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ABSTRACT

In the field of 24/7 human health monitoring, perwvascomputing makes possible the
continuous analysis of physiological parameteranfran ambulatory device with a great
acceptability. This paper presents two methodsltaining cardiac and respiratory rates from a
single arterial pressure signal: AM-FM demodulataord Singular Spectrum Analysis (SSA).
With the aim to monitor sleep apnea, two simulatedtral sleep apnea were performed and
recorded with Biopac reference system. The resultsved a good evaluation of the cardiac rate
with Singular Spectrum Analysis and bad resultwit-FM demodulation. For the respiration
rate, some other signals were tested with averegdts for both methods. Further experiments
will deal with real sleep apnea cases and algorithprovements.

Keywords.Optical pulse signal, AM-FM demodulation, Singupectrum Analysis (SSA),
Singular Value Decomposition (SVD), Principal odépendent Component Analysis (PCA or
ICA), Heart and Respiratory Rates

1. INTRODUCTION

In the coming years, there will be a strong develept of non invasive physiological
devices for monitoring health conditions. Telecanel telemedicine are going to be more and
more employed, especially in developed countriasour case, we have designed a device
comprised of an optical arterial pulse and meclarsensors, worn at the wrist for a great
acceptability, which can be used to monitor peamaditions (mainly heart and respiratory
rates). Our aim applications are physiological rtayimig for elderly persons and sleep apnea
detection.

Central sleep apnea is a sleep disorder in whiehbthin doesn't send regular signals to
breathe, causing the breathing to pause and resfatedly during sleep. Methods for survey



are the important points in this case. Estimatibmespiratory rate from physiological signals

has been investigated by many authors using vatymes of methods. We identified (among all
methods) two different types of methods: methodsgudemodulation techniques and methods
using Principal Component Analysis (PCA) technig{gssimilar techniques).

In [1-3], a way to recover breathing rate is carrait by filtering the signal. Addisaet al.
used wavelet transform to extract breathing raamfphotoplethysmogram (PPG) [4—-11]. While
these methods are focusing on finding the respyratdormation only, in [12] a more complex
model is used to recover respiration rate thank3 different signals: impedance between two
electrocardiogram (ECG) leads, arterial blood pressand heart rate. The performance of a
linear model combining the three estimators (adeljtiAM, FM) is then evaluated. McNames
and Aboy used Extended Kalman Filter using a staddel with several parameters which is
built to track information such as cardiac fundatakrfrequency and higher harmonics,
respiratory fundamental frequency and higher harospncardiac components harmonic
amplitudes and phases, pulse pressure variatiofl &t

We are interested in finding a way to recover bathrhrate and respiratory information
from a single arterial blood pressure signal. Wso alvant to preserve a trade-off between
complexity and robustness.

In this paper, we study two different ways to obtiaoth heart and respiratory rates. These
parameters are parts of the arterial pulse sidnaaillts to the phenomenon called the Respiratory
Sinus Arrhythmia (RSA). The two investigated methade:

* The AM-FM demodulation
e The Singular Spectrum Analysis

Each algorithm is detailed and is able to providéhbcardiac and respiratory frequency
information. We compare the two algorithms in terofisnean error and standard deviation of
the cardiac frequency thanks to a reference sigh#hined from another device. For the
respiration rate, due to the fact of the lack dfalde reference (motion noise), we have
evaluated over another free available databasehwbiovides reliable respiratory recorded
signals.

2. MATERIALSAND METHODS
2.1. Material

We used the Biopac Systems Inc. MP100 device asefieeence device with following
sensors and actuators:
e Optical photoplethysmography (PPG)
e Electrocardiogram (ECG)
e Respiration belt

In order to assess the respiratory-induced chanmgeBPG and ECG signhals when
simulating apnea, the subject held his breathimgapproximately 70 seconds. Two trials were
performed and signals were recorded using Acknaydediopac Systems software. The
sampling rate was 500 Hz during the 12 minutesl tdtaation of measurements. Data
processing was performed off-line using MatLab g@r@grams and libraries.



Figure 1 displays part of the 4 recorded signalstfe study: 2 PPGs, 1 ECG and 1
respiration signals. ECG signal was used by AcgKadge software to calculate the reference
heart rate.
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Figure 1. PPGs, ECG and respiration signals

2.2. AM-FM demodulation

In [14], cardiac and respiratory rhythms have bseccessfully extracted from a single
arterial pulse signal during sleep thanks to the-FM demodulation. In order to apply the
method to signals acquired in our labs, we usedalherithm described in Figure 2 to extract
heart and respiratory rates.
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Figure 2. AM-FM demodulation diagram



The pulse signal is first filtered through a secamder Tchebychev filter. The AM-FM
demodulation is performed to get the instantandmuency composed of cardiac frequency
and an image of respiration signal. Then this digeafiltered and Fourier transform is
calculated. The frequency of maximum amplitude titsbauted to respiratory rate. Moreover,
mean estimation in each RR interval (time durati@iween two consecutive peaks of the
signal) of the pulse signal is calculated in orftealso get heart rate information.

AM-FM demodulation is performed using Teager enavggrator [14-16]. Depending on
some constraints fulfilments, the discrete-timedgezanergy operatag,, applied to the discrete

signal x[n] (using Discrete-time Energy Separation Algorithem{DESA-1a) proposed by
Maragoset al.[15]) is simply expressed by:
x2[n 1] - x|[n]x{n - 2]

ool = =1

(1)

and gives directly the amplitude enveldaEn]| and frequency componerf‘;[n] of x[n]:

aln] =—%[mx)£”r]]] @

f,[n]= %Jg il g

Al

where T is the sampling period anx{n] denotes the numerical differentiation x{h]

An example of cardiac frequency estimation is gieenFigure 3 with results obtained:
from PPG signal itself (RR intervals counting),nfr@iopac AcgKnowledge software (beat by
beat estimation) and from AM-FM demodulation (messtimation in each RR interval); the
respiration signal is also drawn. During the sintedaapnea, the heart rate first decreases and
then increases. We can notice that the AM-FM dernadidn tends to generally over estimate
the heart rate and that the errors increase dtimsgimulated apnea episode.
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Figure 3. (a) Results for cardiac rate estimation obtained from PPG signal
(continuous line), from AcgKnowledge Biopac Systems (thick dotted line) and from
AM-FM demodulation (thin dotted line); (b) Respiration signal



2.3. Empirical SSA method

Singular Spectrum Analysis is a technique usedf@lysing climatic time series [17-21].
The SSA is often used to enhance the Signal-toeNB&tio (SNR) or extract in the time series
the trends or oscillations in order to understdreibner dynamics or predict the system future
behavior. Among some interesting properties of S8&can also mention an iterative algorithm
that can be applied in signal with missing datg.[22

2.3.1. SSA algorithm proposal for cardiac and respiratinformation retrieval

We develop an empirical method for cardiac andiragpy rates estimation using only a
single arterial pressure signal [23]. The algoritheed can be set as in Figure 4, with several
optional processings like denoising, single phasetification (cf. Figure 5) or iterative
procedure when needed.
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/

Cardiac frequency

Respiratory frequency

Figure 4. Empirical algorithm with SSA for retrieving cardiac and respiratory information
from an arterial pressure signal, optional stages are represented with dashed line

The original pulse signar[n] of lengthN is cut in overlapping portion of lengii. In
other words; we reshape the original signal inttthjectory matriX®, whose rows are vectors
of length M (sliding window over the signa([n]).

SSA performs a Karhunen-Loéve decomposition of stmate of the correlation matrix
based onM lagged copies of the signal.
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A key point is the choice of the length windMv, for instance if we want to catch an
oscillation pattern whose period Is samples, then we should tryM >L. There is also a

trade-off with the calculation cost with Iar{'—\;’;fla. According to Vautard and Ghil [19], the value

of M has to be chosen in the inter\EhIN] (no optimal choice exists, so the valueMfhas to
be tested over a reasonable range).

The unbiased estimator of the lag covariance mé&iriks calculated:

N-i
c =L S+l ©
N =1 j=1
wherei belongs to[O; M —1] .
Then a Singular Value Decomposition (SVD) is perfed in order to obtain a diagonal

matrix of eigen value® sorted in decreasing order and a matrix of thecated eigen vectors
V.

C=UDV ()

These eigen vectors are called Empirical Orthogbunaktions (EOFs) [18] or Direction of
Principal Components or Singular Vectors [24]. Restauction of the signal based upon a few
selected eigen vectors can be applied (see [20{idtails). Usually, the first eigen value (or
vector) is associated with the AM modulation, thextntwo eigen values can generally be
associated with heart rate.
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Figure 5. Original signal and single phase rectifier procedure, beginning and end of the upper
signal are set to zero in order to avoid side effects; the extracted envelope is also drawn




Another fact to be mentioned is that there are anlgw eigen values with great value and
a lot of eigen values with small one (parsimoniogigresentation), only a few eigen vectors
contain the majority of the signal energy, the odheman be considered as noise contribution. It is
then possible to denoise by reconstructing theasigith the biggest eigen values while leaving
the meaningless ones.

Figures 6 and 7 show examples of SSA eigen valodse@en vectors extracted from a
pulse signal and compared to original signal asd@ated respiration signal. It can be seen that
respiration and first eigen value reconstructedhaigire clearly highly correlated and it is the
same for the original arterial pulse signal with #econd eigen value reconstructed signal.
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Figure 6. Eigen values of SSA: only a few number of eigen values collect the major
part of the signal energy, and a few associated eigen vectors
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Figure 7. An example of demodulation performed by Singular Spectrum Analysis

2.3.2. Heart rate and respiratory rate extraction

We have identified at least three possibilities éotracting heart rate and respiratory
information after an SSA transform:

a. Reconstruction of the signal based upon the bdsiS@w selected eigen vectors (one
or two values), then find each peak in this sigmad then calculate the Heart Rate
[25]

b. Perform a Fast Fourier Transform (FFT) of the retamcted vector and find the
frequency value of the spectrum maximum

c. Directly use the eigen values with a scale factoretated to M (cf. [19])



1) Heart rate estimation
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Figure 8. Heart rate estimation calculated with 3 methods thanks to SSA, heart rate
reference given by Acgknowledge Biopac software (top); Respiration signal
with simulated apnea (bottom)

Figure 8 shows the processing results of one gasehich respiration was held during
several seconds. We have calculated the heartmititethe pre-cited methods involving SSA
algorithm, they are presented together with thethate calculated with Biopac. Even if some
differences are observed, the results seem totustrenough, even during the apnea episode.

2) Respiratory rate estimation

Respiratory signal and envelope signal extracted from ECG and PPG signals
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Figure 9. Examples of envelope extracted signals obtained from ECG (top) and PPG
(bottom); chest respiration signal reference (middle)



Figure 9 displays demodulated respiratory companentracted from ECG and PPG
signals compared to the respiration signal referent is proved that the SSA algorithm
performs also very well on ECG signals (with veewfmodifications). It is also clear that
during the apnea episode, due to the lack of ra@®py components, cardiac components are
fully represented in the first eigen vector.

3. RESULTSAND DISCUSSION

We compared both methods: SSA and AM-FM demodulatigsing the two
simulated sleep apnea trials. Due to the fact eflélck of reliable respiratory reference,
we are only able to assess results with cardiacrente.

3.1. Comparison resultsfor cardiac frequency
The figure 10 shows an example of heart rate esbmaising SSA scaled eigen value

method and AM-FM demodulation, where we can set tties AM-FM estimation of cardiac
frequency is not robust during the simulated skggpea episode.

(@ SSA scaled eigen value
g oo  wmmmmmenee AM-FM demodulation |
o AcgKnowledge Biopac Systems
m
dc)
S
=
©
4}
.
’5: -
)
[« I
E=)
=
o
IS . . . . . .
<C 50 100 150 200 250 300
Time (s)

Figure 10. (a) Cardiac rate estimation obtained from SSA scaled eigen value method
(thick continuous line), from AM-FM demodulation (dotted line) and from
AcgKnowledge Biopac Systems (thin continuous line); (b) Respiration signal with
simulated apnea

The results comparing AM-FM demodulation and SSAhwoes (FFT, scaled eigen value,
peak counting) for two trials are displayed in ffetble 1. The mean error and the associated
standard deviation are calculated using the Ackadge Biopac heart rate as a reference.

The heart rate estimation is respectively bettéh Wie SSA scaled eigen value, the SSA
eigen vector peak counting, the AM-FM demodulatitime SSA eigen vector FFT. The
associated standard deviation is roughly the samalifmethods.

Since the respiration evaluation was not concluslighl our signals, we have tried it over
another free available database.



Table 1. Heart rate estimation obtained from AM-FM demodulation and SSA methods and
compared with reference (mean error and standard deviation in BPM (Beats Per Minute))

Method Mean error Standard deviation
Signal 1 | AM-FM demodaulation - reference 55 5

Eigen vector FFT - reference 4.4 4.5

Scaled eigen value - reference 0.2 4.8

Eigen vector peak counting - reference 0.3 3.8
Signal 2 | AM-FM demodulation - reference 4 4.3

Eigen vector FFT - reference 4.3 4.6

Scaled eigen value - reference -0.6 5.2

Eigen vector peak counting - reference -2.5 5.4

3.2. Test upon another database for respiration evaluation

We have found a database which provides relialsiginatory recorded signals provided by
a pediatric intensive care center. The pediatritepaiwas suffering from a traumatic brain
injury. These signals can be found at the followimly http://bsp.pdx.edu/Among the data we
have chosen 2 parameters only:

* Respiration: zipped text file, sampled at 125 Hzisuare scaled in the range [0;1023],
respiration signal sampling frequency 125 Hz

* Pulse oximetry: one of the two signals from a pulseneter sampled at 125 Hz, units
are scaled in the range [0;1023]

These data are characterized by high rates: caatiaend 200 beats per minute and
respiratory around 32 breaths per minute. The cetasted about 6 hours, we tested upon the
first hour only. The results for the respiratioresa&re drawn in Figures 11-13.
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Figure 11. Breathing rate obtained from respiration signal (peaks counting) and with SSA
scaled eigen value
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Figure 12. Breathing rate obtained from respiration signal (peaks counting) and with
maximum value of the FFT of the reconstructed signal
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Figure 13. Breathing rate obtained from respiration signal (peaks counting) and with
peak counting from reconstructed signal

In fact, the SSA can extrapolate data (see [23]),seme extra respiratory peaks are
sometimes been added while they should had not, [seenetimes two are merged together.

Some examples of encountered difficult situatiamsiltustrated on Figures 14-15.
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Figure 14. Examples of added (or amplified) extra peaks in reconstructed signal

(between 15 and 20 s)
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Figure 15. Examples of problems occurring with saturated parts for the
respiration and artifacts for the arterial pulse signal

The mean error and standard deviation for respinatate was computed using a peak
counting over the respiration signal as a referefbese results are presented in Table 2, where
the AM-FM demodulation presents the lower standdedation, as oppose to the SSA scaled
eigen value that presents the highest standardti@vi

Table 2. Respiratory rate estimation obtained from AM-FM demodulation and SSA methods
and compared with reference (mean error and standard deviation in BPM (Breaths Per Minute))

Method Mean error Standard deviation
AM-FM demodulation - reference 2.2 1.3
Eigen vector FFT - reference 35 3.7
Scaled eigen value - reference 0.5 49
Eigen vector peak counting - reference -14 3.0

During the time of simulated apnea, the heart eatanation from AM-FM demodulation
gave wrong results, this is due to the fact thateghs no respiratory contribution in the pulse
signal during this time. We can conclude that tkisd of algorithm is not suitable for
monitoring people prone to central sleep apneahEtmore, all constraints defined in [14-16]
are not always satisfied. So, it will not be possibl obtain an AM-FM demodulation of arterial
signals without errors.

Table 3. Complexity comparison of two methods for assessing cardiac and respiratory rates
from a single arterial pressure signal (N: signal length, M: window length)

Method Complexity
AM-FM demodulation O(Nlog, N)

SSA o(M?(N-M +1))




The complexity comparison of two methods is presgénh Table 3. Although the SSA
method has a higher complexity than the AM-FM deutatibn, it is not a limitative factor in
our application. Another drawback is that eigeruealhave to be properly scaled in order to be
fitted to the correct range of values. In this casgen vectors can also be further exploited and
can be used to help to set this scale factor pippEnis problem is currently under investigation
since it can be solved in many ways.

SSA appears to be a powerful and promising toopforsiological signal processing with
great potential applications in monitoring, demnagsior processing signals with missing data
[22]. SSA was also tested with ECG signals and gldoperformances similar to pulse signals.

4. CONCLUSION

The context of this study was to perform 24/7 aratorly monitoring by developing a
device worn at the wrist with a great acceptabilityd which is able to retrieve heart and
respiration rate from a single arterial pressugnali In this paper, we have compared two
methods for obtaining cardiac and respiratory r&tm® the single arterial pressure signal: SSA
and AM-FM demodulation. It was proved that the S@athod was more robust to retrieve
cardiac rate during apnea. We have adapted the t8&8#ique used in climatic time series
analysis in the case of arterial pulse rate amallygiadding some pre-processing stages which
are mandatory in order to succeed in catching #&red information: first a single phase
rectification had to be done, then a zero paddiraggrure at both extremities of the signal
window for a better matrix conditioning and compagti

Both methods were evaluated using 2 trials inclgdinsimulated sleep apnea episode: it
was shown that the AM-FM demodulation failed fotireating the heart rate during the apnea
episode. Respiration rate was evaluated using one &f data from a pediatric patient with
traumatic brain injury. SSA has the advantagesithtfites not need a priori hypothesis about the
type of the modulation in the signal (unlike the AN demodulation) and then can efficiently
perform heart rate estimation during central skyapea.

The cardiac rate estimation using SSA eigen vaumiinteresting new way for obtaining
directly physiological frequency estimation withowising FFT. Due to its flexibility,
improvements of the SSA method are expected irasgmith missing data or noise.

Developing more complex algorithms is necessariymjarove the accuracy of the actual
programs. Further trials will be employed to asgbesmethods with data including central,
obstructive or mixed sleep apnea cases.
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