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ABSTRACT 

In the field of 24/7 human health monitoring, pervasive computing makes possible the 
continuous analysis of physiological parameters from an ambulatory device with a great 
acceptability. This paper presents two methods for obtaining cardiac and respiratory rates from a 
single arterial pressure signal: AM-FM demodulation and Singular Spectrum Analysis (SSA). 
With the aim to monitor sleep apnea, two simulated central sleep apnea were performed and 
recorded with Biopac reference system. The results showed a good evaluation of the cardiac rate 
with Singular Spectrum Analysis and bad results with AM-FM demodulation. For the respiration 
rate, some other signals were tested with average results for both methods. Further experiments 
will deal with real sleep apnea cases and algorithm improvements. 

Keywords. Optical pulse signal, AM-FM demodulation, Singular Spectrum Analysis (SSA), 
Singular Value Decomposition (SVD), Principal or Independent Component Analysis (PCA or 
ICA), Heart and Respiratory Rates. 

1. INTRODUCTION 

In the coming years, there will be a strong development of non invasive physiological 
devices for monitoring health conditions. Telecare and telemedicine are going to be more and 
more employed, especially in developed countries. In our case, we have designed a device 
comprised of an optical arterial pulse and mechanical sensors, worn at the wrist for a great 
acceptability, which can be used to monitor people conditions (mainly heart and respiratory 
rates). Our aim applications are physiological monitoring for elderly persons and sleep apnea 
detection. 

Central sleep apnea is a sleep disorder in which the brain doesn't send regular signals to 
breathe, causing the breathing to pause and restart repeatedly during sleep. Methods for survey 



are the important points in this case. Estimation of respiratory rate from physiological signals 
has been investigated by many authors using various types of methods. We identified (among all 
methods) two different types of methods: methods using demodulation techniques and methods 
using Principal Component Analysis (PCA) techniques (or similar techniques). 

In [1-3], a way to recover breathing rate is carried out by filtering the signal. Addison et al. 
used wavelet transform to extract breathing rate from photoplethysmogram (PPG) [4–11]. While 
these methods are focusing on finding the respiratory information only, in [12] a more complex 
model is used to recover respiration rate thanks to 3 different signals: impedance between two 
electrocardiogram (ECG) leads, arterial blood pressure and heart rate. The performance of a 
linear model combining the three estimators (additive, AM, FM) is then evaluated. McNames 
and Aboy used Extended Kalman Filter using a state model with several parameters which is 
built to track information such as cardiac fundamental frequency and higher harmonics, 
respiratory fundamental frequency and higher harmonics, cardiac components harmonic 
amplitudes and phases, pulse pressure variation, etc [13]. 

We are interested in finding a way to recover both heart rate and respiratory information 
from a single arterial blood pressure signal. We also want to preserve a trade-off between 
complexity and robustness. 

In this paper, we study two different ways to obtain both heart and respiratory rates. These 
parameters are parts of the arterial pulse signal thanks to the phenomenon called the Respiratory 
Sinus Arrhythmia (RSA). The two investigated methods are: 

• The AM-FM demodulation 
• The Singular Spectrum Analysis 

Each algorithm is detailed and is able to provide both cardiac and respiratory frequency 
information. We compare the two algorithms in terms of mean error and standard deviation of 
the cardiac frequency thanks to a reference signal obtained from another device. For the 
respiration rate, due to the fact of the lack of reliable reference (motion noise), we have 
evaluated over another free available database which provides reliable respiratory recorded 
signals. 

2. MATERIALS AND METHODS 

2.1. Material 

We used the Biopac Systems Inc. MP100 device as the reference device with following 
sensors and actuators: 

• Optical photoplethysmography (PPG)  
• Electrocardiogram (ECG) 
• Respiration belt 

In order to assess the respiratory-induced changes in PPG and ECG signals when 
simulating apnea, the subject held his breathing for approximately 70 seconds. Two trials were 
performed and signals were recorded using Acknowledge Biopac Systems software. The 
sampling rate was 500 Hz during the 12 minutes total duration of measurements. Data 
processing was performed off-line using MatLab or C programs and libraries. 



Figure 1 displays part of the 4 recorded signals for the study: 2 PPGs, 1 ECG and 1 
respiration signals. ECG signal was used by AcqKnowledge software to calculate the reference 
heart rate. 

 
Figure 1. PPGs, ECG and respiration signals 

2.2. AM-FM demodulation 

In [14], cardiac and respiratory rhythms have been successfully extracted from a single 
arterial pulse signal during sleep thanks to the AM-FM demodulation. In order to apply the 
method to signals acquired in our labs, we used the algorithm described in Figure 2 to extract 
heart and respiratory rates. 

 
Figure 2. AM-FM demodulation diagram 



The pulse signal is first filtered through a second order Tchebychev filter. The AM-FM 
demodulation is performed to get the instantaneous frequency composed of cardiac frequency 
and an image of respiration signal. Then this signal is filtered and Fourier transform is 
calculated. The frequency of maximum amplitude is attributed to respiratory rate. Moreover, 
mean estimation in each RR interval (time duration between two consecutive peaks of the 
signal) of the pulse signal is calculated in order to also get heart rate information. 

AM-FM demodulation is performed using Teager energy operator [14-16]. Depending on 
some constraints fulfilments, the discrete-time Teager energy operator,ψ , applied to the discrete 

signal [ ]nx  (using Discrete-time Energy Separation Algorithm-1a (DESA-1a) proposed by 
Maragos et al. [15]) is simply expressed by: 
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where sT  is the sampling period and [ ]nx&  denotes the numerical differentiation of [ ]nx . 

An example of cardiac frequency estimation is given on Figure 3 with results obtained: 
from PPG signal itself (RR intervals counting), from Biopac AcqKnowledge software (beat by 
beat estimation) and from AM-FM demodulation (mean estimation in each RR interval); the 
respiration signal is also drawn. During the simulated apnea, the heart rate first decreases and 
then increases. We can notice that the AM-FM demodulation tends to generally over estimate 
the heart rate and that the errors increase during the simulated apnea episode.  

 
Figure 3. (a) Results for cardiac rate estimation obtained from PPG signal 

(continuous line), from AcqKnowledge Biopac Systems (thick dotted line) and from 
AM-FM demodulation (thin dotted line); (b) Respiration signal 



2.3. Empirical SSA method 

Singular Spectrum Analysis is a technique used for analysing climatic time series [17-21]. 
The SSA is often used to enhance the Signal-to-Noise Ratio (SNR) or extract in the time series 
the trends or oscillations in order to understand the inner dynamics or predict the system future 
behavior. Among some interesting properties of SSA, we can also mention an iterative algorithm 
that can be applied in signal with missing data [22].  

2.3.1. SSA algorithm proposal for cardiac and respiration information retrieval 

We develop an empirical method for cardiac and respiratory rates estimation using only a 
single arterial pressure signal [23]. The algorithm used can be set as in Figure 4, with several 
optional processings like denoising, single phase rectification (cf. Figure 5) or iterative 
procedure when needed.  

 
Figure 4. Empirical algorithm with SSA for retrieving cardiac and respiratory information 

from an arterial pressure signal, optional stages are represented with dashed line 

The original pulse signal[ ]nx  of lengthN is cut in overlapping portion of length.M  In 

other words; we reshape the original signal into the trajectory matrixA , whose rows are vectors 
of length M (sliding window over the signal[ ]nx ). 

SSA performs a Karhunen-Loève decomposition of an estimate of the correlation matrix 
based on M lagged copies of the signal. 
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A key point is the choice of the length windowM , for instance if we want to catch an 
oscillation pattern whose period is L  samples, then we should try a M > L . There is also a 

trade-off with the calculation cost with large
M

N
. According to Vautard and Ghil [19], the value 

of M  has to be chosen in the interval [ ]N;1  (no optimal choice exists, so the value of M has to 
be tested over a reasonable range). 

The unbiased estimator of the lag covariance matrix C  is calculated:  
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where i  belongs to [ ]1;0 −M .  

Then a Singular Value Decomposition (SVD) is performed in order to obtain a diagonal 
matrix of eigen values D  sorted in decreasing order and a matrix of the associated eigen vectors 
V . 

'UDVC =      (6) 

These eigen vectors are called Empirical Orthogonal Functions (EOFs) [18] or Direction of 
Principal Components or Singular Vectors [24]. Reconstruction of the signal based upon a few 
selected eigen vectors can be applied (see [20] for details). Usually, the first eigen value (or 
vector) is associated with the AM modulation, the next two eigen values can generally be 
associated with heart rate. 

 
Figure 5. Original signal and single phase rectifier procedure, beginning and end of the upper 

signal are set to zero in order to avoid side effects; the extracted envelope is also drawn 



Another fact to be mentioned is that there are only a few eigen values with great value and 
a lot of eigen values with small one (parsimonious representation), only a few eigen vectors 
contain the majority of the signal energy, the others can be considered as noise contribution. It is 
then possible to denoise by reconstructing the signal with the biggest eigen values while leaving 
the meaningless ones. 

Figures 6 and 7 show examples of SSA eigen values and eigen vectors extracted from a 
pulse signal and compared to original signal and associated respiration signal. It can be seen that 
respiration and first eigen value reconstructed signal are clearly highly correlated and it is the 
same for the original arterial pulse signal with the second eigen value reconstructed signal. 

 
Figure 6. Eigen values of SSA: only a few number of eigen values collect the major 

part of the signal energy, and a few associated eigen vectors 

 
Figure 7. An example of demodulation performed by Singular Spectrum Analysis 

2.3.2. Heart rate and respiratory rate extraction 

We have identified at least three possibilities for extracting heart rate and respiratory 
information after an SSA transform: 

a. Reconstruction of the signal based upon the basis of a few selected eigen vectors (one 
or two values), then find each peak in this signal and then calculate the Heart Rate 
[25] 

b. Perform a Fast Fourier Transform (FFT) of the reconstructed vector and find the 
frequency value of the spectrum maximum 

c. Directly use the eigen values with a scale factor correlated to M (cf. [19]) 



1) Heart rate estimation 

 
Figure 8. Heart rate estimation calculated with 3 methods thanks to SSA, heart rate  

reference given by Acqknowledge Biopac software (top); Respiration signal  
with simulated apnea (bottom) 

Figure 8 shows the processing results of one case in which respiration was held during 
several seconds. We have calculated the heart rate with the pre-cited methods involving SSA 
algorithm, they are presented together with the heart rate calculated with Biopac. Even if some 
differences are observed, the results seem to be robust enough, even during the apnea episode. 

2) Respiratory rate estimation 

 
Figure 9. Examples of envelope extracted signals obtained from ECG (top) and PPG 

(bottom); chest respiration signal reference (middle) 



Figure 9 displays demodulated respiratory components extracted from ECG and PPG 
signals compared to the respiration signal reference. It is proved that the SSA algorithm 
performs also very well on ECG signals (with very few modifications). It is also clear that 
during the apnea episode, due to the lack of respiratory components, cardiac components are 
fully represented in the first eigen vector.  

3. RESULTS AND DISCUSSION 

We compared both methods: SSA and AM-FM demodulation, using the two 
simulated sleep apnea trials. Due to the fact of the lack of reliable respiratory reference, 
we are only able to assess results with cardiac reference. 

3.1. Comparison results for cardiac frequency 

The figure 10 shows an example of heart rate estimation using SSA scaled eigen value 
method and AM-FM demodulation, where we can see that the AM-FM estimation of cardiac 
frequency is not robust during the simulated sleep apnea episode. 

 
Figure 10. (a) Cardiac rate estimation obtained from SSA scaled eigen value method 

(thick continuous line), from AM-FM demodulation (dotted line) and from 
AcqKnowledge Biopac Systems (thin continuous line); (b) Respiration signal with 

simulated apnea 

The results comparing AM-FM demodulation and SSA methods (FFT, scaled eigen value, 
peak counting) for two trials are displayed in the Table 1. The mean error and the associated 
standard deviation are calculated using the Acknowledge Biopac heart rate as a reference.  

The heart rate estimation is respectively better with the SSA scaled eigen value, the SSA 
eigen vector peak counting, the AM-FM demodulation, the SSA eigen vector FFT. The 
associated standard deviation is roughly the same for all methods. 

Since the respiration evaluation was not concluded with our signals, we have tried it over 
another free available database. 



Table 1. Heart rate estimation obtained from AM-FM demodulation and SSA methods and 
compared with reference (mean error and standard deviation in BPM (Beats Per Minute)) 

 Method Mean error Standard deviation 

AM-FM demodulation - reference 5.5 5 

Eigen vector FFT - reference 4.4 4.5 

Scaled eigen value - reference 0.2 4.8 

Signal 1 

Eigen vector peak counting - reference 0.3 3.8 

 

AM-FM demodulation - reference 4 4.3 

Eigen vector FFT - reference 4.3 4.6 

Scaled eigen value - reference -0.6 5.2 

Signal 2 

Eigen vector peak counting - reference -2.5 5.4 

3.2. Test upon another database for respiration evaluation 

We have found a database which provides reliable respiratory recorded signals provided by 
a pediatric intensive care center. The pediatric patient was suffering from a traumatic brain 
injury. These signals can be found at the following url: http://bsp.pdx.edu/. Among the data we 
have chosen 2 parameters only: 

• Respiration: zipped text file, sampled at 125 Hz, units are scaled in the range [0;1023], 
respiration signal sampling frequency 125 Hz 

• Pulse oximetry: one of the two signals from a pulse oximeter sampled at 125 Hz, units 
are scaled in the range [0;1023] 

These data are characterized by high rates: cardiac around 200 beats per minute and 
respiratory around 32 breaths per minute. The record lasted about 6 hours, we tested upon the 
first hour only. The results for the respiration rates are drawn in Figures 11-13. 

 
Figure 11. Breathing rate obtained from respiration signal (peaks counting) and with SSA  

scaled eigen value 



 
Figure 12. Breathing rate obtained from respiration signal (peaks counting) and with 

maximum value of the FFT of the reconstructed signal 

 
Figure 13. Breathing rate obtained from respiration signal (peaks counting) and with 

peak counting from reconstructed signal 

In fact, the SSA can extrapolate data (see [22]), so some extra respiratory peaks are 
sometimes been added while they should had not been, sometimes two are merged together. 
Some examples of encountered difficult situations are illustrated on Figures 14-15. 

 
Figure 14. Examples of added (or amplified) extra peaks in reconstructed signal  

(between 15 and 20 s) 



 
Figure 15. Examples of problems occurring with saturated parts for the 

respiration and artifacts for the arterial pulse signal 

The mean error and standard deviation for respiration rate was computed using a peak 
counting over the respiration signal as a reference. These results are presented in Table 2, where 
the AM-FM demodulation presents the lower standard deviation, as oppose to the SSA scaled 
eigen value that presents the highest standard deviation. 

Table 2. Respiratory rate estimation obtained from AM-FM demodulation and SSA methods 
and compared with reference (mean error and standard deviation in BPM (Breaths Per Minute)) 

Method Mean error  Standard deviation 

AM-FM demodulation - reference 2.2 1.3 

Eigen vector FFT - reference 3.5 3.7 

Scaled eigen value - reference 0.5 4.9 

Eigen vector peak counting - reference -1.4 3.0 

During the time of simulated apnea, the heart rate estimation from AM-FM demodulation 
gave wrong results, this is due to the fact that there is no respiratory contribution in the pulse 
signal during this time. We can conclude that this kind of algorithm is not suitable for 
monitoring people prone to central sleep apnea. Furthermore, all constraints defined in [14-16] 
are not always satisfied. So, it will not be possible to obtain an AM-FM demodulation of arterial 
signals without errors. 

Table 3. Complexity comparison of two methods for assessing cardiac and respiratory rates 
from a single arterial pressure signal (N: signal length, M: window length) 

Method  Complexity 

AM-FM demodulation  )log( 2 NNO  

SSA ( ))1(2 +− MNMO  



The complexity comparison of two methods is presented in Table 3. Although the SSA 
method has a higher complexity than the AM-FM demodulation, it is not a limitative factor in 
our application. Another drawback is that eigen values have to be properly scaled in order to be 
fitted to the correct range of values. In this case, eigen vectors can also be further exploited and 
can be used to help to set this scale factor properly. This problem is currently under investigation 
since it can be solved in many ways. 

SSA appears to be a powerful and promising tool for physiological signal processing with 
great potential applications in monitoring, denoising or processing signals with missing data 
[22]. SSA was also tested with ECG signals and showed performances similar to pulse signals. 

4. CONCLUSION 

The context of this study was to perform 24/7 ambulatory monitoring by developing a 
device worn at the wrist with a great acceptability and which is able to retrieve heart and 
respiration rate from a single arterial pressure signal. In this paper, we have compared two 
methods for obtaining cardiac and respiratory rates from the single arterial pressure signal: SSA 
and AM-FM demodulation. It was proved that the SSA method was more robust to retrieve 
cardiac rate during apnea. We have adapted the SSA technique used in climatic time series 
analysis in the case of arterial pulse rate analysis by adding some pre-processing stages which 
are mandatory in order to succeed in catching the desired information: first a single phase 
rectification had to be done, then a zero padding procedure at both extremities of the signal 
window for a better matrix conditioning and computing. 

Both methods were evaluated using 2 trials including a simulated sleep apnea episode: it 
was shown that the AM-FM demodulation failed for estimating the heart rate during the apnea 
episode. Respiration rate was evaluated using one hour of data from a pediatric patient with 
traumatic brain injury. SSA has the advantages that it does not need a priori hypothesis about the 
type of the modulation in the signal (unlike the AM-FM demodulation) and then can efficiently 
perform heart rate estimation during central sleep apnea.  

The cardiac rate estimation using SSA eigen value is an interesting new way for obtaining 
directly physiological frequency estimation without using FFT. Due to its flexibility, 
improvements of the SSA method are expected in signals with missing data or noise.  

Developing more complex algorithms is necessary to improve the accuracy of the actual 
programs. Further trials will be employed to assess the methods with data including central, 
obstructive or mixed sleep apnea cases. 
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