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IIR Youla-Kucera parameterized adaptive
feedforward compensators for active vibration

control with mechanical coupling
Ioan Doré Landau, Tudor-Bogdan Airimiţoaie, and Marouane Alma

Abstract—Adaptive feedforward broadband vibration (or
noise) compensation requires a reliable correlated measurement
with the disturbance (an image of the disturbance). The reliability
of this measurement is compromised in most of the systems by a
”positive” internal feedback coupling between the compensator
system and the correlated measurement of the disturbance. The
system may become unstable if the adaptation algorithms do
not take into account this positive feedback. Instead of using
classical IIR or FIR feedforward compensators, the present paper
proposes and analyses an IIR Youla - Kucera parametrization
of the feedforward compensator. A model based central IIR
stabilizing compensator is used and its performance is enhanced
by the adaptation of the parameters (Q-parameters) of an IIR
Youla-Kucera filter. Adaptation algorithms assuring the stability
of the system in the presence of the positive internal feedback
are provided. Their performances are evaluated experimentally
on an active vibration control (AVC) system. Theoretical and
experimental comparisons with FIR Youla-Kucera parameterized
feedforward compensators and IIR feedforward compensators
are provided.

Index Terms—active vibration control, adaptive feedforward
compensation, adaptive control, Youla-Kucera parametrization,
parameter estimation.

LIST OF ACRONYMS

ANC - Active noise control system
AVC - Active vibration control system
FIRYK - Youla-Kucera parameterized IIR adaptive feedfor-
ward compensator using a FIR Youla-Kucera filter
IIR - IIR adaptive feedforward compensator
IIRYK - Youla-Kucera parameterized IIR adaptive feedforward
compensator using an IIR Youla-Kucera filter
PAA - Parameter adaptation algorithm
PRBS - Pseudo random binary sequence
QFIR - Youla-Kucera FIR filter
QIIR - Youla-Kucera IIR filter
SPR - Strictly positive real (transfer function)
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ADAPTIVE feedforward broadband vibration (or noise)
compensation requires a reliable correlated measurement

with the disturbance (an image of the disturbance) ([1], [2],
[3], [4]). The reliability of this measurement is compromised
in most of the systems by a ”positive” internal feedback
coupling between the compensator system and the correlated
measurement of the disturbance. The system may become
unstable if the adaptation algorithms do not take into account
this positive feedback ([2], [4], [5], [6]). One of the solutions
to overcome this problem ([3]) is to try to compensate the
positive feedback ([3], [7]). However, since the compensation
can not be perfect, the potential instability of the system still
exists ([8], [9]).

In the context of this inherent ”positive” feedback, the
adaptive feedforward compensator should minimize the effect
of the disturbance while simultaneously assuring the stability
of the internal positive feedback loop.

However this problem can be formulated as a standard
feedback control problem using the 2x2 generalized plant rep-
resentation [10]. The inputs are the disturbance and the input
to the compensator system (the control) and the outputs are the
residual acceleration (force, noise) which is the performance
variable and the effective measurement of the disturbance. The
problem is now to design a feedback compensator (from the
measurement of the disturbance to the input of the compen-
sator system) which minimizes the residual acceleration and
stabilizes the system ([11], [12]). From a control perspective,
the compensator filter appears as a feedback controller while
in all the literature dedicated to active vibration (or noise)
control the term ”feedforward compensator” is used. The term
”feedforward” is justified by the fact that the information upon
the disturbance is taken ”upstream” while for a ”feedback
compensator” is taken ”downstream” by measuring its effect
(upon the residual acceleration)1.

An approach discussed in the literature is the analysis in
this new context of existing algorithms for adaptive feedfor-
ward compensation developed for the case without internal
coupling. An attempt is made in [8] where the asymptotic
convergence in a stochastic environment of the so called
”Filtered-U LMS” (FULMS) algorithm is discussed. Further
results on the same direction can be found in [7]. The authors
use the Ljung’s ODE method ([13]) for the case of a scalar
vanishing adaptation gain. Unfortunately this is not enough

1For a coherent presentation with related contributions in the field of active
vibration (noise) control, the terminology of the field will be used throughout
the paper
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because nothing is said about the stability of the system
with respect to initial conditions and when a non vanishing
adaptation gain is used (to keep adaptation capabilities). The
authors assume that the positive feedback does not destabilize
the system.

A stability approach for developing appropriate adaptive
algorithms in the context of internal positive feedback is
discussed in [6] and [14]. Reference [14] provides also an ex-
perimental comparison of various algorithms for IIR adaptive
compensators in the presence of the internal positive feedback.

In [4], the idea of using an Youla-Kucera parametrization2

of the feedforward compensator is illustrated in the context
of ANC. Based on the identification of the system, a sta-
bilizing Youla-Kucera controller using an orthonormal basis
filter is designed. The Youla-Kucera parameters weighting
the orthonormal basis filters are then updated by using a
two time scale indirect procedure: (1) estimation of the Q-
filter’s parameters over a certain horizon, (2) updating of
the controller. No stability proof for the tuning procedure is
provided.

In [15] an algorithm for adapting the Q parameters of a
FIR Youla-Kucera (subsequently called QFIR) parameterized
feedforward compensator has been proposed, analyzed and
tested experimentally on an AVC system. While the central
stabilizing compensator has an IIR structure, the Youla-Kucera
filter has a FIR structure.

In the control literature the use of Youla-Kucera type
controllers has been extensively discussed. See [16], [17].
Reference [17] gives an extensive coverage of the subject.
Related references are also [18], [19]3.

The objectives of this paper are:
• to develop, to analyze, and to evaluate experimentally

new recursive algorithms for online estimation and adap-
tation of the Q-parameters of IIR Youla-Kucera (sub-
sequently called QIIR) parameterized feedforward com-
pensators for broadband disturbances with unknown and
variable spectral characteristics;

• to evaluate comparatively these algorithms with respect
to existing algorithms from theoretical, implementation,
and experimental points of view.

The main contributions of this paper with respect to [4] and
[15] are:
• the development of new real time recursive adaptation

algorithms for the Q-parameters of IIR Youla-Kucera
feedforward compensators and the analysis of the stability
of the resulting system;

• the algorithms presented in [15] for FIR Youla-Kucera
adaptive feedforward compensators are particular cases
of those introduced in this paper;

• application of the algorithms to an AVC system;
• experimental comparison with adaptive IIR feedfor-

ward compensators and with adaptive FIR Youla-Kucera
parametrization;

2Throughout the paper the Youla-Kucera parametrization will also be called
Q (or YK) -parametrization.

3To the knowledge of the authors the specific problem considered in this
paper is not covered in the existing literature.

• significant reduction of the number of parameters to
be adapted for the same level of performance when
using adaptive IIR Youla-Kucera feedforward compen-
sators instead of adaptive FIR Youla-Kucera feedforward
compensators.

In the context of this paper it is assumed that:
• the characteristics of the wide band disturbance acting on

the system are unknown and they may vary;
• the internal positive feedback can not be neglected;
• the dynamic models of the AVC are constant and a good

estimation of these models is available (these models can
be estimated from experimental data).

From the user point of view and taking into account the type
of operation of adaptive disturbance compensation systems,
one has to consider two modes of operation of the adaptive
schemes:
• Adaptive operation. The adaptation is performed contin-

uously with a non vanishing adaptation gain.
• Self-tuning operation. The adaptation procedure starts

either on demand or when the performance is unsatis-
factory. A vanishing adaptation gain is used.

From an implementation point of view the paper will ex-
plore the comparative performances of adaptation algorithms
with matrix adaptation gain and with scalar adaptation gain.
While the algorithms have been developed and tested in the
context of AVC, the results are certainly applicable to ANC
systems since they feature the same type of internal positive
feedback.

The paper is organized as follows. The AVC system (fea-
turing an internal positive mechanical coupling) on which
the algorithms will be tested, is presented in section II. The
system representation and the IIR Youla-Kucera feedforward
compensator structure are given in section III. The algorithms
for adaptive feedforward compensation will be developed in
section IV and analyzed in section V. Section VI will present
experimental results obtained on the AVC system with the
algorithms introduced in this paper as well as an experimental
comparison with those given in [14], [15]. Section VII will
summarize the comparison with other algorithms.

II. AN ACTIVE VIBRATION CONTROL SYSTEM USING AN
INERTIAL ACTUATOR

Figures 1 and 2 show an AVC system using a correlated
measurement with the disturbance and an inertial actuator for
reducing the residual acceleration. The corresponding block
diagrams in open loop operation and with the compensator
system are shown in Figures 3(a) and 3(b), respectively.
The structure is representative for a number of situations
encountered in practice (see [12]). It consists on five metal
plates (in dural of 1.8 Kg each one) connected by springs.
The uppermost and lowermost ones are rigidly jointed together
by four screws. The middle three plates will be labeled for
easier referencing M1, M2 and M3 (see figure 2). M1 and
M3 are equipped with inertial actuators. The one on M1
serves as disturbance generator (inertial actuator I in figure 2),
the one at the bottom serves for disturbance compensation
(inertial actuator II in figure 2). Inertial actuators use a similar
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principle as loudspeakers (see [20], [21]). The correlated
measurement with the disturbance (image of the disturbance)
is obtained from an accelerometer which is positioned on plate
M1. Another sensor of the same type is positioned on plate
M3 and serves for measuring the residual acceleration (see
figure 2). The objective is to minimize the residual acceleration
measured on plate M3.

When the compensator system is active, the actuator acts
upon the residual acceleration, but also upon the measurement
of the image of the disturbance through the reverse path
(a positive feedback coupling). The measured quantity ŷ(t)
will be the sum of the correlated disturbance measurement
w(t) obtained in the absence of the feedforward compensation
(see figure 3(a)) and of the effect of the actuator used for
compensation. The disturbance is the position of the mobile
part of the inertial actuator (see figures 1 and 2) located on top
of the structure. The input to the compensator system is the
position of the mobile part of the inertial actuator located on
the bottom of the structure. The input to the inertial actuators
being a position, the global primary path, the secondary path,
and the reverse path have a double differentiator behavior.
Similar internal positive feedback coupling occur also in
feedforward ANC ([4], [6]).

Fig. 1. An AVC system using a feedforward compensation - photo.

In figure 3(b), ŷ(t) denotes the effective output provided
by the measurement device and which will serve as input to
the adaptive feedforward filter N̂ . The output of this filter
denoted by û(t) is applied to the actuator through an amplifier.
The transfer function G (the secondary path) characterizes
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the dynamics from the output of the filter N̂ to the residual
acceleration measurement (amplifier + actuator + dynamics of
the mechanical system). The transfer function D between w(t)
and the measurement of the residual acceleration (in open loop
operation) characterizes the primary path.
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Fig. 3. Feedforward AVC: in open loop (a) and with adaptive feedforward
compensator (b).

The coupling between the output of the filter and the
measurement ŷ(t) through the compensator actuator is denoted
by M . As indicated in figure 3(b) this coupling is a ”positive”
feedback. This unwanted coupling raises problems in practice
(source of instabilities) and makes the analysis of adaptive
(estimation) algorithms more difficult. The system shown in
figure 3(b) can be represented in the standard feedback form
shown in Figure 4 (for details see Section III).

At this stage it is important to make the following remarks,
when the feedforward filter is absent (open loop operation):
• very reliable models for the secondary path and the

”positive” feedback path can be identified by applying
appropriate excitation on the actuator used for compen-
sation;

• an initial estimation of the primary path transfer function
can be obtained using the measured w(t) as input and
e(t) as output (the compensator actuator being at rest);

• the design of a fixed model based stabilizing feedforward
compensator requires the knowledge of the reverse path
model only;

• the adaptation algorithms do not use information upon
the primary path whose characteristics may be unknown
or subject to change;

• the knowledge of the disturbance characteristics and of
the primary path model in addition of the secondary
and reverse paths models is mandatory for the design of
an optimal fixed model based feedforward compensator
([11], [12].

The objective is to develop stable recursive algorithms for
adaptation of the parameters of the feedforward filter com-
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Fig. 4. Feedback representation of the system shown in Figure 3(b).

pensator such that the measured residual error (acceleration or
force in AVC, noise in ANC) be minimized in the sense of
a certain criterion while simultaneously assuring the stability
of the internal positive feedback loop. This has to be done
for broadband disturbances w(t) (or s(t)) with unknown and
variable spectral characteristics and an unknown primary path
model4.

III. BASIC EQUATIONS AND NOTATIONS

The block diagrams associated with an AVC system are
shown in fig. 3 in open loop (3(a)) and when an IIR (Infinite
Impulse Response) Youla-Kucera compensator is active (3(b)).

The primary (D), secondary (G), and reverse (positive
coupling) (M ) paths represented in fig. 3(b) are characterized
by the asymptotically stable transfer operators:

X(q−1) =
BX(q−1)

AX(q−1)
=

bX1 q
−1 + ...+ bXnBX

q−nBX

1 + aX1 q
−1 + ...+ aXnAX

q−nAX
,

(1)
with BX = q−1B∗X for any X ∈ {D,G,M}. Ĝ = B̂G

ÂG
,

M̂ = B̂M

ÂM
, and D̂ = B̂D

ÂD
denote the identified (estimated)

models of G, M, and D.
The equations associated with the feedback system repre-

sentation shown in figure 4 are:[
e0(t)

ŷ(t)

]
=

[
P11 P12

P21 P22

][
w(t)

û(t)

]
=

[
D G

1 M

][
w(t)

û(t)

]
, (2)

where e0(t) is the performance variable to be minimized
(residual acceleration), ŷ(t) is the measured variable (im-
age of the disturbance), w(t) is the disturbance (w(t) =
W (q−1)s(t)), and û(t) is the control input5.

The optimal IIR feedforward compensator which will mini-
mize the residual acceleration can be written, using the Youla-
Kucera parametrization, as

N(q−1) =
R(q−1)

S(q−1)
=
AQ(q−1)R0(q−1)−BQ(q−1)AM (q−1)

AQ(q−1)S0(q−1)−BQ(q−1)BM (q−1)
(3)

where the optimal polynomial Q(q−1) has an IIR structure

Q(q−1) =
BQ(q−1)

AQ(q−1)
=
bQ0 + bQ1 q

−1 + . . .+ bQnBQ
q−nBQ

1 + aQ1 q
−1 + . . .+ aQnAQ

q−nAQ

(4)

4Variations of the unknown model W , the transfer function between
the disturbance s(t) and w(t) are equivalent to variations of the spectral
characteristics of s(t).

5If w(t) is not measured P21 = 0. If there is no internal positive coupling
M = 0.

and R0(q−1), S0(q−1) = 1+q−1S∗0 (q−1) are the polynomials
of the central (stabilizing) filter and AM (q−1), BM (q−1) are
given in (1)6.

The estimated QIIR filter is denoted by Q̂(q−1) or
Q̂(θ̂, q−1) when it is a linear filter with constant coefficients
or Q̂(t, q−1) during estimation (adaptation). The vector of
parameters of the optimal QIIR filter assuring perfect matching
will be denoted by

θT = [bQ0 , . . . , b
Q
nBQ

, aQ1 , . . . , a
Q
nAQ

] = [θTBQ
, θTAQ

]. (5)

The vector of parameters for the estimated Q̂IIR filter

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=
b̂Q0 + b̂Q1 q

−1 + . . .+ b̂QnBQ
q−nBQ

1 + âQ1 q
−1 + . . .+ âQnAQ

q−nAQ

(6)
is denoted by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

, âQ1 , . . . , â
Q
nAQ

] = [θ̂TBQ
, θ̂TAQ

]. (7)

The input of the feedforward filter (called also reference)
is denoted by ŷ(t) and it corresponds to the measurement
provided by the primary transducer (force or acceleration
transducer in AVC or a microphone in ANC). In the absence
of the compensation loop (open loop operation) ŷ(t) = w(t).
The output of the feedforward compensator (which is the
control signal applied to the secondary path) is denoted by
û(t+ 1) = û(t+ 1/θ̂(t+ 1)) (a posteriori output)7.

The ”a priori” output of the estimated feedforward com-
pensator using an YKIIR parametrization for the case of time
varying parameter estimates is given by (using eq. (3))

û0(t+ 1) = û(t+ 1/θ̂(t)) = −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= −(ÂQ(t, q−1)S0)
∗û(t) + ÂQ(t, q−1)R0ŷ(t+ 1)

+B̂Q(t, q−1) (B∗M û(t)−AM ŷ(t+ 1)) , (8)

where

û(t+ 1) = −(ÂQ(t+ 1, q−1)S0)
∗û(t) + ÂQ(t+ 1, q−1)R0ŷ(t+ 1)

+B̂Q(t+ 1, q−1) (B∗M û(t)−AM ŷ(t+ 1)) . (9)

It should be observed that eqs. (3), (4), (8), and (9) can
be easily particularized for the case of a FIR Youla-Kucera
parametrization by taking ÂQ(t, q−1) ≡ 1.

The measured input to the feedforward filter can also be
written as

ŷ(t+ 1) = w(t+ 1) +
B∗M (q−1)

AM (q−1)
û(t). (10)

The unmeasurable value of the output of the primary path
(when the compensation is active) is denoted x(t). The ”a
priori” output of the secondary path will be denoted ẑ0(t +
1) = ẑ(t+ 1/θ̂(t)) while its input is û(t). One has

ẑ0(t+ 1) =
B∗G(q−1)

AG(q−1)
û(t) =

B∗G(q−1)

AG(q−1)
û(t/θ̂(t)), (11)

6The following notation for polynomials will be used throughout this paper:
A(q−1) = a0 +

∑nA
i=1 aiq

−i = a0 + q−1A∗(q−1).
7In adaptive control and estimation the predicted output at t + 1 can be

computed either on the basis of the previous parameter estimates (a priori) or
on the basis of the current parameter estimates (a posteriori).
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where θ̂(t) is the vector of estimated parameters given in
(7). The measured residual acceleration (or force) satisfies the
following equation

e0(t+ 1) = x(t+ 1) + ẑ0(t+ 1). (12)

The ”a priori” adaptation error is defined as

ν0(t+1) = ν(t+1/θ̂(t)) = −e0(t+1) = −x(t+1)−ẑ0(t+1).
(13)

The ”a posteriori” unmeasurable (but computable) adaptation
error is given by

ν(t+1) = ν(t+1/θ̂(t+1)) = −e(t+1) = −x(t+1)−ẑ(t+1).
(14)

where the ”a posteriori” value of the output of the secondary
path ẑ(t+ 1) (dummy variable) is given by

ẑ(t+ 1) = ẑ(t+ 1/θ̂(t+ 1)) =
B∗G(q−1)

AG(q−1)
û(t/θ̂(t+ 1)). (15)

For compensators with constant parameters ν0(t) = ν(t),
e0(t) = e(t), ẑ0(t) = ẑ(t), û0(t) = û(t).

The objective is to develop stable recursive algorithms for
adaptation of the parameters of the Q filter such that the
measured residual error (acceleration or force in AVC, noise
in ANC) be minimized in the sense of a certain criterion. This
has to be done for broadband disturbances w(t) (or s(t)) with
unknown and variable spectral characteristics and an unknown
primary path model.

IV. DEVELOPMENT OF THE ALGORITHMS

The algorithm for adaptive feedforward YKIIR compen-
sators will be developed under the following hypotheses:

1) H1 - The signal w(t) is bounded (which is equivalently
to say that s(t) is bounded and W (q−1) in figure 3 is
asymptotically stable).

2) H2 - There exists a central feedforward compensator
N0 (R0, S0) which stabilizes the inner positive feed-
back loop formed by N0 and M and the characteristic
polynomial of the closed loop8

P0(z−1) = AM (z−1)S0(z−1)−BM (z−1)R0(z−1)

is a Hurwitz polynomial.
3) H3 - (Perfect matching condition) There exists a value

of the Q parameters such that

G ·AM (R0AQ −AMBQ)

AQ(AMS0 −BMR0)
= −D. (16)

4) H4 - The effect of the measurement noise upon the
measurement of the residual acceleration is neglected
(deterministic context).

Once the algorithm will be developed under these hypothe-
ses, H3 and H4 will be removed and the algorithm will be
analyzed in this modified context.

A first step in the development of the algorithms is to
establish for a fixed estimated compensator a relation between

8The parenthesis (q−1) will be omitted in some of the following equations
to make them more compact.

the error on the Q-parameters (with respect to the optimal
values) and the adaptation error ν. This is summarized in the
following Lemma.

Lemma 4.1: Under the hypothesis H1 through H4 for the
system described by equations (1) through (15) using an
estimated IIR Youla-Kucera parameterized feedforward com-
pensator with constant parameters one has:

ν(t+ 1/θ̂) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)
[θ − θ̂]Tφ(t), (17)

with φ(t) given by:

φT (t) = [α(t+ 1), α(t), . . . , α(t− nBQ
+ 1),

− β(t),−β(t− 1), . . . ,−β(t− nAQ
)]. (18)

where:

α(t+ 1) =BM û(t+ 1)−AM ŷ(t+ 1) =

=B∗M û(t)−AM ŷ(t+ 1) (19a)
β(t) =S0û(t)−R0ŷ(t). (19b)

The proof of this lemma is given in Appendix A.
Corollary 4.1: Under the hypothesis H1 through H4 for

the system described by equations (1) through (15) using
an estimated FIR Youla-Kucera parameterized feedforward
compensator with constant parameters one has:

ν(t+ 1/θ̂) =
AM (q−1)G(q−1)

P0(q−1)
[θ − θ̂]Tφ(t), (20)

where
θT = [bQ0 , . . . , b

Q
nBQ

] = [θTBQ
] (21)

is the vector of parameters of the optimal QFIR filter assuring
perfect matching,

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

] = [θ̂TBQ
] (22)

is the vector of parameters for the estimated Q̂FIR filter

Q̂(q−1) = B̂Q(q−1) = b̂Q0 + b̂Q1 q
−1 +. . .+ b̂QnBQ

q−nBQ , (23)

and φT (t) is given by:

φT (t) = [α(t+ 1), α(t), . . . , α(t− nBQ
+ 1)], (24)

where α(t+ 1) is given in eq. (19a).
Proof: This result is straightforwardly obtained by mak-

ing ÂQ(q−1) = 1 and AQ(q−1) = 1 in Lemma 4.1.
Throughout the remainder of this section and the next one,

unless stated differently, the Youla-Kucera parametrization
having an QIIR filter will be discussed. It should be observed
that in most of the cases results for QFIR-polynomials can be
obtained by imposing AQ(q−1) = 1 and ÂQ(q−1) = 1.

As it will be shown later on, it is convenient for assuring
the stability of the system to filter the observation vector φ(t).
Filtering the vector φ(t) through an asymptotically stable filter
L(q−1) = BL

AL
, equation (17) for θ̂ = constant becomes

ν(t+ 1/θ̂) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂]Tφf (t) (25)
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with

φf (t) = L(q−1)φ(t) = [αf (t+ 1), . . . , αf (t− nBQ
+ 1),

βf (t), βf (t− 1), . . . , βf (t− nAQ
)] (26)

where

αf (t+ 1) = L(q−1)α(t+ 1)

βf (t) = L(q−1)β(t).
(27)

Equation (25) will be used to develop the adaptation al-
gorithms. When the parameters of Q̂ evolve over time and
neglecting the non-commutativity of the time varying opera-
tors (which implies slow adaptation (see [22]), i.e., a limited
value for the adaptation gain), equation (25) transforms into9

ν(t+1/θ̂(t+1)) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ− θ̂(t+1)]Tφf (t).

(28)
Equation (28) has the standard form for an a-posteriori

adaptation error ([23]), which immediately suggests to use the
following PAA:

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)ν(t+ 1) ; (29a)

ν(t+ 1) =
ν0(t+ 1)

1 + ψT (t)F (t)ψ(t)
; (29b)

F (t+ 1) =
1

λ1(t)

F (t)− F (t)ψ(t)ψT (t)F (t)
λ1(t)
λ2(t) + ψT (t)F (t)ψ(t)

 (29c)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2;F (0) > 0 (29d)
ψ(t) = φf (t), (29e)

where λ1(t) and λ2(t) allow to obtain various profiles for
the matrix adaptation gain F (t) (see section VI and [23]). By
taking λ2(t) ≡ 0 and λ1(t) ≡ 1, one gets a constant adaptation
gain matrix (and choosing F = γI , γ > 0 one gets a scalar
adaptation gain).

Several choices for the filter L will be considered, leading
to different algorithms:

Algorithm I L = G
Algorithm IIa L = Ĝ

Algorithm IIb L = ÂM

P̂0
Ĝ

Algorithm III

L =
ÂM

P̂
Ĝ (30)

with
P̂ = ÂQ(ÂMS0 − B̂MR0) = ÂQP̂0, (31)

where ÂQ is an estimation of the denominator of the ideal
QIIR filter computed on the basis of available estimates of
the parameters of the filter Q̂. For the Algorithm III several
options for updating ÂQ can be considered:
• Run Algorithm IIa or IIb for a certain time to get an

estimate of ÂQ
• Run a simulation (using the identified models)
• Update ÂQ at each sampling instant or from time to time

using Algorithm III (after a short initialization horizon
using Algorithm IIa or IIb)

9However, exact algorithms can be developed taking into account the non-
commutativity of the time varying operators - see [23].

The following procedure is applied at each sampling time
for adaptive or self-tuning operation:

1) Get the measured image of the disturbance ŷ(t+ 1), the
measured residual error e0(t + 1) and compute ν0(t +
1) = −e0(t+ 1).

2) Compute φ(t) and φf (t) using (18) and (26).
3) Estimate the parameter vector θ̂(t + 1) using the para-

metric adaptation algorithm (29a) through (29e).
4) Compute (using (9)) and apply the control.

V. ANALYSIS OF THE ALGORITHMS

A. The Deterministic Case - Perfect Matching

For algorithms I , IIa, IIb and III the equation for the
a-posteriori adaptation error has the form:

ν(t+ 1) = H(q−1)[θ − θ̂(t+ 1)]Tψ(t), (32)

where

H(q−1) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
, ψ = φf . (33)

Neglecting the non-commutativity of time varying operators,
one has the following result:

Lemma 5.1: Assuming that eq. (32) represents the evolution
of the a posteriori adaptation error when using an IIR Youla-
Kucera adaptive feedforward compensator and that the PAA
(29a) through (29e) is used, one has:

lim
t→∞

ν(t+ 1) = 0 (34)

lim
t→∞

ψ(t)[θ − θ̂(t+ 1)] = 0 (35)

lim
t→∞

[ν0(t+ 1)2]

1 + ψ(t)TF (t)ψ(t)
= 0 (36)

||ψ(t)|| is bounded (37)
lim
t→∞

ν0(t+ 1) = 0 (38)

for any initial conditions θ̂(0), ν0(0), F (0), provided that

H ′(z−1) = H(z−1)− λ2

2
,max

t
[λ2(t)] ≤ λ2 < 2 (39)

is a SPR transfer function.
The proof of this lemma is given in Appendix B. This

result can be particularized for the case of FIR Youla-Kucera
adaptive compensators by using the following corollary:

Corollary 5.1: Assuming that eq. (32) represents the evolu-
tion of the a posteriori adaptation error for FIR Youla - Kucera
adaptive feedforward compensators, where

H(q−1) =
AM (q−1)G(q−1)

P0(q−1)L(q−1)
, ψ = φf , (40)

φf (t) = L(q−1)φ(t) = [αf (t+ 1), . . . , α(f t− nBQ
+ 1)],

and that the PAA (29a) through (29e) is used with θ̂(t) given
by (22), then (34) through (38) hold for any initial conditions
θ̂(0), ν0(0), F (0), provided that

H ′(z−1) = H(z−1)− λ2

2
,max

t
[λ2(t)] ≤ λ2 < 2 (41)

is a SPR transfer function.
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The proof is similar to that of Lemma 5.1 and will be
omitted.

Remark 1: Using Algorithm III and taking into account
eq. (30), the stability condition for λ2 = 1 can be transformed
into ([13], [24]):∣∣∣∣∣∣

(
AM

ÂM
· ÂQ
AQ
· P̂0

P0
· G
Ĝ

)−1

− 1

∣∣∣∣∣∣ < 1 (42)

for all ω. This roughly means that it always holds provided
that the estimates of AM , AQ, P0, and G are close to the true
values (i.e. H(e−jω) in this case is close to a unit transfer
function).

Remark 2: For the case of constant adaptation gain (F =
αI = const.) and using Algorithm III , eq. (29a) can be
viewed as an approximation of the gradient algorithm. For
constant adaptation gain λ2(t) ≡ 0 and the strict positive
realness on H ′(z−1) implies at all the frequencies

−900 < ∠
AM (e−jω)G(e−jω)

AQ(e−jω)P0(e−jω)
−∠ ÂM (e−jω)Ĝ(e−jω)

ÂQ(e−jω)P̂0(e−jω)
< 900.

(43)
Therefore the interpretation of the SPR condition of
Lemma 5.1 is that the angle between the direction of adap-
tation and the direction of the inverse of the true gradient
(not computable) should be less than 900. For time-varying
adaptation gains the condition is sharper since in this case
Re{H(e−jω)} should be larger than λ2

2 at all frequencies.
Remark 3: Eq. (35) indicates that the estimated param-

eters of the feedforward compensator converge toward the
domain DC = {θ̂ : ψT (t, θ̂)(θ − θ̂) = 0}. If furthermore
ψT (t, θ̂)(θ−θ̂) = 0 has a unique solution (richness condition),
then limt→∞θ̂(t) = θ.

Remark 4: The poles of the estimated Q filter (the roots
of ÂQ), which are also poles of the internal positive closed
loop, will be asymptotically inside the unit circle, if the
SPR condition is satisfied. However, transiently they may be
outside the unit circle. It is possible to force these poles
to remain inside of the unit circle during transient using
adaptive algorithms with projection (see [23]). However, the
SPR condition remains the same.

B. The Stochastic Case - Perfect Matching

There are two sources of measurement noise, one acting
on the primary transducer which gives the correlated mea-
surement with the disturbance and the second acting on the
measurement of the residual error (force, acceleration). For
the primary transducer the effect of the measurement noise
is negligible since the signal to noise ratio is very high. The
situation is different for the residual error where the effect of
the noise can not be neglected.

In the presence of the measurement noise (n(t)), the equa-
tion of the a-posteriori residual error becomes

ν(t+ 1) = H(q−1)[θ − θ̂(t+ 1)]Tψ(t) + n(t+ 1). (44)

In this context, we should analyze the asymptotic behavior of
the adaptation algorithms (i.e., the convergence points in the
parameter space). The O.D.E. method [13], [24] can be used

to analyse the asymptotic behavior of the algorithm in the
presence of noise. Taking into account the form of equation
(44), one can directly use Theorem 4.1 of [23] or Theorem
B1 of [25].

The following assumptions will be made:
1) λ1(t) = 1 and λ2(t) = λ2 > 0 (decreasing adaptation

gain)
2) θ̂(t) generated by the algorithm belongs infinitely often

to the domain DS :

DS , {θ̂ : P̂ (z−1) = 0⇒ |z| < 1}

for which stationary processes:

ψ(t, θ̂) , ψ(t)|θ̂(t)=θ̂=const
e(t, θ̂) = e(t)|θ̂(t)=θ̂=const

can be defined.
3) n(t) is a zero mean stochastic process with finite

moments and independent of the sequence d(t).

From (44) for θ̂(t) = θ̂, one gets

ν(t+ 1, θ̂) = H(q−1)[θ − θ̂]Tψ(t, θ̂) + n(t+ 1). (45)

Since ψ(t, θ̂) depends upon w(t) only, one concludes that
ψ(t, θ̂) and n(t+1) are independent. Therefore using Theorem
4.1 from [23] it results that if

H ′(z−1) =
AM (z−1)G(z−1)

AQ(z−1)P0(z−1)L(z−1)
− λ2

2
(46)

is a SPR transfer function, one has Prob{ lim
t→∞

θ̂(t) ∈ DC} =

1. If furthermore ψT (t, θ̂)(θ − θ̂) = 0 has a unique solu-
tion (richness condition), then Prob{ lim

t→∞
θ̂(t) = θ} = 1.

Therefore one can say that the parameters of the estimated
feedforward compensator will converge to the same value as
for the case without noise.

C. The Case of Non-Perfect Matching

If Q̂(t, q−1) does not have the appropriate dimension there
is no chance to satisfy the perfect matching condition. Two
questions are of interest in this case:

1) The boundedness of the residual error;
2) The bias distribution in the frequency domain.
1) Boundedness of the residual error: For analyzing the

boundedness of the residual error, results from [25], [26], can
be used. The following assumptions are made:

1) There exists a reduced order filter N̂ characterized by the
unknown polynomials ÂQ (of order nAQ

) and B̂Q (of
order nBQ

) as described in eq. (3), for which the closed
loop formed by N̂ and M is asymptotically stable, i.e.
ÂQ(AMS0 −BMR0) is a Hurwitz polynomial;

2) The output of the optimal filter satisfying the matching
condition can be expressed as:

û(t+ 1) = −[Ŝ∗(q−1)û(t)− R̂(q−1)ŷ(t+ 1)+η(t+ 1)]
(47)

where η(t+ 1) is a norm bounded signal.
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Using the results of [25] (Theorem 4.1 pp. 1505-1506)
and assuming that w(t) is norm bounded, it can be shown
that all the signals are norm bounded under the passivity
condition (39), where P is computed now with the reduced
order estimated filter.

2) Bias distribution: Using the Parseval’s relation, the
asymptotic bias distribution of the estimated parameters in the
frequency domain can be obtained starting from the expression
of ν(t), by taking into account that the algorithm minimizes
(almost) a criterion of the form lim

N→∞
1
N

∑N
t=1 ν

2(t). Using
eq. (16), the bias distribution (for algorithm III) will be given
by

θ̂∗ = arg min
θ̂

∫ π

−π
[|D(e−jω) +

N̂(e−jω)G(e−jω)

1− N̂(e−jω)M(e−jω)
|2φw(ω)

+ φn(ω)]dω (48)

where φw and φn are the spectral densities of the disturbance
w(t) and of the measurement noise. Taking into account
equation (16), one obtains

θ̂∗ = arg min
θ̂

∫ π

−π
[|GA

2
M

P0
|2|BQ
AQ
− B̂Q

ÂQ
|2φw(ω)

+ φn(ω)]dω. (49)

From (49) one concludes that a good approximation of Q
filter will be obtained in the frequency region where φw is
significant and where G has a high gain (usually G should
have high gain in the frequency region where φw is significant
in order to counteract the effect of w(t)). However the quality
of the estimated Q̂ filter will be affected also by the transfer
function A2

M

P0
.

D. Relaxing the Positive Real Condition

It is possible to relax the SPR conditions taking into account
that:

1) The disturbance (input to the system) is a broadband
signal;

2) Most of the adaptation algorithms work with a low
adaptation gain.

Under these two assumptions, the behavior of the algorithm
can be well described by the ”averaging theory” developed in
[22] and [13] (see also [23]).

When using the averaging approach, the basic assumption
of a slow adaptation holds for small adaptation gains (constant
and scalar in [22] i.e. λ2(t) ≡ 0, λ1(t) = 1; matrix and
time decreasing asymptotically in [13], [23] i.e lim

t→∞
λ1(t) =

1, λ2(t) = λ2 > 0).
In the context of averaging, the basic condition for stability

is that:

lim
N→∞

1

N

N∑
t=1

ψ(t)H ′(q−1)ψT (t) =
1

2

∫ π

−π
Ψ(ejω)[H ′(ejω)

+H ′(e−jω)]ΨT (e−jω)dω > 0 (50)

be a positive definite matrix (Ψ(ejω) is the Fourier transform
of ψ(t)).

One can view (50) as the weighted energy of the observation
vector ψ. Of course the SPR sufficient condition upon H ′(z−1)
(see Equation 39) allows to satisfy this condition. However in
the averaging context it is only needed that (50) is true which
allows that H ′ be non positive real in a limited frequency
band. Expression (50) can be re-written as follows ([14]):∫ π

−π
ψ(ejω)[H ′ +H ′∗]ψT (e−jω)dω =

r∑
i=1

∫ αi+∆i

αi

ψ(ejω)[H ′ +H ′∗]ψT (e−jω)dω−

p∑
j=1

∫ βj+∆j

βj

ψ(ejω)[H̄ ′ + H̄ ′∗]ψT (e−jω)dω > 0 (51)

where H ′ is SPR in the frequency intervals [αi, αi + ∆i]
and H̄ ′ = −H ′ is positive real in the frequencies intervals
[βj , βj + ∆j ] (H ′∗ denotes the complex conjugate of H ′).
The conclusion is that H ′ does not need to be SPR. It
is enough that the ”positive” weighted energy exceeds the
”negative” weighted energy. This explains why algorithms I ,
IIa and IIb will work in practice in most of the cases. It
is however important to remark that if the disturbance is a
single sinusoid (which violates the hypothesis of broadband
disturbance) located in the frequency region where H ′ is
not SPR, the algorithm may diverge (see [13], [22]). It was
observed that despite satisfaction of condition (51) which will
assure the stability of the system, attenuation is not very good
in the frequency regions where the positive real condition (41)
is violated.

Without doubt, the best approach for relaxing the SPR
conditions is to use algorithm III (given in eq. (30)) instead
of algorithm IIa or IIb. This is motivated by eq. (42). As
it will be shown experimentally, this algorithm gives the best
results.

E. Summary of the algorithms
Table I summarizes the structure of the algorithms and

the stability and convergence conditions for the algorithms
developed in this paper with matrix and scalar adaptation
gain for IIR Youla-Kucera feedforward compensators, for FIR
Youla-Kucera feedforward compensators ([15]) and for IIR
adaptive feedforward compensators introduced in [14]. These
two references take also into account the internal positive
feedback. Concerning algorithms for IIR adaptive feedfor-
ward compensators, the algorithms introduced in [6] and the
FULMS algorithms ([8]) can be viewed as particular cases of
those introduced in [14].

It was not possible to give in table I all the options for
the adaptation gain. However basic characteristics for adaptive
operation (non vanishing adaptation gain) and self-tuning
operation (vanishing adaptation gain) have been provided10.

VI. EXPERIMENTAL RESULTS

The detailed description of the system used for the ex-
periments has been given in section II and a photo of the
mechanical structure is shown in figure 1.

10Convergence analysis can be applied only for vanishing adaptation gains.



LANDAU et al.: Iir youla-kucera parameterized adaptive feedforward compensators for active vibration control with mechanical coupling 9

TABLE I
COMPARISON OF ALGORITHMS FOR ADAPTIVE FEEDFORWARD COMPENSATION IN AVC WITH MECHANICAL COUPLING

YKIIR YKFIR [14] YKIIR YKFIR [14]
Matrix gain Scalar gain

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)
ν0(t+1)

1+ψT (t)F (t)ψ(t)
θ̂(t) + γ(t)ψ(t)

ν0(t+1)

1+γ(t)ψT (t)ψ(t)

Adapt. gain F (t+ 1)−1 = λ1(t)F (t) + λ2(t)ψ(t)ψT (t) γ(t) > 0
0 ≤ λ1(t) < 1, 0 ≤ λ2(t) < 2, F (0) > 0

Adaptive Decr. gain and const. trace γ(t) = γ = const

Self tuning λ2 = const., lim
t→∞

λ1(t) = 1
∞∑
t=1

γ(t) =∞, lim
t→∞

γ(t) = 0

θ̂(t) = [b̂Q0 , . . . , â
Q
1 , . . .] [b̂Q0 , . . .] [−ŝ1(t), . . . , r̂0(t), . . .] [b̂Q0 , . . . , â

Q
1 , . . .] [b̂Q0 , . . .] [−ŝ1(t), . . . , r̂0(t), . . .]

φT (t) =
[α(t+ 1), . . . , β(t), . . .] [α(t+ 1), . . .] [−û(t), . . . [α(t+ 1), . . . , β(t), . . .] [α(t+ 1), . . .] [−û(t), . . . ,

α(t) = BM û(t)−AM ŷ(t) α(t) = BM û(t) ŷ(t+ 1), . . .] α(t) = BM û(t)−AM ŷ(t) α(t) = BM û(t) ŷ(t+ 1), . . .]
β(t) = R0ŷ(t)− S0û(t) −AM ŷ(t) β(t) = R0ŷ(t)− S0û(t) −AM ŷ(t)

P̂ = ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0 ÂM Ŝ − B̂M R̂ ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0 ÂM Ŝ − B̂M R̂
P = AQ(AMS0 −BMR0) AMS0 −BMR0 AM Ŝ −BM R̂ AQ(AMS0 −BMR0) AMS0 −BMR0 AM Ŝ −BM R̂
ψ(t) = Lφ(t); L2 = Ĝ; L3 = ÂM

P̂
Ĝ Lφ(t); L2 = Ĝ; L3 = ÂM

P̂
Ĝ

Stability AMG
PL

− λ
2
= SPR (λ = maxλ2(t))

AMG
PL

= SPRcondition
Conv. AMG

PL
− λ

2
= SPR (λ = λ2)

AMG
PL

= SPRcondition

0 50 100 150 200 250 300 350 400
−80

−60

−40

−20

0

20

40

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Primary, Secondary and Reverse Paths Models

 

 

Secondary path
Primary path
Reverse path

Fig. 5. Frequency characteristics of the primary, secondary and reverse paths

A. System identification

The methodology used for parametric identification of the
mechanical structure’s paths is similar to that of [14], [26],
[27]. The sampling frequency is 800Hz.
The secondary and reverse paths have been identified in the

absence of the feedforward compensator (see figure 3(b)) using
as excitation signal a PRBS generated by a 10 bit shift register
and a frequency divider p = 4 applied at the input of the
amplifier feeding the inertial actuator used for compensation11

(see figures 1 and 2). For the secondary path, G(q−1), the
output is the residual acceleration measurement, e(t). For the
reverse path, M(q−1), the output is the signal delivered by the
primary transducer (accelerometer) ŷ(t).

The estimated orders of the model for the secondary path are
nBG

= 14, nAG
= 14. The best results, in terms of validation,

have been obtained with the Recursive Extended Least Square
method. The frequency characteristic of the secondary path
is shown in figure 5, solid line. It features several very low
damped vibration modes. The first vibration mode is at 44Hz

11It was first verified with p = 2 that there are no significant dynamics
around 200 Hz and then p = 4 has been chosen in order to enhance the
power spectral density of the excitation in low frequencies while keeping a
reasonable length for the experiment.

with a damping of 0.0212, the second at 83.8Hz with a
damping of 0.00961, the third one at 115Hz with a damping
of 0.00694. There is also a pair of low damped complex zeros
at 108Hz with a damping of 0.021. As a consequence of the
double differentiator behavior, a double zero at z = 1 is also
present.

For the reverse path M(q−1), the model’s complexity has
been estimated to be nBM

= 13, nAM
= 13. The frequency

characteristic of the reverse path is shown in figure 5 (dotted
line). There are several very low damped vibration modes at
45.1Hz with a damping of 0.0331, at 83.6Hz with a damping
of 0.00967, at 115Hz with a damping of 0.0107 and some
additional modes in high frequencies. There are two zeros
on the unit circle corresponding to the double differentiator
behavior. The gain of the reverse path is of the same order of
magnitude as the gain of the secondary path up to 150 HZ,
indicating a strong feedback in this frequency zone.

The primary path has been identified in the absence of
the feedforward compensator using w(t) as an input and
measuring e(t). The disturbance s(t) was a PRBS sequence
(N=10, frequency divider p=2). The estimated orders of the
model are nBD

= 26, nAD
= 26. The frequency characteristic

is presented in figure 5 (dashed line) and may serve for
simulations and detailed performance evaluation. Note that the
primary path features a strong resonance at 108 Hz, exactly
where the secondary path has a pair of low damped complex
zeros (almost no gain). Therefore one can not expect good
attenuation around this frequency.

B. The central controllers and comparison objectives

Two central controllers have been used to test IIRYK
adaptive feedforward compensators. The first (PP) has been
designed using a pole placement method adapted for the case
of positive feedback systems. Its main objective is to stabilize
the internal positive feedback loop. The end result was a
controller of orders nR0

= 15 and nS0
= 17. The second
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(H∞) is a reduced order H∞ controller with nR0
= 19 and

nS0 = 20 from [11]12. For the design of the H∞ controller,
the knowledge of the primary path is mandatory (which is
not necessary for the PP controller). Figure 6 shows a com-
parison of the performances obtained with these controllers.
One observes that H∞ already provides a good attenuation
(14.70 dB)13.
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Fig. 6. Spectral densities of residual acceleration for the two central
controllers (experimental)

C. Broadband disturbance rejection using matrix adaptation
gain

Broadband disturbance rejection capabilities using the two
Youla-Kucera parametrizations with IIR and FIR filters de-
scribed in column 2 and 3 of table I are evaluated in this
subsection and some observations regarding how they compare
to the algorithm of column 4 (see also [14]) are made. For
most of the experiments, the complexity of the IIRYK filter
was nBQ

= 3 and nAQ
= 8, therefore having 12 parameters in

the adaptation algorithm according to eq. (4). For the FIRYK
parametrization, an adaptive filter of order nQ = 31 (32
parameters) has been used. These values do not allow for the
“perfect matching condition” to be verified.

A PRBS excitation on the global primary path is considered
as the disturbance.

Two modes of operation can be considered, depending on
the particular choices taken in eq. (29c):
• For adaptive operation, Algorithms IIa and III have

been used with decreasing adaptation gain (λ1(t) = 1,
λ2(t) = 1) combined with a constant trace adaptation
gain. When the trace of the adaptation matrix is bellow a
given value, the constant trace gain updating modifies the
values of λ1(t) and λ2(t) so that the trace of F is kept
constant. This assures the evolution of the PAA in the
optimal direction but the step size does not go to zero,
therefore maintaining adaptation capabilities for eventual
changes in disturbance or variations of the primary path
model.

• In self-tuning operation, a decreasing adaptation gain
F (t) is used and the step size goes to zero. Then, if

12The orders of the initial H∞ controller were: nRH∞
= 70 and

nSH∞
= 70.

13The same central controllers have been used in [15] for evaluating FIRYK
feedforward adaptive compensators.

a degradation of the performance is observed, as a con-
sequence of a change of the disturbance characteristics,
the PAA is re-started.

The parametric adaptation algorithms have been imple-
mented using the UD factorization [23]14. For reason of space
only the experimental results in adaptive operation will be
presented. For IIRYK the adaptation has been done starting
with an initial gain of 0.02 (initial trace = initial gain× number
of adjustable parameters, thus 0.24) and using a constant
trace of 0.02. For FIRYK an initial gain of 0.05 (initial trace
0.05× 32 = 1.6) and constant trace 0.1 have been used.
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Fig. 7. Real time residual acceleration obtained with the IIR Youla-Kucera
parametrization (nBQ

= 3, nAQ
= 8) using Algorithm IIa with matrix

adaptation gain and the H∞ central controller.
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Fig. 8. Real time residual acceleration obtained with the IIR Youla-Kucera
parametrization (nBQ

= 3, nAQ
= 8) using Algorithm III with matrix

adaptation gain and the H∞ central controller.
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Fig. 9. Real time results obtained with the FIR Youla-Kucera parametrization
(nQ = 31) using Algorithm III with matrix adaptation gain and the H∞
central controller.

14An array implementation as in [28] can be also considered.
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The experiments have been carried out by first applying
the disturbance and then starting the adaptive feedforward
compensation after 50 seconds using the FIR or the IIR Youla-
Kucera parametrization. If not otherwise specified, the results
which will be presented have been obtained with the H∞
central controller. In the case of the IIRYK parametrization
using Algorithm III , the filtering by the denominator of the
QIIR filter used in equation (31) is done adaptively by using
the last stable estimation of AQ(q−1). Time domain results
using IIRYK with Algorithms IIa and III are shown in
figures 7 and 8 respectively. It can be seen that Algorithm
III provides a better performance than Algorithm IIa and this
can be explained by a better approximation of the positive real
condition (see discussion in subsection V-D). Figure 9 shows
the evolution of the residual acceleration with the FIRYK
adaptive compensator using Algorithm III of [15]. The final
attenuation given by IIRYK using Algorithm III (16.21dB)
is better than that provided by IIRYK using Algorithm IIa
(13.37dB) and slightly better than that provided by using
FIRYK with Algorithm III (16.17dB) which uses signifi-
cantly more adjustable parameters (32 instead of 12). However
the adaptation transient is slightly more rapid for FIRYK.

The power spectral density of the residual acceleration (after
adaptation transient is finished) for the considered algorithms
are shown in fig. 10.
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Fig. 10. Power spectral densities of the residual acceleration in open loop,
with IIRYK (nBQ

= 3, nAQ
= 8) and with FIRYK (nQ = 31) using the

H∞ central controller (experimental).
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Fig. 11. Evolution of the IIRYK parameters(nBQ
= 3, nAQ

= 8 and
H∞ central controller) for Algorithm III using matrix adaptation gain
(experimental).

Figure 11 shows the convergence of the parameters for
the IIRYK feedforward adaptive compensator using Algorithm

III . The experiment has been carried out over an horizon of
13 hours. Parameters take approximatively 8 hours to almost
settle. However this does not affect the performance (the
transient duration on the residual acceleration for Algorithm
III is about 50 s).

An evaluation of the influence of the number of parameters
upon the global attenuation of the IIRYK parametrization
is shown in table II. The results are grouped on two lines
corresponding to the two central controllers used, and the
given attenuations are measured in dB. The column headers
give the number of numerator coefficients followed by the
number of denominator coefficients. It can be observed that a
larger order of the denominator is better than a larger order of
the numerator.

Total no. param. 0 8 12 16
No. param. of num/den 0/0 4/4 8/4 4/8 6/6 10/6 6/10 8/8

H∞ (db) 14.715.9615.5616.2116.3115.67 16.5 16.47
PP (db) 4.6115.5216.2516.0216.2415.5715.7216.21

TABLE II
INFLUENCE OF THE NUMBER OF THE IIRYK PARAMETERS UPON THE

GLOBAL ATTENUATION

A similar analysis for the FIRYK feedforward adaptive
compensators is given in table III. Comparing the two tables
one can say that a reduction of adjustable parameters by
a factor of (at least) 2 is obtained in the case of IIRYK
with respect to to FIRYK for approximatively same level
of performance (compare IIRYK with 8 parameters with the
FIRYK with 16 and the IIRYK with 6/6 parameters with
the FIRYK with 32 parameters). It can be noticed that the
IIRYK is less sensitive that FIRYK with respsect to the
performances of the model based central controller. Table III
gives also comparative results for the IIR adaptive fedforward
compensators. The IIRYK structure seems to allows a slight
reduction of the number of parameters with respect to the
IIR structure for the same level of performance (compare the
results of IIRYK with 16 adjustable parameters (6/10) with
the IIR using 20 adjustable parameters).

No. param. 0 8 16 20 32 40
H∞ (db) 14.7 15.4 15.6 - 16.1716.03
PP (db) 4.6114.6915.89 - 15.7 15.33
IIR (db) - - 16.2316.4916.89

TABLE III
INFLUENCE OF THE NUMBER OF PARAMETERS UPON THE GLOBAL

ATTENUATION FOR THE FIRYK PARAMETRIZATION (LINES 2 AND 3) AND
FOR THE IIR ADAPTIVE FILTER (LINE 4)

To verify the adaptive capabilities of the two parametriza-
tions, a narrow band disturbance has been added after 1400
seconds of experimentation. This has been realized by using
a sinusoidal signal of 150 Hz. Power spectral density esti-
mates are shown in fig. 12 for the IIRYK parametrization
and in fig. 13 for the FIRYK parametrization. Better results
are obtained with the IIRYK parametrization and they are
comparable with those obtained for IIR adaptive feedforward
compensators. See [14, Fig. 12].
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Fig. 12. Power spectral densities of the residual acceleration when an
additional sinusoidal disturbance is added (Disturbance = PRBS + sinusoid)
and the IIRYK parametrization is used.
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Fig. 13. Power spectral densities of the residual acceleration when an
additional sinusoidal disturbance is added (Disturbance = PRBS + sinusoid)
and the FIRYK parametrization is used.

D. Broadband disturbance rejection using scalar adaptation
gain

The scalar adaptation gain algorithms of columns 5 and 6
from table I have been also tested on the AVC system.
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Fig. 14. Real time residual acceleration obtained with the IIR Youla-Kucera
parametrization (nBQ

= 3, nAQ
= 8) using Algorithm III with scalar

adaptation gain and the H∞ central controller.

In the adaptation regime, as opposed to the matrix cases,
a constant adaptation gain of 0.001 has been used for both
parametrizations, as in [14] (see also table I). This corre-
sponds to a constant trace of 0.012 for the IIRYK and 0.032
for the FIRYK (taking into account the number of adapted
parameters). Figure 14 shows the adaptation transient for the
scalar version of the IIRYK parametrization using Algorithm
III . Surprisingly, the performances are close to those obtained
with a matrix adaptation gain. (a similar observation has
been made in [14, Fig. 14]. Figure 15 shows the adaptation
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Fig. 15. Real time residual acceleration obtained with the FIR Youla-Kucera
parametrization (nQ = 31) using Algorithm III with scalar adaptation gain
and the H∞ central controller.

transient for the FIRYK parametrization using a scalar adap-
tation gain. It can be seen that the transient performances
are a little better for the IIRYK. In fig. 16, power spectral
densities and the corresponding global attenuations are given
for both parametrizations. It can be observed that IIRYK
parametrization with 12 adjustable parameters gives a slightly
better attenuation (additional 0.5 dB) with respect to a FIRYK
parametrization with 32 parameters.
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Fig. 16. Power spectral densities of the residual acceleration in open loop,
with IIRYK (nBQ

= 3, nAQ
= 8) and with FIRYK (nQ = 31) using scalar

adaptation gain and the H∞ central controller (experimental).

VII. COMPARISON WITH OTHER ALGORITHMS

The algorithms developed in this paper with matrix and
scalar adaptation gains for IIR Youla-Kucera feedforward
compensators have been compared with the FIR Youla-Kucera
parameterized feedforward compensators from [15] and the
direct IIR adaptive algorithm of [14] (see Table I). This section
summarizes the observations made in Subsection V-E and in
Section VI based on experimental results.

Remark 1 - The number of adjustable parameters. The main
advantage of the IIRYK adaptive feedforward compensators
introduced in this paper compared with FIRYK adaptive
compensators is that they require a significantly lower number
of adjustable parameters for a given level of performance
(a reduction by a factor of 2 in the application presented).
This is without doubt a major practical advantage in terms of
implementation complexity. A slight reduction of the number
of adjustable parameters is also obtained with respect to IIR
adaptive feedforward compensators.
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Remark 2 - The poles of the internal positive closed loop.
For IIR adaptive feedforward compensators provided that the
SPR condition for stability is satisfied, the poles of the internal
”positive” loop will be asymptotically stable but they can be
very close to the unit circle. For FIRYK, the poles of the
internal positive feedback loop are assigned by the central
stabilizing controller and they remain unchanged under the
effect of adaptation. For IIRYK, part of the poles of the internal
positive feedback loop are assigned by the central stabilizing
controller but there are additional poles corresponding to ÂQ.
These poles will be inside the unit circle if the positive real
condition for stability is satisfied but they can be very close to
the unit circle (at least theoretically). However if one likes to
impose that these poles lie inside a circle of a certain radius,
this can be easily achieved by using parameter adaptation
algorithms with ”projections” ([23], [29]).

Remark 3 - Implementation of the filter for Algorithm
III. For IIRYK adaptive compensator one has to run first
algorithm IIa or IIb over a short horizon in order to get
an estimate of ÂQ for implementing the appropriate filter.
A similar procedure has to be used also for IIR adaptive
compensators (See [14]). For the IIRYK the filter can be
continuously improved by updating at each step the estimation
of ÂQ in the filter. Such a procedure is more difficult to apply
to the IIR structure since the estimated closed loop poles have
to be computed at each step based on current estimates of
the feedforward compensator’s parameters and the knowledge
of the reverse path M(q−1). For FIRYK this initialization
procedure is not necessary since the poles of the internal
positive feedback loop remain unchanged under the effect of
adaptation and a good estimation is provided by the knowledge
of the central stabilizing compensator and of the model of the
reverse path.

Remark 4 - Initial model based design compensator. Since
the system as well as the initial characteristics of the distur-
bance can be identified, a model based design of an initial
feedforward compensator can be done. For a FIRYK or an
IIRYK adaptive feedforward compensator, any model based
designed compensator can be used as the central controller
(no matter what is its dimension). Its performances will be
enhanced by the adaptation of the Q-parameters. However,
for IIR adaptive feedforward compensators the initial model
based designed compensator should have the same structure
(number of parameters) as the adaptive structure.

Remark 5 - Influence of the initial stabilizing controller.
The performances of IIRYK adaptive compensator are less
sensitive that those of FIRYK adaptive compensator with
respect to the performances of the initial model based sta-
bilizing controller (at least for a reduced number of adjustable
parameters).

VIII. CONCLUDING REMARKS

The paper has presented an adaptive IIR Youla-Kucera
parameterized feedforward compensator built around a stabi-
lizing filter for the internal ”positive” feedback loop occur-
ring in AVC and ANC systems. Experimental results on an
AVC system featuring an internal ”positive” feedback have

illustrated the potential of the approach. It has been shown
that the use of the IIR Youla-Kucera filters allows to reduce
significantly the number of parameters to be adapted with
respect to the FIR Youla-Kucera filters for the same level of
performance.

APPENDIX A
PROOF OF LEMMA 4.1

Proof: Using hypothesis H3, one can construct an equiv-
alent closed loop system for the primary path as in figure 17.

+

+

+

+

++
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+

-

+
+

+

+

-

Fig. 17. Equivalent system representation

Considering a Q(q−1) filter as in eq. (4), the polynomial
S(q−1) given in eq. (3) can be rewritten as

S(q−1) = 1 + q−1S∗ = 1 + q−1((AQS0)∗ −BQB∗M ). (52)

Under hypothesis 3 (perfect matching condition) the output
of the primary path can be expressed as

x(t) = −z(t) = −G(q−1)u(t) (53)

and the input to the Youla-Kucera schema as

y(t+ 1) = w(t+ 1) +
BM
AM

u(t+ 1) (54)

where u(t) is a dummy variable given by

u(t+ 1) = −S∗u(t) +Ry(t+ 1)

= −((AQS0)
∗ −BQB∗M )u(t) + (AQR0 −BQAM )y(t+ 1)

= −(AQS0)
∗u(t) +AQR0y(t+ 1)

+BQ (B∗Mu(t)−AMy(t+ 1)) . (55)

Similarly, the output of the adaptive feedforward filter (for
a fixed Q̂) is given by

û(t+ 1) =− (ÂQS0)
∗û(t) + ÂQR0ŷ(t+ 1)

+ B̂Q (B∗M û(t)−AM ŷ(t+ 1)) . (56)

The output of the secondary path is

ẑ(t) = G(q−1)û(t). (57)

Define the dummy error (for a fixed estimated set of
parameters)

ε(t) = −u(t) + û(t) (58)

and the residual error

ν(t) = −e(t) = −(−z(t) + ẑ(t)) = −G(q−1)ε(t)). (59)
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Equation (55) can be rewritten as

u(t+ 1) = −(AQS0)
∗û(t) +AQR0ŷ(t+ 1) +BQ(B∗M û(t)

−AM ŷ(t+ 1))− (AQS0)
∗(u(t)− û(t)) +AQR0(y(t+ 1)

− ŷ(t+ 1)) +BQ[B∗M (u(t)− û(t))−AM (y(t+ 1)− ŷ(t+ 1))].
(60)

Taking into consideration eqs. (10), (54)

BQ[B∗M (u(t)− û(t))−AM (y(t+ 1)− ŷ(t+ 1))] =

= BQ

[
B∗M ε(t)−AM

B∗M
AM

ε(t)

]
= 0

(61)

and substracting equation (56), from (60) one obtains

ε(t+ 1) =− ((−AQ + ÂQ)S0)
∗û(t) + (−AQ + ÂQ)R0ŷ(t+ 1)

+ (−BQ + B̂Q)[B∗M û(t)−AM ŷ(t+ 1)]

− (AQS0)
∗ε(t) +AQR0

B∗M
AM

ε(t).

(62)

Passing the terms in ε(t) on the left hand side, one gets:[
1 + q−1

(
AM (AQS0)∗ −AQR0B∗M

AM

)]
ε(t+ 1) =

AQP0

AM
ε(t+ 1)

= (−A∗Q + Â∗Q)[−S0û(t) +R0ŷ(t)]

+ (−BQ + B̂Q)[BM û(t+ 1)−AM ŷ(t+ 1)]
(63)

Using eqs. (59) and (19) one gets:

ν(t+ 1) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)
(θ − θ̂)Tφ(t), (64)

which corresponds to eq. (17) and this ends the proof.

APPENDIX B
PROOF OF LEMMA 5.1

Proof: Using Theorem 3.2 from [23], under the condition
(39), (34), (35) and (36) hold.

However in order to show that ν0(t + 1) goes to zero one
has to show first that the components of the observation vector
are bounded. The result (36) suggests to use the Goodwin’s
”bounded growth” lemma ([26] and Lemma 11.1 in [23]).
Provided that one has:

|ψT (t)F (t)ψ(t)| 12 ≤ C1 + C2 · max
0≤k≤t+1

|ν0(k)| (65)

0 < C1 <∞, 0 < C2 <∞, F (t) > 0,

||ψ(t)|| will be bounded. So it will be shown that (65) holds.
This will be proved for algorithm I (for algorithms II and III
the proof is similar).

From (14) one has

−ẑ(t) = ν(t) + x(t). (66)

Since x(t) is bounded (output of an asymptotically stable
system with bounded input), one has

|ûf (t)| = |Gû(t)| = |ẑ(t)| ≤ C3 + C4 · max
0≤k≤t+1

|ν(k)|

≤ C ′3 + C ′4 · max
0≤k≤t+1

|ν0(k)| (67)

0 < C3, C4, C
′
3, C

′
4 <∞ (68)

since |ν(t)| ≤ |ν0(t)| for all t. Filtering both sides of equation
(10) by G(q−1) one gets in the adaptive case:

ŷf (t) = G · w(t) +
BM
AM
· ûf (t) (69)

Since AG and AM are Hurwitz polynomials and w(t) is
bounded, it results that

|ŷf (t)| ≤ C5 + C6 · max
0≤k≤t+1

|ν0(k)|; 0 < C5, C6 <∞
(70)

Using equations (19a), (19b), (27), (68) and (70) one can
conclude that

|αf (t)| ≤ C7 + C8 · max
0≤k≤t+1

|ν0(k)| (71)

and
|βf (t)| ≤ C9 + C10 · max

0≤k≤t+1
|ν0(k)| (72)

Therefore (65) holds, which implies that ψ(t) is bounded and
one can conclude that (38) also holds. End of the proof.


