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We give an explicit construction of the increasing tree-valued process introduced by Abraham and Delmas using a random point process of trees and a grafting procedure. This random point process will be used in companion papers to study record processes on Lévy trees. We use the Poissonian structure of the jumps of the increasing tree-valued process to describe its behavior at the first time the tree grows higher than a given height, using a spinal decomposition of the tree, similar to the classical Bismut and Williams decompositions. We also give the joint distribution of this exit time and the ascension time which corresponds to the first infinite jump of the tree-valued process.

Introduction

Lévy trees arise as a natural generalization to the continuum trees defined by Aldous [START_REF] Aldous | The Continuum Random Tree I[END_REF]. They are located at the intersection of several important fields: combinatorics of large discrete trees, Lévy processes and branching processes. Consider a branching mechanism ψ, that is a function of the form [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF] ψ(λ) = αλ + βλ 2 + (0,+∞)

e -λx -1 + λx1 {x<1} Π(dx) with α ∈ R, β ≥ 0, Π a σ-finite measure on (0, ∞) such that (0,+∞) (1 ∧ x 2 ) Π(dx) < +∞. In the (sub)critical case ψ (0) ≥ 0, Le Gall and Le Jan ( [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF]) defined a continuum tree structure, which can be described by a tree T , for the genealogy of a population whose total size is given by a continuous-state branching process (CSBP) with branching mechanism ψ. We will consider the distribution P ψ r (dT ) of this Lévy tree when the CSBP starts at mass r > 0, or its excursion measure N ψ [dT ], when the CSBP is distributed under its canonical measure. The ψ-Lévy tree possesses several striking features as pointed out in the work of Duquesne and Le Gall ( [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF][START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF]). For instance, the branching nodes can only be of degree 3 (binary branching) if β > 0 or of infinite degree if Π = 0. Furthermore, there exists a "mass" measure m T on the leaves of T , whose total mass corresponds to the total population size σ = m T (T ) of the CSBP. We will also consider the extinction time of the CSBP which corresponds to the height H max (T ) of the tree T . The results can be extended to the super-critical case, using a Girsanov transformation given by Abraham and Delmas ( [START_REF]A continuum-tree-valued Markov process[END_REF]).

In [START_REF]A continuum-tree-valued Markov process[END_REF], a decreasing continuum tree-valued process is defined using the so-called pruning procedure of Lévy trees introduced in Abraham, Delmas and Voisin ([7]). By marking a ψ-Lévy tree with two different kinds of marks (the first ones lying on the skeleton of the tree, the other ones on the nodes of infinite degree), one can prune the tree by throwing away all the points having a mark on their ancestral line, that is, the branch connecting them to the root. The main result of [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] is that the remaining tree is still a Lévy tree, with branching mechanism related to ψ. The idea of [START_REF]A continuum-tree-valued Markov process[END_REF] is to consider a particular pruning with an intensity depending on a parameter θ, so that the corresponding branching mechanism ψ θ is ψ shifted by θ:

ψ θ (λ) = ψ(θ + λ) -ψ(θ).
Letting θ vary enables to define a decreasing tree-valued Markov process (T θ , θ ∈ Θ ψ ), with Θ ψ ⊂ R the set of θ for which ψ θ is well-defined, and such that T θ is distributed according to N ψ θ . If we write σ θ = m T θ (T θ ) for the total mass of T θ , then the process (σ θ , θ ∈ Θ ψ ) is a pure-jump process. The case Π = 0 was studied by Aldous and Pitman ( [START_REF] Aldous | The standard additive coalescent[END_REF]). The time-reversed tree-valued process is also a Markov process which defines a growing tree process. Let us mention that the same kind of ideas have been used by Aldous and Pitman ( [START_REF]Tree-valued Markov chains derived from Galton-Watson processes[END_REF]) and by Abraham, Delmas and He ( [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF]) in the framework of Galton-Watson trees to define growing discrete tree-valued Markov processes.

In the discrete framework of [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF], it is possible to define the infinitesimal transition rates of the growing tree process. In [START_REF] Evans | Subtree prune and regraft: A reversible real tree-valued Markov process[END_REF], Evans and Winter define another continuum tree-valued process using a prune and re-graft procedure. This process is reversible with respect to the law of Aldous's continuum random tree and its infinitesimal transitions are described using the theory of Dirichlet forms.

In this paper, we describe the infinitesimal behavior of the growing continuum tree-valued process, which is (T θ , θ ∈ Θ ψ ) seen backwards in time. The Special Markov Property in [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] describes only two-dimensional distributions and hence the transition probabilities but, since the space of real trees is not locally compact, we cannot use the theory of infinitesimal generators to describe its infinitesimal transitions. Dirichlet forms cannot be used either since the process is not symmetric (it is increasing). However, it is a pure-jump process and our first main result shows that the infinitesimal transitions of the process can be described using a random point process of trees which are grafted one by one on the leaves of the growing tree. More precisely, let {θ j , j ∈ J} be the set of jumping times of the mass process (σ θ , θ ∈ Θ ψ ). Then, informally, at time θ j , a tree T j distributed according to N ψ θ j [T ∈ •], with:

N ψ θ [T ∈ •] = 2βN ψ θ [T ∈ •] + (0,+∞)
Π(dr)re -θr P ψ θ r (T ∈ •), is grafted at x j , a leaf of T θj chosen at random (according to the mass measure m T θ j ). We also prove that the random point measure

N = j∈J δ (xj ,T j ,θj ) has predictable compensator m T θ (dx)N ψ θ [dT ] 1 Θ ψ (θ) dθ
with respect to the backwards in time natural filtration of the process (Corollary 3.4). The precise statement requires the introduction of the set of locally compact weighted real trees endowed with a Gromov-Hausdorff-Prokhorov distance. Therefore, we will assume that Lévy trees are locally compact, which corresponds to the Grey condition:

+∞ du ψ(u) < ∞. In the (sub)critical case this implies that the corresponding height process of the Lévy tree is continuous and that the tree is compact. However, the tree-valued process is defined in [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] without this assumption and we conjecture that the jump representation of the tree-valued Markov process holds without this assumption.

The representation using the random point measure allows to describe the ascension time or explosion time (when it is defined)

A = inf θ ∈ Θ ψ , σ θ < ∞
as inf{θ j , m T j (T j ) < ∞}, being the first time (backwards in time) at which a tree with infinite mass is grafted. This representation is also used in Abraham and Delmas ( [START_REF]Record process on the Continuum Random Tree[END_REF][START_REF]The forest associated with the record process on a Lévy tree[END_REF]) respectively on the asymptotics of the records on discrete subtrees of the continuum random tree and on the study of the record process on general Lévy trees.

This structure, somewhat similar to the Poissonian structure of the jumps of a Lévy process (although in our case the structure is neither homogeneous nor independent), allows us to study the time of first passage of the growing tree-valued process above a given height:

A h = sup θ ∈ Θ ψ , H max (T θ ) > h .
We give the joint distribution of the ascension time and the exit time (A, A h ), see Proposition 4.3. In particular, A h goes to A as h goes to infinity: for h very large, with high probability the process up to A will not have crossed height h, so that the first jump to cross height h will correspond to the grafting time of the first infinite tree, which happens at ascension time A.

We also give in Theorem 4.6 the joint distribution of (T A h -, T A h ) the tree just after and just before the jumping time A h . And we give a spinal decomposition of T A h along the ancestral branch of the leaf on which the overshooting tree is grafted, which is similar to the classical Bismut decomposition of Lévy trees. Conditionally on this ancestral branch, the overshooting tree is then distributed as a regular Lévy tree, conditioned on being high enough to perform the overshooting. This generalizes results in [START_REF]A continuum-tree-valued Markov process[END_REF] about the ascension time of the tree-valued process. Note that this approach could easily be generalized to study spatial exit times of growing families of super-Brownian motions.

All the results of this paper are stated in terms of real trees and not in terms of the height process or the exploration process that encode the tree as in [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF]. For this purpose, we define in Section 2.2 the state space of rooted real trees with a mass measure (here called weighted trees or w-trees) endowed with the so-called Gromov-Hausdorff-Prokhorov metric defined by Abraham, Delmas and Hoscheit ( [START_REF] Abraham | A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces[END_REF]) which is a slight generalization of the Gromov-Hausdorff metric on the space of metric spaces, and also a generalization of the Gromov-Prokhorov topology of [START_REF] Greven | Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees)[END_REF] on the space of compact metric spaces endowed with a probability measure.

The paper is organized as follows. In Section 2, we introduce all the material for our study: the state space of weighted real trees and the metric on it, see Section 2.2; the definition of sub(critical) Lévy trees via the height process; the extension of the definition to super-critical Lévy trees; the pruning procedure of Lévy trees. In Section 3, we recall the definition of the growing tree-valued process by the pruning procedure as in [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] in the setting of real trees and give another construction using the grafting of trees given by random point processes. We prove in Theorem 3.2 that the two definitions agree and then give in Corollary 3.4 the random point measure description. Section 4 is devoted to the application of this construction on the distribution of the tree at the times it overshoots a given height and just before, see Theorem 4.6.

The pruning of Lévy trees

2.1. Real trees. The first definitions of continuum random trees go back to Aldous ([8]). Later, Evans, Pitman and Winter ( [START_REF] Steven | Rayleigh processes, real trees, and root growth with re-grafting[END_REF]) used the framework of real trees, previously applied in the context of geometric group theory, to describe continuum trees. We refer to [START_REF] Steven | Probability and real trees[END_REF][START_REF] Gall | Random real trees[END_REF] for a general presentation of random real trees. Informally, real trees are metric spaces without loops, locally isometric to the real line.

More precisely, a metric space (T, d) is a real tree (or R-tree) if the following properties are satisfied:

(1) For every s, t ∈ T , there is a unique isometric map f s,t from [0, d(s, t)] to T such that f s,t (0) = s and f s,t (d(s, t)) = t. (2) For every s, t ∈ T , if q is a continuous injective map from [0, 1] to T such that q(0) = s and q(1) = t, then q([0, 1]) = f s,t ([0, d(s, t)]). We say that a real tree is rooted if there is a distinguished vertex ∅, which will be called the root of T . Such a real tree is noted (T, d, ∅). If s, t ∈ T , we will note s, t the range of the isometric map f s,t described above. We will also note s, t for the set s, t \ {t}. We give some vocabulary on real trees, which will be used constantly when dealing with Lévy trees. Let T be a real tree. If x ∈ T , we will call degree of x, and note n(x), the number of connected components of the set T \ {x}. In a general tree, this number can be infinite, and this will actually be the case with Lévy trees. The set of leaves is defined as

Lf(T ) = {x ∈ T \ {∅}, n(x) = 1} .
If n(x) ≥ 3, we say that x is a branching point. The set of branching points will be noted Br(T ). Among those, there is the set of infinite branching points, defined by

Br ∞ (T ) = {x ∈ Br(T ), n(x) = ∞} .
Finally, the skeleton of a real tree, noted Sk(T ), is the set of points in the tree that aren't leaves. It should be noted, following Evans, Pitman and Winter ( [START_REF] Steven | Rayleigh processes, real trees, and root growth with re-grafting[END_REF]), that the trace of the Borel σ-field of T on Sk(T ) is generated by the sets s, s , s, s ∈ Sk(T ). Hence, it is possible to define a σ-finite Borel measure T on T , such that

T (Lf(T )) = 0 and T ( s, s ) = d(s, s ).
This measure will be called length measure on T . If x, y are two points in a rooted real tree (T, d, ∅), then there is a unique point z ∈ T , called the Most Recent Common Ancestor (MRCA) of x and y such that ∅, x ∩ ∅, y = ∅, z . This vocabulary is an illustration of the genealogical vision of real trees, in which the root is seen as the ancestor of the population represented by the tree. Similarly, if x ∈ T , we will call height of x, and note by H x the distance d(∅, x) to the root. The function x → H x is continuous on T , and we define the height of T by

H max (T ) = sup x∈T H x .
2.2. Gromov-Prokhorov metric.

2.2.1.

Rooted weighted metric spaces. This section is inspired by [START_REF] Duquesne | Growth of Lévy trees[END_REF], but for the fact that we include measures on the trees, in the spirit of [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF]. The detailed proofs of the results stated here can be found in [START_REF] Abraham | A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces[END_REF]. Let (X, d X ) be a Polish metric space. For A, B ∈ B(X), we set

d X H (A, B) = inf {ε > 0, A ⊂ B ε and B ⊂ A ε } , the Hausdorff distance between A and B, where A ε = {x ∈ X, inf y∈A d X (x, y) < ε} is the ε-halo set of A. If X is compact,
then the space of compact subsets of X, endowed with the Hausdorff distance, is compact, see Theorem 7.3.8 in [START_REF] Burago | A course in metric geometry[END_REF].

We will use the notation M f (X) for the space of all finite Borel measures on X. If µ, ν ∈ M f (X), we set:

d X P (µ, ν) = inf {ε > 0, µ(A) ≤ ν(A ε ) + ε and ν(A) ≤ µ(A ε ) + ε for all closed set A} , the Prokhorov distance between µ and ν. It is well known that (M f (X), d X P
) is a Polish metric space, and that the topology generated by d X P is exactly the topology of weak convergence (convergence against continuous bounded functionals). If Φ : X → X is a Borel map between two Polish metric spaces and if µ is a Borel measure on X, we will note Φ * µ the image measure on X defined by Φ * µ(A) = µ(Φ -1 (A)), for any Borel set A ⊂ X. Recall that a Borel measure is boundedly finite if the measure of any bounded Borel set is finite.

Definition 2.1.

• A rooted weighted metric space X = (X, d X , ∅ X , µ X ) is a metric space (X, d X ) with a distinguished element ∅ X ∈ X and a boundedly finite Borel measure µ X .

• Two rooted weighted metric spaces X = (X, d X , ∅ X , µ X ) and X = (X , d X , ∅ X , µ X ) are said to be GHP-isometric if there exists an isometric bijection Φ :

X → X such that Φ(∅ X ) = ∅ X and Φ * µ X = µ X .
Notice that if (X, d X ) is compact, then a boundedly finite measure on X is finite and belongs to M f (X). We will now use a procedure due to Gromov ([21]) to compare any two compact rooted weighted metric spaces, even if they are not subspaces of the same Polish metric space.

2.2.2. Gromov-Hausdorff-Prokhorov distance for compact metric spaces. Let X = (X, d, ∅, µ) and X = (X , d , ∅ , µ ) be two compact rooted weighted metric spaces, and define

(2)

d c GHP (X , X ) = inf Φ,Φ ,Z d Z H (Φ(X), Φ (X )) + d Z (Φ(∅), Φ (∅ )) + d Z P (Φ * µ, Φ * µ ) ,
where the infimum is taken over all isometric embeddings Φ : X → Z and Φ : X → Z into some common Polish metric space (Z, d Z ). Note that equation (2) does not actually define a metric, as d c GHP (X , X ) = 0 if X and X are GHP-isometric. Therefore, we will consider K, the set of GHP-isometry classes of compact rooted weighted metric space and identify a compact rooted weighted metric space with its class in K. Then the function

d c GHP (•, •) is finite on K 2 . Theorem 2.2. The function d c GHP (•,
•) defines a metric on K and the space (K, d c GHP ) is a Polish metric space.

We will call d c GHP the Gromov-Hausdorff-Prokhorov metric. 2.2.3. Gromov-Hausdorff-Prokhorov distance. However, the definition of the Gromov-Hausdorff-Prokhorov metric on compact metric spaces is not yet general enough, as we want to deal with unbounded trees with σ-finite measures. To consider such an extension, we will consider complete and locally compact length spaces. We recall that a metric space (X, d) is a length space if for every x, y ∈ X, we have d(x, y) = inf L(γ), where the infimum is taken over all rectifiable curves γ : [0, 1] → X such that γ(0) = x and γ(1) = y, and where L(γ) is the length of the rectifiable curve γ. Definition 2.3. Let L be the set of GHP-isometry classes of rooted weighted complete and locally compact length spaces and identify a rooted weighted complete and locally compact length spaces with its class in L.

If X = (X, d, ∅, µ) ∈ L, then for r ≥ 0 we will consider its restriction to the ball of radius r centered at ∅, X (r) = (X (r) , d (r) , ∅, µ (r) ), where

X (r) = {x ∈ X, d(∅, x) ≤ r},
the metric d (r) is the restriction of d to X (r) , and the measure µ (r) (dx) = 1 X (r) (x) µ(dx) is the restriction of µ to X (r) . Recall that the Hopf-Rinow theorem (Theorem 2.5.28 in [START_REF] Burago | A course in metric geometry[END_REF]) implies that if (X, d) is a complete and locally compact length space, then every closed bounded subset of X is compact. In particular, if X belongs to L, then X (r) belongs to K for all r ≥ 0.

We state a regularity lemma of d c GHP with respect to the restriction operation. Lemma 2.4. Let X and Y belong to L. Then the function defined on R + by

r → d c GHP X (r) , Y (r) is càdlàg.
This implies that the following function is well defined on L 2 :

d GHP (X , Y) = ∞ 0 e -r 1 ∧ d c GHP X (r) , Y (r)
dr.

Theorem 2.5. The function d GHP defines a metric on L and the space (L, d GHP ) is a Polish metric space.

The next result implies that d c GHP and d GHP define the same topology on K ∩ L. Theorem 2.6. Let (X n , n ∈ N) and X be elements of K ∩ L. Then the sequence (X n , n ∈ N) converges to X in (K, d c GHP ) if and only if it converges to X in (L, d GHP ). Remark 2.7. At this point, we should clarify the connection between the Gromov-Hausdorff-Prokhorov metric d GHP we introduced here and various other metrics in the literature. First of all, a very similar approach was used by Miermont ([27]) to define a metric on the space of compact metric spaces, carrying a probability measure. On this space, the topologies generated by Miermont's metric and by d c GHP coincide. As for the Gromov-Prokhorov metric introduced by Greven, Pfaffelhuber and Winter ( [START_REF] Greven | Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees)[END_REF]), it is in general neither weaker nor stronger than the d GHP metric. Indeed, the Gromov-Prokhorov metric does not take into account the geometrical features of the spaces into consideration (by design, it ignores sets of zero measure) which are however seen by the d GHP metric. For an enlightening discussion of the differences between all these points of view, see Chapter 27 of [START_REF] Villani | Optimal Transport, Grundlehren der mathematischen Wissenschaften[END_REF].

2.2.4.

The space of w-trees. Note that real trees are always length spaces and that complete real trees are the only complete connected spaces that satisfy the so-called four-point condition:

(3) ∀x 1 , x 2 , x 3 , x 4 ∈ X, d(x 1 , x 2 ) + d(x 3 , x 4 ) ≤ (d(x 1 , x 3 ) + d(x 2 , x 4 )) ∨ (d(x 1 , x 4 ) + d(x 2 , x 3 )).
Definition 2.8. We denote by T be the set of (GHP-isometry classes of) complete locally compact rooted real trees endowed with a locally finite Borel measure, in short w-trees.

We deduce the following corollary from Theorem 2.5 and the four-point condition characterization of real trees.

Corollary 2.9. The set T is a closed subset of L and (T, d GHP ) is a Polish metric space.

Height erasing. We define the restriction operators on the space of w-trees. Let a ≥ 0. If (T, d, ∅, m) is a w-tree, define [START_REF]The forest associated with the record process on a Lévy tree[END_REF] π a (T ) = {x ∈ T, d(∅, x) ≤ a} and let (π a (T ), d πa(T ) , ∅, m πa(T ) ) be the w-tree constituted of the points of T having height lower than a, where d πa(T ) and m πa(T ) are the restrictions of d and m to π a (T ). When there is no confusion, we will also write π a (T ) for (π a (T ), d πa(T ) , ∅, m πa(T ) ). We will also write T (a) = {x ∈ T, d(∅, x) = a} for the level set at height a. We say that a w-tree T is bounded if π a (T ) = T for some finite a. Notice that a tree T is bounded if and only if H max (T ) is finite.

Grafting procedure. We will define in this section a procedure by which we add (graft) w-trees on an existing w-tree. More precisely, let T ∈ T and let ((T i , x i ), i ∈ I) be a finite or countable family of elements of T × T . We define the real tree obtained by grafting the trees T i on T at point x i . We set T = T i∈I T i \ {∅ Ti } where the symbol means that we choose for the sets T and (T i ) i∈I representatives of isometry classes in T which are disjoint subsets of some common set and that we perform the disjoint union of all these sets. We set ∅ T = ∅ T . The set T is endowed with the following metric d T : if s, t ∈ T ,

d T (s, t) =          d T (s, t) if s, t ∈ T, d T (s, x i ) + d Ti ∅ Ti , t if s ∈ T, t ∈ T i \ {∅ Ti }, d Ti (s, t) if s, t ∈ T i \ {∅ Ti }, d T (x i , x j ) + d Tj ∅ Tj , s + d Ti ∅ Ti , t if i = j and s ∈ T j \ {∅ Tj }, t ∈ T i \ {∅ Ti }.
We define the mass measure on T by

m T = m T + i∈I 1 Ti\{∅ T i } m Ti + m Ti {∅ Ti } δ xi ,
where δ x is the Dirac mass at point x. It is clear that the metric space ( T , d T , ∅ T ) is still a rooted complete real tree. However, it is not always true that T remains locally compact (it still remains a length space anyway), or, for that matter, that m T defines a locally finite measure (on T ). So, we will have to check that ( T , d T , ∅ T , m T ) is a w-tree in the particular cases we will consider.

We will use the following notation:

(5) T , d T , ∅ T , m T = T i∈I (T i , x i )
and write T instead of ( T , d T , ∅ T , m T ) when there is no confusion.

Real trees coded by functions. Lévy trees are natural generalizations of Aldous's Brownian tree, where the underlying process coding for the tree (reflected Brownian motion in Aldous's case) is replaced by a certain functional of a Lévy process, the height process. Le Gall and Le Jan ( [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF]) and Duquesne and Le Gall ([14]) showed how to generate random real trees using the excursions of a Lévy process above its minimum. We will briefly recall this construction, in order to introduce the pruning procedure on Lévy trees. Let us first work in a deterministic setting.

Let f be a continuous non-negative function defined on [0, +∞), with compact support, such that f (0) = 0. We set:

σ f = sup {t, f (t) > 0} , with the convention sup ∅ = 0. Let d f be the non-negative function defined by d f (s, t) = f (s) + f (t) -2 inf u∈[s∧t,s∨t] f (u).
It can be easily checked that d f is a semi-metric on [0, σ f ]. One can define the equivalence relation associated to d f by s ∼ t if and only if d f (s, t) = 0. Moreover, when we consider the quotient space

T f = 0, σ f /∼
and, noting again d f the induced metric on T f and rooting T f at ∅ f , the equivalence class of 0, it can be checked that the space (T f , d f , ∅ f ) is a compact rooted real tree. We denote by p f the canonical projection from [0, σ f ] onto T f , which is extended by p f (t) = ∅ f for t ≥ σ f . Note that p f is continuous. We define m f , the mass measure on T f as the image measure by p f of the Lebesgue measure on [0, σ f ]. We consider the (compact) w-tree (T f , d f , ∅ f , m f ), which we will note T f . It should be noticed that, if x ∈ T f is an equivalence class, the common value of f on all the points in this equivalence class is exactly

d f (∅, x) = H x . Note also that, in this setting, H max (T f ) = f ∞ where f ∞ stands for the uniform norm of f .
We have the following elementary result (see Lemma 2.3 of [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF] when dealing with the Gromov-Hausdorff metric instead of the Gromov-Hausdorff-Prokhorov metric). Proposition 2.10. Let f, g be two compactly supported, non-negative continuous functions such that f (0) = g(0) = 0. Then:

(6) d c GHP (T f , T g ) ≤ 6 f -g ∞ + σ f -σ g . Proof.
The Gromov-Hausdorff distance can be evaluated using correspondences, see [START_REF] Burago | A course in metric geometry[END_REF], section 7.3.

A correspondence between two metric spaces (E

1 , d 1 ) and (E 2 , d 2 ) is a subset R of E 1 × E 2 such that for δ ∈ {1, 2} the projection of R on E δ is onto: {x δ , (x 1 , x 2 ) ∈ R} = E δ . The distortion of R is defined by: dis(R) = sup {|d 1 (x 1 , x 2 ) -d 2 (y 1 , y 2 )|, (x 1 , y 1 ) ∈ R, (x 2 , y 2 ) ∈ R} . Let Z = E 1 E 2 be the disjoint union of E 1 and E 2 and consider the function d Z defined on Z 2 by d Z = d δ on E 2 δ for δ ∈ {1, 2} and for x 1 ∈ E 1 , x 2 ∈ E 2 : d Z (x 1 , x 2 ) = inf d 1 (x 1 , y 1 ) + 1 2 dis(R) + d 2 (y 2 , x 2 ), (y 1 , y 2 ) ∈ R . Then if dis(R) > 0, the function d Z is a metric on Z such that d Z H (E 1 , E 2 ) ≤ 1 2 dis(R).
Let f, g be compactly supported, non-negative continuous functions with f (0) = g(0) = 0. Following [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF], we consider the following correspondence between T f and T g : R = (x f , x g ), x f = p f (t) and x g = p g (t) for some t ≥ 0 , and we have dis(R) ≤ 4 f -g ∞ according to the proof of Lemma 2.3 in [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF]. Notice (∅ f , ∅ g ) ∈ R. Thus, with the notation above and E 1 = T f , E 2 = T g , we get:

d Z H (T f , T g ) ≤ 2 f -g ∞ and d Z (∅ f , ∅ g ) ≤ 2 f -g ∞ .
Then, we consider the Prokhorov distance between m f and m g . Let A f be a Borel set of T f . We set

I = {t ∈ [0, σ f ], p f (t) ∈ A}. By definition of m f , we have m f (A f ) = Leb(I). We set A g = p g (I ∩ [0, σ g ]) so that m g (A g ) = Leb(I ∩ [0, σ g ]) ≥ Leb(I) -|σ f -σ g |.
By construction, we also have that for any x g ∈ A g , there exists t ∈ I such that p g (t) = x g and such that d

Z (x g , x f ) = dis(R)/2, with x f = p f (t) ∈ A f . This implies that A g ⊂ (A f ) r for any r > dis(R)/2.
We deduce that:

m f A f ≤ m g (A g ) + σ f -σ g ≤ m g (A f ) r + σ f -σ g .
The same is true with f and g replaced by g and f . We deduce that:

d Z P m f , m g ≤ 1 2 dis(R) + σ f -σ g ≤ 2 f -g ∞ + σ f -σ g .
We get:

d Z H T f , T g + d Z ∅ f , ∅ g + d Z P m f , m g ≤ 6 f -g ∞ + σ f -σ g .
This gives the result.

Remark 2.11. We could define the correspondence for more general functions f : lower semi-continuous functions that satisfy the intermediate values property (see [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]). In that case, the associated real tree is not even locally compact (hence not necessarily proper). But the measurability of the mapping f → T f is not clear in this general setting; this is why we only consider continuous functions f here and thus will assume the Grey condition (see next section) for Lévy trees.

Branching mechanisms.

Let Π be a σ-finite measure on (0, +∞) such that we have (1 ∧ x 2 )Π(dx) < ∞. We set: [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] Π θ (dr) = e -θr Π(dr).

Let Θ be the set of

θ ∈ R such that (1,+∞) Π θ (dr) < +∞. If Π = 0, then Θ = R. We also set θ ∞ = inf Θ . It is obvious that [0, +∞) ⊂ Θ , θ ∞ ≤ 0 and either Θ = [θ ∞ , +∞) or Θ = (θ ∞ , +∞).
Let α ∈ R and β ≥ 0. We consider the branching mechanism ψ associated with (α, β, Π):

(8) ψ(λ) = αλ + βλ 2 + (0,+∞) (e -λr -1 + λr1 {r<1} )Π(dr), λ ∈ Θ .
Note that the function ψ is smooth and convex over (θ ∞ , +∞). We say that ψ is conservative if for all ε > 0:

(0,ε] du |ψ(u)| = +∞.
This condition will be equivalent to the non-explosion in finite time of continuous-state branching processes associated with ψ (see below). A sufficient condition for ψ to be conservative is to have

ψ (0+) > -∞, which is actually equivalent to (1,∞) rΠ(dr) < ∞.
If X is a Lévy process with Laplace exponent ψ, we can always write E[X t ] = -tψ (0), so that the condition ψ (0+) > -∞ is equivalent to the existence of first moments for X. Under this assumption, the branching mechanism can be rewritten under a simpler form. However, we point out that there exists several interesting branching mechanisms satisfying ψ (0+) = -∞ and yet are conservative (such as Neveu's branching mechanism ψ(u) = u log u). Hence, we will not automatically assume that ψ (0+) > -∞, but we will always make the following, slightly weaker, assumption.

Assumption 1. The function ψ is conservative and we have

β > 0 or (0,1) Π(d ) = +∞.
The branching mechanism is said to be sub-critical (resp. critical, super-critical) if ψ (0+) > 0 (resp. ψ (0+) = 0, ψ (0+) < 0). We say that ψ is (sub)critical if it is critical or sub-critical.

We introduce the following branching mechanisms ψ θ for θ ∈ Θ :

(9) ψ θ (λ) = ψ(λ + θ) -ψ(θ), λ + θ ∈ Θ .
Let Θ ψ be the set of θ ∈ Θ such that ψ θ is conservative. Obviously, we have:

[0, +∞) ⊂ Θ ψ ⊂ Θ ⊂ Θ ψ ∪ {θ ∞ }.
If θ ∈ Θ ψ , we set:

(10) θ = max q ∈ Θ ψ , ψ(q) = ψ(θ) .
We can give an alternative definition of θ if Assumption 1 holds. Let θ * be the unique positive root of ψ if it exists. Notice that θ * = 0 if ψ is critical and that θ * exists and is positive if ψ is super-critical. If θ * exists, then the branching mechanism ψ θ * is critical. We set Θ ψ * for [θ * , +∞) if θ * exists and Θ ψ * = Θ ψ otherwise. The function ψ is a one-to-one mapping from Θ ψ * onto ψ(Θ ψ * ). We write ψ -1 for the inverse of the previous mapping. The set {q ∈ Θ ψ , ψ(q) = ψ(θ)} has at most two elements and we have:

θ = ψ -1 • ψ(θ).
In particular, if ψ θ is (sub)critical we have θ = θ and if ψ θ is super-critical then we have θ < θ * < θ. We will later on consider the following assumption.

Assumption 2. (Grey condition)

The branching mechanism is such that:

+∞ du ψ(u) < ∞.
Let us point out that Assumption 2 implies that β > 0 or (0,1) rΠ(dr) = +∞.

Connections with branching processes. Let ψ be a branching mechanism satisfying Assumption 1.

A continuous state branching process (CSBP) with branching mechanism ψ and initial mass x > 0 is the càdlàg R + -valued Markov process (Z a , a ≥ 0) whose distribution is characterized by Z 0 = x and:

E[exp(-λZ a+a )|Z a ] = exp(-Z a u(a , λ
)), λ ≥ 0, where (u(a, λ), a ≥ 0, λ > 0) is the unique non-negative solution to the integral equation:

(11) λ u(a,λ) dr ψ(r) = a ; u(0, λ) = λ.
The distribution of the CSBP started at mass x will be noted P ψ x . For a detailed presentation of CSBPs, we refer to the monographs [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF][START_REF] Lambert | Population Dynamics and Random Genealogies[END_REF] or [START_REF] Li | Measure-Valued Branching Markov Processes, Probability and Its Applications[END_REF].

In this context, the conservativity assumption is equivalent to the CSBP not blowing up in finite time (Theorem 10.3 in [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]), and Assumption 2 is equivalent to the strong extinction time, inf{a, Z a = 0}, being a.s. finite. If Assumption 2 holds, then for all h > 0,

P ψ x (Z h > 0) = exp(-xb(h)), where b(h) = lim λ→+∞ u(h, λ). In particular b(h) is such that (12) ∞ b(h) dr ψ(r) = h.
Let us now describe a Girsanov transform for CSBPs introduced in [START_REF]A continuum-tree-valued Markov process[END_REF] related to the shift of the branching mechanism ψ defined by [START_REF] Aldous | The standard additive coalescent[END_REF]. Recall notation Θ ψ and θ ∞ from the previous section. For θ ∈ Θ ψ , we consider the process M ψ,θ = (M ψ,θ a , a ≥ 0) defined by:

(13) M ψ,θ a = exp θx -θZ a -ψ(θ) a 0 Z s ds .
Theorem 2.12 (Girsanov transformation for CSBPs, [START_REF]A continuum-tree-valued Markov process[END_REF]). Let ψ be a branching mechanism satisfying Assumption 1. Let (Z a , a ≥ 0) be a CSBP with branching mechanism ψ and let F = (F a , a ≥ 0) be its natural filtration. Let θ ∈ Θ ψ be such that either θ ≥ 0 or θ < 0 and (1,+∞) rΠ θ (dr) < +∞. Then we have the following:

(1) The process M ψ,θ is a F-martingale under P ψ x .

(2) Let a, x ≥ 0. On F a , the probability measure P ψ θ

x is absolutely continuous w.r.t. P ψ x , and

dP ψ θ x |Fa dP ψ x |Fa = M ψ,θ a .
2.4. The height process. Let (X t , t ≥ 0) be a Lévy process with Laplace exponent ψ satisfying Assumption 1. This assumption implies that a.s. the paths of X have infinite total variation over any non-trivial interval. The distribution of the Lévy process will be noted P ψ (dX). It is a probability measure on the Skorokhod space of real-valued càdlàg processes. For the remainder of this section, we will assume that ψ is (sub)critical.

For t ≥ 0, let us write X(t) for the time-returned process:

X(t) s = X t -X (t-s)-, 0 ≤ s < t and X(t) t = X t . Then ( X(t) s , 0 ≤ s ≤ t)
has same distribution as the process (X s , 0 ≤ s ≤ t). We will also write Ŝ(t) s = sup [0,s] X(t) r for the supremum process of X(t) . Proposition 2.13 (The height process, [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]). Let ψ be a (sub)critical branching mechanism satisfying Assumption 1. There exists a lower semi-continuous process H = (H t , t ≥ 0) taking values in [0, +∞], with the intermediate values property, which is a local time at 0, at time t, of the process X(t) -Ŝ(t) , such that the following convergence holds in probability:

H t = lim ε↓0 1 ε t 0 1 {I t s ≤Xs≤I t s +ε} ds where I t s = inf s≤r≤t X r . Furthermore,

if Assumption 2 holds, then the process H admits a continuous modification.

From now on, we always assume that Assumptions 1 and 2 hold, and we always work with this continuous version of H. The process H is called the height process.

For x > 0, we consider the stopping time τ x = inf{t ≥ 0, I t ≤ -x}, where I t = I t 0 is the infimum process of X. We denote by P ψ x (dH) the distribution of the stopped height process (H t∧τx , t ≥ 0) under P ψ , defined on the space C + ([0, +∞)) of non-negative continuous functions on [0, +∞). The (sub)criticality of the branching mechanism entails τ x < ∞ P ψ -a.s., so that under P ψ x (dH), the height process has a.s. compact support.

The excursion measure. The height process is not a Markov process, but it has the same zero sets as X -I (see [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], Paragraph 1.3.1), so that we can develop an excursion theory based on the latter. By standard fluctuation theory, it is easy to see that 0 is a regular point for X -I and that -I is a local time of X -I at 0. We denote by N ψ the associated excursion measure. As such, N ψ is a σ-finite measure. Under P ψ x or N ψ , we set:

σ(H) = ∞ 0 1 {Ht =0} dt.
When there is no risk of confusion, we will write σ for σ(H). Notice that, under P ψ x , σ = τ x and that under N ψ , σ represents the lifetime of the excursion. Abusing notations, we will write P ψ x (dH) and N ψ [dH] for the distribution of H under P ψ x or N ψ . Let us also recall the Poissonian decomposition of the measure P ψ

x . Under P ψ x , let (a j , b j ) j∈J be the excursion intervals of X -I away from 0. Those are also the excursion intervals of the height process away from 0. For j ∈ J, we will denote by

H (j) : [0, ∞) → R + the corresponding excursion, that is H (j) t = H (aj +t)∧bj , t ≥ 0.
Proposition 2.14 ([14]). Let ψ be a (sub)critical branching mechanism satisfying Assumption 1. Under P ψ

x , the random point measure

N = j∈J δ H (j) (dH) is a Poisson point measure with intensity xN ψ [dH].
Local times of the height process. Proposition 2.15 ([13], Formula (36)). Let ψ be a (sub)critical branching mechanism satisfying Assumption 1. Under N ψ , there exists a jointly measurable process (L a s , a ≥ 0, s ≥ 0) which is continuous and non-decreasing in the variable s such that, L 0 s = 0, s ≥ 0 and for every t ≥ 0, for every δ > 0 and every a > 0

lim ε→0 N ψ sup 0≤s≤t∧σ ε -1 s 0 1 {a<Hr≤a+ε} dr -L a s 1 {sup H>δ} = 0.
Moreover, by Lemma 3.3 in [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF], the process (L a σ , a ≥ 0) has a càdlàg modification under N ψ with no fixed discontinuities.

(Sub)critical Lévy trees. Let ψ be a (sub)critical branching mechanism satisfying Assumptions 1 and 2. Let H be the height process defined under P ψ x or N ψ . We consider the so-called Lévy tree T H which is the random w-tree coded by the function H, see Section 2.2.4. Notice that we are indeed within the framework of proper real trees, since Assumption 2 entails compactness of T H . The measurability of the random variable T H taking values in T follows from Proposition 2.10 and Theorem 2.6. When there is no confusion, we will write T for T H . Abusing notations, we will write P ψ x (dT ) and

N ψ [dT ] for the distribution on T of T = T H under P ψ x (dH) or N ψ [dH]
. By construction, under P ψ x or under N ψ , we have that the total mass of the mass measure on T is given by [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF] m T (T ) = σ.

Proposition 2.14 enables us to view the measure N ψ [dT ] as describing a single Lévy tree. Thus, we will mostly work under this excursion measure, which is the distribution of the (isometry class of the) w-tree T described by the height process under N ψ . In order to state the branching property of a Lévy tree, we must first define a local time at level a on the tree. Let (T i,• , i ∈ I) be the trees that were cut off by cutting at level a, namely the connected components of the set T \ π a (T ). If i ∈ I, then all the points in T i,• have the same MRCA x i in T which is precisely the point where the tree was cut off. We consider the compact tree T i = T i,• ∪ {x i } with the root x i , the metric d T i , which is the metric d T restricted to T i , and the mass measure m T i , which is the mass measure m T restricted to

T i . Then (T i , d T i , x i , m T i ) is a w-tree. Let (15) N T a (dx, dT ) = i∈I δ (xi,T i ) (dx, dT )
be the point measure on T (a) × T taking account of the cutting points as well as the trees cut away.

The following theorem gives the structure of the decomposition we just described. From excursion theory, we deduce that b(h

) = N ψ [H max (T ) > h],
where b(h) solves ( 12). An easy extension of [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF] from real trees to w-trees gives the following result.

Theorem 2.16 ([14]). Let ψ be a (sub)critical branching mechanism satisfying Assumptions 1 and 2.

There exists a T -measure valued process ( a , a ≥ 0) càdlàg for the weak topology on finite measures on T such that N ψ -a.e.:

(16) m T (dx) = ∞ 0 a (dx)da, 0 = 0, inf{a > 0, a = 0} = sup{a ≥ 0, a = 0} = H max (T )
and for every fixed a ≥ 0, N ψ -a.e.:

• a is supported on T (a),

• We have for every bounded continuous function ϕ on T : The measure a will be called the local time measure of T at level a. In the case of Lévy trees, it can also be defined as the image of the measure d s L a s (H) by the canonical projection p H (see [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]), so the above statement is in fact the translation of the excursion theory of the height process in terms of real trees. This definition shows that the local time is a function of the tree T and does not depend on the choice of the coding height function. It should be noted that Equation [START_REF] Steven | Rayleigh processes, real trees, and root growth with re-grafting[END_REF] implies that a is measurable with respect to the σ-algebra generated by π a (T ).

a , ϕ = lim ε↓0 1 b(ε) ϕ(x)1 {h(T )≥ε} N T a (dx, dT ) (17) = lim ε↓0 1 b(ε) ϕ(x)1 {h(T )≥ε} N T a-ε (dx, dT ), if a > 0. ( 18 
The next theorem, also from [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF], relates the discontinuities of the process ( a , a ≥ 0) to the infinite nodes in the tree. Recall Br ∞ (T ) denotes the set of infinite nodes in the Lévy tree T . Theorem 2.17 ([14]). Let ψ be a (sub)critical branching mechanism satisfying Assumptions 1 and 2. The set {d(∅, x), x ∈ Br ∞ (T )} coincides N ψ -a.e. with the set of discontinuity times of the mapping a → a . Moreover, N ψ -a.e., for every such discontinuity time b, there is a unique

x b ∈ Br ∞ (T ) ∩ T (b), and b = b-+ ∆ b δ x b ,
where ∆ b > 0 is called mass of the node x b and can be obtained by the approximation

(19) ∆ b = lim ε→0 1 b(ε) n(x b , ε), where n(x b , ε) = 1 {x=x b } (x)1 {Hmax(T )>ε} (T )N T b (dx, dT
) is the number of sub-trees originating from x b with height larger than ε.

Decomposition of the Lévy tree. We will frequently use the following notation for the following measure on T:

(20) N ψ [T ∈ •] = 2βN ψ [T ∈ •] + (0,+∞) rΠ(dr) P ψ r [T ∈ •].
where ψ is given by [START_REF] Aldous | The Continuum Random Tree I[END_REF].

The decomposition of a (sub)critical Lévy tree T according to a spine ∅, x , where x ∈ T is a leaf picked at random at level a > 0, that is according to the local time a (dx), is given in Theorem 4.5 in [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF]. Then by integrating with respect to a, we get the decomposition of T according to a spine ∅, x , where x ∈ T is a leaf picked at random on T , that is according to the mass measure m T . Therefore, we will state this decomposition without proof.

Let x ∈ T and let {x i , i ∈ I x } = Br(T ) ∩ ∅, x be the set of branching points on the spine ∅, x . For i ∈ I x , we set:

T i = T \ T (x,xi) ∪ T (∅,xi) ,
where T (y,xi) is the connected component of T \ {x i } containing y. We let x i be the root of T i . The metric and measure on T i are respectively the restriction of d T to T i and the restriction of m T to T i \ {x i }. By construction, if x is a leaf, we have:

T = ∅, x i∈Ix (T i , x i ),
where ∅, x is a w-tree with root ∅, metric and mass measure the restrictions of d T and m T to ∅, x . We consider the point measure on [0, H x ] × T defined by:

M x = i∈Ix δ (Hx i ,T i ) .
Theorem 2.18 ([14]). Let ψ be a (sub)critical branching mechanism satisfying Assumptions 1 and 2. We have for any non-negative measurable function F defined on [0, +∞) × T:

N ψ m T (dx)F (H x , M x ) = ∞ 0 da e -ψ (0)a E F a, i∈I 1 {zi≤a} δ (zi, T i ) ,
where under E,

i∈I δ (zi, T i ) (dz, dT ) is a Poisson point measure on [0, +∞) × T with intensity dz N ψ [dT ].
CSBP process in the Lévy trees. Lévy trees give a genealogical structure for CSBPs, which is precised in the next theorem. We consider the process Z = (Z a , a ≥ 0) defined by:

Z a = a , 1 .
If needed we will write Z a (T ) to emphasize that Z a corresponds to the tree T . Theorem 2.19 (CSBP in Lévy trees, [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] and [START_REF]Probabilistic and fractal aspects of Lévy trees[END_REF]). Let ψ be a (sub)critical branching mechanism satisfying Assumptions 1 and 2, and let x > 0. The process Z under P ψ

x is distributed as the CSBP Z under P ψ

x . Remark 2.20. This theorem can be stated in terms of the height process without Assumption 2.

Super-critical Lévy trees.

Let us now briefly recall the construction from [START_REF]A continuum-tree-valued Markov process[END_REF] for super-critical Lévy trees using a Girsanov transformation similar to the one used for CSBPs, see Theorem 2.12.

Let ψ be a super-critical branching mechanism satisfying Assumptions 1 and 2. Recall θ * is the unique positive root of ψ and that the branching mechanism ψ θ is sub-critical if θ > θ * , critical if θ = θ * and super-critical otherwise. We consider the filtration H = (H a , a ≥ 0), where H a is the σ-field generated by the random variable π a (T ) and the P ψ θ *

x -negligible sets. For θ ≥ θ * , we define the process M ψ,θ = (M ψ,θ a , a ≥ 0) with

M ψ,θ a = exp θx -θZ a -ψ(θ) a 0 Z s ds
By absolute continuity of the measures P ψ θ x (resp. N ψ θ ) with respect to P ψ θ * x (resp. N ψ θ * ), all the processes M ψ θ ,-θ for θ > θ * are H-adapted. Moreover, all these processes are H-martingales (see [START_REF]A continuum-tree-valued Markov process[END_REF] for the proof). Theorem 2.16 shows that M ψ θ * ,-θ * is H-adapted. Let us now define the ψ-Lévy tree, cut at level a by the following Girsanov transformation. Definition 2.21. Let ψ be a super-critical branching mechanism satisfying Assumptions 1 and 2. Let θ ≥ θ * . For a ≥ 0, we define the distribution P ψ,a x (resp. N ψ,a ) by: if F is a non-negative, measurable functional defined on T,

E ψ,a x [F (T )] = E ψ θ x M ψ θ ,-θ a F (π a (T )) , (21) N ψ,a [F (T )] = N ψ θ exp θZ a + ψ(θ) a 0 Z s (ds) F (π a (T )) . ( 22 
)
It can be checked that the definition of P ψ,a x (and of N ψ,a ) does not depend on θ ≥ θ * . The probability measures P ψ,a x satisfy a consistence property, allowing us to define the super-critical Lévy tree in the following way.

Theorem 2.22. Let ψ be a super-critical branching mechanism satisfying assumptions 1 and 2. There exists a probability measure P ψ

x (resp. a σ-finite measure N ψ ) on T such that for a > 0, we have, if F is a measurable non-negative functional on T,

E ψ x [F (π a (T ))] = E ψ,a
x [F (T )], the same being true under N ψ .

The w-tree T under P ψ x or N ψ is called a ψ-Lévy w-tree or simply a Lévy tree. Proof. For n ≥ 1, 0 < a 1 < • • • < a n , we define a probability measure on T n by:

P ψ,a1,...,an x (T 1 ∈ A 1 , . . . , T n ∈ A n ) = P ψ,an x (T ∈ A n , π an-1 (T ) ∈ A n-1 , . . . , π a1 (T ) ∈ A 1 )
if A 1 , . . . , A n are Borel subsets of T. The probability measures (P ψ,a1,...,an

x , n ≥ 1, 0 < a 1 < • • • < a n )
then form a projective family. This is a consequence of the martingale property of M ψ θ ,-θ and the fact that the projectors π a satisfy the obvious compatibility relation

π b • π a = π b if 0 < b < a.
By the Daniell-Kolmogorov theorem, there exists a probability measure Pψ x on the product space T R+ such that the finite-dimensional distributions of a Pψ

x -distributed family are described by the measures defined above. It is easy to construct a version of a Pψ

x -distributed process that is a.s. increasing. Indeed, almost all sample paths of a Pψ

x -distributed process are increasing when restricted to rational numbers. We can then define a w-tree T a for any a > 0 by considering a decreasing sequence of rational numbers a n ↓ a and defining T a = ∩ n≥1 T an . Notice that T a is closed for all a ∈ R + . It is easy to check that the finite-dimensional distributions of this new process are unchanged by this procedure. Let us then consider T = ∪ a>0 T a , endowed with the obvious metric d T and mass measure m. It is clear that T is a real tree, rooted at the common root of the T a . All the T a are compact, so that T is locally compact and complete. The measure m is locally finite since all the m T a are finite measures. Therefore, T is a.s. a w-tree. Then, if we define P ψ

x to be the distribution of T , the conclusion follows. Similar arguments hold under N ψ . Remark 2.23. Another definition of super-critical Lévy trees was given by Duquesne and Winkel ( [START_REF] Duquesne | Growth of Lévy trees[END_REF][START_REF]Hereditary tree growth and Levy forests[END_REF]): they consider increasing families of Galton-Watson trees with exponential edge lengths which satisfy a certain hereditary property (such as uniform Bernoulli coloring of the leaves). Lévy trees are then defined to be the Gromov-Hausdorff limits of these processes. Another approach via backbone decompositions is given in [START_REF] Berestycki | The prolific backbone for supercritical superdiffusions[END_REF].

All the definitions we made for sub-critical Lévy trees then carry over to the super-critical case. In particular, the level set measure a , which is π a (T )-measurable, can be defined using the Girsanov formula. Thanks to Theorem 2.12, it is easy to show that the mass process (Z a = a , 1 , a ≥ 0) is under P ψ x a CSBP with branching mechanism ψ. In particular, with u defined in [START_REF] Berestycki | The prolific backbone for supercritical superdiffusions[END_REF] and b by ( 12), we have:

(23) N ψ 1 -e -λZa = u(a, λ) and N ψ [H max (T ) > a] = N ψ [Z a > 0] = b(a).
Notice that b is finite only under Assumption 2. We set:

(24) σ = +∞ 0 Z a da = m T (T )
for the total mass of the Lévy tree T . Notice this is consistent with ( 16) and ( 14) which are defined for (sub)critical Lévy trees. Thanks to [START_REF] Gall | Random real trees[END_REF], notice that σ is distributed as the total population size of a CSBP with branching mechanism ψ. In particular, its Laplace transform is given for λ > 0 by: ( 25)

N ψ 1 -e -λσ = ψ -1 (λ).
Notice that N ψ [σ = +∞] = ψ -1 (0) > 0. We recall the following theorem, from [START_REF]A continuum-tree-valued Markov process[END_REF], which sums up the situation for general branching mechanisms ψ.

Theorem 2.24 ([2]

). Let ψ be any branching mechanism satisfying Assumptions 1 and 2, and let q > 0 such that ψ(q) ≥ 0. Then, the probability measure P ψq x on T is absolutely continuous w.r.t. P ψ x , with [START_REF] Li | Measure-Valued Branching Markov Processes, Probability and Its Applications[END_REF] dP

ψq x dP ψ x = M ψ,q ∞ = e qx-ψ(q)σ 1 {σ<+∞} .
Similarly, the excursion measure N ψq on T is absolutely continuous w.r.t. N ψ and we have [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF] dN ψq dN ψ = e -ψ(q)σ 1 {σ<+∞} .

When applying Girsanov formula [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF] to q = θ defined by [START_REF]Tree-valued Markov chains derived from Galton-Watson processes[END_REF], we get the following remarkable corollary, due to the fact that ψ θ ( θ -θ) = 0. Corollary 2.25. Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2, and θ ∈ Θ ψ with θ < 0. Let F be a non-negative measurable functional defined on T. We have:

e ( θ-θ)x E ψ θ x [F (T )1 {σ<+∞} ] = E ψθ x [F (T )], N ψ θ [F (T )1 {σ<+∞} ] = N ψθ [F (T )]. ( 28 
)
We deduce from Proposition 2.14 and Theorem 2.22 that the point process N T 0 (dx, dT ) defined by [START_REF] Duquesne | Growth of Lévy trees[END_REF] with a = 0 is under P ψ x (dT ) a Poisson point measure on {∅} × T with intensity σδ ∅ (dx)N ψ [dT ]. Then we deduce from [START_REF] Gromov | Metric Structures for Riemannian and Non-Riemannian Spaces[END_REF], with F = 1, that for θ ≥ θ * :

(29) N ψ θ 1 -exp θZ a + ψ(θ) a 0 Z s ds = -θ.
2.6. Pruning Lévy trees. We recall the construction from [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] on the pruning of Lévy trees. Let T be a random Lévy w-tree under P ψ x (or under N ψ ), with ψ conservative. Let

m (ske) (dx, dθ) = i∈I ske δ (xi,θi) (dx, dθ)
be, conditionally on T , a Poisson point measure on T × R + with intensity 2βl T (dx)dθ. Since there is a.s. a countable number of branching points (which have l T -measure 0), the atoms of this measure are distributed on T \ (Br(T ) ∪ Lf(T )).

If Π = 0, we have Br ∞ (T ) = ∅ a.s. whereas if Π(R + ) = ∞, Br ∞ (T ) is a.s. a countable dense subset of T . If the latter condition holds, we consider, conditionally on T , a Poisson point measure

m (nod) (dx, dθ) = i∈I nod δ (xi,θi) (dx, dθ) on T × R + with intensity y∈Br∞(T ) ∆ y δ y (dx) dθ
where ∆ x is the mass of the node x, defined by [START_REF] Evans | Subtree prune and regraft: A reversible real tree-valued Markov process[END_REF]. Hence, if θ > 0, a node x ∈ Br ∞ (T ) is an atom of m (nod) (dx, [0, θ]) with probability 1 -exp(-θ∆ x ). The set

x i , i ∈ I nod = x ∈ T , m (nod) {x} × R + > 0 of marked branching points corresponds P ψ
x -a.s or N ψ -a.e. to Br ∞ (T ). For i ∈ I nod , we set

θ i = inf θ > 0, m (nod) {x i } × [0, θ] > 0
to be the first mark on x i (which is conditionally on T exponentially distributed with parameter ∆ xi ), and we set θ j , j ∈ J nod i = θ > θ i , m (nod) {x i } × {θ} > 0 so that we can write

m (nod) (dx, dθ) = i∈I nod δ xi (dx)   δ θi (dθ) + j∈J nod i δ θj (dθ)   .
We set the measure of marks:

(30) M(dx, dθ) = m (ske) (dx, dθ) + m (nod) (dx, dθ),
and consider the family of w-trees Λ(T , M) = (Λ θ (T , M), θ ≥ 0), where the θ-pruned w-tree Λ θ is defined by: Λ

θ (T , M) = {x ∈ T , M( ∅, x ×[0, θ]) = 0} , rooted at ∅ Λ θ (T ,M) = ∅ T ,
and where the metric d Λ θ (T ,M) and the mass measure m Λ θ (T ,M) are the restrictions of d T and m T to Λ θ (T , M). In particular, we have Λ 0 (T , M) = T . The family of w-trees Λ(T , M) is a non-increasing family of real trees, in a sense that Λ θ (T , M) is a subtree of Λ θ (T , M) for 0 ≤ θ ≤ θ, see Figure 1. In particular, we have that the pruning operators satisfy a cocycle property, for θ 1 ≥ 0 and θ 2 ≥ 0:

Λ θ2 Λ θ1 (T , M), M θ1 = Λ θ2+θ1 (T , M), where M θ (A × [0, q]) = M(A × [θ, θ + q]).
Abusing notations, we write N ψ (dT , dM) for the distribution of the pair (T , M) when T is distributed according to N ψ (dT ) and conditionally on T , M is distributed as described above.

The following result can be deduced from [START_REF]A continuum-tree-valued Markov process[END_REF].

Theorem 2.26. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. There exists a non-increasing T-valued

Markov process (T θ , θ ∈ Θ ψ ) such that for all q ∈ Θ ψ , the process

(T θ+q , θ ≥ 0) is distributed as Λ(T , M) under N ψq [dT , dM].
In particular, this theorem implies that T θ is distributed as N ψ θ for θ ∈ Θ ψ and that for θ 0 ≥ 0, under N ψ , the process of pruned trees (Λ θ0+θ (T ), θ ≥ 0) has the same distribution as (Λ θ (T ), θ ≥ 0) under

N ψ θ 0 [dT ].
We want to study the time-reversed process (T -θ , θ ∈ -Θ ψ ), which can be seen as a growth process. This process grows by attaching sub-trees at a random point, rather than slowly growing uniformly along the branches. We recall some results from [START_REF]A continuum-tree-valued Markov process[END_REF] on the growth process. From now on, we will assume in this section that the branching mechanism ψ is critical, so that ψ θ is sub-critical iff θ > 0 and super-critical iff θ < 0.

... We will use the following notation for the total mass of the tree T θ at time θ ∈ Θ ψ : (31)

σ θ = m T θ (T θ ).
The total mass process (σ θ , θ ∈ Θ ψ ) is a pure-jump process taking values in (0, +∞].

Lemma 2.27 ([2]

). Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2. If 0 ≤ θ 2 < θ 1 , then we have:

N ψ [σ θ2 |T θ1 ] = σ θ1 ψ (θ 1 ) ψ (θ 2 ) •
Consider the ascension time (or explosion time):

(32) A = inf θ ∈ Θ ψ , σ θ < ∞ ,
where we use the convention inf ∅ = θ ∞ . The following theorem gives the distribution of the ascension time A and the distribution of the tree at this random time. Recall that θ = ψ -1 (ψ(θ)) is defined in [START_REF]Tree-valued Markov chains derived from Galton-Watson processes[END_REF].

Theorem 2.28 ([2]

). Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2.

(1) For all θ ∈ Θ ψ , we have

N ψ [A > θ] = θ -θ.
(2) If θ ∞ < θ < 0, under N ψ , we have, for any non-negative measurable functional F ,

N ψ [F (T A+θ , θ ≥ 0)|A = θ] = ψ ( θ)N ψ F (T θ , θ ≥ 0)σ 0 e -ψ(θ)σ0 .
(

) For all θ ∈ Θ ψ , we have N ψ [σ A < +∞|A = θ] = 1. 3 
In other words, at the ascension time, the tree can be seen as a size-biased critical Lévy tree. A precise description of T A is given in [START_REF]A continuum-tree-valued Markov process[END_REF]. Notice that in the setting of [START_REF]A continuum-tree-valued Markov process[END_REF], there is no need of Assumption 2.

3. The growing tree-valued process 3.1. Special Markov Property of pruning. In [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF], the authors prove a formula describing the structure of a Lévy tree, conditionally on the θ-pruned tree obtained from it in the (sub)critical case. We will give a general version of this result. From the measure of marks, M in (30), we define a measure of increasing marks by:

(33) M ↑ (dx, dθ ) = i∈I ↑ δ (xi,θi) (dx, dθ ), with I ↑ = i ∈ I ske ∪ I nod , M( ∅, x i × [0, θ i ]) = 1 .
The atoms (x i , θ i ) for i ∈ I ↑ correspond to marks such that there are no marks of M on ∅, x i with a θ-component smaller than θ i . In the case of multiple θ j for a given node x i ∈ Br ∞ (T ), we only keep the smallest one. In the case Π = 0, the measure M ↑ describes the jumps of a record process on the tree, see [START_REF]Record process on the Continuum Random Tree[END_REF] for further work in this direction. The θ-pruned tree can alternatively be defined using M ↑ instead of M since for θ ≥ 0:

Λ θ (T , M) = x ∈ T , M ↑ ( ∅, x ×[0, θ]) = 0 .
We set:

I ↑ θ = i ∈ I ↑ , x i ∈ Lf(Λ θ (T , M)) = i ∈ I ↑ , θ i < θ and M ↑ ( ∅, x i ×[0, θ]) = 0 and for i ∈ I ↑ θ : T i = T \ T ∅,xi = {x ∈ T , x i ∈ ∅, x },
where T y,x is the connected component of T \ {x} containing y. For i ∈ I ↑ θ , T i is a real tree, and we will consider x i as its root. The metric and mass measure on T i are the restrictions of the metric and mass measure of T on T i . By construction, we have:

(34) T = Λ θ (T , M) i∈I ↑ θ (T i , x i ).
Now we can state the general special Markov property.

Theorem 3.1 (Special Markov Property). Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let θ > 0. Conditionally on Λ θ (T , M), the point measure:

M ↑ θ (dx, dT , dθ ) = i∈I ↑ θ δ (xi,T i ,θi) (dx, dT , dθ ) under P ψ r0 (or under N ψ ) is a Poisson point measure on Λ θ (T , M) × T × (0, θ] with intensity: (35) m Λ θ (T ,M) (dx) 2βN ψ [dT ] + (0,+∞) Π(dr) re -θ r P ψ r (dT ) 1 (0,θ] (θ ) dθ .
Proof. It is not difficult to adapt the proof of the special Markov property in [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] to get Theorem 3.1 in the (sub)critical case by taking into account the pruning times θ i and the w-tree setting; and we omit this proof which can be found in [START_REF] Abraham | A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces[END_REF]. We prove how to extend the result to the super-critical Lévy trees using the Girsanov transform of Definition 2.21. Assume that ψ is super-critical. For a > 0, we will write Λ θ,a (T , M) = π a (Λ θ (T , M)) for short. According to (34) and the definition of super-critical Lévy trees, we have that for any a > 0, the truncated tree π a (T ) can be written as:

π a (T ) = Λ θ,a (T , M) i∈I ↑ θ , Hx i ≤a π a-Hx i (T i ), x i
and we have to prove that i∈I ↑ θ δ (xi,T i ,θi) (dx, dT , dθ ) is conditionally on Λ θ (T , M) a Poisson point measure with intensity (35). Since a is arbitrary, it is enough to prove that the point measure M a , defined by

M a (dx, dT , dθ ) = i∈I ↑ θ 1 {Hx i ≤a} δ (xi,π a-Hx i (T i ),θi) (dx, dT , dθ ),
is conditionally on Λ θ,a (T , M) a Poisson point measure with intensity :

(36) 1 [0,a] (H x ) m Λ θ (T ,M) (dx) 1 (0,θ] (θ ) dθ 2β(π a-Hx ) * N ψ (dT ) + (0,+∞) Π(dr) re -θ r (π a-Hx ) * P ψ r (dT ) .
Recall θ * is the unique real number such that ψ θ * (0) = 0, that is, such that ψ θ * is critical. Let Φ be a non-negative, measurable functional on Λ θ,a (T , M) × T × (0, θ] and let F be a non-negative measurable functional on T. Let

B = N ψ [F (Λ θ,a (T , M)) exp(-M a , Φ )] .
Thanks to the Girsanov formula [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF] and the special Markov property for critical branching mechanisms, we get:

B = N ψ θ * F (Λ θ,a (T , M)) exp(-M a , Φ ) exp θ * Z a (T ) + ψ(θ * ) a 0 Z h (T )dh = N ψ θ * F (Λ θ,a (T , M)) exp θ * Z a (Λ θ (T , M)) + ψ(θ * ) a 0 Z h (Λ θ (T , M))dh exp -m Λ θ,a (T ,M) (dx)G(H x , x, θ) , with m Λ θ,a (T ,M) (dx) = 1 [0,a] (H x ) m Λ θ (T ,M) (dx) and G(h, x, θ) equal to: θ 0 dθ 2βN ψ θ * 1 -exp -Φ(x, π a-h (T ), θ ) + θ * Z a-h (T ) + ψ(θ * ) a-h 0 Z t (T )dt + (0,+∞) Π θ * (dr)re -θ r E ψ θ * r 1 -exp -Φ(x, π a-h (T ), θ ) +θ * Z a-h (T ) + ψ(θ * ) a-h 0 Z t (T )dt .
By using the Poisson decomposition of P ψ θ * r (Proposition 2.14), we see that G(h, x, θ) can be written as:

G(h, x, θ) = θ 0 dθ 2βg(h, x, θ ) + (0,∞) Π θ * (dr) re -θ r (1 -exp(-rg(h, x, θ ))) , with g(h, x, θ ) = N ψ θ * 1 -exp -Φ(x, π a-h (T ), θ ) + θ * Z a-h (T ) + ψ(θ * ) a-h 0 Z t (T )dt .
Thanks to the Girsanov formula and (29), we get:

g(h, x, θ ) = N ψ θ * (1 -exp(-Φ(x, π a-h (T ), θ ))) exp θ * Z a-h (T ) + ψ(θ * ) a-h 0 Z t (T )dt + N ψ θ * 1 -exp θ * Z a-h (T ) + ψ(θ * ) a-h 0 Z t (T ))dt = N ψ 1 -exp(-Φ(x, π a-h (T ), θ )) -θ * . With g(h, x, θ ) = N ψ 1 -exp(-Φ(x, π a-h (T ), θ )
) and thanks to [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF], we get:

G(h, x, θ) = θ 0 dθ 2βg(h, x, θ ) + (0,∞) Π(dr) re -θ r (1 -exp(-rg(h, x, θ ))) + ψ(θ * ) -ψ θ (θ * ).
Notice that from the definition of G we have g replaced by g, Π θ * replaced by Π and the additional term

ψ(θ * ) -ψ θ (θ * ). As m Λ θ,a (T ,M) (dx) = a 0 Z h (Λ θ (T )
)dh, we get:

(37) B = N ψ θ * [F (Λ θ,a (T , M))R(Λ θ,a (T , M)) exp θ * Z a (Λ θ (T , M)) + ψ θ (θ * ) a 0 Z h (Λ θ (T , M))dh , with (38) R(T ) = exp -m T (dx) θ 0 dθ 2βg(H x , x, θ )+ (0,∞) Π(dr) re -θ r (1 -exp(-rg(H x , x, θ ))) .
Taking Φ = 0 (and thus R = 1) in (37) yields:

(39) N ψ [F (Λ θ,a (T , M))] = N ψ θ * F (Λ θ,a (T , M)) exp θ * Z a (Λ θ (T , M)) + ψ θ (θ * ) a 0 Z h (Λ θ (T , M))dh .
Using (39) with F replaced by F R gives:

N ψ exp(-M a , Φ )F (Λ θ,a (T , M)) = B = N ψ [F (Λ θ,a (T , M))R(Λ θ,a (T , M))] .
This implies that M a is, conditionally on Λ θ,a (T , M), a Poisson point measure with intensity (36). This ends the proof.

An explicit construction of the growing process.

In this section, we will construct the growth process using a family of Poisson point measures. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let θ ∈ Θ ψ . According to (20) and ( 7), we have:

(40) N ψ θ [T ∈ •] = 2βN ψ θ [T ∈ •] + (0,+∞) Π(dr)re -θr P ψ θ r (T ∈ •).
Let T (0) ∈ T with root ∅. For q ∈ Θ ψ and q ≤ θ, we set:

T (0) q = T (0) and m (0) q = m T (0) .
We define the w-trees grafted on T (0) by recursion on their generation. We suppose that all the random point measures used for the next construction are defined on T under a probability measure Q T (0) (dω).

Suppose that we have constructed the family ((T

(k) q , m (n) q ), 0 ≤ k ≤ n, q ∈ Θ ψ ∩ (-∞, θ)). We write T (n) = q∈Θ ψ , q≤θ T (n) q .
We define the (n + 1)-th generation as follows. Conditionally on all trees from generations smaller than n, (T

(k) q , 0 ≤ k ≤ n, q ∈ Θ ψ ∩ (-∞, θ)), let N n+1 θ (dx, dT , dq) = j∈J (n+1) δ (xj ,T j ,θj ) (dx, dT , dq)
be a Poisson point measure on T (n) × T × Θ ψ with intensity:

µ n+1 θ (dx, dT , dq) = m (n) q (dx)N ψq [dT ] 1 {q≤θ} dq.
For q ∈ Θ ψ and q ≤ θ, we set

J (n+1) q = j ∈ J (n+1) , q < θ j
and we define the tree T (n+1) q and the mass measure m (n+1) q by:

T (n+1) q = T (n) q j∈J (n+1) q (T j , x j ) and m (n+1) q = j∈J (n+1) q m T j (dx).
Notice that by construction, (T

q , n ∈ N) is a non-decreasing sequence of trees. We set T q to be the completion of ∪ n∈N T (n) q , which is a real tree with root ∅ and metric d Tq , and we define a mass measure on T q by m Tq = n∈N m (n) q . For q ∈ Θ ψ and q < θ, we consider F q the σ-field generated by T (0) and the sequence of random point measures (1 {q ∈[q,θ]} N (n) θ (dx, dT , dq ), n ∈ N). We set N θ = n∈N N n θ . The backward random point process q → 1 {q≤q } N θ (dx, dT , dq ) is by construction adapted to the backward filtration (F q , q ∈ Θ ψ ∩ (-∞, θ]).

The proof of the following result is postponed to Section 3.3.

Theorem 3.2. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Under

Q ψ θ = N ψ θ [dT (0) ]Q T (0) (dω), the process T q , d Tq , ∅, m Tq , q ∈ Θ ψ ∩ (-∞, θ]
is a T-valued backward Markov process with respect to the backward filtration

F θ = (F q , q ∈ Θ ψ ∩ (-∞, θ]). It is distributed as ((T q , m Tq ), q ∈ Θ ψ ∩ (-∞, θ]) under N ψ .
Notice the theorem in particular entails that (T q , d Tq , ∅, m Tq ) is a w-tree for all q. To prove it, we will use the following lemma. Lemma 3.3. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let K be a measurable non-negative process (as a function of q) defined on R + × T × T which is predictable with respect to the backward filtration F θ . We have:

Q ψ θ N θ (dx, dT , dq) K(q, T q , T q-) = Q ψ θ K q, T q , T q (T , x) µ θ (dx, dT , dq) ,
where µ θ (dx, dT , dq)

= n≥1 µ n (dx, dT, dq) = m Tq (dx)N ψq [dT ] 1 {q∈Θ ψ ,q≤θ} dq.
This means that the predictable compensator of N θ is given by:

µ θ (dx, dT , dq) = m Tq (dx)N ψq [dT ] 1 {q∈Θ ψ ,q≤θ} dq.
Notice that this construction does not fit in the usual framework of random point measures since the support at time q of the predictable compensator is the (predictable backward in time) random set

T q × T × Θ ψ .
Proof. Based on the recursive construction, we have:

Q ψ θ N θ (dx, dT , dq) K(q, T q , T q-) = +∞ n=0 Q ψ θ Q ψ θ N n θ (dx, dT , dq) K(q, T q , T q (T , x)) (T (k) s , k ≤ n, s ≤ θ) .
Now, by construction, we have that:

T q = T (n) q j∈J (n) q ( Tj , x j ) for Tj = T q \T (xj ,∅) q
which is a measurable function of 1 {q >q} N n θ (dx, dT , dq ) and of the point measures 1 {q >q} N θ (dx, dT , dq ) for ≥ n + 1. Therefore, applying the Palm formula with the function

F n q, T , x, j∈J (n) ,qj >q δ (xj ,T j ,θj ) = Q ψ θ K q, T (n) q j∈J (n) q ( Tj , x j ), T (n) q j∈J (n) q ( Tj , x j ) (T , x) (T (k) s , k ≤ n, s ≤ θ), N n θ , we get: Q ψ θ N θ (dx, dT , dq) K(q, T q , T q-) = +∞ n=0 Q ψ θ Q ψ θ N n θ (dx, dT , dq) F n q, T , x, j∈J (n) ,qj >q δ (xj ,T j ,θj ) (T (k) s , k ≤ n, s ≤ θ) = +∞ n=0 Q ψ θ Q ψ θ µ n θ (dx, dT , dq) F n q, T , x, j∈J (n) ,qj >q δ (xj ,T j ,θj ) (T (k) s , k ≤ n, s ≤ θ) = +∞ n=0 Q ψ θ Q ψ θ µ n θ (dx, dT , dq) K q, T (n) q j∈J (n) q ( Tj , x j ), T (n) q j∈J (n) q ( Tj , x j ) (T , x) (T (k) s , k ≤ n, s ≤ θ) = +∞ n=0 Q ψ θ µ n θ (dx, dT , dq) K q, T q , T q (T , x) = Q ψ θ K q, T q , T q (T, x) µ θ (dx, dT , dq) .
It can be noticed that the map q → T q is non-decreasing càdlàg (backwards in time) and that we have, for j ∈ ∪ n∈N J (n) , x j ∈ T θj : T θj -= T θj (T j , x j ). In particular, we can recover the random measure N θ from the jumps of the process (T q , q ∈ Θ ψ ∩ (-∞, θ]). This and the natural compatibility relation of N θ with respect to θ gives the next corollary. Corollary 3.4. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let (T θ , θ ∈ Θ ψ ) be defined under N ψ , and let

N = j∈J δ (xj ,T j ,θj )
be the random point measure defined as follows:

• The set {θ j , j ∈ J} is the set of jumping times of the process (T θ , θ ∈ Θ ψ ): for j ∈ J, T θj -= T θj . • The real tree T j is the closure of T θj -\ T θj .

• The point x j is the root of T j (that is x j is the only element y ∈ T θj -such that x ∈ T j implies y, x ⊂ T j ). Then the backward point process θ → 1 {θ≤q } N (dx, dT , dq ) defined on Θ ψ has predictable compensator:

µ(dx, dT , dq) = m Tq (dx)N ψq [dT ] 1 {q∈Θ ψ } dq,
with respect to the backward left-continuous filtration F = (F θ , θ ∈ Θ ψ ) defined by:

F θ = σ((x j , T j , θ j ), θ ≤ θ j ) = σ(T q-, θ ≤ q).
More precisely, for any non-negative predictable process K with respect to the backward filtration F, we have:

(41)
N ψ N (dx, dT , dq) K q, T q , T q-= N ψ µ(dx, dT, dq) K q, T q , T q (T, x) .

Remark 3.5. Note that Assumption 2 is assumed only for technical measurability purposes, see Remark 2.11. We conjecture that this results also holds without Assumption 2.

As a consequence, thanks to property 3 of Theorem 2.28, we get, with the convention sup ∅ = θ ∞ , that:

A = sup{θ j , j ∈ J and σ j = +∞} with σ j = m T j (T j ).

3.3. Proof of Theorem 3.2. By construction, it is clear that the process (T q , q ∈ Θ ψ ∩ (-∞, θ]) is a backward Markov process with respect to the backward filtration (F q , q ∈ Θ ψ ∩ (-∞, θ]). By construction this process is càglàd in backward time. Since the process (T q , q ∈ Θ ψ ) is a forward càdlàg Markov process, it is enough to check that for θ 0 ∈ Θ ψ , such that θ 0 < θ, the two dimensional marginals (T θ0 , T θ ) and (T θ0 , T θ ) have the same distribution.

Replacing ψ by ψ θ0 , we can assume that θ 0 = 0 and 0 < θ. We will decompose the big tree T 0 conditionally on the small tree T θ by iteration. This decomposition is similar to the one which appears in [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF] or [START_REF] Voisin | Dislocation measure of the fragmentation of a general Lévy tree[END_REF] for the fragmentation of the (sub)critical Lévy tree, but roughly speaking the fragmentation is here frozen except for the fragment containing the root.

We set T (0) = T θ and m(0) = m T θ , so that (T (0) , m (0) ) and (T (0) , m(0) ) have the same distribution. Recall notation M ↑ from (33) as well as (34): T 0 = T (0) i∈I ↑,1 θ (T i , x i ), where we write I ↑,1 θ = I ↑ θ and where P 1 = i∈I ↑,1 θ δ (xi,T i ,θi) is, conditionally on T (0) , a Poisson point measure with intensity:

ν 1 (dx, dT , dq) = m(0) (dx) 2βN ψ [dT ] + (0,+∞)
Π(dr) re -qr P ψ r (dT ) 1 (0,θ] (q) dq.

For i ∈ I ↑,1 θ , we define the subtree of T i :

T i = x ∈ T i , M ↑ ( x i , x ×[0, θ i ]) = 0 .
Since T i is distributed according to N ψ (or to P ψ ri for some r i > 0), using the property of Poisson point measures, we have that conditionally on T 0 and θ i , the tree T i is distributed as Λ θi (T , M) under N ψ (or under P ψ ri ) that is the distribution of T i is N ψ θ i [dT ] (or P ψ θ i ri (dT )), thanks to the special Markov property. Furthermore we have

T i = T i i ∈I ↑,2 θ,i (T i , x i ) where i ∈I ↑,2 θ,i δ (x i ,T i ,θ i )
is, conditionally on T (0) and T i a Poisson point measure on T i × T × (0, θ] with intensity:

m T i (dx) 2βN ψ (dT ) + (0,+∞) Π(dr) re -qr P ψ r (dT ) 1 [0,θi) (q) dq.
Thus we deduce, using again the special Markov property, that:

Ñ 1 θ (dx, dT , dq) = i∈I ↑,1 δ (xi, T i ,θi) (dx, dT , dq)
is conditionally on T 0 a Poisson point measure on T (0) × T × Θ ψ with intensity:

μ1 (dx, dT , dq) = m(0) q (dx)N ψq [dT ] 1 [0,θ) (q) dq, with m(0) q (dx) = m(0) (dx). We set T (1) = T (0) i∈I ↑,1 θ ( T i , x i )
for the first generation tree and for q ∈ [0, θ]:

m(1) q (dx) = i∈I ↑,1 θ m T i (dx)1 [0,θi) (q).
See Figure 2 for a simplified representation. We get that (T

θ , (m

q , q ∈ [0, θ]), T (0) , m T (0) ) and (T (1) , ( m(1) q , q ∈ [0, θ]), T (0) , m(0) ) have the same distribution. Furthermore, by collecting all the trees grafted on T (1) , we get that

T = T (1) i ∈I ↑,2 θ (T i , x i ), where I ↑,2 θ = ∪ i∈I ↑,1 θ I ↑,2
θ,i and where

P 2 = i ∈I ↑,2 θ δ (x i ,T i ,θ i )
is, conditionally on (T (1) , ( m(1) q , q ∈ [0, θ]), T (0) , m(0) ) a Poisson point measure on T (1) × T × (0, θ] with intensity:

ν 2 (dx, dT , dq) = m(1) q (dx) 2βN ψ (dT ) + (0,+∞)
Π(dr) re -qr P ψ r (dT ) 1 [0,θ] (q) dq.

Notice that:

(42) T (1) = {x ∈ T 0 , M ↑ ( ∅, x ×[0, θ]) ≤ 1} and m(1) θ (dx) + m(0) (dx) = 1 T (1) (x) m T0 (dx). We can then iterate this construction, and by taking increasing limits we obtain that the pair

((∪ n∈N T (n) θ , n∈N m (n)
θ ), T 0 ) has the same distribution as (T , T (0) ), where:

T = x ∈ T 0 , M ↑ ( ∅, x ×[0, θ]) < +∞
and m (dx) = 1 T (x) m T0 (dx).

Figure 2. The tree T 0 , T (0) , and a tree T i and its sub-tree T i belonging to the first generation tree T (1) \ T (0) .

To conclude, we need to check first that the completion of T is T 0 or, as T 0 is complete, that the closure of T as a subset of T 0 is exactly T 0 and then that m T0 (T c ) = 0. Notice that M ↑ has fewer marks than M. Then Proposition 1.2 in [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF] in the case when β = 0 or an elementary adaptation of it in the general framework of [START_REF] Voisin | Dislocation measure of the fragmentation of a general Lévy tree[END_REF], gives there is no loss of mass in the fragmentation process. This implies that, if ψ is (sub)critical, then:

(43) m T0 ({x ∈ T 0 , M( ∅, x ×[0, θ]) = ∞} = 0.
Then, if ψ is super-critical, by considering the truncation of T 0 at level a, π a (T 0 ), and using a Girsanov transformation from Definition 2.21 with θ = θ * and (43), we deduce that (43) holds for π a (T 0 ). Since a is arbitrary, we deduce by monotone convergence that (43) holds also in the super-critical case. Thus we have m T0 (T c ) = 0. Since the closed support of m T0 is the set of leaves Lf(T 0 ), we deduce that Lf(T ) is dense in Lf(T 0 ) and, as T and T 0 have the same root, that Sk(T ) = Sk(T 0 ). This implies that the closure of T is T 0 and ends the proof.

Application to overshooting

We assume that ψ is critical, θ ∞ < 0 and Assumptions 1 and 2 hold. We will write u θ (resp. b θ ) for the solution of (11) (resp. ( 12)) when ψ is replaced by ψ θ , for a ≥ 0, h > 0 and t ∈ [0, h):

(44) λ u θ (a,λ) dr ψ θ (r) = a, and b θ h (t) = b θ (h -t) with ∞ b θ (h) dr ψ θ (r) = h. We have u θ (a, b θ (h -a)) = b θ (h). Notice that ∂ h b θ (h)/ψ θ (b θ (h)) = -1
and also that we have

∂ λ u θ (a, λ) = ψ θ (u θ (a, λ))/ψ θ (λ) which implies that: (45) ∂ λ u θ a, b θ (h -a) = ψ θ (b θ (h)) ψ θ (b θ (h -a)) = - ψ θ (b θ (h)) ψ θ (b θ (h -a)) 2 ∂ h b θ (h -a).
We set for θ ∈ Θ ψ and λ ≥ 0:

(46) γ θ (λ) = ψ θ (λ) -ψ θ (0) = ψ (λ + θ) -ψ (θ) = ∂ θ ψ θ (λ).
Notice that the function γ θ is non-negative and non-decreasing. Recall that θ = ψ -1 • ψ(θ). We deduce from (44) that for θ ∈ Θ ψ , θ < 0 and h > 0:

(47) θ + b θ (h) = θ + b θ (h) and ψθ(b θ (h)) = ψ θ (b θ (h)).
4.1. Exit times. Let h > 0. We are interested in the first time at which the process of growing trees exceeds height h, in the following sense.

Definition 4.1. The first exit time out of h is the (possibly infinite) number A h defined by

A h = sup θ ∈ Θ ψ , H max (T θ ) > h ,
with the convention that sup ∅ = θ ∞ .

The constraint not to be higher than h will be coded by the function b θ (h) which is the probability (under N ψ ) for the tree T θ of having maximal height larger than h. By definition of the function b, we have for θ ∈ Θ ψ :

(48) N ψ [θ ≤ A h ] = N ψ [H max (T θ ) ≥ h] = b θ (h).
Proposition 4.2. Let ψ be a critical branching mechanism with θ ∞ < 0 and satisfying Assumptions 1 and 2. The function θ → b θ h is of class C 1 on (θ ∞ , +∞). And, under N ψ , the distribution of A h on (θ ∞ , +∞) has density θ → -∂ θ b θ (h) with respect to the Lebesgue measure. We also have the following expression for the density of A h on (θ ∞ , +∞). Let θ ∞ < θ and h > 0. Then:

-∂ θ b θ (h) = ψ θ b θ (h) h 0 da γ θ (b θ (a)) ψ θ (b θ (a)) = h 0 da γ θ b θ (h -a) e -ψ (θ)a- a 0 dx γ θ (b θ (h-x)) .
Notice that the distribution of A h might have an atom at θ ∞ .

Proof. Notice that for θ ∞ < θ, we have lim λ→+∞ ψ (λ) = β and lim λ→+∞ ψ (λ) = +∞. In particular ψ θ (λ)/ψ θ (λ) is bounded for λ large enough. This implies that +∞ dr ψ θ (r)/ψ θ (r) 2 is finite thanks to Assumption 2. We deduce that the function θ → b θ h is of class C 1 on (θ ∞ , +∞) and, thanks to (48), that under N ψ , the distribution of A h on (θ ∞ , +∞) has density θ → -∂ θ b θ (h) with respect to the Lebesgue measure.

Taking the derivative with respect to θ in the last term of (44), using (46) and the change of variable r = b θ (a) gives the first equality of the proposition:

(49) -∂ θ b θ (h) = ψ θ b θ (h) +∞ b θ (h) dr γ θ (r) ψ θ (r) 2 = ψ θ b θ (h) h 0 da γ θ (b θ (a)) ψ θ (b θ (a)) • From (44) we get that ∂ t b θ h (t) = ψ θ (b θ h (t))
. Hence, we have:

t 0 ψ θ b θ h (r) dr = t 0 ψ θ (b θ h (r)) ψ θ (b θ h (r)) ∂ t b θ h (r) dr = log ψ θ (b θ h (t)) ψ θ (b θ h (0))
.

This gives:

(50)

t 0 γ θ b θ h (r) dr = t 0 ψ θ b θ h (r) dr -tψ (θ) = log ψ θ (b θ h (t)) ψ θ (b θ h (0)) -tψ (θ).
We deduce that:

h 0 da γ θ b θ (h -a) e -ψ (θ)a- a 0 dx γ θ (b θ (h-x)) = ψ θ b θ (h) h 0 da γ θ (b θ (a)) ψ θ (b θ (a)) •
This proves the second equality of the proposition.

Since we will also be dealing with super-critical trees, there is always the positive probability that in the Poisson process of trees an infinite tree arises, which will be grafted onto the process, effectively making it infinite and thus outgrowing height h. In the next proposition, we will compute the conditional distribution of the overshooting time A h , given A. Note that we always have A ≤ A h . Proposition 4.3. Let ψ be a critical branching mechanism with θ ∞ < 0 and satisfying Assumptions 1 and 2. For θ ∞ < θ 0 < θ and θ 0 < 0 (that is ψ θ0 super-critical), we have, with θ = θ0 -θ 0 + θ:

N ψ [A h ≥ θ|A = θ 0 ] = 1 -ψ ( θ)ψ θ b θ (h) +∞ b θ (h) dr ψ θ (r) 2 , N ψ [A h = A|A = θ 0 ] = ψ ( θ0 )ψθ 0 b θ0 (h) +∞ b θ0 (h) dr ψθ 0 (r) 2 • Since ψθ
0 is sub-critical, we have ψ ( θ0 ) > 0 and ψθ 0 (r) ∼ rψ ( θ0 ) when r goes down to 0. Since lim h→+∞ b θ0 (h) = 0, we deduce that:

lim h→+∞ N ψ [A h = A|A = θ 0 ] = 1.
This has a straightforward explanation. If h is very large, with high probability the process up to A will not have crossed height h, so that the first jump to cross height h will correspond to the grafting time of the first infinite tree which happens at the ascension time A. We also deduce from (47) that:

(51) N ψ [A h = A|A = θ 0 ] = ψ ( θ0 )ψ θ0 b θ0 (h) +∞ b θ 0 (h) dr ψ θ0 (r) 2 • Proof. We use the notation Z θ h = Z h (T θ ) and Z h = Z h (T 0 ). We have: N ψ [A h ≥ θ|A = θ 0 ] = N ψ [Z θ h > 0|A = θ 0 ] = N ψ [Z A+(θ-θ0) h > 0|A = θ 0 ] = ψ ( θ0 )N ψ σ 0 1 {Z (θ-θ 0 ) h >0} e -ψ(θ0)σ0 = ψ ( θ0 )N ψθ 0 σ 0 1 {Z (θ-θ 0 ) h >0} = ψ ( θ0 )N ψ σθ 0 1 {Z θ0 +(θ-θ 0 ) h >0} = ψ ( θ0 )N ψ σθ 0 1 {Z θ h >0}
, where we used (2) of Theorem 2.28 for the third equality, Girsanov formula [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF] for the fourth and the homogeneity property of Theorem 2.26 in the fifth. We now condition with respect to T θ . The indicator function being measurable, the only quantity left to compute is the conditional expectation of σθ 0 given T θ . Thanks to Lemma 2.27, the fact that θ > 0 and the homogeneity property, we get:

N ψ [A h ≥ θ|A = θ 0 ] = ψ ( θ)N ψ σ θ 1 {Z θ h >0} = ψ ( θ)N ψ θ σ1 {Z h >0} . Using that N ψ θ [σ] = 1/ψ ( θ)
, which can be deduced from (25), we get:

N ψ [A h ≥ θ|A = θ 0 ] = ψ ( θ)N ψ θ [σ] -ψ ( θ)N ψ θ h 0 Z a da1 {Z h =0} = 1 -ψ ( θ) h 0 da lim λ→∞ N ψ θ Z a e -λZ h .
Now, conditioning by Z a and using lim λ→∞ u θ (h -t, λ) = b θ h (t) as well as [START_REF] Lambert | Population Dynamics and Random Genealogies[END_REF], we get:

lim λ→∞ N ψ θ Z a e -λZ h = lim λ→∞ N ψ θ Z a e -Zau θ (h-a,λ) = N ψ θ Z a e -Zab θ h (a) = ∂ λ u θ (s, b θ h (a)).
Then use (45) to get:

h 0 da lim λ→∞ N ψ θ Z a e -λZ h = h 0 da ∂ λ u θ (s, b θ h (a)) = ψ θ (b θ (h)) h 0 da |∂ h b θ (h -a)| ψ θ (b θ (h -a)) 2 = ψ θ (b θ (h)) +∞ b θ (h) dr ψ θ (r) 2 ,
and thus deduce the first equality of the proposition. Note that +∞ dr/ψ θ (r) 2 < +∞ thanks to Assumption 2 (this is actually true in general). Let θ go down to θ 0 and use the fact that N ψ -a.e. A ≤ A h to get the second equality.

Remark 4.4. In the quadratic case ψ(u) = βu 2 , we can obtain closed formulae. For all θ > 0, we have:

u θ (t, λ) = 2θλ (2θ + λ) exp(2βθt) -λ and b θ (t) = 2θ e 2βθt -1 •
We deduce the following exact expression of the conditional distribution for θ 0 < θ, θ 0 < 0 and with θ0 = |θ 0 | = -θ 0 and θ = θ + 2|θ 0 |:

N ψ [A h ≥ θ|A = θ 0 ] = 1 + (β θh)/sinh 2 (β θh) -cotanh(β θh), N ψ [A h = A|A = θ 0 ] = βθ 0 h/sinh 2 (βθ 0 h) -cotanh(βθ 0 h). Notice that lim θ0→-∞ N ψ [A h = A|A = θ 0 ] = 1.
This corresponds to the fact that if A is large, then the tree T A is small and has little chance to cross level h. (Note that T A has finite height but T A-has infinite height.) Thus the time A h is equal to the time when an infinite tree is grafted that is, to the ascension time A.

4.2.

Distribution of the tree at the exit time. Before stating the theorem describing the tree before it overshoots a given height h > 0 under the form of a spinal decomposition, we will explain how this spine is distributed. Recall (46) for the definition of γ θ .

Lemma 4.5. Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2. Let θ ∈ Θ ψ . The non-negative function

(52) f : t → γ θ (b θ h (t)) exp - t 0 γ θ (b θ h (r))dr
is a probability density on [0, h) with respect to Lebesgue measure. If ξ is a random variable whose distribution is f , then we have E[exp(-ψ (θ)ξ)] < +∞.

Notice the integrability property on ξ is trivial if θ ≥ 0.

Proof. Notice that f = g e -g with g(t) = and f is a density if and only if g(h) = ∞. We deduce from (50) that t 0 γ θ (b θ h (r))dr diverges as t goes to h. The last part of Proposition 4.2 implies that e -ψ (θ)ξ is integrable.

Recall Equation ( 5) defining the grafting procedure. Theorem 4.6. Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2. Let θ ∞ < θ and let F be a non-negative measurable functional on T 2 . Then, we have:

N ψ [F (T A h , T A h -)|A h = θ] =
1 E e -ψ (θ)Hx E F ∅, x i∈I (T i , x i ) , ( ∅, x i∈I (T i , x i )) (T, x) e -ψ (θ)Hx , where the spine ∅, x is identified with the interval [0, H x ] (and thus y ∈ ∅, x is identified with H y ) and:

• The random variable H x is distributed with density given by (52).

• Conditionally on H x , sub-trees are grafted on the spine [0, rΠ θ+b θ h (x) (dr)P ψ θ r (dT , H max (T ) < h -a) .

• Conditionally on H x and on N , T is a random variable on T with distribution

N ψ θ [dT |H max (T ) > h -H x ].
In other words, conditionally on {A h = θ}, we can describe the tree before overshooting height h by a spinal decomposition along the ancestral branch of the point at which the overshooting sub-tree is grafted. Conditionally on the height of this point, the overshooting tree has distribution N ψ θ [dT ], conditioned on overshooting.

If θ > 0 then ψ (θ) > 0, and we can understand the weight e -ψ (θ)Hx /E e -ψ (θ)Hx as a conditioning of the random variable H x to be larger than an independent exponential random variable with parameter ψ (θ). Remark 4.7. When h goes to infinity, we have, for θ ≥ 0, lim h→+∞ b θ (h) = 0 and thus the distribution of A h concentrates on Θ ψ ∩(-∞, 0). For θ < 0 and θ ∈ Θ ψ , we deduce from (47) that lim h→+∞ b θ (h) = θ -θ > 0. And the distribution of ξ in Lemma 4.5 clearly converges to the exponential distribution with parameter γ θ (b θ (+∞)) = ψ ( θ) -ψ (θ). Then the weight e -ψ (θ)Hx /E e -ψ (θ)Hx changes this distribution. In the end, H x is asymptotically distributed as an exponential random variable with parameter ψ ( θ). Notice this is exactly the distribution of the height of a random leaf taken in T A , conditionally on {A = θ}, see Lemma 7.6 in [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF]. Remark 4.9. By considering the function G in (54) instead of F in the proof of Theorem 4.6, we can recover the distribution of T A given in [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF], but we also can get the joint distribution of (T A-, T A ). Roughly speaking (and unsurprisingly), conditionally on {A = θ}, T A-is obtained from T A by grafting an independent random tree T on a independent leaf x chosen according to m T A (dx) and the distribution of T is N ψ θ [dT, H max (T ) = +∞]. Notice that choosing a leaf at random on T A gives that the distribution of T A is a size-biased distribution of N ψ θ [dT ].

Proof of Theorem 4.6. Thanks to the compensation formula (41), we can write, if g is any measurable functional R → R + with support in (θ ∞ , +∞): Notice we only replaced N ψ θ by N ψθ in the last equality.

N ψ [F (T A h , T A h -)g(A h )] = N ψ
We explain how the term 1 {Hmax(T )<h} changes the decomposition of T according to the spine given in Theorem 2.18. Let Φ a non-negative measurable function defined on [0, +∞) × T and ϕ a non-negative measurable function defined on [0, +∞). Using Theorem 2.18 and notations therein, we get: E F a, i∈I 1 {zi≤a} δ (zi, T i ) .

If we identify the spine ∅, x (with its metric) with the interval [0, H x ] (with the Euclidean metric), we can use this result to compute B(θ, h) with: E F a, i∈I 1 {zi≤a} δ (zi, T i ) .

Thus, we get: E F a, i∈I 1 {zi≤a} δ (zi, T i ) .

N ψ [F (T A h , T A h -)g(A h )] = Θ ψ dθ g(θ)
Then use the distribution of A h under N ψ given in Proposition 4.2 to conclude.

)

  Furthermore, we have the branching property: for every a > 0, the conditional distribution of the point measure N T a (dx, dT ) under N ψ [dT |H max (T ) > a], given π a (T ), is that of a Poisson point measure on T (a) × T with intensity a (dx)N ψ [dT ].

Figure 1 .

 1 Figure 1. The pruning process, starting from explosion time A defined in (32).

t0 0 f = h 0 g

 00 γ θ (b θ h (r)) dr. Thus we have h e -g = e -g(0) -e -g(h)

  H x ] according to a Poisson point measure N = i∈I δ (xi,T i ) on [0, H x ] × T with intensity: (53) ν θ (da, dT ) = da 2β(θ + b θ h (a))N ψ θ [dT , H max (T ) < h -a] + (0,+∞)

Remark 4 .

 4 8. A direct application of Theorem 4.6 with F (T , T ) chosen equal to (54) G(T , T ) = 1 {m T (T )<+∞,m T (T )=+∞} ,allows one to compute for θ < 0:N ψ [A = A h |A h = θ] = ψ ( θ) -ψ (θ) C(θ, h) ψ ( θ) -ψ (θ)C(θ, h) , where C(θ, h) = ψ ( θ)ψ θ (b θ (h)) +∞ b θ (h) dr ψ θ (r) -2 = N ψ [A = A h |A = θ].The last equality is a consequence of (51). As lim h→+∞ Nψ [A = A h |A = θ] = 1, we get that lim h→+∞ N ψ [A = A h |A h = θ] = 1.

1

 1 {Hmax(T θ j )<h} F (T θj , T θj (T j , x j ))g(θ j )1 {Hx j +Hmax(T j )>h}   = Θ ψ dθ g(θ)B(θ, h),where, using the homogeneity property and the Girsanov transformation[START_REF] Villani | Optimal Transport, Grundlehren der mathematischen Wissenschaften[END_REF]:B(θ, h) = N ψ 1 {Hmax(T θ )<h} m T θ (dx) N ψ θ [dT ]F (T θ , T θ (T, x))1 {Hx+Hmax(T )>h} = N ψ θ 1 {Hmax(T )<h} m T (dx) N ψ θ [dT ]F (T , T (T, x))1 {Hx+Hmax(T )>h} = N ψθ 1 {Hmax(T )<h} m T (dx) N ψ θ [dT ]F (T , T (T, x))1 {Hx+Hmax(T )>h} .

N 1

 1 ψθ m T (dx) ϕ(H x )e -Mx,Φ 1 {Hmax(T )<h}= {z i ≤a} Φ(zi, T i ) i∈I,zi≤a 1 {Hmax( T i )<h-zi}   = h 0 da ϕ(a) exp -ψ ( θ)aa 0 dx N ψθ 1 -e -Φ(x,T ) 1 {Hmax(T )<h-x} .Using the definition of N ψθ , see (40), (46) and the Girsanov transformation[START_REF] Villani | Optimal Transport, Grundlehren der mathematischen Wissenschaften[END_REF], we get:N ψθ 1 -e -Φ(x,T ) 1 {Hmax(T )<h-x} = γθ N ψθ 1 -e -Φ(x,T ) 1 {Hmax(T )<h-x} = γθ b θ (h -x) + N ψ θ 1 -e -Φ(x,T ) 1 {Hmax(T )<h-x} .Thanks to (46) and (47), we have for λ ≥ 0:γθ(b θ (h -x) + λ) = γ θ+b θ (h-x) (λ) + γ θ (b θ (h -x)) + ψ (θ) -ψ ( θ).Take λ = N ψ θ 1 -e -Φ(x,T ) 1 {Hmax(T )<h-x} , to deduce that:N ψθ m T (dx) ϕ(H x )e -Mx,Φ 1 {Hmax(T )<h} = h 0 da ϕ(a) exp -ψ (θ)aa 0 dx γ θ (b θ (h -x)) expa 0 dx γ θ+b θ (h-x) N ψ θ 1 -e -Φ(x,T ) 1 {Hmax(T )<h-x} = h 0 da ϕ(a) exp -ψ (θ)aa 0 dx γ θ (b θ (h -x)) E e -i∈I 1 {z i ≤a} Φ(zi, T i ) ,where under E, i∈I δ (zi, T i ) (dz, dT ) is a Poisson point measure on [0, h] × T with intensity ν θ in (53). Since Laplace transforms characterize random measure distributions, we get that for any non-negative measurable function F , we have:N ψθ m T (dx) F (H x , M x )1 {Hmax(T )<h} = θ (b θ (h-x))

F

  (H x , M x ) = N ψ θ [dT | H x + H max (T ) > h]F (T , T (T, x)), M x = i∈Ix δ (Hx i ,T i ) and T = [0, H x ] i∈Ix (T i , H xi ). Since N ψ θ [H max (T ) > h] = γ θ (b θ (h)), we have: γ θ (b θ (h -H x )) F (H x , M x ) = N ψ θ [dT ]F (T , T (T, x))1 {Hx+Hmax(T )>h} .Therefore, we have:B(θ, h) = N ψθ 1 {Hmax(T )<h} m T (dx) N ψ θ [dT ]F (T , T (T, x))1 {Hx+Hmax(T )>h} = h 0 da γ θ (b θ (h -a))e -ψ (θ)a-a 0 dx γ θ (b θ (h-x))

  θ (b θ (h -a))e -ψ (θ)a-a 0 dx γ θ (b θ (h-x))
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