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This paper presents an analytical method based on subdomain method for the computation of open circuit, armature reaction and 
on-load magnetic field distribution in integer slot winding parallel double excitation and Spoke-Type tangential permanent-magnet 
machines. The proposed model takes into account for stator and rotor slots tooth tips and shape of polar piece. A 2D exact analytical 
solution of magnetic field distribution is established. It involves solution of Laplace’s and Poisson’s equations in semi-closed stator and 
rotor slots, airgap, buried permanent magnets into rotor semi-closed slots, and non magnetic region under magnets. Obtained exact 
analytical results of open circuit, armature reaction and on-load magnetic field distribution are verified with those issued from finite 
element method (FEM).  
 

Index Terms— Exact analytical calculation, finite element method, magnetic field distribution, parallel double excitation, Spoke-
Type permanent magnet machines.  
 

I. INTRODUCTION 

ouble excitation machines are synchronous machines that 
have two coexisting excitation field sources: permanent 

magnets and wound field excitation. The goal behind the use 
of double excitation principle is to combine advantages of 
permanent-magnet excited machines and wound field 
synchronous machines. The combination of permanent 
magnets and wound field excitation constitutes an additional 
degree of freedom which can be used to optimize the energy 
consumption of the electric propulsion system. Among various 
double excitation machines, parallel double excitation 
machines have some advantages than series double excitation 
machines [1]-[5]. The flux created by excitation coils and 
permanent magnets have different trajectories and the flux 
created by excitation coils doesn’t pass through permanent 
magnets, hence the demagnetization risk is avoided. 
Depending on DC excitation current direction, excitation coils 
can either be used to enhance or decrease excitation flux 
passing through armature windings.  
There are no authors who applied analytical model for 
predicting magnetic field in this type of hybrid excitation 
machines with slotted rotor and stator and buried tangential 
permanent magnet taking into account rotor and stator tooth 
tips and real structure of polar piece. Analytical methods are 
useful tools for a first evaluation of electrical motors 
performances and for design optimization. However, finite 
element method is used at the final stage of the design. In 
reference [5], exact analytical calculation of magnetic field 
distribution is developed for a slotted stator series double 
excitation machine, where coils current excitation are situated 
in the slotted rotor with radial surface mounted permanent 
magnets. There are other structures of double excitation 
permanent magnet machines with complicated geometry [6]-
[8], where the study is done by finite element method only. 

Permanent magnet brushless dc (BLDC) motors have been 
widely used due to their many advantages such as high torque 
and high efficiency. In particular, the spoke-type BLDC 
motor, which can concentrate the flux from low cost ferrite 
permanent magnets, has a high torque density per unit volume 
resulting from the additional reluctance torque. The prediction 
of open circuit, armature reaction and on load magnetic field 
distribution of this type of motors is done generally by the 
finite element method (FEM) [9]-[11] and there are very few 
authors which use analytical methods [12]-[13]. This is due to 
the structure of those machines, where buried tangential PM 
region has high height and low width with presence of non 
magnetic region under magnet. In reference [12], Lin et all. 
used conformal transformation of rotor and stator slots to 
determine a relative permeance function to take into account 
the rotor and stator slotting effects. In reference [13], authors 
used also a Schwarz-Christoffel transformation to determine 
d-axial and q-axial airgap magnetic field. Conformal 
transformation leads to an approximation of magnetic field 
distribution in a simplified structure of slotted stator spoke-
type permanent magnet motors. Investigations in applying 
analytical and numerical conformal mapping have been done 
in [14] and show the inaccuracy of conformal mapping 
method in magnetic field modeling of this type of machines. 
This is not due to the stator slotting effect but to the presence 
of a deep and small thickness of permanent magnet region. To 
the author’s knowledge, there is no study on the slotted or 
slotless Spoke-Type PM machines that solves analytically 
Poisson’s and Laplace’s equations. However, many authors 
have used exact analytical method based on subdomain model 
to take into account stator slotting effect and tooth tips in open 
circuit and armature reaction magnetic field with circular and 
tubular radial surface mounted and inset permanent magnet 
motors [15]-[24]. Inset PM subregion in PM machines is not 
deep and the width is high. So, it can be modeled accurately 
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with conformal mapping [25]. In references [15]-[17], authors 
have developed an exact analytical solution based on 
subdomain model for predicting open circuit and armature 
reaction in slotted stator radial surface mounted permanent 
magnet motor taking into account tooth tips. In [18] and [19], 
scalar potential magnetic field is used to predict open circuit 
magnetic field in slotted stator surface and inset radial 
permanent magnet motors. Authors in [20] and [21] have 
developed an exact analytical solution based on subdomain 
model for predicting open circuit and armature reaction in 
tubular surface mounted and inset radial permanent magnet 
machines. In [22]-[24], the authors have developed 
respectively an exact analytical solution also based on 
subdomain model for flux switching permanent magnet 
machines and a tubular slotless stator with axially magnetized 
permanent magnet in rotor.  

In this paper, an exact analytical prediction based on 
subdomain model of open circuit, armature reaction and on-
load magnetic field distribution in integer slot winding parallel 
double excitation and spoke-type tangential permanent magnet 
machines is presented. It involves the solution of Poisson’s 
and Laplace’s equations in semi-closed stator slots, buried 
permanent magnets placed in semi-closed slots, rotor double 
excitation semi-closed slots, airgap and non magnetic region 
under permanent magnets. To handle permanent magnets, 
rotor and stator slots current at the same time, The magnetic 
vector potential formulation is used. All results from the 
developed analytical model are then compared to those found 
by the finite element method (FEM). 

II. MAGNETIC FIELD SOLUTION IN PARALLEL DOUBLE 

EXCITATION PM MACHINES 

Figs. 1 and 2 show the machine model where region I 
represents the air gap, region II the magnets, regions III and V 
the stator semi-closed slots, region IV a non magnetic material 
under magnets, region VI the rotor slots at the top of 
permanent magnets, regions VII and VIII the rotor excitation 
semi-closed slots. The model is formulated in vector potential 
and two-dimensional polar coordinates with the following 
assumptions. 

The stator and rotor cores are assumed to be infinitely 
permeable. 

Eddy current effects are neglected. 
The axial length of the machine is infinite i.e. end effects 

are neglected. 
The current density has only one component along the z-

axis. 
The stator and rotor slots have radial sides. 
The partial differential equations for magnetic fields in a 

continuous and isotopic region in term of vector potential A 
which has one component in z direction and independent of z 
can be expressed by 

2 0A∇ = , in region I, IV, V, VI and VIII                        (1) 
2

0A Mµ∇ = − ∇× , in region II                                      (2) 

2
0A Jµ∇ = − , in region III                                             (3) 

2
0 fA Jµ∇ = − , in region VII                                          (4) 

where M is the magnetization of permanent magnets, J the 
stator slots current density, Jf the excitation rotor slots current 
density and µ0 the permeability of vacuum. 

 
Fig. 1. Studied parallel double excitation PM machine. 

 

 
Fig. 2. Simplified model. 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

3 

 
Fig. 3. ith stator semi-closed slot subdomains 

 
Fig. 4. jth permanent magnet subdomains 
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Fig. 5. irth rotor semi-closed slot subdomains 

 
The field vectors B and H, in the different regions, are 

coupled by 

0B Hµ= , in regions I, III, IV, V, VI, VII and VIII       (5) 

where 0r rB Hµ= , 0B Hθ θµ= . 

0 0rB H Mµ µ µ= + , in region II                                   (6) 

where 0 0r r r rB H Mµ µ µ= + , 0 0rB H Mθ θ θµ µ µ= +  

and rµ is the relative recoil permeability of permanent 

magnets. Radial and circumferential flux density components 
are deduced from A by 

1
r

A
B

r θ
∂=
∂

; 
A

B
rθ

∂= −
∂

                                                (7) 

A. General Solution of Poisson’s Equation in Stator Semi-
closed Slot Subdomain (Region III) 

In each slot subdomain (i) of region III (Fig. 3), we have to 
solve Poisson’s equation 

2 2

02 2 2

1 1i i i
i

AIII AIII AIII
J

r r r r
µ

θ
∂ ∂ ∂+ + = −

∂ ∂ ∂
              (8) 

where Ji is the current density in the slot i. 
As shown in Fig. 3, the ith slot subdomain (region III) 

where i vary from 1 to Qs (Qs is the number of stator slots) is 
associated with boundary conditions at the bottom and at each 
sides of the slot as 

2

0
i

i
c

AIII
θ αθ = −

∂ =
∂

and 
2

0
i

i
c

AIII
θ αθ = +

∂ =
∂

                   (9) 

4
0i

r r

AIII

r =
∂ =

∂
                                                           (10) 

where αi is the angular position of the ith slot and c the slot 
opening in radian. 

The boundary condition (9), leads to the eigenvalues and 
eigenfunctions of the partial differential equation (8) as shown 
in details in [26]. The eigenfunctions are called spatial 
frequencies of the considered region [23]. The boundary 
condition (10), leads to the general solution of equation (8) 
with only two integration constants Ci,0 and Ci,m as shown in 
(11).  

From above boundary conditions (9) and (10), the solution 
of (8) using the method of separation of variables is 

( ) ( )2 2
,0 0 4 0

1 1
, ln

2 4i i i iAIII r C J r r J rθ µ µ= + −         (11) 

,
1 4 4

cos
2

m m

c c

i m i
m

r r m c
C

r r c

π π

π θ α
−∞

=

 
       + − − +               

∑  

where m is a positive integer. 

B. General Solution of Laplace’s Equation in Stator Semi-
Closed Slot Subdomain (Region V) 

In each stator semi-closed slot subdomain (i) of region V 
(Figs. 2, 3), we have to solve Laplace’s equation 

2 2

2 2 2

1 1
0i i iAV AV AV

r r r r θ
∂ ∂ ∂+ + =

∂ ∂ ∂
                           (12) 

As shown in Fig. 3, the ith slot subdomain (region V) where 
i vary from 1 to Qs (Qs number of stator slots) is associated 
with the following boundary conditions 

2

0
i

i
d

AV
θ αθ = −

∂ =
∂

and 
2

0
i

i
d

AV
θ αθ = +

∂ =
∂

                   (13) 

where d is the semi-closed slot opening in radian.  
From above boundary conditions (13), the solution of (12) 

using the method of separation of variables is 
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( ) ( ),0 ,0, 11 12 lni i iAV r A A rθ = +                                 (14) 

, ,
1

11 12 cos
2

k k

d d
i k i k i

k

k d
A r A r

d

π π π θ α
∞ −

=

    + + − +    
   

∑  

where k is a positive integer. 

C. General Solution of Poisson’s Equation in Permanent 
Magnet Subdomain (Region II) 

In each permanent magnet subdomain (j) of region II (Figs. 
2 and 4), we have to solve Poisson’s equation (2). The 
magnetization of parallel double excitation motor is purely 
tangential. Equation (2) is then reduced to 

2 2

02 2 2

1 1j j jAII AII AII M

r r r r r
θµ

θ
∂ ∂ ∂

+ + = −
∂ ∂ ∂

           (15) 

where ( )
0

1
j rem

j

B
M Mθ µ

= = −  

For a 2p poles machine, j vary from 1 to 2p and Brem is the 
remanence of magnetization. 

As shown in Fig. 4, the jth magnet subdomain (region II) is 
associated with the following boundary conditions 

2

0
j

j
a

g

AII
θθ = −

∂
=

∂
and 

2

0
j

j
a

g

AII
θθ = +

∂
=

∂
              (16) 

where gj is the angular position of the jth magnet and a the 
magnet opening in radian.  

From above boundary conditions (16), the general solution 
of (15) using the method of separation of variables is given by 

( ) ( ),0 ,0 0, 5 6 lnj j j jAII r A A r M rθ µ= + −               (17) 

, ,
1

5 6 cos
2

m m

a a
j m j m j

m

m a
A r A r g

a

π π π θ
∞ −

=

    + + − +    
   

∑
 

D. General Solution of Laplace’s Equation in Rotor Semi-
Closed Slot Subdomain (Region VI) 

In each rotor semi-closed slot subdomain (j) of region VI 
(Figs. 2, 4), we have to solve Laplace’s equation 

2 2

2 2 2

1 1
0j j jAVI AVI AVI

r r r r θ
∂ ∂ ∂

+ + =
∂ ∂ ∂

              (18) 

As shown in Fig. 4, the jth slot subdomain (region VI) 
where j vary from 1 to 2p is associated with the following 
boundary conditions 

2

0
j

j
b

g

AVI
θθ = −

∂
=

∂
and 

2

0
j

j
b

g

AVI
θθ = +

∂
=

∂
               (19) 

where b is the semi-closed slot opening in radian.  
From above boundary conditions (19), the solution of (18) 

using the method of separation of variables is 

( ) ( ),0 ,0, 13 14 lnj j jAVI r A A rθ = +                            (20) 

, ,
1

13 14 cos
2

k k

b b
j k j k j

k

k b
A r A r g

b

π π π θ
∞ −

=

    + + − +    
   

∑

                      

E. General Solution of Laplace’s Equation in Airgap 
Subdomain (Region I) 

The Laplace equation (1) in the airgap subdomain (region I) 
which is an annular domain delimited by the radii Rm and Rs 
(Fig. 2) is given by 

2 2

2 2 2

1 1
0

AI AI AI

r r r r θ
∂ ∂ ∂+ + =
∂ ∂ ∂

                                  (21) 

Taking into account the periodicity boundary condition 
between θ=0 and θ=2π/p for the studied machine with integer 
slot winding, the solution of equation (21) is 

( ) ( ) ( )
1

, 1 2 sinnp np
n n

n

AI r A r A r npθ θ
∞

−

=
= +∑           (22) 

                 ( ) ( )3 4 cosnp np
n nA r A r npθ−+ +  

where n is a positive integer. 

F. General Solution of Laplace’s Equation in the Non 
Magnetic Subdomain (Region IV) 

The Laplace’s equation (1) in the non magnetic subdomain 
region IV which is an annular domain delimited by the radii Ri 
and Rr and where the relative recoil permeability is equal to 1 
is given by 

2 2

2 2 2

1 1
0

AIV AIV AIV

r r r r θ
∂ ∂ ∂+ + =

∂ ∂ ∂
                             (23) 

Taking into account the periodicity boundary condition 
between θ=0 and θ=2π/p, the general solution of (23) is 

( ) ( ) ( )
1

, 7 8 sinnp np
n n

n

AIV r A r A r npθ θ
∞

−

=
= +∑         (24) 

                    ( ) ( )9 10 cosnp np
n nA r A r npθ−+ +             

The magnetic vector potential must be finite in region IV. In 
this case, constants A8n and A10n are equals to zero and 
equation (24) is reduced to  

( ) ( )
1

, 7 sinnp
n

n

AIV r A r npθ θ
∞

=

=∑                               (25) 

                         ( )9 cosnp
nA r npθ+             

G. General Solution of Poisson’s Equation in Rotor 
Excitation Coil Slot Subdomain (Region VII) 

In each rotor slot subdomain (ir) of region VII, we have to 
solve Poisson’s equation (26) 

2 2

02 2 2

1 1ir ir ir
f ir

AVII AVII AVII
J

r r r r
µ

θ
∂ ∂ ∂+ + = −

∂ ∂ ∂
     (26) 

where Jfir is the current density in rotor slot ir . 
As shown in Fig. 5, the irth slot subdomain (region VII) 

where ir vary from 1 to Nr (Nr is total number of rotor 
excitation slots) is associated with the following boundary 
conditions  
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2

0
ir

ir
cr

AVII
θ βθ = −

∂ =
∂

and 
2

0
ir

ir
cr

AVII
θ βθ = +

∂ =
∂

        (27) 

1
0ir

r r

AVII

r =
∂ =

∂
                                                           (28) 

where βir is the angular position of the irth slot and cr the 
rotor slot opening in radian.  

From the above boundary conditions (27) and (28), the 
solution of (26) using the method of separation of variables is 

( ) ( )2 2
,0 0 1 0

1 1
, 1 ln

2 4ir ir f fir ir
AVII r C J r r J rθ µ µ= + −   

,
1 1 1

1 .
r r

m m

c c

ir m
m

r r
C

r r

π π−∞

=

 
    + −         

∑       (29) 

                                        cos
2
r

ir
r

m c

c

π θ β  − +  
  

            

H. General Solution of Laplace’s Equation in Rotor 
Excitation Coil Slot Subdomain (Region VIII) 

In each semi-closed slot subdomain (ir) of region VIII (Fig. 
5), we have to solve Laplace’s equation 

2 2

2 2 2

1 1
0ir ir irAVIII AVIII AVIII

r r r r θ
∂ ∂ ∂+ + =

∂ ∂ ∂
         (30) 

As shown in Fig. 5, the irth slot subdomain (region VIII) 
where ir vary from 1 to Nr is associated with the following 
boundary conditions 

2

0
ir

ir
dr

AVIII
θ βθ = −

∂ =
∂

and 
2

0
ir

ir
dr

AVIII
θ βθ = +

∂ =
∂

    (31) 

where dr is the semi-closed slot opening in radian.  
From previous boundary conditions (31), the solution of 

partial differential equation (30) using the method of 
separation of variables is 

( ) ( ),0 ,0, 15 16 lnir ir irAVIII r A A rθ = +                        (32) 

                       , ,
1

15 16 .
k k

dr dr
ir k ir k

k

A r A r
π π∞ −

=

 
+ + 

 
∑  

                                cos
2ir

k dr

dr

π θ β  − +  
  

 

III.  BOUNDARY AND INTERFACE CONDITIONS 

To determine Fourier series unknown constants A1n, A2n, 
A3n, A4n, A5j,0, A6j,0, A5j,m, A6j,m, A7n, A9n, A11i,0, A12i,0, 
A11i,k, A12i,k, A13j,0, A14j,0, A13j,k, A14j,k, Ci,0, Ci,m, C1ir,0, 
C1ir,m, A15ir,0, A16ir,0, A15ir,k and A16ir,k, boundary and 
interface conditions should be introduced. 

The interface conditions between regions IV and II at Rr are 

( ) ( ), ,j r rAII R AIV Rθ θ=                                        (33) 

where
2 2j j

a a
g gθ− ≤ ≤ + . 

( ) ( ), ,r rjHII R HIV Rθ θθ θ=                                     (34) 

where 
2 2j j

a a
g gθ− ≤ ≤ + . 

( ), 0rHIV Rθ θ =  elsewhere. 

The interface conditions between regions II and VI at r2 are 

( ) ( )2 2, ,j jAVI r AII rθ θ=                                         (35) 

where 
2 2j j

b b
g gθ− ≤ ≤ + . 

( ) ( )2 2, ,j jHVI r HII rθ θθ θ=                                     (36) 

where 
2 2j j

b b
g gθ− ≤ ≤ + . 

( )2, 0jHII rθ θ =  elsewhere. 

The interface condition between regions I and VI at Rm is 

( ) ( ), ,j m mAVI R AI Rθ θ=                                        (37) 

where 
2 2j j

b b
g gθ− ≤ ≤ + . 

The interface condition between regions I and VIII at Rm is 

( ) ( ), ,m ir mAI R AVIII Rθ θ=                                     (38) 

where
2 2

r r
ir ir

d dβ θ β− ≤ ≤ + . 

The interface conditions between regions I, VI and VIII at 
Rm are 

( ) ( ), ,m mjHI R HVI Rθ θθ θ=                                     (39) 

for 
2 2j j

b b
g gθ− ≤ ≤ +  and 

( ) ( ), ,m mirHI R HVIII Rθ θθ θ=  

for 
2 2

r r
ir ir

d dβ θ β− ≤ ≤ + and 

( ), 0mHI Rθ θ =  elsewhere. 

The interface conditions between regions I and V at Rs are 

( ) ( ), ,s i sAI R AV Rθ θ=                                            (40) 

where 
2 2i i

d dα θ α− ≤ ≤ + . 

( ) ( ), ,s siHI R HV Rθ θθ θ=                                        (41) 

where 
2 2i i

d dα θ α− ≤ ≤ + . 

( ), 0sHI Rθ θ =  elsewhere. 

The interface conditions between regions III and V at r3 are 

( ) ( )3 3, ,i iAIII r AV rθ θ=                                           (42) 
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where 
2 2i i

d dα θ α− ≤ ≤ + . 

( ) ( )3 3, ,i iHIII r HV rθ θθ θ=                                       (43) 

where 
2 2i i

d dα θ α− ≤ ≤ + . 

( )3, 0iHIII rθ θ =  elsewhere. 

The interface conditions between regions VII and VIII at r0 
are 

( ) ( )0 0, ,ir irAVII r AVIII rθ θ=                                   (44) 

where
2 2

r r
ir ir

d dβ θ β− ≤ ≤ +  

( ) ( )0 0, ,ir irHVII r HVIII rθ θθ θ=                               (45) 

where
2 2

r r
ir ir

d dβ θ β− ≤ ≤ +  

( )0, 0irHVII rθ θ = elsewhere 

Interface conditions (33) to (45) concern regions with 
different subdomain frequencies which need Fourier series 
expansions to satisfy equalities of vector potential and 
magnetic field at each interface radius.  

Interface condition (33) represents also the continuity of 
radial flux density at the permanent magnet opening at Rr. 
According to Fourier series expansion, we obtain two 
equations as 

( ),0 ,0 05 6 lnj j r j rA A R M Rµ+ −                                   (46) 

 ( )
2

2

1
,

j

j

a
g

r
a

g

AIV R d
a

θ θ
+

−

= ∫      

, ,5 6
m m

a a
j m r j m rA R A R

π π   −   
   +                                        (47) 

( )
2

2

2
, cos

2

j

j

a
g

r j
a

g

m a
AIV R g d

a a

πθ θ θ
+

−

  = − +  
  

∫  

Interface condition (34) gives 

( )1

0

7 np
n r

np
A R

µ
− 

− 
 

                                                     (48) 

( ) ( )
2 2

1

2

1
, sin

j

j
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p
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j a

g

HII R np dθ θ θ θ
π

+

=
−

= ∑ ∫  

( )1

0

9 np
n r

np
A R

µ
− 

− 
 

                                                    (49) 

( ) ( )
2 2

1

2

1
, cos

j

j

a
g

p

rj
j a

g

HII R np dθ θ θ θ
π

+

=
−

= ∑ ∫  

Fourier series expansion of interface condition (35) between 
region II and VI at radius r2 gives 

( ),0 ,0 213 14 lnj jA A r+                                                (50) 

( )
2

2

2

1
,

j

j

b
g

j
b

g

AII r d
b

θ θ
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−

= ∫  

, 2 , 213 14
k k

b b
j k j kA r A r

π π−
+                                              (51) 
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2

2

2
, cos

2

j

j
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j j
b

g
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b b

πθ θ θ
+

−

  = − +  
  

∫  

From interface condition (36), we get 

,0

2 0

6 1j

r

A

r µ µ
− = ( )

2

2

2

1
,

j

j

b
g

j
b

g
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a θ θ θ
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∫                   (52) 

1 1

, 2 , 2
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5 6

m m
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π ππ
µ µ
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πθ θ θ

+

−

  = − +  
  

∫  

At radius Rm, Fourier series expansions of the three 
interface conditions (37) to (39) between regions I, VI and 
VIII result in 6 equations. Interface condition (37) gives 

( ) ( )
2

,0 ,0

2

1
13 14 ln ,

j
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b

g

A A R AI R d
b
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, ,13 14
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π π−
+                                            (55) 
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2
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g
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b b

πθ θ θ
+

−
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∫  

Fourier series expansion of interface condition (38) gives 

( ),0 ,015 16 lnir ir mA A R+ ( )
2

2

1
,

ir

ir

dr

m
dr

AI R d
b

β

β

θ θ
+

−

= ∫   (56) 

, ,15 16
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dr dr
ir k m ir k mA R A R

π π−
+                                           (57) 
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( )
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k dr
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dr dr

β
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πθ θ β
+

−
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∫  

Fourier series expansion of interface condition (39) gives 
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( )1 1

0

3 4np np
n m n m

np
A R A R

µ
− − −− +                                    (59) 

( ) ( )
2 2

1

2

1
, cos

j

j

b
g

p

j m
j b

g

HVI R np dθ θ θ θ
π

+

=
−

= ∑ ∫  

( ) ( )
2

1

2

1
, cos

ir
r

ir

dr

N

ir m
ir dr

HVIII R np d

β

θ

β

θ θ θ
π

+

=
−

+ ∑ ∫  

At radius Rs, Fourier series expansions of interface 
condition (40) gives 
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1
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Interface condition (41) gives 
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Fourier series expansion of interface condition (42) gives 
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Fourier series expansion of interface condition (43) gives 
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Fourier series expansion of interface condition (44) gives 
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    Fourier series expansion of interface condition (45) gives 
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∫  

Some developments of equations (46) to (71) are given in 
appendix. 

From equations (46)-(71) we can calculate the 26 
coefficients A1n, A2n, A3n, A4n, A5j,0, A6j,0, A5j,m, A6j,m, A7n, 
A9n, A11i,0, A12i,0, A11i,k, A12i,k, A13j,0, A14j,0, A13j,k, A14j,k, 
Ci,0, Ci,m, C1ir,0, C1ir,m, A15ir,0, A16ir,0, A15ir,k, A16ir,k with a 
given number of harmonics for n, m and k. 

Spoke-Type PM machine shown in Fig. 6 is a particular 
case of parallel double excitation PM machine. The analytical 
developments are the same where subregions VII and VIII are 
omitted. 

 
Fig. 6. Studied Spoke-Type PM machine. 

IV. RESULTS AND VALIDATION  

   The developed exact analytical method based on 
subdomain model for parallel double excitation and Spoke-
Type permanent magnet machines taking into account rotor 
and stator slot tooth tips and real structure of polar piece is 
used to determine open circuit, armature reaction and on load 
magnetic field distribution in the middle of the airgap. The 
main dimensions and parameters of the studied machine are 
given in Table I. Then, analytical results are verified by finite 
element method (FEM) [27]. For the FE simulations, we have 
used 92882 nodes and 184906 elements. 

In order to calculate armature reaction, on load and rotor 
double excitation magnetic field distribution, stator current 

density in slots is defined by a matrix connection between 
phase current and stator slots as  

1 0 0 1 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0 0 1 0

C

− − 
 = − − 
 − − 

   (72) 

The studied machine is fed by 120° rectangular currents and 
has an integer number of slot per pole and per phase (Table I). 
Stator current densities in slots are defined as 

[ ]0Tc
i m m

N
J C I I

S
= −                                          (73) 

where S is the area of slot, Nc the number of conductors in 
slot and Im the stator phase peak current. 

Rotor double excitation current density for one pole pair is 
defined as 

 [ ]1 1 1 1f f
f nr

f

N I
J

S
= − −                                  (74) 

where Nf is the number of conductors in slot, I f the DC 
excitation current and Sf the surface of rotor slot.  

Analytical calculation of magnetic field can be done for one 
pole pair to minimize the number of harmonics for n, k and m 
and to reduce the computation time. It should be noted that the 
number of harmonics are defined carefully and including 
proper scaling of machine model dimensions to get good 
results and avoid solution to diverge [22]. Finite element 
method which uses a meshed geometry has a limited accuracy 
related to the density of the mesh. Analytical subdomain 
model based on Fourier theory exhibits a similar problem. The 
inaccuracies of the proposed method are related to the limited 
amount of harmonics included in the solution. When the 
number of harmonic terms increase, the system of equations 
written in matrix form can be ill-conditioned and the solution 
becomes inaccurate. This problem has been reduced in our 
calculations by including proper scaling of machine model 
dimensions in radial direction for all regions 

10xc
scal realr r=                                                                 (75) 

for a given real radii of the studied machine (Table I), new 
scaled radii are given by equation (75).  

Limiting the number of harmonics for limiting 
computational time will lead to inaccurate field solutions, 
especially for PM machines where airgap length is small, PM 
subregion with high height and small thickness and high 
number of subregions with different spatial frequencies. For 
the studied parallel double excitation PM machine, the number 
of subregions is equal to 50. To obtain an accurate magnetic 
field solution, xc = 1.45 with the number of harmonics 250 for 
n and 80 for m and k. An optimum number of harmonics and 
scaling factor with limiting computational time can be found 
with using for example, different harmonics for all of the 8 
regions. Of course, the number of harmonics in the airgap and 
PM should be high but the number of harmonics in the non 
magnetic region VI can be small. 

Figs. 7 to 14 show a comparison between analytical and 
FEM open circuit, armature reaction and on load magnetic 
field distribution results in the middle of the airgap of parallel 
double excitation PM machine accounting for tooth tips and 
real structure of polar piece. The results are in excellent 
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agreement. This type of PM machines has a small magnet arc 
to pole pitch ratio (0.2) and a very high height (29.8 mm) in 
comparison with radial surface mounted and inset PM 
machines which present a small PM height and high width. 
Analytical method based on subdomain model give a very 
good accuracy even when PM subregion is deep. In Figs. 7 to 
12, radial and tangential flux density in the middle of the 
airgap is given for 3 conditions: Permanent magnets alone; 
stator currents alone and rotor excitation currents alone. The 
radial and tangential flux density distribution for on-load 
condition is shown in Figs. 13 and 14. The machine is fed by 
120° rectangular stator current and we consider the permanent 
magnets and rotor DC current acting together. Figs. 15 and 16 
show the flux lines obtained by FEM due to rotor excitation 
current and stator currents. We can observe that all analytical 
results are in very good agreement with those obtained by 
FEM. In Figs. 17 to 20, we show radial and tangential flux 
densities for on load condition in the cases where the hybrid 
PM machine has stator and rotor slots fed by current and PM 
does not exist and only stator slots are fed and PM are 
considered. Those two cases represent the contribution of 
permanent magnet and rotor excitation current to magnetic 
field on load. In control process of magnetic field in the air 
gap, current excitation can be set to zero to decrease magnetic 
field. It is important to note here that the results are obtained 
for a recoil relative permeability of permanent magnet equal to 
unity, but the method take into account the effect of non unity 
permeability. Figs. 21 to 26 show open circuit, armature 
reaction and on load radial and tangential flux density in the 
middle of airgap in integer slot winding Spoke-Type PM 
machine accounting for tooth tips and real structure of polar 
piece. All analytical results are in very good agreement with 
those obtained by FEM, which confirm the accuracy of 
analytical subdomain model in predictions of this type of 
permanent magnet machines even when a PM subregion is 
very deep with small thickness and with taking into account 
tooth tips and real structure of polar piece. Fig. 27 shows 
magnetic field on load obtained by FEM in Spoke-Type PM 
machine.  

TABLE I 
PARAMETERS OF STUDIED PARALLEL DOUBLE EXCITATION AND SPOKE-TYPE 

PERMANENT-MAGNET MOTOR 

Parameter Symbol 
Value and 

unit 

Magnet remanence (Ferrite) Br 0.4 T 
Relative recoil permeability of magnet µr 1 
Number of conductors per stator slot Nc 12 
Peak phase current Im 12.5 A 
DC excitation current I f 5 A 
Number of conductors per rotor slot Nf 10 
Number of stator slots Qs 12 
Stator slot opening width c 14° 
Rotor slot opening width cr 14° 
Number of pole pairs  p 2 
Number of rotor excitation slots  Nr 8 
External radius of rotor slot r0 40.8 mm 
Internal radius of rotor slot r1 27.8 mm 
External radius of magnet r2 40 mm 
Internal radius of stator slot r3 49 mm 
External radius of stator slot r4 58 mm 
Rotor slot opening width dr 8° 
Magnet slot opening width b 12° 
Stator slot opening width d 8° 
Radius of the external stator surface Ro 70 mm 

Radius of the stator outer surface Rs 45 mm 
Radius of the rotor inner surface at the 
magnet surface 

Rm 44.8 mm 

Radius of the rotor inner surface at the 
magnet bottom 

Rr 15 mm 

Air-gap length g  0.2 mm 
Height of a magnet hm 29.8 mm 
Height of stator slot hs 9 mm 
Stack length Lu 57 mm 
Magnet arc to pole pitch ratio 
Rotor speed 

a 
    wrm 

    0.2 
 157  rd/s 
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Fig. 7. Radial flux density due to permanent magnet alone in 

parallel double excitation PM machine  
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Fig. 8. Tangential flux density due to permanent magnet alone 

in parallel double excitation PM machine  
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Fig. 9. Radial flux density due to stator current alone in 

parallel double excitation PM machine  
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Fig. 10. Tangential flux density due to stator current alone in 

parallel double excitation PM machine  
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Fig. 11. Radial flux density due to rotor excitation current 

alone in parallel double excitation PM machine 
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Fig. 12. Tangential flux density due to rotor excitation current 

alone in parallel double excitation PM machine  
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Fig. 13. Radial flux density on load in parallel double 

excitation PM machine 

0 10 20 30 40 50 60 70 80 90
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Mechanical degrees

B
t (

T
)

 

 

FEM
Analytical

 
Fig. 14. Tangential flux density on load in parallel double 

excitation PM machine 
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Fig. 15. Magnetic field due to rotor double excitation current 
alone in parallel double excitation PM machine 

 

 
 

Fig. 16. Magnetic field on load in parallel double excitation 
PM machine  
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Fig. 17. Radial flux density due to rotor excitation and stator 
currents (on load) in parallel double excitation PM machine 
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Fig. 18. Tangential flux density due to rotor excitation and 
stator currents (on load) in parallel double excitation PM 

machine 
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Fig. 19. Radial flux density due to permanent magnet and 
stator currents (on load) in parallel double excitation PM 

machine 
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Fig. 20. Tangential flux density due to permanent magnet and 

stator currents (on load) in parallel double excitation PM 
machine 
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Fig. 21. Radial flux density due to permanent magnet alone in 

Spoke-Type PM machine  
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Fig. 22. Tangential flux density due to permanent magnet 

alone in Spoke-Type PM machine  
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Fig. 23. Radial flux density due to stator current alone in 

Spoke-Type PM machine  

0 10 20 30 40 50 60 70 80 90
-0.15

-0.1

-0.05

0

0.05

0.1

Mechanical degrees

B
t (

T
)

 

 

FEM
Analytical

 
Fig. 24. Tangential flux density due to stator current alone in 

Spoke-Type PM machine 
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Fig. 25. Radial flux density on load in Spoke-Type PM 

machine  
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Fig. 26. Tangential flux density on load in Spoke-Type PM 

machine  
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Fig. 27. Magnetic field on load in Spoke-Type PM machine 

V. CONCLUSION 

In this paper, we have proposed an improved analytical 
subdomain model for predicting open circuit, armature 
reaction and on-load magnetic field distribution in integer 
stator slot distributed winding parallel double excitation and 
Spoke-Type permanent magnet machines. The proposed 
model takes into account the rotor and stator slots tooth tips 
and the shape of polar pieces. The whole domain is divided 
into eight subregions for parallel double excitation motor and 
six subregions for Spoke-Type permanent magnet motor, 
stator semi-closed slots, rotor semi-closed slots, airgap, buried 
tangential permanent magnet and non magnetic region under 
magnet. Poisson’s and Laplace’s equations are solved 
analytically using the method of separation of variables. 
Analytical results are in excellent agreement with the ones 
obtained by FEM. From these results, we have shown the 
accuracy of analytical subdomain model to predict magnetic 
field accounting for rotor and stator tooth tips and shape of 
polar piece, even when PM subregion is deep with small 
thickness.  

APPENDIX 

    Fourier series coefficients of general solution in different 
regions of parallel double excitation and Spoke-Type 
permanent magnet machines are determined by resolution of a 
system of equations as seen above. Some of those equations 
are detailed as follows.  
From equation (46), we get 
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Equation (49) gives 
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Equation (50) gives 
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From equation (53), we have 
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Equation (55) development gives 
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From equation (57), we have 
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From equation (59), we have 
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Equation (60) development is 
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From equation (61), we have 
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From equation (63), we have 
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From equation (64), we have 
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From equation (65), we have 
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Equation (66) is reduced to 
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From equation (67), we have 
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From equation (68), we have 
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From equation (69), we have 
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Equation (70) is reduced to 
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From equation (71), we have 
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