
HAL Id: hal-00673832
https://hal.science/hal-00673832

Submitted on 24 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the asymptotic behavior of the Nadaraya-Watson
estimator associated with the recursive SIR method

Bernard Bercu, Thi Mong Ngoc Nguyen, Jérôme Saracco

To cite this version:
Bernard Bercu, Thi Mong Ngoc Nguyen, Jérôme Saracco. On the asymptotic behavior of the
Nadaraya-Watson estimator associated with the recursive SIR method. Statistics, 2014, pp.17. �hal-
00673832�

https://hal.science/hal-00673832
https://hal.archives-ouvertes.fr


ON THE ASYMPTOTIC BEHAVIOR OF THE

NADARAYA-WATSON ESTIMATOR ASSOCIATED WITH THE

RECURSIVE SIR METHOD

BERNARD BERCU, THI MONG NGOC NGUYEN, AND JEROME SARACCO

Abstract. We investigate the asymptotic behavior of the Nadaraya-Watson esti-
mator for the estimation of the regression function in a semiparametric regression
model. On the one hand, we make use of the recursive version of the sliced inverse
regression method for the estimation of the unknown parameter of the model.
On the other hand, we implement a recursive Nadaraya-Watson procedure for the
estimation of the regression function which takes into account the previous esti-
mation of the parameter of the semiparametric regression model. We establish the
almost sure convergence as well as the asymptotic normality for our Nadaraya-
Watson estimator. We also illustrate our semiparametric estimation procedure on
simulated data.

1. INTRODUCTION

The goal of this paper is to investigate the asymptotic behavior of the Nadaraya-
Watson estimator of the regression function f in the semiparametric regression
model given, for all n ≥ 1, by

(1.1) Yn = f(θ′Xn) + εn

where (Xn) is a sequence of independent and identically distributed random vectors
of Rp and the driven noise (εn) is a real martingale difference sequence independent
of (Xn). We assume in all the sequel that the unknown p-dimensional parameter
θ 6= 0. On the one hand, we make use of the recursive version of the sliced inverse
regression (SIR) method, originally proposed by Li [11] and Duan and Li [7], in order
to estimate θ. On the other hand, we estimate the unknown regression function f
via a recursive Nadaraya-Watson estimator which takes into account the previous
estimation of the parameter θ. Our purpose is precisely to investigate the asymptotic
behavior of the recursive Nadaraya-Watson estimator of f .

One can find a wide range of literature on nonparametric estimation of a regression
function. We refer the reader to [6], [13], [19], [21] for some excellent books on density
and regression function estimation. In the classical situation without any parameter
θ, the almost sure convergence of the Nadaraya-Watson estimator [12], [22] was
proved by Noda [15] and its asymptotic normality was established by Schuster [18].
Moreover, Choi, Hall and Rousson [4] propose three data-sharpening versions of the
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Nadaraya-Watson estimator in order to reduce the asymptotic variance in the central
limit theorem. In our situation, we propose to make use of a recursive Nadaraya-
Watson estimator [8] of f which takes into account the previous estimation of the
parameter θ. It is given, for all x ∈ R

p, by

(1.2) f̂n(x) =

∑n
k=1 Wk(x)Yk∑n
k=1 Wk(x)

with

Wn(x) =
1

hn

K
(x− θ̂ ′

n−1Xn

hn

)

where the kernel K is a chosen probability density function and the bandwidth (hn)
is a sequence of positive real numbers decreasing to zero, such that nhn tends to
infinity. For the sake of simplicity, we propose to make use of hn = 1/nα with
α ∈ ]0, 1[. The main difficulty arising here is that we have to deal with the recursive

SIR estimator θ̂n of θ inside the kernel K.

The paper is organized as follows. Section 2 is devoted to the recursive SIR estimator

θ̂n. Our main results on the asymptotic behavior of f̂n are given in Section 3.
Under standard regularity assumptions on the kernel K, we establish the almost

sure pointwise convergence of f̂n together with its asymptotic normality. Section
4 contains some numerical experiments on simulated data, illustrating the good
performances of our semiparametric estimation procedure. All the technical proofs
are postponed in Appendices A and B.

2. ON THE RECURSIVE SIR METHOD

From the seminal work of Li [11] and Duan and Li [7] devoted to the SIR theory,
we know that the eigenvector associated with the maximum eigenvalue of the matrix
Σ−1Γ is collinear with θ where Σ = V(Xn) is positive definite, Γ = V(E(Xn|T (Yn))
and T is a slicing of the range of Yn intoH non overlapping slices s1, · · · , sH . One can
observe that since the link function f is unknown in the semiparametric regression
model (1.1), the parameter θ is not entirely identifiable. Only its direction can be
identified without assuming additional constraints. Li [11] called effective dimension
reduction (EDR), any direction collinear with θ. Moreover, the SIR theory mainly
relies on the so-called linear condition (LC) which imposes that for all b ∈ R

p,
E[b′Xn|θ′Xn] is linear in θ′Xn. It means that one can find α, β ∈ R such that

(LC) E[b′Xn|θ′Xn] = α + βθ′Xn.

This condition is required to only hold for the true parameter θ. Since θ is un-
known, it is not possible in practice to verify it a priori. Hence, we can assume that
(LC) holds for all possible values of θ, which is equivalent to elliptical symmetry of
the distribution of the identically distributed sequence (Xn). Finally, Hall and Li
[10] mentioned that (LC) is not a severe restriction because (LC) holds to a good
approximation in many problems as the dimension p of the regression vector Xn

increases. Chen and Li [3] or Cook and Ni [5] also provide interesting discussions
on the linear condition.
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In order to obtain a recursive version of an EDR direction estimated with SIR
approach, we need an analytic expression of the maximum eigenvector of Σ−1Γ. It
is easily tractable when the range of Yn is divided into two non overlapping slices s1
and s2. Hereafter we shall assume that H = 2. In this special case, it is not hard
to see that Γ = p1z1 + p2z2 where ph = P (Yn ∈ sh) and zh = E[Xn|Yn ∈ sh]−E[Xn]
with ph 6= 0 for h = 1, 2. Moreover, it is straightforward to show that the eigenvector
associated to the maximum eigenvalue of Σ−1Γ can be written as

θ̃ = Σ−1(z1 − z2).

This vector θ̃ is therefore an EDR direction. For the sake of simplicity, we identify

in all the sequel the EDR direction θ̃ with θ. Our purpose is now to propose an
estimator of the EDR direction θ. First of all, let us recall the non recursive SIR

estimator θ̃n of θ given by Nguyen and Saracco [14]. The estimator θ̃n can be
easily obtained from the sample (X1, Y1), . . . , (Xn, Yn) by substituting the theoritical

moments by their sample couterparts. More precisely, θ̃n is given by

(2.1) θ̃n = Σ−1
n (z1,n − z2,n)

where

(2.2) Σn =
1

n

n∑

k=1

(Xk −Xn)(Xk −Xn)
′, Xn =

1

n

n∑

k=1

Xk

and, for h = 1, 2, zh,n = mh,n −Xn where

(2.3) mh,n =
1

nh,n

n∑

k=1

XkI{Yk∈sh}, nh,n =
n∑

k=1

I{Yk∈sh}.

Next, we focus our attention on the recursive SIR estimator θ̂n of θ proposed by
Bercu, Nguyen and Saracco [1], [14]. We split the sample into two parts: the
subsample of the first (n − 1) observations (X1, Y1), . . . , (Xn−1, Yn−1), and the new
observation (Xn, Yn). On the one hand, the inverse of the matrix Σn given by (2.4)
may be recursively calculated via the Riccati equation [8],

(2.4) Σ−1
n =

n

n− 1
Σ−1

n−1 −
n

(n− 1)(n+ ρn)
Σ−1

n−1ΦnΦ
′
nΣ

−1
n−1

where ρn = Φ′
nΣ

−1
n−1Φn and Φn = Xn−Xn−1. On the other hand, we can also obtain

the recursive form of zh,n. As a matter of fact, we have for h = 1, 2,

(2.5) zh,n =





zh∗,n−1 −
1

n
Φn +

1

nh∗,n−1 + 1
Φh∗,n if h = h∗,

zh,n−1 −
1

n
Φn otherwise,
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where h∗ denotes the slice containing the observation Yn and Φh∗,n = Xn −mh∗,n−1.

We deduce from (2.4) and (2.5) that the recursive SIR estimator θ̂n is given by

(2.6)

θ̂n =

(
n

n− 1

)
θ̂n−1 −

n

(n− 1)(n+ ρn)
Σ−1

n−1ΦnΦ
′
nθ̂n−1

− (−1)h
∗

n

(nh∗,n−1 + 1)(n− 1)

(
Σ−1

n−1 −
1

n+ ρn
Σ−1

n−1ΦnΦ
′
nΣ

−1
n−1

)
Φh∗,n.

The SIR estimators θ̃n and θ̂n share the same asymptotic properties, previously
established in [14], under the following classical hypothesis.

(H1) The random vectors (Xn) are square integrable, independent and identically
distributed and (X1, Y1), . . . , (Xn, Yn) are independently drawn from (1.1).

Lemma 2.1. Assume that (LC ) and (H1) hold. Then, θ̂n converges a.s. to θ,

(2.7) ||θ̂n − θ||2 = O
(
log(log n)

n

)
a.s.

In addition, we also have the asymptotic normality

(2.8)
√
n(θ̂n − θ)

L−→ N (0,∆)

where the limiting covariance matrix ∆ may be explicitely calculated.

3. MAIN RESULTS

Our purpose is to investigate the asymptotic properties of the recursive Nadaraya-

Watson estimator f̂n of the link function f given by (1.2). First of all, we assume
that the kernel K is a positive symmetric function, bounded with compact support,
twice differentiable with bounded derivatives, satisfying∫

R

K(x) dx = 1 and

∫

R

K2(x) dx = ν2.

Moreover, it is necessary to add the following standard hypothesis.

(H2) The probability density function g associated with (Xn) is continuous, posi-
tive on all Rp, twice differentiable with bounded derivatives.

(H3) The link function f is Lipschitz.

Our first result deals with the almost sure convergence of the estimator f̂n.

Theorem 3.1. Assume that (LC ) and (H1) to (H3) hold. In addition, suppose that

the sequence (Xn) has a finite moment of order a > 2. Then, for any x ∈ R, we

have

(3.1) lim
n→∞

f̂n(x) = f(x) a.s.

More precisely, if the bandwidth (hn) is given by hn = 1/nα with 0 < α < 1/3,

(3.2) f̂n(x)− f(x) = O
(
n−α

)
+O

(
n1/a

√
log(log n)

n

)
a.s.
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while, if 1/3 ≤ α < 1,

(3.3) f̂n(x)− f(x) = O
(√

nα−1 log n
)
+O

(
n1/a

√
log(log n)

n

)
a.s.

Proof. The proof is given Appendix A. �

Remark 3.1. In the particular case where (Xn) is a sequence of independent random

vectors of Rp sharing the same N (m,Σ) distribution where the covariance matrix Σ
is positive definite, we can replace n1/a by log n into (3.2) and (3.3). Consequently,
for any x ∈ R, we obtain that if 0 < α < 1/3,

f̂n(x)− f(x) = O
(
n−α

)
a.s.

while, if 1/3 ≤ α < 1,

f̂n(x)− f(x) = O
(√

nα−1 log n
)

a.s.

The asymptotic normality of the estimator f̂n is as follows.

Theorem 3.2. Assume that (LC ) and (H1) to (H3) hold. In addition, suppose that

the sequence (Xn) has a finite moment of order a = 6 and that the sequence (εn)
has a finite conditional moment of order b > 2. Then, as soon as the bandwidth

(hn) satisfies hn = 1/nα with 1/3 < α < 1, we have for any x ∈ R, the pointwise

asymptotic normality

(3.4)
√
nhn(f̂n(x)− f(x))

L−→ N
(
0,

σ2ν2

(1 + α)h(θ, x)

)

where h(θ, x) stands for the probability density function associated with (θ′Xn).

Proof. The proof is given Appendix B. �

4. NUMERICAL SIMULATIONS

The goal of this Section is to illustrate via some numerical experiments the theo-
retical results of Section 3. We will provide the numerical behavior of our recursive
estimators combining the recursive Nadaraya-Watson estimator of the link function
f together with the recursive SIR estimator of the parameter θ. First of all, we de-
scribe in Section 4.1 the simulated model used in the numerical study and we present
the estimation procedure, in particular the choice of the bandwidth parameter α by
a cross-validation criterion. Then, we illustrate in Sections 4.2 and 4.3 the almost
sure convergence and the asymptotic normality of our recursive Nadaraya-Watson
estimator of f .

4.1. Simulated model and estimation procedures. We consider the semipara-
metric regression model given, for all n ≥ 1, by

(M) Yn = f(θ′Xn) + εn

where the link function f is defined, for all x ∈ R, by

f(x) = x exp
(3x
4

)
.
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The parameter θ belongs to R
p with p = 10 and is given by

θ =
1√
10

(
1, 2,−2,−1, 0, . . . , 0

)
.

Moreover, (Xn) is a sequence of independent random vectors of Rp sharing the same
N (0, Ip) distribution, while (εn) is a sequence of independent random variables with
standard N (0, 1) distribution, independent of (Xn). In Figure 4.1, we present two
scatterplots for a sample of size n = 1000 generated from model (M). On the left side,
one can observe the data in the “true” reduction subspace, that is the scatterplot of
(θ′X1, Y1), . . . , (θ

′Xn, Yn) based on the “true” EDR direction θ. On the right side,

we plot the data obtained from the estimated EDR direction θ̂n calculated via our

recursive SIR procedure, that is the scatterplot of (θ̂ ′
nX1, Y1), . . . , (θ̂

′
nXn, Yn). One

can clearly notice that the EDR direction has been well estimated.
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0
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Y

Figure 4.1.

Scatterplots of (θ′X1, Y1), . . . , (θ
′Xn, Yn) and (θ̂ ′

nX1, Y1), . . . , (θ̂
′
nXn, Yn).

For the recursive Nadaraya-Watson estimator f̂n of f , we have chosen the well-known
Epanechnikov kernel

K(x) =
3

4
(1− x2)I{|x|≤1}

and the bandwidth hn = 1/nα with 0 < α < 1. We now need to evaluate an optimal
value for the smoothing parameter α. The problem of deciding how much to smooth
is of great importance in nonparametric regression. We propose to make use of the
optimal data-driven bandwidth α which minimizes the cross-validation criterion

CV (α) =
n∑

k=p+1

(Yk − Ŷk,α)
2 where Ŷk,α = f̂k−1(θ̂

′
k−1Xk).

We can observe by simulations that the CV (α) functions are all convex and the
corresponding optimal data-driven bandwidth α lies into the interval [0.33, 0.38].
Consequently, in all Section 4, we have chosen the optimal value α = 0.35.
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4.2. Almost sure convergence. The good numerical performances of the recur-

sive SIR estimator θ̂n were perviously illustrated in [1], [14]. In order to keep this

section brief, we only focus our attention on the almost sure convergence of f̂n. We
generate N = 1000 samples of different sizes n = 200, 500, 1000, 2000 from model

(M) with p = 10. For each sample, we calculate the estimation f̂n(θ̂
′
nx) of f(θ

′x) for

10 different values of x ∈ R
p. The boxplots of the f̂n(θ̂

′
nx)’s are given in Figure 4.2.

The circle point in each boxplot represents the true value f(θ′x) to easily judge the

quality of the estimations. One can observe that the dispersion of the f̂n(θ̂
′
nx)’s

are small and the mean is very close to the true value f(θ′x). One can also notice
that the larger is the sample size n, the greater is the quality measure. As it was
expected, the quality of the estimation decreases for large values of f(θ′x) since the
number of observations around x decreases, see the scatterplots of Figure 4.1 to be
convinced.
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Figure 4.2.

Almost sure convergence of f̂n(θ̂
′
nx) to f(θ′x) for 10 different values of x.
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4.3. Asymptotic normality. In order to illustrate the asymptotic normality of our

recursive Nadaraya-Watson estimator, we generate N = 1000 realizations of f̂n(θ̂
′
nx)

for n = 1000 from model (M) with p = 10. In Figure 4.3, we plot the histogram of

the standardized values of the f̂n(θ̂
′
nx)’s for 2 different values of x ∈ R

p. We add
the density of the standard normal density on each histogram. One can clearly see
that the normal density coincides pretty well with all the histograms, which visually

illustrates the asymptotic normality of our recursive Nadaraya-Watson estimator f̂n
of f .
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Figure 4.3.

Asymptotic normality of f̂n(θ̂
′
nx) to f(θ′x) for 2 different values of x.

Appendix A

PROOF OF THEOREM 3.1

In order to prove the almost sure pointwise convergence of Theorem 3.1, we shall
denote for all x ∈ R

Pn(x) =
n∑

k=1

Wk(x)εk, Nn(x) =
n∑

k=1

Wk(x),

and

Qn(x) =
n∑

k=1

Wk(x)(f(Φk)− f(x))

where Φn = θ′Xn. We clearly obtain from (1.1) the main decomposition

(A.1) f̂n(x)− f(x) =
Pn(x) +Qn(x)

Nn(x)
.
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We shall establish the asymptotic behavior of each sequence (Pn(x)), (Qn(x)) and
(Nn(x)). Let (Fn) be the filtration given by Fn = σ(X1, . . . , Xn, Y1, . . . , Yn). First
of all, we can split Nn(x) into two terms,

(A.2) Nn(x) = M (N)
n (x) +R(N)

n (x)

where

M (N)
n (x) =

n∑

k=1

(
Wk(x)− E[Wk(x)|Fk−1]

)
and R(N)

n (x) =
n∑

k=1

E[Wk(x)|Fk−1].

On the one hand, we have

E[Wn(x)|Fn−1] =
1

hn

∫

Rp

K
(x− θ̂ ′

n−1xn

hn

)
g(xn) dxn.

We can assume without loss of generality that, for n large enough, at least one

component of θ̂n is different from zero a.s. As a matter of fact, we already saw from

Lemma 2.1 that θ̂n converges a.s. to θ which is different from zero. For the sake of

simplicity, suppose that the first component θ̂n−1,1 6= 0 a.s. We can make the change
of variables

z =
x− θ̂ ′

n−1xn

hn

and z2 = xn,2, . . . , zp = xn,p. The Jacobian of this linear transformation is given by

J = − hn

θ̂n−1,1

.

Consequently, we obtain that

(A.3) E[Wn(x)|Fn−1] =

∫

R

K(z)h(θ̂n−1, x− zhn)dz

where

h(θ̂n−1, x) =
1

|θ̂n−1,1|

∫

Rp−1

g
( 1

θ̂n−1,1

(
x−

p∑

k=2

θ̂n−1,kzk

)
, z2, . . . , zp

)
dz2 . . . dzp.

One can observe that h(θ, x) is exactly the probability density function associated
with the identically distributed sequence (θ′Xn). Therefore, as the probability den-
sity function g is continuous, twice differentiable with bounded derivatives, we de-
duce from (A.3) togheter with Taylor’s formula that

E[Wn(x)|Fn−1] =

∫

R

K(z)
(
h(θ̂n−1, x)− zhnh

′(θ̂n−1, x)

+
z2h2

n

2
h′′(θ̂n−1, x− zhnξ)

)
dz,

= h(θ̂n−1, x) +
h2
n

2

∫

R

z2K(z)h′′(θ̂n−1, x− zhnξ)dz
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where 0 < ξ < 1. Consequently, for n large enough,

(A.4)
∣∣∣E[Wn(x)|Fn−1]− h(θ̂n−1, x)

∣∣∣ ≤ Mhτ
2h2

n a.s.

where

Mh = sup
x∈R

∣∣∣h′′(θ̂n−1, x)
∣∣∣ and τ 2 =

1

2

∫

R

x2K(x)dx.

Hence, we find from (A.4) that

n∑

k=1

∣∣∣E[Wk(x) | Fk−1]− h(θ̂k−1, x)
∣∣∣ = O

( n∑

k=1

h2
k

)
a.s.

It follows from the continuity of h together with the fact that θ̂n converges to θ a.s.
and hn goes to zero that

(A.5) lim
n→∞

1

n

n∑

k=1

E[Wk(x)|Fk−1] = h(θ, x) a.s.

which of course immediately implies that for all x ∈ R

(A.6) lim
n→∞

R
(N)
n (x)

n
= h(θ, x) a.s.

On the other hand, (M
(N)
n (x)) is a square integrable martingale difference sequence

with predictable quadratic variation given by

<M (N)(x)>n =
n∑

k=1

E[(M
(N)
k (x)−M

(N)
k−1(x))

2|Fk−1],

=
n∑

k=1

(
E[W 2

k (x)|Fk−1]− E
2[Wk(x)|Fk−1]

)
.

Via the same change of variables as in (A.3), we obtain that

E[W 2
n(x)|Fn−1] =

1

hn

∫

R

K2(z)h(θ̂n−1, x− zhn)dz,

=
1

hn

∫

R

K2(z)
(
h(θ̂n−1, x)− zhnh

′(θ̂n−1, x)

+
z2h2

n

2
h′′(θ̂n−1, x− zhnξ)

)
dz

where 0 < ξ < 1. Consequently, for n large enough,

(A.7)
∣∣∣E[W 2

n(x)|Fn−1]−
ν2

hn

h(θ̂n−1, x)
∣∣∣ ≤ Mhµ

2hn a.s.

where

ν2 =

∫

R

K2(x)dx and µ2 =
1

2

∫

R

x2K2(x)dx.
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Hence, (A.7) ensures that

n∑

k=1

∣∣∣E[W 2
k (x) | Fk−1]−

ν2

hk

h(θ̂k−1, x)
∣∣∣ = O

( n∑

k=1

hk

)
a.s.

However, it is not hard to see that

lim
n→∞

1

n1+α

n∑

k=1

1

hk

=
1

1 + α
.

Therefore, it follows from (A.7) together with the almost sure convergence of h(θ̂n, x)
to h(θ, x) and Toeplitz’s lemma that

(A.8) lim
n→∞

1

n1+α

n∑

k=1

E[W 2
k (x) | Fk−1] =

ν2

1 + α
h(θ, x) a.s.

Furthermore, we also have from (A.4) that

(A.9) lim
n→∞

1

n

n∑

k=1

E
2[Wk(x)|Fk−1] = h2(θ, x) a.s.

Consequently, we deduce from (A.8) and (A.9) that for all x ∈ R,

(A.10) lim
n→∞

<M (N)(x)>n

n1+α
=

ν2

1 + α
h(θ, x) a.s.

We are now in position to make use of the strong law of large numbers for martingales
given e.g. by Theorem 1.3.15 of [8]. As the probability density function g is positive
on its support, we have for all x ∈ R, h(θ, x) > 0, which implies that <M (N)(x)>n

goes to infinity a.s. Hence, for any γ > 0, (M
(N)
n (x))2 = o(n1+α(log n)1+γ) a.s. which

leads to

(A.11) M (N)
n (x) = o(n) a.s.

Then, we obtain from (A.2), (A.6) and (A.11) that for all x ∈ R

(A.12) lim
n→∞

Nn(x)

n
= h(θ, x) a.s.

We shall now investigate the asymptotic behavior of the sequence (Pn(x)). Since
(Xn) and (εn) are independent, (Pn(x)) is a square integrable martingale difference
sequence with predictable quadratic variation given by

<P (x)>n=
n∑

k=1

E[(Pk(x)− Pk−1(x))
2|Fk−1] = σ2

n∑

k=1

E[W 2
k (x)|Fk−1].

Then, it follows from convergence (A.8) that

(A.13) lim
n→∞

<P (x)>n

n1+α
=

σ2ν2

1 + α
h(θ, x) a.s.
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Consequently, we obtain from the strong law of large numbers for martingales that
for any γ > 0 and that for all x ∈ R,

(A.14) Pn(x) = o
(√

n1+α(log n)1+γ
)
= o(n) a.s.

It remains to study the asymptotic behavior of the sequence (Qn(x)). We can split
Qn(x) into two terms,

(A.15) Qn(x) = Σn(x) + ∆n(x)

where Φ̂n = θ̂ ′
n−1Xn,

Σn(x) =
n∑

k=1

Wk(x)(f(Φk)− f(Φ̂k)) and ∆n(x) =
n∑

k=1

Wk(x)(f(Φ̂k)− f(x)).

The right-hand side of (A.15) is easy to handle. As a matter of fact, the kernel K
is compactly supported which means that one can find a positive constant A such
that K vanishes outside the interval [−A,A]. Thus, for all n ≥ 1 and all x ∈ R,

Wn(x) =
1

hn

K
(x− θ̂ ′

n−1Xn

hn

)
I{|θ̂ ′

n−1
Xn−x|≤Ahn}.

In addition, the function f is Lipschitz, so it exists a positive constant Cf such that
for all n ≥ 1

(A.16) |f(Φ̂n)− f(x)| ≤ Cf |Φ̂n − x| ≤ Cf |θ̂ ′
n−1Xn − x|.

Consequently, we obtain from (A.16) that for all x ∈ R

|∆n(x)| ≤ Cf

n∑

k=1

Wk(x)|θ̂ ′
k−1Xk − x|,

≤ ACf

n∑

k=1

hkWk(x).(A.17)

Moreover, via the same lines as in the proof of (A.5), we find that

(A.18) lim
n→∞

1

n1−α

n∑

k=1

hkE[Wk(x)|Fk−1] =
1

1− α
h(θ, x) a.s.

Furthermore, denote

M (∆)
n (x) =

n∑

k=1

hk

(
Wk(x)− E[Wk(x)|Fk−1]

)
.
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One can observe that (M
(∆)
n (x)) is a square integrable martingale difference sequence

with bounded increments and predictable quadratic variation given by

<M (∆)(x)>n =
n∑

k=1

E[(M
(∆)
k (x)−M

(∆)
k−1(x))

2|Fk−1],

=
n∑

k=1

h2
k

(
E[W 2

k (x)|Fk−1]− E
2[Wk(x)|Fk−1]

)
.

Hence, it follows from (A.4) and (A.7) together with the almost sure convergence of

h(θ̂n, x) to h(θ, x) and Toeplitz’s lemma that

(A.19) lim
n→∞

<M (∆)(x)>n

n1−α
=

ν2

1− α
h(θ, x) a.s.

Consequently, we obtain from the strong law of large numbers for martingales that

(A.20)
(
M (∆)

n (x)
)2

= O
(
n1−α log n

)
a.s.

Then, we infer from the conjunction of (A.17), (A.18) and (A.20) that for all x ∈ R

(A.21) |∆n(x)| = O
(
n1−α

)
a.s.

The left-hand side of (A.15) is much more difficult to handle. We can use once again
the assumption that the function f is Lipschitz to deduce that it exists a positive
constant Cf such that for all n ≥ 1

(A.22) |f(Φ̂n)− f(Φn)| ≤ Cf |πn|
where πn = (θ̂n−1 − θ)′Xn. Hence, it immediately follows from (A.22) that for all
x ∈ R

(A.23) |Σn(x)| ≤ Cf

n∑

k=1

Wk(x)|πk|.

Denote

An =
{
|θ̂ ′

n−1Xn − x| ≤ Ahn

}
and Bn =

{
|θ′Xn − x| ≤ Ahn + bn

}

where (bn) is a sequence of positive real numbers which will be explicitely given
later. On the one hand, we immediately have from the triangle inequality that on
the set An ∩ Bn,

|πn| ≤ 2Ahn + bn.

On the other hand, we also have on the set An ∩ Bn,

Ahn + bn < |θ′Xn − x| ≤ |πn|+ |θ̂ ′
n−1Xn − x| ≤ |πn|+ Ahn

which implies that |πn| > bn. Consequently, we obtain from (A.23) that

(A.24) |Σn(x)| ≤ 2ACf

n∑

k=1

hkWk(x)+Cf

n∑

k=1

bkWk(x)+Cf

n∑

k=1

Wk(x)|πk|I{|πk|>bk}.
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We already saw from (A.21) that

(A.25)
n∑

k=1

hkWk(x) = O
(
n1−α

)
a.s.

Moreover, it is assumed that the sequence (Xn) has a finite moment of order a > 2
which ensures that

sup
1≤k≤n

||Xk|| = o(n1/a) a.s.

Consequently, we find from Lemma (2.1) that

(A.26) |πn| = o(bn) a.s.

where we can choose

bn = n1/a

√
log(log n)

n
.

Therefore, we clearly have

(A.27)
n∑

k=1

Wk(x)|πk|I{|πk|>bk} < +∞ a.s.

Furthermore, it is not hard to see that

n∑

k=1

bk = O
(
n1/a

√
n log(log n)

)
.

Hence, via the same lines as in the proof of (A.21), we obtain that

(A.28)
n∑

k=1

bkWk(x) = O
(
n1/a

√
n log(log n)

)
a.s.

Then, we deduce from the conjunction of (A.24), (A.25), (A.27), and (A.28) that

(A.29) |Σn(x)| = O
(
n1−α

)
+O

(
n1/a

√
n log(log n)

)
a.s.

Consequently, we infer from (A.21) and (A.29) that for all x ∈ R

(A.30) Qn(x) = O
(
n1−α

)
+O

(
n1/a

√
n log(log n)

)
a.s. a.s.

Finally, we can conclude from (A.1) together with (A.12), (A.14) and (A.30) that

lim
n→∞

f̂n(x) = f(x) a.s.

with the almost sure rates of convergence given by (3.2) and (3.3), which completes
the proof of Theorem 3.1.
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Appendix B

PROOF OF THEOREM 3.2

We already saw that (Pn(x)) is a square integrable martingale difference sequence
with predictable quadratic variation satisfying

lim
n→∞

<P (x)>n

n1+α
=

σ2ν2

1 + α
h(θ, x) a.s.

In order to establish the asymptotic normality of Theorem 3.2, it is necessary to
prove that the sequence (Pn(x)) satisfies the Lindeberg condition, that is for all
ε > 0,

(B.1) Pn(x) =
1

n1+α

n∑

k=1

E

[
|∆Pk(x)|2I{|∆Pk(x)|≥ε

√
n1+α}|Fk−1

] P−→ 0

where ∆Pn(x) = Pn(x) − Pn−1(x). We have assumed that the sequence (εn) has a
finite conditional moment of order b > 2 which means that

sup
n≥0

E[|εn|b|Fn−1] < +∞ a.s.

Consequently, for all ε > 0, we have

Pn(x) ≤ 1

εb−2nc

n∑

k=1

E[|∆Pk(x)|b|Fk−1],

≤ 1

εb−2nc

n∑

k=1

E[W b
k(x)|Fk−1]E[|εk|b|Fk−1],

≤ 1

εb−2nc
sup

1≤k≤n
E[|εk|b|Fk−1]

n∑

k=1

E[W b
k(x)|Fk−1](B.2)

where c = b(1 + α)/2. In addition, via the same lines as in the proof of (A.8), we
obtain that

(B.3) lim
n→∞

1

n1+α(b−1)

n∑

k=1

E[W b
k(x) | Fk−1] =

ξb

1 + α(b− 1)
h(θ, x) a.s.

where

ξb =

∫

R

Kb(x) dx.

Therefore, we deduce from (B.1) together with (B.2) and (B.3) that, for all ε > 0,

Pn(x) = O(nd) a.s.

where d = (2− b)(1−α)/2. We recall that b > 2 which means that d < 0. It ensures
that the Lindeberg condition is satisfied. Hence, it follows from the central limit
theorem for martingales given e.g. by Corollary 2.1.10 of [8] that for all x ∈ R,

(B.4)
Pn(x)√
n1+α

L−→ N
(
0,

σ2ν2

1 + α
h(θ, x)

)
.
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Furthermore, as soon as a ≥ 6 and 1/3 < α < 1, we clearly obtain from (A.30) that

(B.5) lim
n→∞

Qn(x)√
n1+α

= 0 a.s.

Finally, we find from (A.1) together with (A.12), (B.4), (B.5) and Slutsky’s lemma
that, for all x ∈ R,

√
nhn(f̂n(x)− f(x))

L−→ N
(
0,

σ2ν2

(1 + α)h(θ, x)

)

which acheives the proof of Theorem 3.2.
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