , H

)} where H is the set of graph homomorphism |(vi, vj) ∈ Erecip∧ (Tagrecip)
(vi,vj)
1 is

the reciprocal rule of (Taggener)
(vj ,vi)
1 ∧ (Tagrecip)

(vi,vj)
1 (Tagrecip)

(vi,vj)
2 (vi) = vj }.

(v) Let Ginduced = (Ins, Egener ∪ Erecip, ∅, Taggener∪ Tagrecip).

(vi) Let ECgener = { (vi, vj) ∈ CIns2 | (vi, vj) ∈ Egener } and ECrecip = { (vi, vj) ∈ CIns2

| (vi, vj) ∈ Erecip }.

(vii) Let TagCgener = { (Taggener)
e|e ∈ ECgener } and TagCrecip = { (Tagrecip)

e|e ∈

ECrecip }

(viii) Let Ecomp = { (vi, vj) ∈ CIns2 | there exists in Ginduced a path from vi to vj with no

vertex in CIns }.

(ix) Let Tagcomp = { Tagcomp)
(vi,vj) = { ((Tagcomp)

(vi,vj)
1 , R, ((Tagrecip)

(vi,vj)
2 , H } where

H is the set of graph homomorphism and R the set of graph rewriting rule |(vi, vj) ∈

Erecip∧ (Tagcomp)
(vi,vj)
1 (Tagcomp)

(vi,vj)
2 (vi) = vj }.

The induced reconfiguration graph of GG is Ginduced = (CIns, Ecomp ∪ ECgener ∪ ECrecip,

∅, Tagreconf ∪ TagCgener ∪ TagCrecip).

Remark 5. Note that ∃ Tagrecip)
(vi,vj)
2 , (Tagrecip)

(vi,vj)
1 (Tagrecip)

(vi,vj)
2 (vi) = vj due

to remark 4.

Besides (Tagcomp)
(vi,vj)
1 and Tagcomp)

(vi,vj)
2 exist. If (vi, vj) ∈ Egener∪Erecip, then they

exist by definition and (Tagcomp)
(vi,vj)
1 is an induced rule. Else there exists a sequence of

Cédric EICHLER et al. 18

rules described by the tags of the edges on the path and they exists as a composition of

said rules according to the property 3.

Property 4. An induced reconfiguration graph is strongly connected.

Proof 4. By definition, ∀ v ∈ Ins, ∃ in Ggener a path from v0 = AX to v. Thus, by

construction of Ginduced, ∀ v ∈ Ins, ∃ in Ginduced a path pgv from v0 to v and a path prv
from v to v0.

Let (pcigv) and (pcirv) be a pair of sequences of sequences of vertices ∈

CIns and (pnigv) and (pnirv) be a pair of sequences of sequences of vertices

∈ Ins \ CIns so that pgv = ((pc1gv)1,. . . (pc
1
gv)|(pc1gv)|, (pn1gv)1,. . . , (pn1gv)|(pn1

gv)|
,

(pc2gv)1,. . . ,pc
|(pcgv)|
gv)

|(pc
|(pcgv)|
gv)|

) and prv = ((pc1rv)1,. . . (pc
1
rv)|(pc1rv)|, (pn1rv)1,. . . ,

(pn1rv)|(pn1
rv)|

, (pc2rv)1,. . . ,pc
|(pcrv)|
rv)

|(pc
|(pcrv)|
rv)|

) where |s| is the size of the sequence s.

By definition of Ecomp, ∀j, (pcjgv ∈(pcigv) ∧ pcj+1
gv ∈(pcigv)) =⇒ ((pcjgv)|(pcjgv)|,

(pcj+1
gv)1) ∈ Ecomp. Hence ((pc1gv)1,. . . (pc

1
gv)|(pc1gv)|, (pc

2
gv)1, . . . , pc

|(pcgv)|
gv)

|(pc
|(pcgv)|
gv)|

)

is a path in Ginduced from v0 to v. In a similar way, ((pc1rv)1,. . . (pc
1
rv)|(pc1rv)|,

(pc2rv)1,. . . ,pc
|(pcrv)|
rv)

|(pc
|(pcrv)|
rv)|

) is a path in Ginduced from v to v0.

Thus for any pair of vertices (v, v’) of Ginduced there is in Ginduced a path from v to v0
and from v0 to v’, as well as a path from v’ to v0 and from v0 to v. Hence Ginduced is

strongly connected.

The strong connection of the induced reconfiguration graph implies that any consistent

instance of a graph grammar can be reached using induced rules composition from any

other consistent instance, without any intermediate non-consistent intermediate step.

Thus, any dynamic architectural style represented by a graph grammar may be recon-

figured guaranteeing intern self-protecting by construction.

4.2. Specifics rules

Even though the induced rules are sufficient to navigate between every consistent in-

stance of an architectural style, it might be desirable to specify additional application-

specific reconfiguration rules. Such a set of rules - noted Pinduced - may either characterize

some particularities of an application or can be used to achieve particular aim such as

self healing. The extended graph grammar characterizing an architectural style is then

(AX,NT, T, P, Preconf) where Preconf = Pinduced ∪ Pspecific.

Example 13. Considering the previously defined architectural style representing a

simplified architecture for DIET, if LAs are likely to break down, using induced rules

it would be possible to suppress every components managed by a broken LA before

redeploying the LA and the components. However, knowing that the managed entity

are still in working order, a better solution is to define the following specific rules for

self-healing triggered when a LA break down so as not to redeploy functional components.

After receiving an alert containing the identifier of the broken LA - noted “idBroken”

Graph-based description of dynamically reconfigurable architectures 19

- the procedure is initialized by deploying a new LA.

sr1 = (L={N1(“LA”, “idBroken”)};

K={N1(“LA”, “idBroken”)};

R\K={N2(“LA”,id), N2
“replaces”
−−−−−−−→N1 };

NACS=∅)

Each component is then treated one by one by being linked to the new LA in the

same way as it was with the broken LA.

sr2 = (L={N1(“LA”, “idBroken”), N2(“LA”,id), N2
“replaces”
−−−−−−−→N1,

N3(*), N1
∗
−→N3};

K={N1(“LA”, “idBroken”), N2(“LA”,id), N2
“replaces”
−−−−−−−→N1,

N3(*)};

R\K={N2
∗
−→N3};

NACS=∅)

sr3 = (L={N1(“LA”, “idBroken”), N2(“LA”,id), N2
“replaces”
−−−−−−−→N1,

N3(*), N3
∗
−→N1};

K={N1(“LA”, “idBroken”), N2(“LA”,id), N2
“replaces”
−−−−−−−→N1,

N3(*)};

R\K={N3
∗
−→N2};

NACS=∅)

Once that every component linked to the faulty LA have been treated, the LA is

removed. This marks the end of the procedure.

sr4 = (L={N1(“LA”, “idBroken”), N2(“LA”,id), N2
“replaces”
−−−−−−−→N1,};

K={N2(“LA”,id)};

R\K={};

NACS={NAC1, NAC2};

NAC1={N3(*), N3
∗
−→N1};

NAC2={N3(*), N1
∗
−→N3};

A crucial issue concerning specific rules is to prove their correctness. This can be

achieved either by classical means or by proving that for any sequence consisting in

initializing, treating every vertices and terminating there is an equivalent sequence of

induced rules.

5. Conclusion

In this paper, we formally defined the basic operators for graph manipulation including

extension and restriction. Graph rewriting rules with multiple negative application con-

ditions and their composition are formally defined. We defined the characterization rules

Cédric EICHLER et al. 20

of an architectural style using Graph Grammars as well as the correct by design auto-

matically generated characterization rules of consistent instance of an architectural style.

We defined the automated induction of reconfiguration rules from the set of genera-

tion rules guaranteeing the consistency of the set of generated configurations and the

accessibility of any consistent configuration from any other.

We defined a formal framework for defining application specific reconfiguration rules

and policies. Our approach is applied the example of a distributed hierarchical applica-

tion, DIET, including generation, induced reconfiguration and specific reconfiguration.

References

Allen, R. and Garlan, D. (1997). A formal basis for architectural connection. ACM Trans.

Softw. Eng. Methodol., 6:213–249.

Bradbury, J. S., Cordy, J. R., Dingel, J., and Wermelinger, M. (2004). A survey of self-

management in dynamic software architecture specifications. In Proceedings of the 1st ACM

SIGSOFT workshop on Self-managed systems, WOSS ’04, pages 28–33, New York, NY, USA.

ACM.

Caron, E. and Desprez, F. (2006). Diet: A scalable toolbox to build network enabled servers on

the grid. International Journal of High Performance Computing Applications, 20(3):335–352.

Chassot, C., Guennoun, K., Drira, K., Armando, F., Exposito, E., and Lozes, A. (2006). Towards

autonomous management of qos through model-driven adaptability in communication-centric

systems. ITSSA, 2(3):255–264.

Chomsky, N. (1956). Three models for the description of language. Information Theory, IEEE

Transactions on, 2(3):113–124.

Dashofy, E. M., van der Hoek, A., and Taylor, R. N. (2002). An infrastructure for the rapid

development of xml-based architecture description languages. In Proceedings of the 24th

International Conference on Software Engineering, ICSE ’02, pages 266–276, New York, NY,

USA. ACM.

de Paula, V. C., Justo, G. R. R., and Cunha, P. R. F. (2000). Specifying and verifying recon-

figurable software architectures. In Proceedings of the International Symposium on Software

Engineering for Parallel and Distributed Systems, pages 21–, Washington, DC, USA. IEEE

Computer Society.

Ehrig, H. (1987). Tutorial introduction to the algebraic approach of graph grammars. In

Ehrig, H., Nagl, M., Rozenberg, G., and Rosenfeld, A., editors, Graph-Grammars and Their

Application to Computer Science, volume 291 of Lecture Notes in Computer Science, pages

1–14. Springer Berlin / Heidelberg. 10.1007/3-540-18771-5-40.

Ehrig, H. and Kreowski, H.-J. (1991). Graph Grammars and Their Application to Computer Sci-

ence: 4th International Workshop, Bremen, Germany, March 5-9, 1990 Proceedings. Springer-

Verlag New York, Inc., Secaucus, NJ, USA.

Garlan, D., Monroe, R. T., and Wile, D. (2000). Acme: Architectural description of component-

based systems. In Leavens, G. T. and Sitaraman, M., editors, Foundations of Component-

Based Systems, pages 47–68. Cambridge University Press.

Heckel, R., Cherchago, A., and Lohmann, M. (2004). A formal approach to service specification

and matching based on graph transformation. Electron. Notes Theor. Comput. Sci., 105:37–

49.

Graph-based description of dynamically reconfigurable architectures 21

Hirsch, D., Inverardi, P., and Montanari, U. (1999). Modeling Software Architectures and Styles

with Graph Grammars and Constraint Solving. In Donohoe, P., editor, Software Architec-

ture (TC2 1st Working IFIP Conf. on Software Architecture, WICSA1), pages 127–143, San

Antonio, Texas, USA. Kluwer.

Kacem, M. H., Jmaiel, M., Kacem, A. H., and Drira, K. (2005). Evaluation and comparison of

adl based approaches for the description of dynamic of software architectures. In ICEIS (3),

pages 189–195.

Kandé, M. M. and Strohmeier, A. (2000). Towards a uml profile for software architecture descrip-

tions. In Proceedings of the 3rd international conference on The unified modeling language:

advancing the standard, UML’00, pages 513–527, Berlin, Heidelberg. Springer-Verlag.

Le Métayer, D. (1998). Describing software architecture styles using graph grammars. IEEE

Trans. Softw. Eng., 24:521–533.

Loulou, I., Kacem, A. H., Jmaiel, M., and Drira, K. (2004). Towards a unified graph-based

framework for dynamic component-based architectures description in z. Pervasive Services,

IEEE/ACS International Conference on, 0:227–234.

Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., and Mann, W. (1995).

Specification and analysis of system architecture using rapide. IEEE Trans. Software Eng.,

21(4):336–355.

Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., and Robbins, J. E. (2002). Modeling software

architectures in the unified modeling language. ACM Trans. Softw. Eng. Methodol., 11:2–57.

Medvidovic, N. and Taylor, R. N. (2000). A classification and comparison framework for software

architecture description languages. IEEE Trans. Softw. Eng., 26:70–93.

OMG (2005). Unified Modeling Language Specification 2.0: Superstructure. OMG doc.

formal/05-07-04.

Oquendo, F. (2006). π-method: a model-driven formal method for architecture-centric software

engineering. SIGSOFT Softw. Eng. Notes, 31:1–13.

Roh, S., Kim, K., and Jeon, T. (2004). Architecture modeling language based on uml2.0. In

Proceedings of the 11th Asia-Pacific Software Engineering Conference, APSEC ’04, pages

663–669, Washington, DC, USA. IEEE Computer Society.

Rozenberg, G., editor (1997). Handbook of Graph Grammars and Computing by Graph Trans-

formations, Volume 1: Foundations. World Scientific.

Selonen, P. and Xu, J. (2003). Validating uml models against architectural profiles. SIGSOFT

Softw. Eng. Notes, 28:58–67.

Sharrock, R., Monteil, T., Stolf, P., Hagimont, D., and Broto, L. (2010). Non-intrusive autonomic

approach with self-management policies applied to legacy infrastructures for performance

improvements. International Journal of Adaptive, Resilient and Autonomic Systems, 2:19.

Taylor, R. N., Medvidovic, N., Anderson, K. M., Whitehead, Jr., E. J., and Robbins, J. E.

(1995). A component- and message-based architectural style for gui software. In Proceedings

of the 17th international conference on Software engineering, ICSE ’95, pages 295–304, New

York, NY, USA. ACM.

Zhou, Y., Pan, J., Ma, X., Luo, B., Tao, X., and Lu, J. (2007). Applying ontology in architecture-

based self-management applications. In Proceedings of the 2007 ACM symposium on Applied

computing, SAC ’07, pages 97–103, New York, NY, USA. ACM.

	Introduction
	Background: basic definitions
	Graph
	Graph morphism
	A new approach for graph transformation
	Graph rewriting rule composition

	Characterizing architectural style
	Generic case
	A collaborative application used for further example

	Handling dynamicity : consistent reconfiguration
	Induced rules
	Specifics rules

	Conclusion
	References

