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Abstract. Small perturbations can affect the kinematic properties ofmanipulators with non-generic
architecture. We study in this paper the perturbations of symmetric planar 3-RPR manipulators. We
show in particular that one can obtain any of the three possible stable types of behaviour of 3-RPR
manipulators for large values of the lengths of the legs.
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1 Introduction

Planar parallel manipulators have been extensively studied in the past, see [1, 4, 5,
6, 7, 8, 9, 11, 12] for example. Symmetric 3-RPR manipulators (those for which
the platform triangle is congruent to the base triangle by anorientation-reversing
isometry) have special kinematic properties (see [3]). Since these manipulators are
not generic, the question arises of how a small perturbationof the architecture will
influence the kinematic properties of the manipulator.

The configuration of asymptotic singularities of a symmetric 3-RPR manipulator
is not stable. By “asymptotic singularities”, we mean the limit of singularities (in
the planer1 = constant, with coordinatesℓ2 = r2− r1, ℓ3 = r3− r1) as the lengthr1

tends to infinity. For a generic 3-RPR manipulator, the curve of asymptotic singu-
larities has two branches (connected components): an outerbranch which is always
an oval and an inner one, with three possible stable types (diamond, swallowtail
and annulus following the terminology of [2] – see Figure 3).The asymptotic direct
kinematic problem has at most four solutions. In the case of asymmetric 3-RPR
manipulator, the inner branch of the curve of asymptotic singularities is reduced to
a point. We show that any of the three possible stable types can be obtained by a
small perturbation of a symmetric 3-RPR manipulator.

The curve of singularities of a symmetric 3-RPR manipulator, in the plane
r1 = constant with coordinatesr2

2 − r2
1, r2

3 − r2
1, has an inner branch independent

of the lengthr1 if it is large enough. This branch is a deltoid with three cusps (cf
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[3]). The image of this deltoid in the plane with coordinates(ℓ2, ℓ3) tends to the
point (0,0) (the degenerate inner branch of the asymptotic singularitycurve) asr1

tends to infinity. The direct kinematic problem has 6 solutions inside this deltoid
and 2 outside. The singularity surface in the space with coordinates(r2

1, r
2
2, r

2
3) has

a component which is a portion of a cylinder with base this deltoid. Actually, the
inverse kinematic mapping induces a two-to-one map of a component of the singu-
larity surface in the workspace to this cylinder; so the deltoid is to be considered
as a double curve. A small perturbation will deform the double deltoid to a closed
curve with 6 cusps and a few self-intersections. We mean thatwe shall obtain such
a curve as the inner branch of the sectionr1 = constant of the singularity surface in
the(r1, r2, r3) space, for some sufficiently large value ofr1 and a small perturbation
of the architecture. We study examples of the transition from this perturbed double
deltoid with 6 cusps, as the lengthr1 increases, to the stable asymptotic type with 4
or 0 cusps.

2 Asymptotic singularities

We recall a few results from [2] with some extra comments. Thenotations we use are
made clear in Figure 1. Here,bA,hA,bB,hB are all positive. The parametersdA and
dB may have any real value. The triangleB1B2B3 may be oriented counter-clockwise
(as in Figure 1) or clockwise.

Fig. 1 Notations and parameters for the 3-RPR manipulator

We have defined the notion of asymptotic singularities in theintroduction and
mentioned the fact that they consist of two branches. From a geometric viewpoint,
asymptotic singularities are characterized by the fact that there existsk ∈ R such
that

−−−−−−−→
p(B1)p(B2) = k

−−−−−−−→
p(A1)p(A2) and

−−−−−−−→
p(B1)p(B3) = k

−−−−−−−→
p(A1)p(A3) , (1)
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wherep is a projection parallel to the direction given byθ , which is the common
direction of the infinite legs (see Figure 2).

Fig. 2 Asymptotic singular configuration (withk=−0.45)

If θ is fixed, the condition (1) is realized for two values of the angle ϕ which
differ by π , corresponding to the casesk> 0 andk< 0. The casek< 0 (resp.k> 0)
is the case of singularities with “crossed (resp. non-crossed) legs”. The inner branch
of the asymptotic singularity curves always contains the image ofθ = 0, ϕ = 0.
If the base and platform triangles have reverse orientations, the inner branch is the
branch of singularities with crossed legs (as in Figure 2); if both triangles have the
counter-clockwise orientation, the inner branch is the branch of singularities with
non-crossed legs.

It was proved in [2] that, for a generic 3-RPR manipulator, there are only three
possible types for the curve of asymptotic singularities: diamond, swallowtail and
annulus. These three types are depicted in Figure 3

Fig. 3 Diamond, swallowtail and annulus

In the three examples of Figure 3, we havebA = 2, hA = 1, dA = dB = 0, hB = 2.
The leftmost type (diamond) is obtained forbB = 1, the one in the middle (swallow-
tail) for bB = 2.2 and the rightmost one (annulus) forbB = 3. In each picture, the
light gray indicates two solutions for the direct kinematicproblem DKP), and the
medium gray four.

The quantities which discriminate between the three stableasymptotic configu-
rations of asymptotic singularities are

Q1 =UA,B− (S2
A+S2

B) Q2 =U3
A,B−S2

AS2
B(3UA,B+S2

A+S2
B) (2)
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whereSA = bAhA/2 andSB = bBhB/2 are the areas of the triangles and

UA,B =
(

b2
Ah2

B+h2
Ab2

B+(bAdB−dAbB)
2)/4 . (3)

The configuration of asymptotic singularities is a diamond whenQ1 > 0, a swal-
lowtail whenQ1 < 0 andQ2 > 0, an annulus whenQ2 < 0; it is impossible to have
Q1 > 0 andQ2 < 0 (cf. [2]).

3 Asymptotic singularities and kinematic properties of the
manipulator

The stability of asymptotic types means that they are unchanged by small pertur-
bations of the architecture of the manipulator. But it also means that asymptotic
singularities give information on kinematic properties ofthe manipulator for suffi-
ciently large values of the length of legs. More precisely, if a 3-RPR manipulator has
one of the stable types of asymptotic singularities, then the sections of the singular-
ity surface by the planesr1 = constant will all have the same type for sufficiently
large values ofr1. We illustrate this property with the example for the diamond type:
bA = 2, hA = 1, dA = 0, bB = 1,hB = 2,dB = 0. There are two cases to consider: the
case when both triangles have the same orientation and the case when the orienta-
tions are opposite.

When both triangles are oriented likewise, the section of the singularity surface
has the diamond type already whenr1 = 3, as shown in Figure 4. Note that the
inner branch of the singularity curve (singularities with non-crossed legs) is almost
coincident with the inner branch of the asymptotic curve (dotted line).

Fig. 4 Diamond type, base and platform with same orientation
non-crossed legs

crossed legs
PPPPPPPq ✟✟✟✟✟✙

When the triangles have opposite orientations, the asymptotic type is attained for
larger values ofr1. Figure 5 shows the section forr1 = 5. Note that it is now the outer
branch (still the singularities with non-crossed legs) which is almost coincident with
its asymptotic counterpart.
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Fig. 5 Diamond type, base and platform with reverse orientations
non-crossed legs

crossed legs❏
❏
❏
❏
❏
❏
❏
❏❫

✟✟✟✟✟✙

4 Perturbation of symmetric manipulator

The parameters of a symmetric manipulator satisfybB = bA, hB = hA anddB = dA.
In this case both quantitiesQ1 andQ2 vanish; this is an indication for the fact that
any of the three stable types may be obtained by a perturbation of a symmetric ma-
nipulator. Reciprocally, ifQ1 = Q2 = 0 then one must havebB = bA, hB = hA and
dB = dA, which means that either we have a symmetric manipulator or amanipu-
lator whose base and platform triangles are congruent via anorientation-preserving
isometry.

We perturb a symmetric 3-RPR manipulator whose base and platform are right
trianglesA1A2A3 andB1B2B3, so thatdA = dB = 0. We perturb it keepingdA = dB =
0. Carrying the values fordA,dB in the expressions (2) forQ1 andQ2, we obtain

Qpert
1 =

(bA−bB)(bA+bB)(hB−hA)(hB+hA)

4

Qpert
2 =

(b2
AhB−hAb2

B)(b
2
AhB+hAb2

B)(bAh2
B−h2

AbB)(bAh2
B+h2

AbB)

64

(4)

Fix bA andhA (for instancebA = 2, hA = 1) and letbB andhB vary in the positive
quadrant. This quadrant is cut by the two half-linesbB = bA, hB = hA and the two
half-parabolashB = hAb2

B/b2
A, bB = bAh2

B/h2
A into regions labelled Di, Sw or An

according to the asymptotic type (see Figure 6).
All regions are adjacent to the pointbB = bA, hB = hA corresponding to the sym-

metric manipulator. This shows that a symmetric manipulator can be perturbed to
any of the stable asymptotic types. One can also spot on Figure 6 the three points
(1,2), (2.2,2) and(3,2) corresponding to the examples in Figure 3.

Note that the description of perturbation concerning asymptotic singularities
also applies to the non generic manipulator with two congruent triangles both with
counter-clockwise orientation.
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Fig. 6 Stable types of perturbations of a symmetric manipulator

5 Transition to the asymptotic configuration

We now examine in detail the effect of a perturbation of the geometry of a symmet-
ric manipulator on its kinematic properties. We start with asymmetric manipulator
whose base and platform are isosceles right triangles of side 1 (bA = bB = hA =
hB = 1, dA = dB = 0). We focus on the inner branch of the curve of singularitiesin
the(r2, r3) plane atr1 = constant (withr1 ≥ 3). Indeed, nothing interesting happens
for the outer branch which is an oval delimiting regions where the DKP has 0 or 2
solutions. The inner branch is a deltoid with three cusps; the DKP has 6 solutions
inside the deltoid and 2 outside.

Fig. 7 Symmetric manipulator: slices atr1 = 3,10,20

Figure 7 shows the slices atr1 = 3,10,20. We use here the same gray scale code
as above: light gray for 2 solutions to the DKP, medium gray for 4 and dark gray
for 6 (only 2 and 6 in Figure 7). The deltoid is always here. If it were drawn with
coordinates(r2

2, r
2
3), it will be independent ofr1 up to translation. But here, with

(r2, r3) coordinates, it shrinks to a point asr1 tends to infinity.
We now perturb the geometry of the platform by takingbB = 1.2, hB = 0.8 and

dB = 0. This is a rather large perturbation, so that its effect is well visible; from
the analysis of the preceding section, we know that the perturbed manipulator will
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have a diamond asymptotic configuration. Figure 8 shows again sections atr1 =
3,10,20. The picture on the left exhibits a perturbed double deltoid, a closed curve
with six cusps and three self-intersections; the next pictures show how it evolves
to a diamond with the vanishing of a pair of cusps. The inner branch stabilizes (up
to translation) asr1 tends to infinity; one can check that the size of the stabilized
picture is approximately linear in the amplitude of the perturbation.

Fig. 8 Perturbation to diamond: slices atr1 = 3,10,20

A similar analysis can be done for perturbations to the otherstable asymptotic
configurations. TakingbB = 1.2, hB = 1.05 anddB = 0 we obtain a perturbation to
swallowtail (Figure 9, first row); takingbB = 1.2, hB = 1.2 anddB = 0 we obtain a
perturbation to annulus (Figure 9, second row). In both cases an inner region with
no solution of the DKP appears; all cusps disappear in the annulus case, thus ruling
out the possibility of non-singular assembly mode change for large values ofr1 (see
[12]). The slices in Figure 9 are taken forr1 = 3,10,30.

6 Conclusion

We have shown how a perturbation of the geometry of a symmetric 3-RPR manip-
ulator affects its kinematic properties. In particular, weproved that these manipula-
tors are at the bifurcation point between the three different types of stable asymptotic
kinematic behavior for 3-RPR manipulators. The point in studying the effect of per-
turbations on the kinematic properties is that, in the real world, one cannot achieve
with certainty the specifications of non-generic architectures (such as the symmetry
condition in our study).
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Fig. 9 Perturbations to swallowtail and to annulus: slices atr1 = 3,10,30
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