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2D Analytical Calculation of Magnetic Field and Electomagnetic
Torque for Surface-Inset Permanent Magnet Motors

Thierry Lubin, Smail Mezani, and Abderrezak Rezzoug

Groupe de Recherche en Electrotechnique et Elegtrerde Nancy,
University Henri Poincaré, Nancy, FRANCE

The paper deals with a subdomain model for predictig the magnetic field distribution in surface-insetpermanent-magnet motors
with semi-closed slots under load conditions. Duetthe presence of electrical current in the statoslots, a magnetic vector potential
formulation is used. The magnetic vector potentiadlistribution in each subdomain (air-gap, stator slt¢s, and rotor slots with inset PMs)
is obtained by solving two-dimensional Laplace’s ah Poisson’s equations by the separation of variabkdemethod. One of the main
contributions of the paper concerns the magnetic \wor potential expression in the PMs region. IndeedPMs are inset into the rotor
iron which leads to solve Laplace’s equation with omnhomogeneous Neumann boundary conditions. Magnetfeeld distribution and
electromagnetic torque computed with the proposedralytical method are verified with those obtained fom finite element analyses.

Index Terms— Analytical calculation, Magnetic field distributi on, Surface-inset permanent magnet machine, Reluatae torque.

with no-load conditions. They are all based on aymetic
scalar potential formulation [19]-[22].
ANALYTICAL models for electrical machines and actuators This paper extends the model that was presentedtigdy
are based on simplified geometries and often censidthe authors [23] to a machine with surface mounted
infinite permeability for the soft-magnetic matérilowever, permanent magnet rotor topology. Therefore, we docu
they present less computational time consuming emetpto essentially on the determination of the magnetictore
numerical models and provide closed-form solutignsng potential expression in the rotor PMs region (radiof Fig.
physical insight for designers. Analytical modelse avery 1). Indeed, the magnetic vector potential formolatieads to
flexible to compare rapidly different machine topgies and solve Laplace’s equation with nonhomogeneous Neuaman
can be useful tools in the first step of designimigation boundary conditions when the PMs are inset into rtiter
process. iron.

Several models were proposed recently for compuitireg
air-gap magnetic field distribution in PMs motomnsidering i
slotting effects. Two analytical methods are maitdyeloped.
The first one is based on Schwarz-Christoffel confd
mapping and provides a 2-D relative permeance iomdb
account for slotting effect [1]-[3]. The actual -giap flux
density is calculated by multiplying the relativermeance
function by the radial flux density of a slotlesotor. The
second one, called the subdomain method, consistslving
directly the Maxwell’'s equations in the differentbslomains
i.e. air-gap, stator slots and magnets, by theratipa of
variables method [4]-[18]. The magnetic field distition is
obtained in each subdomain by using boundary atetfate
conditions.

In this paper, we present a subdomain model taitzke the
magnetic field distribution in surface-inset PMstore with
semi-closed slots under load conditions (Fig. he Pproposed
model can be used for PMs motors with any pole slot
number combinations including fractional-slot ma&s. Due
to the presence of electrical current in the staflots, a
magnetic vector potential formulation is used.

Although some papers were published on the analytic
calculation of the magnetic field in surface-inBé&lls motors,
none was concerned with the analysis of the magiietid Fig. 1._ Surface-inset permanent magnet motor géimi-closed slotsp(= 2

" . . andQ = 6).
under load conditions. Previous analytical modedsl cbnly

|I. INTRODUCTION
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Digital Object Identifier inserted by IEEE Fig.1 shows a surface-inset PMs motor with semsedo



slots. The geometrical parameters are, the insideis of the
permanent magneR, the radius of the rotd®,, the inner and
outer radii of the slot-opening andR, respectively, an®s is
the radius of the stator slot bottom. The openingle of the
PMs isa, andp is the number of pole pairp € 4 in fig. 1).
The stator present@ semi-closed slots) = 6 in fig. 1) with
current densityj; in each slot. The slot-opening angle (region
in Fig.1)is ¢ and the slot isthmus anglefregioni in Fig.1).
The analytical model is based on the following agstions:

« end effects are neglected,

« stator and rotor iron cores are infinitely pernieab

« the PMs are radially magnetized and present divela

recoil permeability,,

« all the boundary surfaces are defined by a cohstagle

and/or a constant radius. Fig. 2. k-th permanent magnet subdomain.

A. Problem Formulation

The magnetic field in a permanent magnet satisfiedasic
equations of magnetostatics

As shown in Fig.1, the whole domain is divided ifiooir
types of subdomains: tt&p rotor PMs subdomains (regioks
k=1,2,....2p), the air-gap subdomain (regidh), the Q stator
slots-opening subdomains (regiond=1,2,....Q) and theQ .
stator slots subdomains (regigng=1,2, ....Q). OB, =0 2

The problem is solved in 2D polar coordinates. Adow ﬁxﬁ; =0 3)
to the adopted assumptions, the magnetic vect@ngiat has
only one component along tialirection and only depends on

ther and@ coordinates. The notations used in the paper are where B, and H, are respectively the magnetic flux density

and the magnetic field vectors in the region
The magnetic flux density can be written in ternfsthe

A =A(r,0)e, for thekth rotor PMs subdomain -

. _ . . magnetic vector potentiad as

A=A (r,0)e for the air-gap subdomain

i: A(r,B)ei for theith slot-opening subdomain E: — EXT’-\: @)
A =A(r0)e for thejth slot subdomain

Modern permanent magnet materials (NdFeB or SmCo)

— . . . N present a linear second quadrant characteristit @sic
where g, is the unit vector in the-direction.

Analytical solutions for magnetic vector potential — — —
= +

expressions in the air-gap (regidin and in the stator slots Be = Hokly Hic * HoMi. )
subdomains (regionsandj) were presented recently by the ) B o ) )
authors for a surface-mounted PMs motor [23]. Carghao where i, is the permeability of airy, is the relative recoil
[23], only the rotor topology is changed and tmgdduces permeability, andM, is the residual magnetization vector of
more difficulties. Hence, in the next section, weus only on regionk. Equation (3) and (5) are combined to give
the magnetic vector potential calculation in the sPkétor
subdomain (regioR).

OxB, = g 0x My 6)
ll. ANALYTICAL SOLUTION OF MAGNETIC FIELD IN THE PMS Using (4) and choosing the Coulomb gauder, =0),
REGION (6) leads to the Poisson equation
Thek-th permanent magnet subdomain is shown in Fig. 2. | - -
is delimited by the radiR; andR, and by the angle& and DZA( =—UpOxM, ©)
G+a. In a frame linked to the stator, the angular positbf
thek-th PMs region is defined as If we consider that thgpermanent magnets are radially
magnetized with a uniform residual magnetizatiohge t
g = _%+k_rr+A with k=12,..2 (1) residual magnetization vector in regikoan be written as
p
where4 is the mechanical position of the rotor. M, = (-1 Ee—r with k=1,2,....2p 8)

Ho



where B; is the remanence of the magnets @dthe unit

vector in ther-direction. This reduces the Poisson equation (7)

to a Laplace equation

0%A =0 (9)

The magnetic vector potential has an unique compoine

the z-direction, then (9) becomes

2 2
6A<+16Ak+i6 A‘:0 (20)
oz ro  r?96?

B. Boundary conditions

The tangential component of the magnetic field gltme
lateral sides and the bottom of the magnets (irmmndaries)
has to be zero because of the infinite permealfdityhe rotor
iron core.

H,xn=0 (12)

wheren is the unit vector normal to the iron boundaries.
From the constitutive relations (5) and (8), treufdary

R; R,
Fig. 3. PMs subdomain (regié with its boundary conditions.

In the separation of variables method, homogeneous
boundary conditions are necessary to determine the
eigenvalues [25]. Hence, problems with nonhomogeseo
boundary conditions need to be transformed to Boiss
eqguation, with homogeneous boundary conditions.

Using the principle of superposition, the magnetictor

conditions for thek-th PMs subdomain written in terms OfpotentiaIAk(r,e) can be expressed as a sum of two functions
magnetic vector potential are given by

A(r,8)=U,(r.8)+V,(r.0) (16)
0
a_pg =r(-)*B, (12) The function Uyr,6) is chosen to satisfy the
=6 nonhomogeneous boundary conditions (12) and (13)
0A K
— =r(-1)“B (13)
00 |5g 0 r U, (r,0) =r (-1)B,8 (17)
0A _ , .
o =0 (14) From (16) and (17), Laplace’s equation (10) becomes
r r=Ry
0V, 10V, , 10%, _ 1
Note that the Neumann boundary conditions (12) (a8) are 3 2k e ark +— ang = —r—(—l)k B & (18)
not homogeneous (not equal to zero) and depenchem t ' '
coordinate. with homogeneous boundary conditions
The continuity condition between ttketh PMs region and 9 y
the air-gap region leads to
oVy oVy _
—= = —= =0 (19)
A(R.,0)= A (R,0) (15) 08 |p-g, 08 |p-g +a

whereA(r,0) is the magnetic vector potentials in the air-gap It is now possible to use the classical methodeplasation
which is given by (24) in [23]. of variables to solve (18) with homogeneous boundar
conditions (19). Eigenvalues and eigenfunctions tbé

C. Solution of Laplace’s Equation with Nonhomogeneous homogeneous problem are given by [16]

Neumann Boundary Conditions

The kth PMs subdomain with its associated boundary /‘m:(mjz with 20123 . 20)
conditions is shown in Fig. 3. We have to solve thglace a
equation (10) with nonhomogenous Neumann boundary mir
conditions (12) and (13). Gm(6) = 00{7 6-6 )j (21)



The analytic series solution can be written as

V, (r,8)=af +bInr-

+i[ & r%ﬂ+ d;r_%ﬂ— rKﬁJco{m?”(H—Hk)j

m=1

1)2k (29 +a )
(22)
with

where a¢,b¥, af

defined as

and b¥ are arbitrary constants arid, is

. 2a(-1\B, (1— c 1}“)

2]

Substituting (17) and (22) into (16) and takingpimiccount
the boundary conditions (14) and the interface tard(15),
the general solution of the magnetic vector poéiii region

(23)

The radial and tangential flux densiti& and BY in the

PMs regions are deduced from the magnetic vecttengial
expression (24) by

B =B (1.0)e + H(r.0)g (28)
r - 10A o _ _OA
B Y B or (29)

Their expressions are

B (r,6) = (-1)B,

mﬂ Pmﬂ/a(r Rl)
ar A ﬂ/a(Rz Rl)

—Z sm( - (6- Hk)j

mr

> miT
+; IQ‘;E

) m(o-0)

(30)

k can be written as

(r,6) = & +r(-1)*B, (9—9 —ﬂj
A g Bf(r.e):—(—l)ka{e—ek—%)

> ¢ Proma (1 R) mr

+ (#/—COS(—(Q—QK)J (24) m]T E (r Rl) nvr

i (R R) N _z ar Pmma(R R) { (6-6, )

v m=1 mrr/a \"' 21

_ N k r+m[Lj a co{m—r[ 6-6, j 7

; Kn a \R a (6-6) +Z K<l 1 [ J (é] co{%(ﬁ—@k))
¢ . | (31)

where ¢y and ¢y, are new mtegrit;on const::ts and where
(rYa (r)a o “a
R DI KR RN A N8 e

The integration constanisi and c¥ are determined using a
Fourier series expansion of the air-gap magnetictove
potential A, (R,,8) (equation (24) in [23]) over the interval

D. Integration Constants for the Air-gap Region

Compared to the problem linked to the machine with
surface-mounted permanent-magnets [23], if the dann

[4 G+al. condition forr = R; are the same and lead to the same
s coefficient expressions) and d, , the ones om = R, must
be totally reconsidered in the case of the presamhine. The
=2 j A (R.6) & (26) yre P
constantsa andc’ have to be re-written as
mir
« _ k| R RYe _ (mm) 2 2% 1 ap
w=Kn o \R,) Tl o al=—> [ — cos(9)g  (33)
27T~ M Or | _
(27) k=1 g T r=Ry
61<+a 2p &ta
mir
+— I A 89)00{— (9-@)) a R LA Ghme)de  (34)
a 27Tk_1 /jr a I’:Rz

Expressions of the coefﬂuent%, and cX are givenin the

appendix. where 4, is the relative permeability of the magnets. The

coefficientsa)! andc are developed in the appendix.



IV. ANALYTICAL RESULTS AND COMPARISON WITH FINITE
ELEMENT CALCULATION

In order to validate the proposed model, the aitallyt
results are compared with those obtained from 2IMF
simulations [24] when the same assumptions are.UBkeel
mesh in the different regions is refined until cergent results
are obtained. The flux density in the air-gap,hie PMs, and
in the slot-opening and slots regions are computét a
finite number of harmonic terms, andN;, as it is indicated
in Table I.

1) Results for No-Load Condition (B 1.2T and 4,<=0
A/mmg2)
Figure 5 shows the magnetic flux lines in the maehinder

gho-load condition. The radial and tangential conguas of the

flux density in the middle of the air-gap (at=4.0cm) are
shown in Fig. 6. Excellent agreement is obtainetiveen
analytical and FE results. One can see clearlyigtertion of
the radial component of the flux density at theatamn of the
slot-opening placed in front of the magnets. Forloam
condition, we can observe that the air-gap fluxsitgris null

As an example of surface-inset PMs machine, w# frontof the rotor saliency.

investigate here the performances of a three-pfrasgonal-

Using (30) and (31), the radial and tangential congmts

slot PMs motor. This machine presents 4-pole/16-si@f the flux density in the 1PMs region k=1; at r =3.6cm
Corresponding to a number of slot per p0|e anquase equa| and 22.5°<9 <67.5°) are calculated and plOtted n Flg 7. 1n

to q = 1.25. The geometrical parameters used in thalatian
studies are given in Table I.

This fractional slot machine has a double-layer divig
with a coil pitch equals to 3 slots. Fig. 4 shoWws tindings
distribution in the stator slots.

The corresponding connecting matrix that represéms
stator windings distribution in the slots is

21 0-1-200 1 1 0 0-1-1 0

[C]=jl0 1 -1 0 0 2 1 0 -1-20 0 1 1

00 11 00-1-120 0 2 1 0-1-
(39)

accordance with the boundary conditions (12) a) (&ed in
the analytical model, one can observe that the atadi
component of the magnetic field at the sides ofrttagnet is
equal to the remanen@;. Due to the demagnetization effect
(air-gap and slots), one can observe on Fig. 7attiearadial
component of the flux density is somewhat lowemthlae
remanence of the magnet. Fig. 7b shows that itfiiewt to
predict accurately the tangential component offfilnedensity
with FEM [24] when PMs are inset into the rotomralespite
using a very fine mesh size.

The analytical determination of the back-EMF wavefas
a function of the rotor position fox,,=1 is presented in Fig.
8. The computation is done for a rotating sp&ed 1500 rpm.
The maximum value of the back-EMF is around 10Ve Th
analytical and numerical predictions are closess than 1%.

The cogging torque is given in Fig.9. The torque is
evaluated at consecutive rotor positions using Makeatress
tensor method. The angular period of the coggingu®
corresponds to the Least Common Multiple gf @hd Q

Fig. 4. Double-layer windings distribution for a¢le phases machine with 15 giving 360’/LCM(Q,2p):6°. It can be seen that the proposed

slots andh =2 (g = 1.25).

TABLE |

PARAMETERS OF THE SURFACENSET PMS MACHINE
Symbol Quantity value
R: Inner radius of the PMs 3.2cm
R, Radius of the rotor surface 4cm
Rs Stator bore radius 4.1cm
Ry Outer radius of the slot-opening 4.3cm
Rs Outer radius of the slot 5.3cm
L Axial length 20 cm
J Slot-opening angle 12°
B Slot isthmus angle 6°
o PMs opening angle 45°
B: Remanence of the permanent magnets 12T
e Relative recoil permeability 1.05
p Pole-pairs number 2
Q Number of stator slots 15
Jrms RMS current density 4 A/mm?
Ni Number of harmonics used for magnetic field 100

calculation in the air-gap domain
Nijk Number of harmonics used for magnetic field 50

calculation in the slot, slot-opening and PMS
domains

analytical model can predict the cogging torquehwdn
excellent precision.

Fig. 5. Magnetic flux distribution for no-load atition obtained with FEM.
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2) Armature Reaction Field (B= OT and J,=4A/mm?2)

Figure 10 shows the flux distribution in the maehoaused
by the armature reaction acting alone. The magrets
removed and replaced by air. The three-phase stamolings
are fed with electrical current such lgs | andl, = I, =-1/2
corresponding to AC operation. Fig. 11 and Fig.cbthpare
the FE and analytically predicted flux density wiaves in
the air-gap and PM regions. Fig. 12a shows thatréukal
component of the flux density is now equal to zatrohe iron
boundaries.

Due to its rotor saliency (the reactangis smaller than
Xg), this motor develops a reluctance torque. Figsi@ws the
comparison between analytical and FE predictions tfe
static reluctance torque. As expected, the relwetaiorque
reaches its maximum value for an angle of abous2Fig.
14 shows the electromagnetic torque waveform versta
position for a control angle giving the maximumdoe. At
each rotor position, the current values in theedéht slots are
updated to have a sinusoidal current waveformairit loe seen
that the studied machine produces an average aeket
torque of about 5.5 Nm. The proposed analytical eh@an
predict the reluctance torque with a very good igien.
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Fig. 11. Flux density distribution for radial (ajcatangential (b) components

of armature reaction field in the middle of the-gap forJm=4A/mm?2 1= |
andlp =1 =-1/2.

Fig. 10. Armature reaction magnetic flux distribatobtained with FEM for
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windings are fed so thag= | andl, = | =-1/2 corresponding — i
to AC operation Jms = 4A/mnf). The radial and tangential 2 . Aﬂ |
components of the flux density in the air-gap andgnet 2 0.2
regions are respectively shown in Fig. 16 and Eig. The 3 ﬁ;_ ﬁ
influence of the armature reaction on both radiald a é 0 V - i N V-
tangential components of the flux density waveforiess & ] U—y‘h ‘V HV }
noticeable in comparison with the no-load resultBig. 6 and § -0.2 | b . V
Fig. 7. 2 V H'
The static torque versus mechanical rotor positisn 04 .
presented in Fig. 18. Maximum torque occurs at ragleaof '
about 60°. It is well-known that for a surface-inBé&ls motor,
the maximum torque occurs at an angle greater #&hn '0'60 60 120 180 240 300 360
Surface-inset PMs motors produce not only permane Angle (mech. degrees)
magnets torque component (for which the maximunguer (b)

value occurs at an angle of 45°) but also relugamcque
h . 9 . 3 ) q Fig. 16. Radial (a) and tangential (b) flux denslistribution in the middle of
component as shown in Fig. 13. the air-gap for load condition.
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Figure 19 shows the electromagnetic torque waveform

versus rotor position. At each rotor position, therent values
in the different slots are updated to have a siidlasaurrent
waveform. It can be seen that the studied machioéyzes an
average torque of about 26 Nm. The torque ripptesdae to
cogging torque (Fig. 9) and reluctance torque (E®. If we

compare Fig. 14 and Fig. 19, one can observe tigatrtean
value of the reluctance torque is about 20% oftdita torque.
Once again, the analytical and the FEM resultsimrgood

accordance.

In order to have a good precision in the analyticatjue
evaluation, the number of harmonic terms in eadiore
should be chosen carefully. In our case, a numbkawnonic
terms equal toN, = 30 for the air-gap region arid;=10 for
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Fig. 19. Electromagnetic torque versus rotor pasifor Jme=4A/mma2.

4) Model Limitations due to Magnetic Saturation

In order to study the model limitations due to metgm
saturation of the iron parts, we have comparednhgmum
torque value obtained with the analytical model iphh
considers infinite permeability of the iron partgith the one
obtained by nonlinear finite elements analysis [24je B(H)
characteristic used in FE simulations is shownign ZO (knee
point of around 1.6T). This curve corresponds t@Msteel
given in the FEMM software [24].

Figure 21 shows the maximum torque as a functiothef
current density obtained with the analytical maatedl with FE
simulations (the geometrical parameters are thagengin
Table 1). In order to show the effect of the magnséturation,

the slots, slot-opening and PMs regions gives adgoque have considered different values for the curdemtsity in

precision. For a given rotor position, the compotatime is

the slots Jims = 2 A/mnT t0 Jms = 12 A/mnf). As expected,

about 70 msvith the analytical model whereas the linear FEMhe maximum torque obtained with nonlinear FE maws

takes about 3 s for a mesh of 33500 elements. Maktaal
computations being much faster, the presented model
advantageously be used in a preliminary designuofase-
inset PMs motors.

below the analytical prediction especially for largalueof
the current density.

Nevertheless, as it can be observed in Fig. 21jrtfigte
permeability assumption of the stator/rotor backihas a low



impact on the accuracy of the torque determinafamthe
studied machine working in hormal conditions (efless than

10

APPENDIX
For the determination of the integration coeffit®eim the

4% for for Jms < 6 A/mnf). This is due to the fact that PM gifferent regions, we have to calculate integrdlghe form

machines usually have a large air-gap (1mm forstuelied
machine) and that the relative permeability of negris very

G+
close'to qnity ,4( = 1.05). Therefore the reluctance of the f(k,n,i) = Ifcos@@) I]:o{k—ﬂ(Q—Q,)JEM (A1)
effective air-gap is considerably higher comparethat of the > B
stator and rotor back-iron. So, the stator teethraot highly !
saturated, except for large values of the currensity. ) ah ) k7T
glk,n,i)= j sm(nH)E:o{F(H—éll)]mH (A.2)
V. CONCLUSION 6
In this paper, an analytical approach to calcultie a+p
magnetic field distribution in surface-inset PM motors, r(n,i) = ICOSGQ)HW (A.3)
including both stator slotting effects (semi-closgdts) and ]
rotor saliency, was developed. The proposed model i a+p
sufficiently general to be used for any poles arotss s(n,i) = .[sin(né?)mé? (A.4)
combination including fractional slot winding machs. Flux 3
density distribution, back-EMF and electromagndticque 8+p
computations for no-load and load conditions aneoifably F(mk) = J' co{m(e—e —l(ﬁ—d)))co{k—”(e—a)Jde
compared to those issued from finite element sitiaria. ' > 9 B !
As the analytical model is less computational time b
consuming than FEM, it can advantageously be useithée (A.5)

initial design and optimization of surface-inset #Motors.

The calculations of the previous integrals lead the

following results:

B, Tesla
25
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Fig. 20.B(H) characteristic of the stator/rotor back iron usedonlinear FE
simulations
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Fig. 21. Maximum torque versus current density comg with analytical
model and nonlinear FE simulations.

- for km#ng
. —-nB%|(-1)*sinn(B + &) -sin(né)
f(k,n,i) = ( i ) (A.6)
. _nB%((-)¥cosn(B +6) - coshd
ot =24 i )R
- for km=ng

f (ki) :g(coshe,ﬂ%(sinn(@, + Zﬁ)—sin(nel))]

(A.8)
iy =B sinma) - L ) - )
alkni) =2 sineg) -5 (eosn(@ +24) cosha))]
(A.9)
The development of (A.3) and (A.4) gives
r(n,i) =%(sin(n9i +npB) -sin(ng)) (A.10)
s(n,i) = %(— coshd +np)+cospd))  (A.11)
The development of (A.5) gives
- for mn Z M
o B
M
F(mk)=——9—
mir krr
5 5) 2

{(—1)k sin(% (B+ Jj +sir(%T (/3—5)}



mn1 _ kn

-for — =22

o B
F(m, k)—’gco{—(ﬁ J)J

« Expressions of the coefficiens , b!' ,

air-gap subdomain

The development of (33) and (34) gives

_B(-1)B,

kﬂmz;cmy R, Puma(Rs R)

BRs Eyrip(Re, R)

)
o

Q ok 2 .
Zzb‘ BR, BB, ) 21

i=1 k=1

where Q is the number of stator slots.

(Zn (sin(n@ +a))+ sin(g, ) -= s(n, k)j

SR e

11

- Expressions of coefficientsi and c¥, for the PMs
subdomain :
The calculation of (26) and (27) yields to the daling
(A.13)  Jinear relations between the integration constamtthe PMs
and air-gap subdmains

o R ARLR) 4 R 2 )
% = Zl(% w ERR) T WE(R, B)J(”)

andd, forthe

1RARR) o R 2

Zpil ﬂl £ Z;[ wER R T WE(R B)jw
_chﬁ] argz mn/aég' 2; f(m n k) (A.18)

k=1 m=1 Froria (R ) o« :i(a” & P.(R, R) + Hr: 2_% 2 Jf(m nR

ii ( Jz[le[,,ﬂ) fmnk "G e E(R.R) w E,(R B
— — m, n, o

ket e A 7T R +Z[Crl1l T AR R 282 ]g(m nk

arg S M ERR)T W E(R B
2p 4k %T 2

e L)

2

. Emn/a(Rl’ RZ) g(m n k) (A-lg)

« Expression of coefficients)), b, a, andbj for theith
slot-opening subdomain

) 2R, 2R, Py(R. R), ¢
A=) nﬁE(Rz oyt ) f(kn )

(A.15) =1 B E(R B
K ia i -
where Km. |§ given by (23). | | . +Z(Crl1l ﬂ#ﬂﬂ Z_R?’M)g(k, ni
The coefficientb! andc!' defined in [23] are given by ~  nB E(R,R) B E,(R, B
” i . (A.20)
b, = > —r(ni)
Q o ‘ P (R3 R4) ﬂ/ﬂ(Rtl F%)
2 A p gy ) (19
i=1 k=1 klp L +d =
ii ik 2 f(k n i) a0+t%|nR2PS 2 R A(R R)
_ ni
22 R B (R R 2@ S EmR T waR g™ A
o . 4 B AR R)
6! =32 gn) z(” nﬁE(Rz R BE(R B ")
= s
Q A
YD e e AT gt = 4203 A0 m-E -

(A.23)

2R, Prmp(Ri R) (mlzl?j {ﬂrj
mZ_la‘“ ﬁ[mﬂj Ems(RoR) L 20 )82

b(‘,-——uOJE@Rg R)  with =] (A.24)

whereJ; is the current density in the sjot



» Expression of the coefficienal;i1 for thejth slot subdomain

a,% = lti) m}j& sin(%} co{ﬂ;j+
| 2 i Poup(Re R) | 2k E
L% mR) YRR B R

. . [19
We have to solve a system of linear equations whose

(A.25)

dimension is equal to the number of unknowns. Byriteng

the

solution can be found thanks to mathematical

above equations in matrix and vectors formatiraerical

(Matlab).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[19]

REFERENCES

Z. Q. Zhu and D. Howe, “Instantaneous magneticigistribution in
brushless permanent-magnet dc motor, part Ill:d&féé slotting” IEEE
Trans. Magn.yol. 29, no. 1, pp. 143-151, Jan. 1993.

M. Markovic, M. Jufer, and Y. Perriard, “Reducirfietcogging torque
in brushless dc motors by using conformal mappingsEE Trans.
Magn.,vol. 40, no. 2, pp. 451-455, Mar. 2004.

K. Boughrara, D. Zarko, R. Ibtiouen, O. Touhamidaf. Rezzoug,
“Magnetic field analysis of inset and surface-meaahtpermanent-
magnet synchronous motor using Schwarz-Christaféeisformatior?
IEEE Trans. Magnyol. 45, no. 8, pp. 3166-3168, Aug. 2009

Q. Gu and H. Gao, “Effect of slotting in PM electi machines Elect.
Mach. Power Systvol. 10, pp. 273-284, 1985.

N. Boules, “Prediction of no-load flux density dibtition in permanent
magnet machingsIEEE Trans. Ind. Appl.yol. 1A-21, no. 3, pp. 633-
643, Jul./Aug. 1985.

Z. Q. Zhu, and D. Howe, “Analytical prediction &fet cogging torque in
radial-field permanent magnet brushless mgtdiSEE Trans. Magn.,
vol. 28, no. 2, pp. 1371-1374, Mar. 1992.

B. Ackermann and R. Sottek, “Analytical modeling tfe cogging
torque in permanent magnet motbrElect. Eng.,vol. 78, no. 2, pp.
117-125, Mar. 1994.

K. F. Rasmussen, H. D. John, T. J. E. Miller, MMcGilp, and O.
Mircea, “Analytical and numerical computation ofr-gap magnetic
field in brushless motors with surface permanengme#l’ IEEE Trans.
Magn.,vol. 36, no. 6, pp. 1547-1554, Nov./ Dec. 2000.

X. Wang, Q. Li, S. Wang, and Q. Li, “Analytical calation of air-gap
magnetic field distribution and instantaneous ctiaréstics of brushless
dc motorg’ IEEE Trans. Energy. Conversvpl. 18, no. 3, pp. 424432,
Sep. 2003.

Z. J. liu, and J. T. Li, “Analytical solution ofragiap field in permanent
magnet motors taking into account the effect ofepwhnsition over
slots” IEEE Trans. Magn.yol. 43, no. 10, pp. 3872-3882, Oct. 2007.
Z. J. liu, and J. T. Li, “Accurate prediction of greetic field and
magnetic forces in permanent magnet motor using aaalytical
solution” IEEE Trans. Energy. Conversvol. 23, no. 3, pp. 717-726,
Sept. 2008.

P. Kumar, and P. Bauer, “Improved analytical mooleh permanent-
magnet brushless DC mofbtEEE Trans. Magn.,vol. 44, no. 10, pp.
2299-2309, Oct. 2008.

A. Bellara, Y. Amara, G. Barakat, and B. Dakyo, ‘Grimensional
exact analytical solution of armature reactiondfigh slotted surface
mounted PM radial flux synchronous machifdEEE Trans. Magn.,
vol. 45, no. 10, pp. 4534-4538, Oct. 2009.

B. N. Cassimere, S. D. Sudhoff, and D. H. SudhaAfidlytical design
model for surface mounted permanent-magnet synobmachines,”
IEEE Trans. Energy Conversiol. 24, no. 2, pp. 347-357, June. 2009.
F. Dubas, and C. Espanet “Analytical solution af thagnetic field in
permanent-magnet motors taking into account stptéffect: no-load
vector potential and flux density calculatjfohEEE Trans. Magn.yvol.
45, no. 5, pp. 2097-21092, May 2009.

soiwa

12

[16] T. Lubin, S. Mezani, and A. Rezzoug, “Exact anabftimethod for

magnetic field computation in the air-gap of cytlicdl electrical

machines considering slotting effettfEEEE Trans. Magn.yol. 46, no.

4, pp. 1092-1099, Apr. 2010

B. L. J. Gysen, K. J. Meessen, J. J. H. Paulided,Ea A. Lomonova,

“General formulation of the electromagnetic fieldstdbution in

machines and devices using Fourier analy$iSEE Trans. Magn.yol.

46, no. 1, pp. 39-52, Jan. 2010.

Z. Q. Zhu, L. J. Wu, and Z.P. Xia, “An accuratddomain model for

magnetic field computation in slotted surface-medntpermanent

magnet machinesEEE Trans. Magn.yol. 46, no. 4, pp. 1100-1115,

Apr. 2010

F. M. Sargos and A. Rezzoug, “Analytical calculatiof airgap

magnetic field produced by inset permanent magoter rmachine,”J.

Physics lli(in French), vol. 1, pp 103-110, 1990.

Z. Q. Zhu, D. Howe, and Z. P. Xia,"Prediction ofempcircuit airgap

field distribution in brushless machines having iaset permanent

magnet rotor topology IEEE Trans. Magn.yol. 30, no. 1, pp. 98-107,

Jan. 1994.

L. Jian, K. T. Chau, Y. Gong, C. Yu, and W. Li, “Algtical calculation

of magnetic field in surface-inset permanent magmetors’ |IEEE

Trans. Magn.yol. 45, no. 10, pp. 4688-4691, Oct. 2009

[22] A. Rahideh, and T. Korakianitis, “Analytical magieefield distribution
of slotless brushless machines with inset permanegnets |IEEE
Trans. Magn.yol. 47, no. 6, pp. 1763-1774, Jun. 2011

[23] T. Lubin, S. Mezani, and A. Rezzoug, “2-D ExactIgtieal model for
surface-mounted permanent-magnet motors with stsed slots
IEEE Trans. Magnwyol. 47, no. 2, pp. 479-4929, Feb. 2011.

[24] D. C. Meeker, “Finite Element Method Magneticg'ersion 4.2 (1 April
2009 Build) http://www.femm.info

[25] S. J. FarlowPartial Differential Equations for Scientists anddineers.
Dover publications, New York, 414 pp, 1993.

[17]

(18]

[20]

[21]

Thierry Lubin was born in Sedan, France, in 1970. He receivedMIS.
degree from the University of Paris 6, France i841@nd the Ph.D. degree
from the University Henri Poincaré, Nancy, Franne003.

He is currently a lecturer of Electrical Enginegriat the University of
Nancy at the Groupe de Recherche en ElectrotechragiLElectronique de
Nancy. His interests include modeling and contfotlectrical machines and
applied superconductivity in electrical devices.

Smail Mezaniwas born in Algiers, Algeria, in 1974. He receitkd engineer
diploma and the magister degree from the UniversitySciences and
Technology Houari Boumediene, Algiers, Algeria if9% and 1999
respectively. He obtained the Ph.D. degree from #hgtitut National
Polytechnique de Lorraine, France, in 2004.

He is currently a lecturer at the University Helhoincaré of Nancy, France,
at the Groupe de Recherche en Electrotechniqudeetr@nique de Nancy
where his research interests include the applieatiaf superconductors in
electromechanical devices.

Abderrezak Rezzougreceived the electrical engineer degree from ENSEM
INPL, Nancy, France in 1972, and the Dr. Ing. dipdoand the Ph.D. degree
from INPL, in 1979 and 1987 respectively.

After working at the INPL as an assistant Professdil 1991, he is currently

a Professor of Electrical Engineering at the UrsitgrHenri Poincaré, Nancy,
France. As a member of the Groupe de Recherchelemtrdtechnique et
Electronique de Nancy, his main subjects of re¢eenticern superconducting
applications to electrical devices, and the coraradl diagnosis of electrical
machines.



