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Abstract—In this paper, a theoretical analysis of an axial 

magnetic coupling is presented, leading to new closed-form 
expressions for the magnetic axial-force and torque. These 
expressions are obtained by using a two-dimensional (2-D) 
approximation of the magnetic coupling geometry (mean radius 
model).  The analytical method is based on the solution of 
Laplace’s and Poisson’s equations by the separation of variables 
method. The influence of geometrical parameters such as number 
of pole pairs and air-gap length is studied. Magnetic field 
distribution, axial force and torque computed with the proposed 
2-D analytical model are compared with those obtained from 3-D 
finite elements simulations and experimental results. 
 

Index Terms— Torque transmission, axial magnetic coupling, 
analytical model, axial force. 

I. INTRODUCTION 

AGNETIC couplings are of great interest in many 
industrial applications. They can transmit a torque from 

a primary driver to a follower without mechanical contact. As 
the torque could be transmitted across a separation wall, axial 
field magnetic couplings are well suited for use in isolated 
systems such as vacuum or high pressure vessels. Moreover, 
they present a maximum transmissible torque (pull-out torque) 
giving an intrinsic overload protection. 

Axial magnetic couplings consist of two opposing discs 
equipped with rare earth permanent magnets as shown in Fig. 
1. The magnets are magnetized in the axial direction. They are 
arranged to obtain alternately north and south poles. The flux 
is closed by soft-iron yokes. The torque applied to one disc is 
transferred through an air-gap to the other disc. The angular 
shift between the two discs depends on the transmitted torque 
value. The main drawback of axial-type magnetic couplings is 
the significant value of the axial attractive force between the 
two discs.  

An accurate knowledge of the magnetic field distribution is 
necessary for predicting the torque and the axial force. The 
magnetic field can be evaluated by analytical methods [1-22] 
or by numerical techniques like finite elements [23-26]. 

 Finite elements simulations give accurate results considering 
three dimensional (3-D) effects and nonlinearity of magnetic 
materials. However, this method is computer time consuming 
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Fig. 1.  Geometry of the studied axial-type magnetic coupling (p = 6) 

 
and poorly flexible for the first step of design stage.  

Analytical methods are, in general, less computational time 
consuming than numerical ones and can provide closed-form 
solutions giving physical insight for designers. So, they are 
useful tools for first evaluations of magnetic couplings 
performances and for the first step of design optimization. 

Three-dimensional analytical models for ironless permanent 
magnet couplings have been proposed in the literature [1-16]. 
The proposed models are developed for axial magnetic 
couplings with parallelepiped magnets or cylindrical tile 
magnets. As the magnets are in free space (with no other 
magnetic materials present), analysis is based either on the 
amperian model with Biot-Savart law or on the coulombian 
method with equivalent surface charges. Although these 
methods give very accurate results, they are not suitable for the 
study of magnetic couplings with iron-core structures.  

An alternative analytical method to compute the torque for 
magnetic couplings with iron yokes is based on boundary 
value problems with Fourier analysis. This method consists in 
solving directly the Maxwell’s equations in the different 
regions (air-gap, magnets....) by the separation of variables 
method [17], [18]. The magnetic field distribution is obtained 
in each region by using boundary and interface conditions. The 
torque and the force are then computed by using the Maxwell 
stress tensor. In [19] and [20], two-dimensional (2-D) 
analytical models for radial-type magnetic couplings were 
developed and closed-form expressions for the torque was 
given and used for design optimization. In [21] and [22], quasi 
3-D analytical models are proposed to compute the 
performances of axial-flux permanent magnets machines. A 

Simple Analytical Expressions for the Force and 
Torque of Axial Magnetic Couplings  

 Thierry Lubin, Smail Mezani, and Abderrezak Rezzoug  

M 



 2 

modulation function is defined to take into account the radial 
dependence of the magnetic field. 

In this paper, we propose new formulas for the torque and 
the axial force of an axial-type magnetic coupling with iron 
yokes (fig. 1). The analytical study is based on the solution of 
2-D Laplace’s and Poisson’s equations in air-gap and 
permanent magnets regions by using the separation of 
variables method. The torque expression is used to study the 
influence of geometrical parameters (number of pole pairs and 
air-gap length). In order to study the accuracy of the proposed 
formulas, the results are compared with those obtained from 3-
D finite elements simulations and experimental results. 
 

II. PROBLEM DESCRIPTION AND ASSUMPTIONS 

As shown in Fig. 1, the geometrical parameters of the 
studied magnetic coupling are the inner and outer radii of the 
magnets R1 and R2, the air gap length e, and the magnets 
thickness h. The pole-arc to pole-pitch ratio of the permanent 
magnets is α. The number of pole-pairs is p. 

Analytical study of axial magnetic couplings is complicated 
because of the three-dimensional nature of the magnetic field 
distribution. However, in order to simplify the analysis and to 
carry out closed-form expressions for the axial force and 
torque, the 3-D problem is reduced to a 2-D one by 
introducing a cylindrical cutting surface at the mean radius of 
the magnets Re =(R1+R2)/2 at which the magnetic field will be 
computed [21], [22]. 

Fig. 2 shows the resulting 2-D model by considering the 
unrolled cylindrical cutting surface. With this approach, we 
neglect the radial component of the magnetic field and we 
consider that the axial and tangential components do not 
depend on the r-coordinate. Moreover, for simplicity, we 
adopt the following assumptions: 

 
1) The iron yokes have infinite magnetic permeability, 
2) The magnets are axially magnetized with relative recoil 

permeability 1=rµ . 

 
As shown in Fig.2, the whole domain is divided into three 

regions: the PMs regions (regions I and III) and the air-gap 
region (region II). The magnets of region III are shifted by an 
angle δ (torque angle) from the magnets of region I. Due to the 
periodicity of the magnetic field distribution, the studied 
domain is limited by 0 ≤ θ ≤ 2π/p. 

A magnetic vector potential formulation is used in 2D 
cylindrical coordinates to describe the problem. According to 
the adopted assumptions, the magnetic vector potential in each 
region has only one component along the r-direction and only 
depends on the θ and z-coordinates. The electromagnetic 
equations in each region expressed in term of the magnetic 
vector potential are 

2
0

2

    in Regions I and III (PMs)

0                  in Region II (air-gap)

µ∇ = − ∇ ×

∇ =

A M

A
  (1) 

 
 
Fig. 2.  2-D model of the axial magnetic coupling at the mean radius of the 
magnets Re =(R1+R2)/2. 

 
with  

0

r
z

B
M

µ
= = ±z zM e e           (2) 

where M is the magnetization vector, Br the remanence of the 
magnets, ez the unit vector along the axial direction and ± 
indicates the magnetization direction. 

III.  2-D ANALYTICAL MODEL  

By using the separation of variables method, we now 
consider the solution of Poisson’s equations for PMs regions 
and Laplace’s equation for the air-gap region.  

A. Solution of Poisson’s Equation in the PMs  Regions 
(Regions I and III) 

Poisson’s equation in the magnets region (region III) can be 
written in a cylindrical coordinates system as 

 
2 2

0
2 2 2

1 III III z

ee

A A M

RR z

µ
θθ

∂ ∂ ∂
+ = −

∂∂ ∂
   for   

2

0 2 /

h e z h e

pθ π
+ ≤ ≤ +

 ≤ ≤
(3) 

 
where µ0 is the permeability of the vacuum and Mz is the axial 
magnetization of the magnets. 

Knowing that the tangential component of magnetic field at 
2z h e= +  is null (soft-iron yoke with infinite permeability) 

and considering the continuity of the axial component of the 
flux density atz h e= + , we obtain the following boundary 
conditions 

2

0III

z h e

A

z = +

∂
=

∂
        (4) 

( , ) ( , )III IIA h e A h eθ θ+ = +      (5) 

 
where ( , )IIA zθ  is the magnetic vector potential in the air-gap 

region. 
The distribution of the axial magnetization Mz is plotted in 

Fig.3, δ is the relative angular position between the magnets of 
region I and region III. The axial magnetization can be 
expressed in Fourier’s series and replaced in (3) 
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Fig. 3.  Magnetization distribution along θ-direction (region III). 
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Taking into account the boundary conditions (4) and (5), the 

general solution of the magnetic vector potential in Region III 
can be written as 
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with 

0 2
e

k k
R

K M
kp

µ=          (9) 

The integration constants IIIka  and III
kc  are determined 

using a Fourier series expansion of ( , )IIA h eθ +  over the 

interval [0, 2π/p] 
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The expressions of the coefficients III
ka  and III

kc  are given 

in the appendix. 

One can apply the same procedure for region I by 
considering a zero value for δ. This leads to the following 
expression for the magnetic vector potential  
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The integration constants Ika  and I
kc  in (12) are determined 

using a Fourier series expansion of ( , )IIA hθ  over the interval 

[0, 2π/p]  
2 /
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The expressions of the coefficients I
ka  and I

kc  are given in 

the appendix. 

B. Solution of Laplace’s Equation in the Air-Gap Region 
(Region II) 

Laplace’s equation in the air-gap region can be written in a 
cylindrical coordinates system as 
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1
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The continuity of the tangential component of the magnetic 
field at z h=   and at z h e= +  leads to the following 
boundary conditions  
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By taking into account the boundary conditions (16), the 

general solution of the magnetic vector potential in the air-gap 
can be written as 
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The integration constants II
ka , II

kb , II
kc  and II

kd  are 

determined using Fourier series expansions of I h
A z∂ ∂  and 

III h e
A z +∂ ∂  over the air-gap interval [0, 2π/p]  
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The expressions of these coefficients are developed in the 

appendix.  
The axial and tangential components of the magnetic flux 

density in the air-gap can be deduced from the magnetic vector 
potential by 

 
1 II

IIz
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R θ
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      (22) 

 

IV. AXIAL -FORCE AND TORQUE EXPRESSIONS 

A. Electromagnetic torque 

The electromagnetic torque is obtained using the Maxwell 

stress tensor. A line at [ ],z h h eζ= ∈ +  in the air-gap region 

is taken as the integration path so the electromagnetic torque is 
expressed as follows 

 
23 3
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0 0
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3e II IIz
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Incorporating (22) into (23), the analytical expression for 

the electromagnetic torque becomes 
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k
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π
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where the coefficients Wk, Xk, Yk and Zk are given in the 
appendix.   
The torque can be computed with a good precision by 
considering only the fundamental components of the the flux 
density distribution in the air-gap (k = 1). This is especially 
true for large number of PM pole-pairs and/or large air-gap. 
Considering the first harmonic approximation, we can derive a 

closed-form expression for the electromagnetic torque which 
depends directly on the geometrical parameters. 
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(25) 
with  

e

h
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R
=    and   
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e
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As expected, the torque presents a sinusoidal characteristic 

with the relative angular position δ. Its maximum value (pull-
out torque) is obtained at the angle δ=π/2p. 

 

B. Axial-Force 

Axial magnetic force is an important parameter for the 
design of an axial magnetic coupling. This attractive force 
must be known because it affects directly the rotor structure 
and bearings. Indeed, the bearing lifetime depends on the 
bearing load. By using the Maxwell stress tensor, the axial 
force expression is 
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Substituting (22) into (27), the analytical expression for the 

axial force becomes 
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Considering only the fundamental component of the 

magnetic field in the air-gap (k = 1), we can derive a closed-
form expression for the axial force 
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From (25) and (29), we can see that the torque and the axial 

force dependence on the design parameters are explicit. For 
engineering purpose, it is important to have simple relations to 
study rapidly the effects of the geometrical parameters on the 
coupling performances. This is developed in the following 
subsection. 
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V. RESULTS OBTAINED WITH 2-D ANALYTICAL MODEL  

In this section, we use the proposed 2-D analytical model to 
compute the magnetic field distribution in the air-gap for 
different angular position between the two discs. For each 
position, the torque and the axial force are calculated by 
respectively using (25) and (29). Then, the influence of some 
geometrical parameters on the coupling performances is 
investigated (particularly the air-gap length and the pole-pairs 
number). The geometrical parameters of the studied device are 
given in Table I. These parameters correspond to the one 
which give a pull-out torque of around 90 Nm (obtained using 
(25)) when we consider an air-gap length of 3 mm and a 6 
pole-pairs. 

A. Flux density distribution and torque calculation for e = 
3mm and p=6 

Figs. 4a and 4b show respectively the flux lines (for two 
pole pitches) and the axial component of the flux density in the 
middle of the air-gap under no-load condition (δ = 0°). The 
magnetic flux density distribution along the air-gap is 
computed by using (17) and (22). We can observe that the flux 
lines are almost axial along the air-gap (the tangential 
component of the flux density is null in the middle of the air-
gap). For this position, the torque is then equal to zero and the 
axial force is attractive and reaches its maximum value. By 
using (29), we obtain F ≈ 2500N as shown in Fig. 8.  

 

              
(a) 

 
(b)  

Fig. 4. No load condition (δ = 0°): (a) magnetic flux lines, (b) axial 
component of the flux density in the middle of the air-gap. 

 Fig. 5 corresponds to the full load condition (δ = 15°). We 
can observe clearly on Fig. 5a the distortion of the flux lines 
due to the angular displacement of the upper magnets. Fig. 5b 
and Fig. 5c show respectively the axial and the tangential 
components of the flux density in the middle of the air-gap.  
For this angular position, the torque reaches its maximum 
value Te = 94 Nm (pull-out torque) as indicated in fig. 7 and 
the axial force is still attractive (F = 423N) as shown in fig. 8.  
As it can be observed in fig.8, the axial force reaches a null 
value for an angle slightly higher to half the pole pitch (around 
17°).  

 

               
(a) 

 
(b) 

             
(c) 

 
Fig. 5. Full load condition (δ = 15°): (a) magnetic flux lines, (b) axial 
component of the flux density, (c) tangential component of the flux density. 
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Fig. 6 corresponds to an angular displacement δ = 30° 
(unstable position). In this position, the magnets of the two 
discs are in opposed direction and the flux lines repel each 
other. The flux density presents only a tangential component in 
the middle of the air-gap. The torque is then equal to zero and 
the axial force is now repulsive as shown in fig. 8. The axial 
force value computed with (29) gives F = -1628 N. 

Fig. 7 and Fig. 8 summarize the variation of torque and 
axial force as a function of the angular displacement δ. As 
shown previously, the maximum torque occurs at an angular 
shifting of half pole pitch angle. We can observe that the first 
harmonic approximation gives accurate results (the error is 
less than 5%) compared to the ones obtained by taking into 
account 10 harmonic terms in (24) and (28). 

 

 
(a) 

       
(b) 

 
Fig. 6. Magnets in opposed direction (δ = 30°): (a) magnetic flux lines, (b) 
tangential component of the flux density in the middle of the air-gap. 

 
TABLE I 

PARAMETERS OF THE STUDIED AXIAL COUPLING 

Symbol Quantity value 

R1 Inner radius of the magnets 30 mm 
R2 Outer radius of the magnets 60 mm 

h Magnets thickness 7 mm 
e Air-gap length variable 
α PMs pole-arc to pole-pitch ratio 0.9 
p Pole-pairs number variable 
Br Remanence of the permanent magnets 1.25 T 

 
 
Fig. 7. Torque versus the angular displacement δ for e = 3mm and p = 6. 

 

 
 

Fig. 8. Axial force versus the angular displacement δ for e = 3 mm and p = 6. 

B. Influence of the air-gap length 

The length of the air-gap has a significant influence on the 
characteristics of the axial magnetic coupling. Fig. 9 and Fig. 
10 show respectively the pull-out torque and the maximal axial 
force as a function of the air-gap length. The results have been 
computed by using (25) and (29). The geometrical parameters 
are the ones given in table I and we have considered a number 
of pole pairs p = 6.  As shown in fig. 9, the pull-out torque of 
the magnetic coupling decreases quickly as the distance 
between the magnets increases. The maximum torque is almost 
divided by two when the air-gap is increased from 2mm to 
7mm. In the same way, the maximal axial force is reduced 
when the air-gap length increases (fig. 10).   

C. Influence of the number of pole pairs 

The variation of pull-out torque and maximal axial force 
versus the number of pole pairs are respectively shown in fig. 
11 and fig. 12. The results have been computed by using (25) 
and (29). For the study, we have considered several air-gap 
lengths. The other geometrical parameters are those given in 
Table I. Fig. 11 shows that all the curves present a maximum 
which depends on the air-gap length. The optimum value of 
the number of pole pairs is shifted to the right when the air-gap 
is reduced. This result is well known for magnetic couplings. 
For the studied coupling (Table I), the optimal number of pole 
pairs is p = 6 if we consider an air-gap length e = 5mm. We 
can observe in Fig. 12 that the maximum axial force decreases 
when the number of pole pairs increases.  
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We have shown here that the torque formula (25) can 
predict the effects of the geometrical parameters on the 
coupling performances and from fig. 11, we can choose 
rapidly the optimum value of the number of pole pairs when 
the other geometrical parameters are given.  

 In the next subsection, we investigate the precision of the 2-
D approximation (25), by comparing the previous analytical 
results with 3-D FEM simulations and experimental results.  

 

 
 
Fig. 9. Pull-out torque versus air-gap length for p = 6. 

 

 
 
Fig. 10. Maximum axial-force versus air-gap length for p = 6. 
 

 
 
Fig. 11. Pull-out torque versus the number of pole pairs for several air-gap 
values. 

 
 
Fig. 12. Maximum axial force versus the number of pole pairs for several air-
gap values. 

VI. 3-D FEM SIMULATIONS AND EXPERIMENTAL RESULTS 

In order to show the limits of the formulas (25) and (29), the 
analytical results have been compared to 3-D FEM simulations 
in one hand and to experimental results in another hand. For 
the 3-D finite element simulations, we have used COMSOL 
multiphysics software.  

For the experimental validation, we have manufactured an 
axial magnetic coupling prototype using sector type NdFeB 
magnets glued on iron yokes. The geometrical parameters of 
the prototype are those of Table I. We choose a number of 
pole pairs p = 6 that corresponds practically to the optimum 
value for an air-gap value e = 5mm.  

Fig. 13 shows the axial magnetic coupling placed on the test 
bench. The axial coupling is inserted between two electrical 
machines. In fig. 13, the air-gap value is e = 9.5mm. 

A. 3-D FEM results 

Fig. 14 and Fig. 15 show respectively the pull-out torque 
and the maximal axial force as a function of the air-gap length 
obtained with 3-D finite elements analysis and with the 2-D 
analytical model. The number of harmonic terms used in (24) 
and (28) is N = 10. The geometrical parameters are those 
given in Table I. For this study, the pole pair number is fixed 
to p = 6. As expected for this type of device, the 2-D analytical 
prediction gives higher values for both pull-out torque and 
maximal axial force as compared to 3-D FE analysis. 

This is mainly due to the 3-D effects which are not taken 
into account in the proposed model (the radial dependence of 
the magnetic field is not considered). The error on the pull-out 
torque prediction ranges from 22% for e=2mm to 37% for 
e=12mm. The error on the maximal axial force prediction is 
less important and ranges from 8% for e=2mm to 34% for 
e=12mm. 

Figs. 16 show the pull-out torque versus the number of pole 
pairs computed with 3 methods ((24), (25) and3-D FEM). The 
results are given for three values of the air-gap lengths. As it 
can be observed in Figs. 16, although the analytical formula 
(25) predicts higher torque values, the number of pole pairs 
which corresponds to the maximal value of the torque is 
almost the same for the 3 methods in use. 
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Fig. 13. Axial magnetic coupling prototype placed on the test bench (e = 
9.5mm). 

 
Fig. 14. Pull-out torque versus the air-gap length for p = 6: 3-D FEM and 2-D 
analytical results.  

 

 
Fig. 15. Maximum axial-force versus the air-gap length for p = 6, 3-D FEM 
and 2-D analytical results. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 16. Pull-out torque versus the number of pole pairs obtained with 3-D 
FEM and 2-D analytical model: (a) e = 2mm; (b) e = 6mm; (c) e = 10mm. 

 
Fig. 17 presents the synthesis of Fig. 16 and gives the 

optimal value of the pole-pair number versus air-gap lengths. 
This is an important result since we can observe in fig. 17 that 
the analytical formula (25) is suitable in the determination of 
the optimum value of the pole-pair number with the air-gap 
value when the other geometrical parameters are fixed. 

B. Experimental results 

Fig. 18 compares the measured values of the axial flux 
density and the ones obtained with the proposed 2D analytical 
model for no load condition (δ=0). The measurements are 
made along the θ coordinate at the mean radius of the magnets 
Re = 45 mm. For this test, the air-gap is fixed at e = 9.5mm. A 
Hall probe placed on a XY table is used to measure the 
magnetic field distribution. As the magnetic flux density is 
measured at the mean radius Re, we can observe very good 
agreement between experimental results and the ones obtained 
with the 2-D analytical model.  

To show the limits of the 2-D analytical model, we have 
measured the radial dependence of the axial flux density at a 
center line of a pole for no-load condition (δ=0). The air-gap is 
fixed at e = 9.5mm. The results are shown in fig. 19. As it can 
be observed, the axial flux density shows large variations 
along the radial expanse of the magnet. This is due to the large 
value of the air-gap. This result can not be predicted by the 2-
D analytical model which neglects the radial dependence of 
the magnetic field. We can note a good agreement between 3-
D FEM simulations and experimental results. 
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Fig. 17. Optimal value of the pole-pair number versus air-gap dimension 
computed with 3-D FEM and 2-D analytical model (25). 

 
Fig. 18. Measured and computed (2D analytical model) axial flux density in 
the middle of the air-gap at the mean radius Re =(R1+R2)/2 for e = 9.5 mm. 

 

 
Fig. 19. Measured and computed axial flux density along a radial lines in the 
middle of the air-gap at a center line of a pole for e = 9.5 mm. 

 
Figs. 20 show the comparison between the measured values 

of the static torque and the calculated ones by using the 2-D 
analytical model (25) and 3-D FEM. The static torque was 
measured by suspending weights from a wire attached to a rod 
(a rotor is locked and the other one can rotate). The relative 
angular position δ was measured using an encoder with a 
resolution of 4096 steps per revolution (0.088 degree).  Two 
values of the air-gap dimension were considered (e = 4mm and 
e = 9.5mm). It can be noticed that the experimental 
measurements are in good agreement with the results obtained 
with 3-D FE simulations. As shown previously, analytical 
formula (25) gives higher values of around 30% for the pull-
out torque. 

 
(a) 

 
(b) 

Fig. 20. Measured and computed static torque versus the angular 
displacement δ for p = 6: (a) e = 4mm; (b) e = 9.5mm 

VII.  CONCLUSION 

In this paper, we have proposed new simple analytical 
expressions for computing axial force and torque of an axial 
magnetic coupling. These expressions are determined by the 
solution of 2-D Laplace’s and Poisson’s equations (mean 
radius model) in the different regions (air-gap and magnets). 

 Although the proposed 2D analytical model shows some 
lack of accuracy compared to 3D finite-element simulations 
and experimental results (error of around 30% on the pull-out 
torque prediction), we have shown that it can be used to 
determine rapidly the optimal value of the pole-pair number 
when the other geometrical parameters are given. 

Moreover, the proposed analytical formulas can be useful 
tools for the first step of design optimization since continuous 
derivatives issued from the analytical expressions are of great 
importance in most optimization methods. 

APPENDIX 

• The development of (10) and (11) gives 
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 10 

The development of (13) and (14) gives 

1eI II IIe e
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• Expressions of the coefficients IIka , II
kb , II

kc  and II
kd  for the 

air-gap region 
The development of (18) to (21) gives 
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• Expression of the coefficients Wk, Xk, Yk and Zk given in (24) 
and (28)  

( ) ( )

( ) ( )

( )

e eII II
k k k

e e

e eII II e
k k k

e e

e eII II e
k k k

e

kp kp
sh h e sh h

R R
W a b

kp kp
sh e sh e

R R

kp kp
ch h e ch h

R RR
X c d

kpkp kp
sh e sh e

R R

kp kp
sh h e sh

R RR
Y c d

kpkp
sh e

R

ζ ζ

ζ ζ

ζ ζ

   
− − −   

   = − +
   
   
   

   
− − −   

   = −
   
   
   

 
− − − 

 = − +
 
 
 

( )

( ) ( )

e

e eII II
k k k

e e

h

kp
sh e

R

kp kp
ch h e ch h

R R
Z a b

kp kp
sh e sh e

R R

ζ ζ

 
 
 

 
 
 

   
− − −   

   = − +
   
   
   

(A.6) 

REFERENCES 

[1] J. P. Yonnet, “Permanent magnet bearings and couplings,” IEEE Trans. 
Magn., vol. 17, no. 1, pp. 1169–1173, 1981. 

[2] E. P. Furlani, “Formulas for the force and torque of axial couplings,” 
IEEE Trans. Magn., vol. 29, no. 5, pp. 2295–2301, Sep. 1993. 

[3] J. P. Yonnet, S. Hemmerlin, E. Rulliere, and G. Lemarquand, 
“Analytical calculation of permanent magnet couplings,” IEEE Trans. 
Magn., vol. 29, no. 6, pp. 2932–2934, Nov. 1993. 

[4] E. Furlani, S. Reznik, and A. Kroll, “A three-dimensional field solution 
for radially polarized cylinders,” IEEE Trans. Magn., vol. 31, no. 1, pp. 
844–851, Jan. 1995. 

[5] E. P. Furlani, R. Wang, and H. Kusnadi, “A three-dimensional model 
for computing the torque of radial couplings,” IEEE Trans. Magn., vol. 
31, no. 5, pp. 2522–2526, Sep. 1995. 

[6] Y. D. Yao, G. J. Chiou, D. R. Huang, and S. J. Wang, “Theoretical 
computations for the torque of magnetic coupling,” IEEE Trans. Magn., 
vol. 31, no. 3, pp. 1881–1884, May. 1995. 

[7] R. Waring, j. Hall, K. Pullen, and M. R. Etemad, “An investigation of 
face type magnetic couplers,” Proc. Inst. Mech. Engrs, Part. A., vol. 
210, no. 4, pp. 263–272, 1996. 

[8] E. P. Furlani, “Analysis and optimization of synchronous couplings,” J. 
Appl. Phys., vol. 79, pp. 4692–4694, 1996. 

[9] E. P. Furlani and M. A. Knewtson, “A three-dimensional field solution 
for permanent-magnet axial-field motors,” IEEE Trans. Magn., vol. 33, 
no. 3, pp. 2322–2325, May. 1997. 

[10] P. Elies and G. Lemarquand, “Analytical optimization of the torque of a 
permanent-magnet coaxial synchronous coupling,” IEEE Trans.Magn., 
vol. 34, no. 4, pp. 2267–2273, Jul. 1998. 

[11] J. F. Charpentier and G. Lemarquand, “Optimal design of cylindrical 
air-gap synchronous permanent magnet couplings,” IEEE Trans.Magn., 
vol. 35, no. 2, pp. 1037–1046, Mar. 1999. 

[12] J. F. Charpentier, N. Fadli, and J. Jennane, “Study of ironless permanent 
magnet devices being both a coupling and an axial bearing for naval 
propulsion,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3235–3237, Sep. 
2003. 

[13] H. L. Rakotoarison, J. P. Yonnet, and B. Delinchant., “Using 
Coulombian approach for modelling scalar potential and magnetic field 
of a permanent magnet with radial polarization,” IEEE Trans. Magn., 
vol. 43, no. 4, pp. 1261–1264, Apr. 2007. 

[14] R. Ravaud and G. Lemarquand, “Comparison of the Coulombian and 
Amperian current models for calculating the magnetic field produced by 
arc-shaped permanent magnets radially magnetized,” Prog. 
Electromagn. Res., vol. 95, pp. 309–327, 2009. 

[15] R. Ravaud, G. Lemarquand, V. Lemarquand, and C. Depollier, 
“Permanent magnet couplings: Field and torque three-dimensional 
expressions based on the Coulombian model,” IEEE Trans. Magn., vol. 
45, no. 4, pp. 1950–1958, Apr. 2009. 

[16] R. Ravaud, V. Lemarquand, and G. Lemarquand, “Analytical design of 
permanent magnet radial couplings,” IEEE Trans. Magn., vol. 46, no. 
11, pp. 3860–3865, Nov. 2010. 

[17] B. L. J. Gysen, K. J. Meessen, J. J. H. Paulides, and E. A. Lomonova, 
“General formulation of the electromagnetic field distribution in 
machines and devices using Fourier analysis,” IEEE Trans. Magn., vol. 
46, no. 1, pp. 39-52, Jan. 2010. 

[18] T. Lubin, S. Mezani, and A. Rezzoug, “Exact analytical method for 
magnetic field computation in the air-gap of cylindrical electrical 
machines considering slotting effects,” IEEE Trans. Magn., vol. 46, no. 
4, pp. 1092-1099, Apr. 2010. 

[19] R. M. Hornreich and S. Shtrikman, “Optimal design of synchronous 
torque couplers,” IEEE Trans. Magn., vol. 14, no. 5, pp. 800–802, Sept. 
1978. 

[20] J. Fontchastagner, Y Lefèvre, and F. Messine, “Some co-axial magnetic 
couplings designed using an analytical model and an exact global 
optimization code,” IEEE Trans. Magn., vol. 45, no. 3, pp. 1458–1461, 
Mar. 2009. 

[21] A. Parviainen, M. Niemelä, and J. Pyrhönen, “Modeling of axial flux 
permanent-magnet machines,” IEEE Trans. Ind. Appl., vol. 40, no. 5, 
pp. 1333–1340, Sep./Oct. 2004. 

[22] J. Azzouzi, G. Barakat, and B. Dakyo, “Quasi-3-D analytical modeling 
of the magnetic field of an axial flux permanent-magnet synchronous 
machine,” IEEE Trans. Energy. Convers., vol. 20, no. 4, pp. 746-752, 
Dec. 2005. 

[23] C. Ferreira and J. Vaidya, “Torque analysis of permanent magnet 
coupling using 2D and 3D finite elements methods,” IEEE Trans. 
Magn., vol. 25, pp. 3080–3082, Jul. 1989. 

[24] W. Wu, H. C. Lovatt, and J. C.Dunlop, “Analysis and design 
optimisation of magnetic couplings using 3D finite element modelling,” 
IEEE Trans. Magn., vol. 33, no. 5, pp. 4083–4085, Sept. 1997. 

[25] R. Wang, E. P. Furlani, and Z. J. Cendes, “Design and analysis of a 
permanent magnet axial coupling using 3D finite element field 
computations,” IEEE Trans. Magn., vol. 30, no. 4, pp. 2292–2295, Jul. 
1994. 

[26] T. F. Chan, W. Wang, and L. L. Lai, “Performance of an Axial-Flux 
Permanent Magnet Synchronous Generator From3-D Finite-Element 
Analysis,” IEEE Trans. Energy. Convers., vol. 25, no. 3, pp. 669-676, 
Sep. 2010. 

 
 
 
 
 
 



 11 

Thierry Lubin  was born in Sedan, France, in 1970. 
He received the M.S. degree from the University 
Pierre et Marie Curie, Paris 6, France in 1994 and the 
Ph.D. degree from the University Henri Poincaré, 
Nancy, France, in 2003.  

He is currently a lecturer of Electrical Engineering 
at the University of Nancy at the Groupe de 
Recherche en Electrotechnique et Electronique de 
Nancy. His interests include modeling and control of 
electrical machines, and applied superconductivity in 

electrical devices.  
 
 
 
 

Smail Mezani was born in Algiers, Algeria, in 
1974. He received the engineer diploma and the 
magister degree from the University of Sciences 
and Technology Houari Boumediene, Algiers, 
Algeria in 1996 and 1999 respectively. He obtained 
the Ph.D. degree from the Institut National 
Polytechnique de Lorraine, France, in 2004. 

He is currently a lecturer at the University Henri 
Poincaré of Nancy, France, at the Groupe de 

Recherche en Electrotechnique et Electronique de Nancy where his research 
interests include the applications of superconductors in electromechanical 
devices. 
 
 

 
Abderrezak Rezzoug received the electrical 
engineer degree from ENSEM INPL, Nancy, 
France in 1972, and the Dr. Ing. diploma and the 
Ph.D. degree from INPL, in 1979 and 1987 
respectively. 
After working at the INPL as an assistant Professor 
until 1991, he is currently a Professor of Electrical 
Engineering at the University Henri Poincaré, 
Nancy, France. As a member of the Groupe de 

Recherche en Electrotechnique et Electronique de Nancy, his main subjects of 
research concern superconducting applications to electrical devices, and the 
control and diagnosis of electrical machines. 
 


