
HAL Id: hal-00673928
https://hal.science/hal-00673928

Submitted on 24 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2D Analytical Calculation of Magnetic Field and
electromagnetic Torque for Surface-Inset Permanent

Magnet Motors
Thierry Lubin, Smail Mezani, Abderrezak Rezzoug

To cite this version:
Thierry Lubin, Smail Mezani, Abderrezak Rezzoug. 2D Analytical Calculation of Magnetic Field
and electromagnetic Torque for Surface-Inset Permanent Magnet Motors. IEEE Transactions on
Magnetics, 2012, 12 p. �10.1109/TMAG.2011.218091�. �hal-00673928�

https://hal.science/hal-00673928
https://hal.archives-ouvertes.fr


 1 

2D Analytical Calculation of Magnetic Field and Electromagnetic 
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University Henri Poincaré, Nancy, FRANCE  
 

The paper deals with a subdomain model for predicting the magnetic field distribution in surface-inset permanent-magnet motors 
with semi-closed slots under load conditions. Due to the presence of electrical current in the stator slots, a magnetic vector potential 
formulation is used. The magnetic vector potential distribution in each subdomain (air-gap, stator slots, and rotor slots with inset PMs) 
is obtained by solving two-dimensional Laplace’s and Poisson’s equations by the separation of variables method. One of the main 
contributions of the paper concerns the magnetic vector potential expression in the PMs region. Indeed, PMs are inset into the rotor 
iron which leads to solve Laplace’s equation with nonhomogeneous Neumann boundary conditions. Magnetic field distribution and 
electromagnetic torque computed with the proposed analytical method are verified with those obtained from finite element analyses. 
 

Index Terms— Analytical calculation, Magnetic field distributi on, Surface-inset permanent magnet machine, Reluctance torque.  
 

I. INTRODUCTION 

NALYTICAL models for electrical machines and actuators 
are based on simplified geometries and often consider 

infinite permeability for the soft-magnetic material. However, 
they present less computational time consuming compared to 
numerical models and provide closed-form solutions giving 
physical insight for designers. Analytical models are very 
flexible to compare rapidly different machine topologies and 
can be useful tools in the first step of design optimization 
process.  

Several models were proposed recently for computing the 
air-gap magnetic field distribution in PMs motors considering 
slotting effects. Two analytical methods are mainly developed. 
The first one is based on Schwarz-Christoffel conformal 
mapping and provides a 2-D relative permeance function to 
account for slotting effect [1]-[3]. The actual air-gap flux 
density is calculated by multiplying the relative permeance 
function by the radial flux density of a slotless motor. The 
second one, called the subdomain method, consists in solving 
directly the Maxwell’s equations in the different subdomains 
i.e. air-gap, stator slots and magnets, by the separation of 
variables method [4]-[18]. The magnetic field distribution is 
obtained in each subdomain by using boundary and interface 
conditions.  

In this paper, we present a subdomain model to calculate the 
magnetic field distribution in surface-inset PMs motors with 
semi-closed slots under load conditions (Fig. 1). The proposed 
model can be used for PMs motors with any pole and slot 
number combinations including fractional-slot machines. Due 
to the presence of electrical current in the stator slots, a 
magnetic vector potential formulation is used.  

Although some papers were published on the analytical 
calculation of the magnetic field in surface-inset PMs motors, 
none was concerned with the analysis of the magnetic field 
under load conditions. Previous analytical models deal only 

with no-load conditions. They are all based on a magnetic 
scalar potential formulation [19]-[22]. 

This paper extends the model that was presented recently by 
the authors [23] to a machine with a surface mounted 
permanent magnet rotor topology. Therefore, we focus 
essentially on the determination of the magnetic vector 
potential expression in the rotor PMs region (region k of Fig. 
1). Indeed, the magnetic vector potential formulation leads to 
solve Laplace’s equation with nonhomogeneous Neumann 
boundary conditions when the PMs are inset into the rotor 
iron.  

 

 
 
Fig. 1.  Surface-inset permanent magnet motor with semi-closed slots (p = 2 
and Q = 6). 
 

II. MOTOR GEOMETRY AND ASSUMPTIONS 

Fig.1 shows a surface-inset PMs motor with semi-closed 
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slots. The geometrical parameters are, the inside radius of the 
permanent magnets R1, the radius of the rotor R2, the inner and 
outer radii of the slot-opening R3 and R4 respectively, and R5 is 
the radius of the stator slot bottom. The opening angle of the 
PMs is α, and p is the number of pole pairs (p = 4 in fig. 1). 
The stator presents Q semi-closed slots (Q = 6 in fig. 1) with 
current density Jj in each slot. The slot-opening angle (region j 
in Fig.1) is δ and the slot isthmus angle is β (region i in Fig.1). 
The analytical model is based on the following assumptions: 

• end effects are neglected, 
• stator and rotor iron cores are infinitely permeable, 
• the PMs are radially magnetized and present a relative 
recoil permeability µr, 
• all the boundary surfaces are defined by a constant angle 
and/or a constant radius. 
 
As shown in Fig.1, the whole domain is divided into four 

types of subdomains: the 2p rotor PMs subdomains (regions k, 
k=1,2,….,2p), the air-gap subdomain (region II ), the Q stator 
slots-opening subdomains (regions i, i=1,2,….,Q) and the Q 
stator slots subdomains (regions j, j=1,2,….,Q).  

The problem is solved in 2D polar coordinates. According 
to the adopted assumptions, the magnetic vector potential has 
only one component along the z-direction and only depends on 
the r and θ  coordinates. The notations used in the paper are  

 

( , )k k zA A r eθ=
��� ���

  for the kth rotor PMs subdomain 

( , )II II zA A r eθ=
���� ���

  for the air-gap subdomain  

( , )i i zA A r eθ=
��� ���

  for the ith slot-opening subdomain 

( , )j j zA A r eθ=
��� ���

  for the jth slot subdomain 

 

where ze
���

is the unit vector in the z-direction. 

Analytical solutions for magnetic vector potential 
expressions in the air-gap (region II) and in the stator slots 
subdomains (regions i and j) were presented recently by the 
authors for a surface-mounted PMs motor [23]. Compared to 
[23], only the rotor topology is changed and this introduces 
more difficulties. Hence, in the next section, we focus only on 
the magnetic vector potential calculation in the PMs rotor 
subdomain (region k).  

 

III.  ANALYTICAL SOLUTION OF MAGNETIC FIELD IN THE PMS 

REGION 

The k-th permanent magnet subdomain is shown in Fig. 2. It 
is delimited by the radii R1 and R2 and by the angles θk and 

θk+α. In a frame linked to the stator, the angular position of 
the k-th PMs region is defined as 

 

2k
k

p

α πθ ∆= − + +   with 1,2,....2k p=  (1) 

where ∆ is the mechanical position of the rotor. 

 
Fig. 2.  k-th permanent magnet subdomain. 

A. Problem Formulation 

The magnetic field in a permanent magnet satisfies the basic 
equations of magnetostatics 

 

0kB∇ ⋅ =
�� ���

    (2) 

0kH∇× =
�� ����

    (3) 

 

where kB
���

and kH
����

are respectively the magnetic flux density 

and the magnetic field vectors in the region k. 
The magnetic flux density can be written in terms of the 

magnetic vector potential kA
���

as 

 

k kB A= ∇×
��� �� ���

    (4) 

 
Modern permanent magnet materials (NdFeB or SmCo) 

present a linear second quadrant characteristic such as 
 

0 0k r k kB H Mµ µ µ= +
��� ���� ����

   (5) 

 
where µ0 is the permeability of air, µr is the relative recoil 

permeability, and kM
����

 is the residual magnetization vector of 

region k. Equation (3) and (5) are combined to give 
 

0k kB Mµ∇× = ∇×
�� ��� �� ����

   (6) 

 

Using (4) and choosing the Coulomb gauge ( 0kA∇ ⋅ =
�� ���

), 

(6) leads to the Poisson equation  
 

2
0k kA Mµ∇ = − ∇×

��� �� ����

   (7) 

 
If we consider that the permanent magnets are radially 

magnetized with a uniform residual magnetization, the 
residual magnetization vector in region k can be written as 

 

0

( 1)k r
k r

B
M e

µ
= −

���� ���

    with     k = 1,2,….,2p  (8) 
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where Br is the remanence of the magnets and re
���

 the unit 

vector in the r-direction. This reduces the Poisson equation (7) 
to a Laplace equation  
 

2 0kA∇ =
���

   (9) 

 
The magnetic vector potential has an unique component in 

the z-direction, then (9) becomes  
 

2 2

2 2 2

1 1
0k k kA A A

r rr r θ
∂ ∂ ∂

+ + =
∂∂ ∂

  (10) 

 

B. Boundary conditions  

The tangential component of the magnetic field along the 
lateral sides and the bottom of the magnets (iron boundaries) 
has to be zero because of the infinite permeability for the rotor 
iron core. 

 

0kH n× =
���� � �

    (11) 

 

where n
�

 is the unit vector  normal to the iron boundaries. 
 From the constitutive relations (5) and (8), the boundary 

conditions for the k-th PMs subdomain written in terms of 
magnetic vector potential are given by 

 

( 1)
k

kk
r

A
r B

θ θθ =

∂
= −

∂
   (12) 

( 1)
k

kk
r

A
r B

θ θ αθ = +

∂
= −

∂
   (13) 

1

0k

r R

A

r =

∂
=

∂
    (14) 

 
Note that the Neumann boundary conditions (12) and (13) are 
not homogeneous (not equal to zero) and depend on the r 
coordinate. 

The continuity condition between the k-th PMs region and 
the air-gap region leads to 

 

2 2( , ) ( , )k IIA R A Rθ θ=    (15) 

 
where AII(r,θ) is the magnetic vector potentials in the air-gap 
which is given by (24) in [23]. 

 

C. Solution of Laplace’s Equation with Nonhomogeneous 
Neumann Boundary Conditions 

The k-th PMs subdomain with its associated boundary 
conditions is shown in Fig. 3. We have to solve the Laplace 
equation (10) with nonhomogenous Neumann boundary 
conditions (12) and (13). 

 
Fig. 3.  PMs subdomain (region k) with its boundary conditions. 

 
In the separation of variables method, homogeneous 

boundary conditions are necessary to determine the 
eigenvalues [25]. Hence, problems with nonhomogeneous 
boundary conditions need to be transformed to Poisson’s 
equation, with homogeneous boundary conditions. 

Using the principle of superposition, the magnetic vector 
potential Ak(r,θ) can be expressed as a sum of two functions 

 
( , ) ( , ) ( , )k k kA r U r V rθ θ θ= +   (16) 

 
 The function Uk(r,θ) is chosen to satisfy the 

nonhomogeneous boundary conditions (12) and (13) 
 

( , ) ( 1)kk rU r r Bθ θ= −    (17) 

 
From (16) and (17), Laplace’s equation (10) becomes 
 

2 2

2 2 2

1 1 1
( 1)kk k k

r
V V V

B
r r rr r

θ
θ

∂ ∂ ∂
+ + = − −

∂∂ ∂
  (18) 

 
with homogeneous boundary conditions 
 

0
k

kV

θ θθ =

∂
=

∂
          0

k

kV

θ θ αθ = +

∂
=

∂
 (19) 

 
It is now possible to use the classical method of separation 

of variables to solve (18) with homogeneous boundary 
conditions (19). Eigenvalues and eigenfunctions of the 
homogeneous problem are given by [16] 

 
2

m
mπλ
α

 =  
 

 with 0,1,2,3,.....m =   (20) 

( ) cos ( )km k
mπΘ θ θ θ
α

 = − 
 

  (21) 
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The analytic series solution can be written as 
 

( )

( )

0 0

1

( 1)
( , ) ln 2

2

cos

k
k k r

k k

m m
k k k
m m m k

m

B
V r a b r r

m
        a r b r rK

π π
α α

θ θ α

π θ θ
α

∞ −

=

−
= + − +

    + + − −     
∑

(22) 

 

where 0
ka , 0

kb , k
ma  and k

mb  are arbitrary constants and kmK  is 

defined as 

( )
2

2

2 ( 1) 1 ( 1)

( ) 1

k m
rk

m

B
K

m
m

α

ππ
α

− − −
=

   −     

  (23) 

Substituting (17) and (22) into (16) and taking into account 
the boundary conditions (14) and the interface condition (15), 
the general solution of the magnetic vector potential in region 
k can be written as 

 

( )

( )

0

/ 1

/ 2 11

1

11

( , ) ( 1)
2

( , )
cos

( , )

cos

k k
k r k

k m
m k

mm

m

k
m k

m

A r c r B

r R m
         c

R R

m R r m
        K r

R

π α

π α

π
α

αθ θ θ

Ρ π θ θ
Ρ α

π π θ θ
α α

∞

=

−∞

=

 = + − − − 
 

 + − 
 

 
    − + −    

   
 

∑

∑

(24) 

 

where 0
kc  and k

mc  are new integration constants and 

1
1 1

( , )

m m

m
r r

r R
R R

π π
α α

π αΡ
−

   
= +   
   

  (25) 

 

The integration constants 0
kc and k

mc  are determined using a 

Fourier series expansion of the air-gap magnetic vector 

potential ( )2,IIA R θ  (equation (24) in [23]) over the interval 

[θk, θk+α ]. 
 

0 2
1

( , )
k

k

k
IIc A R d

θ α

θ

θ θ
α

+

= ∫     (26) 

2
1 1

2
2

2
2

( , )cos ( )
k

k

m

k k
m m

II k

R m R m
c K R

R

m
                  A R d

π
α

θ α

θ

π π
α α

πθ θ θ θ
α α

+

 
   = +    

   
 

 + − 
 ∫

 (27) 

Expressions of the coefficients 0
kc ,  and k

mc  are given in the 

appendix. 

The radial and tangential flux densities rkB and kBθ  in the 

PMs regions are deduced from the magnetic vector potential 
expression (24) by 

 

( , ) ( , )r
k k r kB B r e B r eθ

θθ θ= +
��� ��� ���

  (28) 

with 
1r k

k
A

B
r θ

∂
=

∂
       k

k
A

B
r

θ ∂
= −

∂
  (29) 

 
Their expressions are  
 

( )

( )

/ 1

/ 2 11

1

11

( , ) ( 1)

( , )
sin

( , )

sin

r k
k r

k m
m k

mm

m

k
m k

m

B r B

r Rm m
         c

r R R

m Rm r m
         K r

r R

π α

π α

π
α

θ

Ρπ π θ θ
α Ρ α

ππ π θ θ
α α α

∞

=

−∞

=

= −

 − − 
 

 
    + + −    

   
 

∑

∑

 

(30) 

( )

( )

/ 1

/ 2 11

2
1

11

( , ) ( 1)
2

( , )
cos

( , )

1 cos

k
k r k

k m
m k

mm

m

k
m k

m

B r B

r Rm m
         c

r R R

Rm r m
         K

r R

θ

π α

π α

π
α

αθ θ θ

Επ π θ θ
α Ρ α

π π θ θ
α α

∞

=

−∞

=

 = − − − − 
 

 − − 
 

 
     + − −     

     
 

∑

∑

 

(31) 
where 

1
1 1

( , )

m m

m
r r

r R
R R

π π
α α

π αΕ
−

   
= −   
   

  (32) 

 

D. Integration Constants for the Air-gap Region  

Compared to the problem linked to the machine with 
surface-mounted permanent-magnets [23], if the boundary 
condition for r = R3 are the same and lead to the same 

coefficient expressions IInb  and II
nd , the ones on r = R2 must 

be totally reconsidered in the case of the present machine. The 

constants II
na  and II

nc  have to be re-written as  

 

2

2

1

2 1
cos( )

2

k

k

p
II k
n

rk r R

A
a n d

r

θ α

θ

θ θ
π µ

+

= =

∂
=

∂∑ ∫  (33) 

2

2

1

2 1
sin( )

2

k

k

p
II k
n

rk r R

A
c n d

r

θ α

θ

θ θ
π µ

+

= =

∂
=

∂∑ ∫  (34) 

 
where µr is the relative permeability of the magnets. The 

coefficients II
na  and II

nc  are developed in the appendix. 



 5 

IV.  ANALYTICAL RESULTS AND COMPARISON WITH FINITE 

ELEMENT CALCULATION 

In order to validate the proposed model, the analytical 
results are compared with those obtained from 2D FEM 
simulations [24] when the same assumptions are used. The 
mesh in the different regions is refined until convergent results 
are obtained. The flux density in the air-gap, in the PMs, and 
in the slot-opening and slots regions are computed with a 
finite number of harmonic terms NI and Ni,j,k as it is indicated 
in Table I. 

As an example of surface-inset PMs machine, we 
investigate here the performances of a three-phase fractional-
slot PMs motor. This machine presents 4-pole/15-slot 
corresponding to a number of slot per pole and per phase equal 
to q = 1.25. The geometrical parameters used in the simulation 
studies are given in Table I. 

This fractional slot machine has a double-layer winding 
with a coil pitch equals to 3 slots. Fig. 4 shows the windings 
distribution in the stator slots.  

The corresponding connecting matrix that represents the 
stator windings distribution in the slots is  

 
 

2 1 0 1 2 0 0 1 1 0 0 1 1 0 0

[ ] 0 1 1 0 0 2 1 0 1 2 0 0 1 1 0

0 0 1 1 0 0 1 1 0 0 2 1 0 1 2

C

− − − − 
 = − − − − 
 − − − − 

  

 (35) 
 
 

 
Fig. 4. Double-layer windings distribution for a three phases machine with 15 
slots and p = 2 (q = 1.25). 

 
 

TABLE I 
PARAMETERS OF THE SURFACE-INSET  PMS  MACHINE 

Symbol Quantity value 

R1 Inner radius of the PMs 3.2 cm 
R2 Radius of the rotor surface 4 cm 

R3 Stator bore radius 4.1 cm 
R4 Outer radius of the slot-opening 4.3 cm 
R5 Outer radius of the slot  5.3 cm 
L Axial length  20 cm 
δ Slot-opening angle 12° 
β Slot isthmus angle 6° 
α PMs opening angle 45° 
Br Remanence of the permanent magnets 1.2 T 
µr Relative recoil permeability 1.05 
p Pole-pairs number 2 
Q Number of stator slots 15 
Jrms RMS current density 4 A/mm² 
NI Number of harmonics used for  magnetic field 

calculation in the air-gap domain 
100 

Ni,j,k Number of harmonics used for  magnetic field 
calculation in the slot, slot-opening and PMS 
domains 

50 

 

1) Results for No-Load Condition (Br = 1.2T and Jrms=0 
A/mm²) 

Figure 5 shows the magnetic flux lines in the machine under 
no-load condition. The radial and tangential components of the 
flux density in the middle of the air-gap (at 4.05r cm= ) are 
shown in Fig. 6. Excellent agreement is obtained between 
analytical and FE results. One can see clearly the distortion of 
the radial component of the flux density at the location of the 
slot-opening placed in front of the magnets. For no-load 
condition, we can observe that the air-gap flux density is null 
in front of the rotor saliency. 

Using (30) and (31), the radial and tangential components 
of the flux density in the 1st PMs region (k=1; at 3.6r cm=  
and 22.5°< θ <67.5°) are calculated and plotted in Fig. 7. In 
accordance with the boundary conditions (12) and (13) used in 
the analytical model, one can observe that the radial 
component of the magnetic field at the sides of the magnet is 
equal to the remanence Br. Due to the demagnetization effect 
(air-gap and slots), one can observe on Fig. 7a that the radial 
component of the flux density is somewhat lower than the 
remanence of the magnet. Fig. 7b shows that it is difficult to 
predict accurately the tangential component of the flux density 
with FEM [24] when PMs are inset into the rotor iron, despite 
using a very fine mesh size.  

The analytical determination of the back-EMF waveform as 
a function of the rotor position for nturn=1 is presented in Fig. 
8. The computation is done for a rotating speed Ω = 1500 rpm. 
The maximum value of the back-EMF is around 10V. The 
analytical and numerical predictions are close to less than 1%.  

The cogging torque is given in Fig.9. The torque is 
evaluated at consecutive rotor positions using Maxwell stress 
tensor method. The angular period of the cogging torque 
corresponds to the Least Common Multiple of 2p and Q 
giving 360°/LCM(Q,2p)=6°. It can be seen that the proposed 
analytical model can predict the cogging torque with an 
excellent precision. 

 

 
 
Fig. 5.  Magnetic flux distribution for no-load condition obtained with FEM. 
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(a) 

 
(b) 

 
Fig. 6. Radial (a) and tangential (b) components of the flux density for no load 
condition in the middle of the air-gap. 
 
 

 
 
Fig. 8. Per turn phase back-EMF waveform. 
 
 

 
(a) 

 
(b) 

 
Fig. 7. Radial (a) and tangential (b) components of the flux density for no load 
condition in the 1st PMs region (k=1) at r=(R1+R2)/2 . 

 
 

 
 
Fig. 9. Cogging torque waveform. 
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2) Armature Reaction Field (Br = 0T and Jrms=4A/mm²) 
Figure 10 shows the flux distribution in the machine caused 

by the armature reaction acting alone. The magnets are 
removed and replaced by air. The three-phase stator windings 
are fed with electrical current such as Ia= I  and Ib = Ic =-I/2 
corresponding to AC operation. Fig. 11 and Fig. 12 compare 
the FE and analytically predicted flux density waveforms in 
the air-gap and PM regions. Fig. 12a shows that the radial 
component of the flux density is now equal to zero at the iron 
boundaries.  

Due to its rotor saliency (the reactance Xd is smaller than 
Xq), this motor develops a reluctance torque. Fig. 13 shows the 
comparison between analytical and FE predictions for the 
static reluctance torque. As expected, the reluctance torque 
reaches its maximum value for an angle of about 22.5°. Fig. 
14 shows the electromagnetic torque waveform versus rotor 
position for a control angle giving the maximum torque. At 
each rotor position, the current values in the different slots are 
updated to have a sinusoidal current waveform. It can be seen 
that the studied machine produces an average reluctance 
torque of about 5.5 Nm. The proposed analytical model can 
predict the reluctance torque with a very good precision.  

 

 
(a) 

 
(b) 

Fig. 11. Flux density distribution for radial (a) and tangential (b) components 
of armature reaction field in the middle of the air-gap for Jrms=4A/mm², Ia= I  
and Ib = I c =-I/2. 

 
 
Fig. 10.  Armature reaction magnetic flux distribution obtained with FEM for 
Jrms=4A/mm² (the magnets are removed). 
 

 
(a) 

 
(b) 

 
Fig. 12. Flux density distribution for radial (a) and tangential (b) components 
of armature reaction in the 1st PMs region (k=1) at r=(R1+R2)/2. 
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Fig. 13. Static torque versus rotor position due to slots currents alone 
(reluctance torque) for Jrms=4 A/mm². 

 
Fig. 14. Electromagnetic torque versus rotor position due to slots currents 
alone (reluctance torque) for Jrms=4A/mm². 

 
3) Results for Load Condition (Br =1.2T,Jrms=4A/mm²) 

Figure 15 shows the flux distribution due to both PMs and 
armature current (load condition). The three-phase stator 
windings are fed so that Ia= I  and Ib = Ic =-I/2 corresponding 
to AC operation (Jrms = 4A/mm2). The radial and tangential 
components of the flux density in the air-gap and magnet 
regions are respectively shown in Fig. 16 and Fig. 17. The 
influence of the armature reaction on both radial and 
tangential components of the flux density waveforms is 
noticeable in comparison with the no-load results of Fig. 6 and 
Fig. 7.  

The static torque versus mechanical rotor position is 
presented in Fig. 18. Maximum torque occurs at an angle of 
about 60°. It is well-known that for a surface-inset PMs motor, 
the maximum torque occurs at an angle greater than 45°. 
Surface-inset PMs motors produce not only permanent 
magnets torque component (for which the maximum torque 
value occurs at an angle of 45°) but also reluctance torque 
component as shown in Fig. 13. 

 
 
Fig. 15.  Magnetic flux distribution for load condition. 
 
 

 
(a) 

 
(b) 

 
Fig. 16. Radial (a) and tangential (b) flux density distribution in the middle of 
the air-gap for load condition. 
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(a) 

 
(b) 

Fig. 17. Flux density distribution for radial (a) and tangential (b) component in 
the 1st PMs region (k=1) at r=(R1+R2)/2 for load condition. 
 

Figure 19 shows the electromagnetic torque waveform 
versus rotor position. At each rotor position, the current values 
in the different slots are updated to have a sinusoidal current 
waveform. It can be seen that the studied machine produces an 
average torque of about 26 Nm. The torque ripples are due to 
cogging torque (Fig. 9) and reluctance torque (Fig. 14). If we 
compare Fig. 14 and Fig. 19, one can observe that the mean 
value of the reluctance torque is about 20% of the total torque. 
Once again, the analytical and the FEM results are in good 
accordance. 

In order to have a good precision in the analytical torque 
evaluation, the number of harmonic terms in each region 
should be chosen carefully. In our case, a number of harmonic 
terms equal to NI = 30 for the air-gap region and Ni,j,k=10 for 
the slots, slot-opening and PMs regions gives a good 
precision. For a given rotor position, the computation time is 
about 70 ms with the analytical model whereas the linear FEM 
takes about 3 s for a mesh of 33500 elements. The analytical 
computations being much faster, the presented model can 
advantageously be used in a preliminary design of surface-
inset PMs motors. 

 
 
Fig. 18. Static torque versus rotor position for Jrms=4A/mm². 

 
 
Fig. 19. Electromagnetic torque versus rotor position for Jrms=4A/mm². 

 
4) Model Limitations due to Magnetic Saturation 

In order to study the model limitations due to magnetic 
saturation of the iron parts, we have compared the maximum 
torque value obtained with the analytical model (which 
considers infinite permeability of the iron parts) with the one 
obtained by nonlinear finite elements analysis [24]. The B(H) 
characteristic used in FE simulations is shown in Fig. 20 (knee 
point of around 1.6T). This curve corresponds to M-27 steel 
given in the FEMM software [24]. 

Figure 21 shows the maximum torque as a function of the 
current density obtained with the analytical model and with FE 
simulations (the geometrical parameters are those given in 
Table I). In order to show the effect of the magnetic saturation, 
we have considered different values for the current density in 
the slots (Jrms = 2 A/mm2 to Jrms = 12 A/mm2). As expected, 
the maximum torque obtained with nonlinear FE analysis is 
below the analytical prediction especially for large value of 
the current density.  

Nevertheless, as it can be observed in Fig. 21, the infinite 
permeability assumption of the stator/rotor back iron has a low 
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impact on the accuracy of the torque determination for the 
studied machine working in normal conditions (error less than 
4% for for Jrms ≤ 6 A/mm2). This is due to the fact that PM 
machines usually have a large air-gap (1mm for the studied 
machine) and that the relative permeability of magnets is very 
close to unity (µr = 1.05). Therefore the reluctance of the 
effective air-gap is considerably higher compared to that of the 
stator and rotor back-iron. So, the stator teeth are not highly 
saturated, except for large values of the current density. 

V. CONCLUSION 

In this paper, an analytical approach to calculate the 
magnetic field distribution in surface-inset PM motors, 
including both stator slotting effects (semi-closed slots) and 
rotor saliency, was developed. The proposed model is 
sufficiently general to be used for any poles and slots 
combination including fractional slot winding machines. Flux 
density distribution, back-EMF and electromagnetic torque 
computations for no-load and load conditions are favorably 
compared to those issued from finite element simulations. 

As the analytical model is less computational time 
consuming than FEM, it can advantageously be used in the 
initial design and optimization of surface-inset PMs motors. 

 

 
 
Fig. 20. B(H) characteristic of the stator/rotor back iron used in nonlinear FE 
simulations. 

 
 
Fig. 21. Maximum torque versus current density computed with analytical 
model and nonlinear FE simulations. 

APPENDIX 

For the determination of the integration coefficients in the 
different regions, we have to calculate integrals of the form 
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The calculations of the previous integrals lead to the 
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The development of (A.3) and (A.4) gives  
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• Expressions of the coefficients IIna , II
nb , II

nc  and II
nd  for the 

air-gap subdomain 
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where k
mK  is given by (23). 

The coefficient II
nb  and II

nc  defined in [23] are given by 
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where Q is the number of stator slots. 
 
 

• Expressions of coefficients 0
kc  and k

mc  for the PMs 

subdomain : 
The calculation of (26) and (27) yields to the following 

linear relations between the integration constants in the PMs 
and air-gap subdmains 
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• Expression of coefficients 0
ia , 0

ib , i
ka  and i

kb  for the ith 

slot-opening subdomain 
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where Jj  is the current density in the slot j. 
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• Expression of the coefficient jma  for the jth slot subdomain 
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We have to solve a system of linear equations whose 
dimension is equal to the number of unknowns. By rewriting 
the above equations in matrix and vectors format, a numerical 
solution can be found thanks to mathematical software 
(Matlab). 
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