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Simple Analytical Expressions for the Force and
Torque of Axial Magnetic Couplings

Thierry Lubin, Smail Mezani, and Abderrezak Rezgou

Abstract—In this paper, a theoretical analysis of an axial
magnetic coupling is presented, leading to new cled-form
expressions for the magnetic axial-force and torque These
expressions are obtained by using a two-dimensiona2-D)
approximation of the magnetic coupling geometry (men radius
model). The analytical method is based on the sdion of
Laplace’s and Poisson’s equations by the separaticof variables
method. The influence of geometrical parameters sticas number
of pole pairs and air-gap length is studied. Magnét field
distribution, axial force and torque computed with the proposed
2-D analytical model are compared with those obtaied from 3-D
finite elements simulations and experimental resust

Index Terms— Torque transmission, axial magnetic coupling,
analytical model, axial force.

I. INTRODUCTION

# il

Magnets

Fig. 1. Geometry of the studied axial-type magnetiupling p = 6)

and poorly flexible for the first step of desigage.

MAGNET'C couplings are of great interest in many anpalytical methods are, in general, less computafisime

industrial applications. They can transmit a tordneen
a primary driver to a follower without mechanicaintact. As
the torque could be transmitted across a separatidin axial
field magnetic couplings are well suited for useisnlated
systems such as vacuum or high pressure vesseleovw,
they present a maximum transmissible torque (pultorque)
giving an intrinsic overload protection.

Axial magnetic couplings consist of two opposingcdi
equipped with rare earth permanent magnets as shoWwig.
1. The magnets are magnetized in the axial direclibey are
arranged to obtain alternately north and southgadlide flux
is closed by soft-iron yokes. The torque appliedne disc is
transferred through an air-gap to the other dide @ngular
shift between the two discs depends on the tratesiorque
value. The main drawback of axial-type magneticptiogs is
the significant value of the axial attractive foroetween the
two discs.

An accurate knowledge of the magnetic field disttidn is
necessary for predicting the torque and the axiedef. The
magnetic field can be evaluated by analytical mashid-22]
or by numerical techniques like finite elements-g&3.

Finite elements simulations give accurate resutssidering
three dimensional (3-D) effects and nonlinearitynzdgnetic
materials. However, this method is computer timasemning
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consuming than numerical ones and can provide ditsen
solutions giving physical insight for designers., Siwey are
useful tools for first evaluations of magnetic clings
performances and for the first step of design ogttion.
Three-dimensional analytical models for ironlesen@mnent
magnet couplings have been proposed in the literdfi+16].

The proposed models are developed for axial magneti

couplings with parallelepiped magnets or cylindridde
magnets. As the magnets are in free space (witlother
magnetic materials present), analysis is basecdtreith the
amperian model with Biot-Savart law or on the caonliian
method with equivalent surface charges. Althougleseh
methods give very accurate results, they are ritztlde for the
study of magnetic couplings with iron-core struegir

An alternative analytical method to compute theyjter for
magnetic couplings with iron yokes is based on bauon
value problems with Fourier analysis. This methodsists in
solving directly the Maxwell's equations in the fdilent
regions (air-gap, magnets....) by the separatiovasfables
method [17], [18]. The magnetic field distributiobtained
in each region by using boundary and interface itimms. The
torque and the force are then computed by usindvidvevell
stress tensor. In [19] and [20], two-dimensionalD(2
analytical models for radial-type magnetic coupdingere
developed and closed-form expressions for the torgas
given and used for design optimization. In [21] §2@], quasi
models are proposed
performances of axial-flux permanent magnets mashim

to compute the



modulation function is defined to take into accotir radial z
dependence of the magnetic field.

In this paper, we propose new formulas for the uergnd
the axial force of an axial-type magnetic couplinigh iron h
yokes (fig. 1). The analytical study is based amgblution of
2-D Laplace’s and Poisson’s equations in air-gam ar ©
permanent magnets regions by using the separation :
variables method. The torque expression is usestuidy the

influence of geometrical parameters (number of palies and ool ke, —”” 0

air-gap length). In order to study the accuracthefproposed < > !
X $ an/p 2n/p
formulas, the results are compared with those nbthfrom 3-
D finite elements simulations and experimental itssu Fig. 2. 2-D model of the axial magnetic couplirtgtiee mean radius of the
magnetRe =(R1+R2)/2.

Il. PROBLEM DESCRIPTION AND ASSUMPTIONS with
As shown in Fig. 1, the geometrical parameters e t _ _. B
: . . : ; M=M,,=x—¢e, 2
studied magnetic coupling are the inner and owdii of the Lo

magnetsR, and R,, the air gap lengtte, and the magnets \ pqare is the magnetization vectdg, the remanence of the
thicknessh. The pole-arc to pole-pitch ratio of the permanent,,qnets e, the unit vector along the axial direction and +
magnets ig.. The number of pole-pairsis indicates the magnetization direction.

Analytical study of axial magnetic couplings is quicated

because of the three-dimensional nature of the etegfield m
distribution. However, in order to simplify the dyss and to
carry out closed-form expressions for the axialcéorand
torque, the 3-D problem is reduced to a 2-D one b
introducing a cylindrical cutting surface at theameaadius of
the magnet®, =(R;+R,)/2 at which the magnetic field will be A. Solution of Poisson’s Equation in the PMs Regions
computed [21], [22]. (Regions | and Il1)

Fig. 2 shows the resulting 2-D model by considerihg  poisson’s equation in the magnets region (regifrcéin be

unrolled cylindrical cutting surface. With this appch, we yitten in a cylindrical coordinates system as
neglect the radial component of the magnetic fiaidl we

consider that the axial and tangential componemtsndt

2-D ANALYTICAL MODEL

By using the separation of variables method, we now
nsider the solution of Poisson’s equations forsRigions
nd Laplace’s equation for the air-gap region.

2 2 h+e< z<2h+ ¢
depend on ther-coordinate. Moreover, for simplicity, we ia all +a al :—ﬂM for { 3

2 2 2
adopt the following assumptions: Re 06 0z R 06 0<@<2mip
1) The iron yokes have infinite magnetic permeghili where/p is the permeability of the vacuum akl is the axial
2) The magnets are axially magnetized with relateeoil magnetization of the magnets.
permeability 2z, =1. Knowing that the tangential component of magneétdfat

z=2h+ e is null (soft-iron yoke with infinite permeability
As shown in Fig.2, the whole domain is divided itiloee and considering the continuity of the axial compunef the
regions: the PMs regions (regions | and Ill) and #ir-gap flux density az= h+ e, we obtain the following boundary
region (region II). The magnets of region Ill atefted by an conditions

angles (torque angle) from the magnets of region I. Dughe oA, _
periodicity of the magnetic field distribution, thstudied oz Z_2h+e_ 0 )
domain is limited by & 6 < 2xr/p. L

A magnetic vector potential formulation is used 2D Au (6.h+ 8= A (6, I+ ¢ )

cylindrical coordinates to describe the problemcétding to

the adopted assumptions, the magnetic vector patémeach Where A, (6, 2) is the magnetic vector potential in the air-gap
region has only one component along thdirection and only region.

depends on th& and z-coordinates. The electromagnetic The distribution of the axial magnetizatity, is plotted in
equations in each region expressed in term of thgnetic Fig.3,J is the relative angular position between the megag
vector potential are region | and region Ill. The axial magnetizationncae

{DZA =—,0xM  in Regions | and Il (PM expressed in Fourier’'s series and replaced in (3)

02A=0 in Region Il (air-gap)
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Fig. 3. Magnetization distribution alorggdirection (region IlI).
M, (6) = M,sin(kp(6-2)) (6)
k=1
M, = 4B, cos(kl—T(l—a)J withk= 1,3,5,7.. (7)
ks, 2

Taking into account the boundary conditions (4) é)dthe
general solution of the magnetic vector potentidRegion Il
can be written as

Ay (6, 2) =
- ch[kp( z-2h QJ
> @& i + Ky coskpd ) cog kf)  (8)
k=1 ch(kp h]
Re

- ch(kp( z-2h é]
@ R + K, sin(kpd)) sin( kig)

k=1 ch(kp h]

Re
with
Ky = Ho kipez M )

The integration constants,"

and ¢' are determined
using a Fourier series expansion & (6,h+¢e over the

interval [0, 27p]

2mlp
al' +Kcoskps)=2E [ A, 6.+ coskep )@ (10)
0

2nlp

' + Ky sineps) = 2F ! A @,h+ 9sin(kg) @  (11)

The expressions of the coefficierdgy’ and c|

in the appendix.

are given

One can apply the same procedure for reglorby
considering a zero value far. This leads to the following
expression for the magnetic vector potential

- ch(p J
A6,29= E (ai—kRe + K ) cos( kip)

ch(kp

Z
. A
e
2 oo
R

The integration constanlzxi'< and q'< in (12) are determined

(12)

sir{kpo)

using a Fourier series expansion Af (6, h) over the interval
[0, 2rvp]

2nlp

A+ K =22 [ A (0. Noostap)d  (13)
0
2mlp

(14)

1 _2p -
=3 { A, (6, Bsin(kid) &9

The expressions of the coefficiera$ and ¢, are givenin
the appendix.
B. Solution of Laplace’s Equation in the Air-Gap Regio
(Region 11)

Laplace’s equation in the air-gap region can bétewriin a
cylindrical coordinates system as

=0

2 2
1 0°A,  0°A {hszs h+ e (15)

R? 06> 97 0<f<2mlp
The continuity of the tangential component of thegmetic
field at z=h and at z=h+ e leads to the following
boundary conditions

oA
0z

_%A
0z

Ay

0z

_ 0Ay
0z

and
z=h

(16)

=R

z=h z=hte

By taking into account the boundary conditions (1B

general solution of the magnetic vector potentighie air-gap
can be written as

A6,2)=
ch(g:( z- h- Qj

(
skpe] kp skp%
R

ch @(z— h- ¢
e % [F;[kp e] j
Re

N _||&
;(akkp

k=1



The integration constants), b', ¢ and d are

determined using Fourier series expansionsmf/az|h and

oA, /az|h+e over the air-gap interval [01#]

2nlp

1 _2p [ OA
= ! - hcos(ka)dH (18)
27T/p
I a'D‘Ill
b, = 271 0 3 h+ecos(kpé?)dé? (19)
2 2mlp
' =2P [ AN k)W (20)
2 5 h
2 2mlp
Y T RN (21)
o 0Z |se

The expressions of these coefficients are develapdde
appendix.

The axial and tangential components of the magriktc
density in the air-gap can be deduced from the etagwmector
potential by

(22)

IV. AXIAL -FORCE AND TORQUE EXPRESSIONS

A. Electromagnetic torque
The electromagnetic torque is obtained using thewvigd

stress tensor. A line at=¢ O[h h+ ¢ in the air-gap region

closed-form expression for the electromagnetic uergvhich
depends directly on the geometrical parameters.

_16B? (R ol s st a .
© _5170 [1 [sz JS"?[U 2) sh(2(1+|/) a) sin( )
(25)
with
—p - &
a=p and v oh (26)

As expected, the torque presents a sinusoidal clesistic
with the relative angular positioh Its maximum value (pull-
out torque) is obtained at the angteu/2p.

B. Axial-Force

Axial magnetic force is an important parameter tbe
design of an axial magnetic coupling. This attractforce
must be known because it affects directly the ratoncture
and bearings. Indeed, the bearing lifetime depemusthe
bearing load. By using the Maxwell stress tensbe, &xial
force expression is

2 _ 2m
R [(BR6.0-B0.0)0  @7)
0

4y

Substituting (22) into (27), the analytical expiessfor the
axial force becomes

:”(Rijz)g((zuxk)z—(w)z) 20

is taken as the integration path so the electroetagtorque is
expressed as follows Considering only the fundamental component of the
magnetic field in the air-gafk & 1), we can derive a closed-

Rg form expression for the axial force

16(6.¢) B, (6,{)dg (23)
2 2
Incorporating (22) into (23), the analytical exmies for F :EERZ2 1—[i] sin (a ”Jﬂ
the electromagnetic torque becomes T Ho R, st (2(1+v)g  (29)
x(cos( pd) ch( 2(v )+ 1
{R-R)<
Te= Z(Wk X+ Y% Z) (24)

From (25) and (29), we can see that the torquetamdxial
force dependence on the design parameters areciexplor
engineering purpose, it is important to have simplations to

3

where the coefficientd\,, X, Yx and Z, are given in the ) )
appendix o oK K g study rapidly the effects of the geometrical par@mseon the

The torque can be computed with a good precision @?Eplintg performances. This is developed in théotahg
considering only the fundamental components oftligeflux ubsection.

density distribution in the air-gagk & 1). This is especially
true for large number of PM pole-pairs and/or laagregap.
Considering the first harmonic approximation, wa darive a



V. RESULTS OBTAINED WITH2-D ANALYTICAL MODEL

In this section, we use the proposed 2-D analytizadel to
compute the magnetic field distribution in the gap for
different angular position between the two discer Each
position, the torque and the axial force are caked by
respectively using (25) and (29). Then, the infeeenf some

Fig. 5 corresponds to the full load conditién=15°). We
can observe clearly on Fig. 5a the distortion &f fllax lines
due to the angular displacement of the upper maghéj. 5b
and Fig. 5¢c show respectively the axial and thegeatial
components of the flux density in the middle of #iegap.
For this angular position, the torque reaches iximum

geometrical parameters on the coupling performarises ValueTe = 94 Nm (pull-out torque) as indicated in fig. fda

investigated (particularly the air-gap length ahd pole-pairs
number). The geometrical parameters of the studiésite are
given in Table I. These parameters correspond ¢o ahe
which give a pull-out torque of around 90 Nm (ob&al using
(25)) when we consider an air-gap length of 3 mrd an6
pole-pairs.

A. Flux density distribution and torque calculation o=
3mm and p=6

Figs. 4a and 4b show respectively the flux lines ¢fvo
pole pitches) and the axial component of the flargity in the
middle of the air-gap under no-load conditiah= 0°). The
magnetic flux density distribution along the aipgds
computed by using (17) and (22). We can observethieaflux
lines are almost axial along the air-gap (the tatige
component of the flux density is null in the middiethe air-
gap). For this position, the torque is then eqaaedro and the
axial force is attractive and reaches its maximuatue. By
using (29), we obtaif =~ 2500N as shown in Fig. 8.
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Fig. 4. No load conditiond( = 0°): (a) magnetic flux
component of the flux density in the middle of #iegap.

the axial force is still attractivd-(= 423N) as shown in fig. 8.
As it can be observed in fig.8, the axial forcechess a null
value for an angle slightly higher to half the ppith (around

17°).
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Fig. 6 corresponds to an angular displacement 30°
(unstable position). In this position, the magnetshe two
discs are in opposed direction and the flux linggel each
other. The flux density presents only a tangectiahponent in
the middle of the air-gap. The torque is then edqualero and
the axial force is now repulsive as shown in fig.-T&e axial
force value computed with (29) givEs= -1628 N.

Fig. 7 and Fig. 8 summarize the variation of torgunel
axial force as a function of the angular displaceme As
shown previously, the maximum torque occurs at rguikar
shifting of half pole pitch angle. We can obsetvattthe first
harmonic approximation gives accurate results @her is
less than 5%) compared to the ones obtained bpgakio
account 10 harmonic terms in (24) and (28).
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Fig. 6. Magnets in opposed directiah £ 30°): (a) magnetic flux lines, (b)
tangential component of the flux density in the dhédof the air-gap.

TABLE |

PARAMETERS OF THE STUDIED AXIAL COUPLING
Symbol Quantity value
Ry Inner radius of the magnets 30 mm
Ry Outer radius of the magnets 60 mm
h Magnets thickness 7 mm
e Air-gap length variable
o PMs pole-arc to pole-pitch ratio 0.9
p Pole-pairs number variable
B Remanence of the permanent magnets 1.25T
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Fig. 7. Torque versus the angular displacemidot e = 3mm ancp = 6.
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Fig. 8. Axial force versus the angular displacendeior e = 3 mm ang = 6.

B. Influence of the air-gap length

The length of the air-gap has a significant infkeeron the
characteristics of the axial magnetic coupling.. Bigand Fig.
10 show respectively the pull-out torque and the&imal axial
force as a function of the air-gap length. The ltstwave been
computed by using (25) and (29). The geometricedupaters
are the ones given in table | and we have congidemr@umber
of pole pairgp = 6. As shown in fig. 9, the pull-out torque of
the magnetic coupling decreases quickly as theamtist
between the magnets increases. The maximum toscplenost
divided by two when the air-gap is increased fromn? to
7mm. In the same way, the maximal axial force "uoed
when the air-gap length increases (fig. 10).

C. Influence of the number of pole pairs

The variation of pull-out torque and maximal axiatce
versus the number of pole pairs are respectivedyvshn fig.
11 and fig. 12. The results have been computedsmgy25)
and (29). For the study, we have considered sewragap
lengths. The other geometrical parameters are thss in
Table I. Fig. 11 shows that all the curves presentaximum
which depends on the air-gap length. The optimufoevaf
the number of pole pairs is shifted to the righewlthe air-gap
is reduced. This result is well known for magnetiziplings.
For the studied coupling (Table I), the optimal temof pole
pairs isp = 6 if we consider an air-gap length= 5mm. We
can observe in Fig. 12 that the maximum axial fateereases
when the number of pole pairs increases.



We have shown here that the torque formula (25) c

predict the effects of the geometrical parametens tioe

coupling performances and from fig. 11, we can &koo =

rapidly the optimum value of the number of polerpailhen
the other geometrical parameters are given.

In the next subsection, we investigate the precisf the 2-
D approximation (25), by comparing the previous|ytial
results with 3-D FEM simulations and experimengauits.
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VI. 3-DFEM SIMULATIONS AND EXPERIMENTAL RESULTS

In order to show the limits of the formulas (2504@9), the
analytical results have been compared to 3-D FEMlsitions
in one hand and to experimental results in anotiaexd. For
the 3-D finite element simulations, we have usedVSOL
multiphysics software.

For the experimental validation, we have manufactuan
axial magnetic coupling prototype using sector tyd-eB
magnets glued on iron yokes. The geometrical paemef
the prototype are those of Table I. We choose abeurof

pole pairsp = 6 that corresponds practically to the optimum

value for an air-gap value= 5mm.

Fig. 13 shows the axial magnetic coupling placedhentest
bench. The axial coupling is inserted between tlectacal
machines. In fig. 13, the air-gap valueeis 9.5mm.

A. 3-D FEM results

Fig. 14 and Fig. 15 show respectively the pull-tarque
and the maximal axial force as a function of thregap length
obtained with 3-D finite elements analysis and vtk 2-D
analytical model. The number of harmonic terms uge@4)
and (28) is N = 10. The geometrical parametersthose
given in Table I. For this study, the pole pair tamnis fixed
to p = 6. As expected for this type of device, the 2+ialytical
prediction gives higher values for both pull-outgiee and
maximal axial force as compared to 3-D FE analysis.

This is mainly due to the 3-D effects which are taken
into account in the proposed model (the radial ddpace of
the magnetic field is not considered). The errotrenpull-out
torque prediction ranges from 22% fer2mm to 37% for
e=12mm. The error on the maximal axial force predicts
less important and ranges from 8% f&2mm to 34% for
e=12mm.

Figs. 16 show the pull-out torque versus the nunatb@ole
pairs computed with 3 methods ((24), (25) and3-IMFEThe
results are given for three values of the air-gamths. As it
can be observed in Figs. 16, although the analytizanula
(25) predicts higher torque values, the number aé pairs
which corresponds to the maximal value of the teras
almost the same for the 3 methods in use.



Fig. 13. Axial magnetic coupling prototype placed the test benche(=

9.5mm).
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Fig. 16. Pull-out torque versus the number of pgmés obtained with 3-D
FEM and 2-D analytical model: (@)= 2mm; (b)e = 6mm; (c)e = 10mm.

Fig. 17 presents the synthesis of Fig. 16 and gihes
optimal value of the pole-pair number versus ap-gengths.
This is an important result since we can obsenfeginl7 that
the analytical formula (25) is suitable in the det@ation of
the optimum value of the pole-pair number with #iegap
value when the other geometrical parameters aeel fix

B. Experimental results

Fig. 18 compares the measured values of the akial f
density and the ones obtained with the proposedridytical
model for no load conditiond€0). The measurements are

made along thé coordinate at the mean radius of the magnets

Re = 45 mm. For this test, the air-gap is fixeceat 9.5mm. A
Hall probe placed on a XY table is used to meashee
magnetic field distribution. As the magnetic fluersity is
measured at the mean radils we can observe very good
agreement between experimental results and theatremed
with the 2-D analytical model.

To show the limits of the 2-D analytical model, Wwave
measured the radial dependence of the axial flunsideat a
center line of a pole for no-load conditiaix(Q). The air-gap is
fixed ate = 9.5mm. The results are shown in fig. 19. Asain c
be observed, the axial flux density shows largeiatians
along the radial expanse of the magnet. This istdlee large
value of the air-gap. This result can not be ptedidy the 2-
D analytical model which neglects the radial depene of
the magnetic field. We can note a good agreementeles 3-
D FEM simulations and experimental results.
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0

Figs. 20 show the comparison between the measaleds/
of the static torque and the calculated ones biygutiie 2-D
analytical model (25) and 3-D FEM. The static t@rquas
measured by suspending weights from a wire attathadrod
(a rotor is locked and the other one can rotatbg felative

angular positions was measured using an encoder with a

resolution of 4096 steps per revolution (0.088 deyr Two
values of the air-gap dimension were consideesd 4mm and
e = 9.5mm).
measurements are in good agreement with the reshtisned
with 3-D FE simulations. As shown previously, atiabi
formula (25) gives higher values of around 30%tfa@ pull-
out torque.

It can be noticed that the experimental
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Fig. 20. Measured and computed static torque vertes angular
displacemend for p = 6: (a)e = 4mm; (b)e = 9.5mm

VII.

In this paper, we have proposed new simple analytic
expressions for computing axial force and torquernfaxial
magnetic coupling. These expressions are deternbyethe
solution of 2-D Laplace’s and Poisson’s equationsedn
radius model) in the different regions (air-gap amhnets).

Although the proposed 2D analytical model shows esom
lack of accuracy compared to 3D finite-element $ations
and experimental results (error of around 30% enpthil-out
torque prediction), we have shown that it can beduto
determine rapidly the optimal value of the polerpaimber
when the other geometrical parameters are given.

Moreover, the proposed analytical formulas can beful
tools for the first step of design optimizationc@ncontinuous
derivatives issued from the analytical expressiamsof great
importance in most optimization methods.

CONCLUSION

APPENDIX
» The development of (10) and (11) gives
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The development of (13) and (14) gives
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« Expressions of the coefficients , by , ¢, andd, for the

air-gap region
The development of (18) to (21) gives

a =aLkpth(|;§hj by =-a Lizh kph]

R, R \R
! = XP h(kphj g =g XP h(kphj A5
o =G Ret R K &% Ret R (A.5)
» Expression of the coefficien®,, Xy, Yx andZ, given in (24)
and (28)
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