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We establish a Lipschitz stability estimate for the inverse problem consisting in the determination of the coecient σ(t), appearing in a Dirichlet initial-boundary value problem for the parabolic equation ∂tu -∆xu + σ(t)f (x)u = 0, from Neumann boundary data. We extend this result to the same inverse problem when the previous linear parabolic equation is changed to the semi-linear parabolic equation ∂tu -∆xu = F (t, x, σ(t), u(x, t)).

Introduction

Throughout this paper, we assume that Ω is a C 3 bounded domain of R n with n 2. Let T > 0 and set Q = Ω × (0, T ), Γ = ∂Ω, Σ = Γ × (0, T ).

We consider the following initial-boundary value problem

     ∂ t u -∆ x u + σ(t)f (x)u = 0, (x, t) ∈ Q, u(x, 0) = h(x),
x ∈ Ω, u(x, t) = g(x, t), (x, t) ∈ Σ.

(1.1)

We introduce the following assumptions :

(H1) f ∈ C 2 (Ω), h ∈ C 2,α (Ω), g ∈ C 2+α,1+ α 2 (Σ)
, for some 0 < α < 1, and satisfy the compatibility condition

∂ t g(x, 0) -∆ x h(x) + σ(0)f (x)h(x) = 0, x ∈ Γ. (H2) There exists x 0 ∈ Γ such that inf t∈[0,T ] |g(x 0 , t)f (x 0 )| > 0.
Under assumption (H1), it is well known that, for σ ∈ C 1 [0, T ], the initial-boundary value problem (1.1) admits a unique solution u = u(σ) ∈ C 2+α,1+ α 2 (Q) (see Theorem 5.2 of [LSU]). Moreover, given M > 0, there exists a constant C > 0 depending only on data (that is Ω, T , f , g and h) such that σ W 1,∞ (0,T ) M implies u(σ) C 2+α,1+α/2 (Q) C.

(1.2) 1

In the present paper we are concerned with the inverse problem consisting in the determination of the time dependent coecient σ(t) from Neumann boundary data ∂ ν u(σ) on Σ, where ∂ ν is the derivative in the direction of the unit outward normal vector to Γ.

We prove the following theorem, where B(M ) is the ball of C 1 [0, T ] centered at 0 and with radius M > 0.

Theorem 1. Assume that (H1) and (H2) are fullled. For i = 1, 2, let σ i ∈ B(M ) and u i = u(σ i ). Then there exists a constant C > 0, depending only on data, such that

σ 2 -σ 1 L ∞ (0,T ) C ∂ t ∂ ν u 2 -∂ t ∂ ν u 1 L ∞ (Σ) .
(1.3)

Following [COY], it is quite natural to extend Theorem 1 when the linear parabolic equation is changed to a semi-linear parabolic equation. To this end, introduce the following semi-linear initial-boundary value problem :

     ∂ t u -∆ x u = F (x, t, σ(t), u(x, t)), (x, t) ∈ Q, u(x, 0) = h(x),
x ∈ Ω, u(x, t) = g(x, t), (x, t) ∈ Σ

(1.4) and consider the following assumptions (H3) h ∈ C 2,α (Ω), g ∈ C 2+α,1+ α 2 (Σ), for some 0 < α < 1, and satisfy the compatibility condition |∂ σ F (x 0 , t, σ, g(x 0 , t))| > 0.

∂ t g(x, 0) -∆ x h(x) = F (0, x, σ(0), h(x)), x ∈ Γ. (H4) F ∈ C 1 (Ω x × R t × R σ × R u ) is such that ∂ u F and ∂ σ F are C 1 , F and ∂ σ F
(H6) There exist two non negative constants c and d such that uF (x, t, σ(t), u) cu 2 + d, t ∈ [0, T ], x ∈ Ω, u ∈ R.

Under the above mentioned conditions, for any σ ∈ C 1 [0, T ], the initial-boundary value problem (1.4) admits a unique solution u = u(σ) ∈ C 2+α,1+ α 2 (Q) (see Theorem 6.1 in [LSU]) and, given M > 0, there exists a constant C > 0 depending only on data (that is Ω, T , F , g and h) such that σ W 1,∞ (0,T ) M implies

u(σ) C 2+α,1+α/2 (Q) C.
(1.5)

We have the following extension of Theorem 1.

Theorem 2. Assume that (H3), (H4), (H5) and (H6) are fullled. For i = 1, 2, let σ i ∈ B(M ) and u i = u(σ i ). Then there exists a constant C > 0, depending only on data, such that

σ 2 -σ 1 L ∞ (0,T ) C ∂ t ∂ ν u 2 -∂ t ∂ ν u 1 L ∞ (Σ) .
(1.6) Remark 1. Let us observe that we can generalize the results in Theorems 1 and 2 as follows:

i) In (1.1), we can replace σ(t)f (x) by p k=1 σ k (t)f k (x), where f k , 1 k p, are known. Assume that (H1) is satised, with f = f k for each k, where the compatibility condition is changed to Following the proof of Theorem 1, we prove that, under the following conditions : there exist x 1 , . . . , x p ∈ Γ such that the matrix

M (t) = (f k (x l )g(x l , t)) is invertible for any t ∈ [0, T ], max 1 k p σ 1 k -σ 2 k L ∞ (0,T ) C ∂ t ∂ ν u 2 -∂ t ∂ ν u 1 L ∞ (Σ) , if σ j k ∈ B(M ), 1 k p and j = 1, 2.
Here C is a constant that can depend only on data and u j = u(σ j 1 , . . . , σ j p ), j = 1, 2.

ii) We can replace the semi-linear parabolic equation in (1.4) by a semi-linear integro-dierential equation. In other words, F can be changed to

F 1 (x, t, σ(t), u(x, t)) + t 0 F 2 (x, s, σ(t -s), u(x, s))ds.
Under appropriate assumptions on F 1 and F 2 , one can establish that Theorem 2 is still valid in the present case.

ii) Both in (1.1) and (1.4), the Laplace operator can be replaced by a second order elliptic operator in divergence form :

E = ∇ • A(x)∇ + B(x) • ∇, where A(x) = (a ij (x)) is a symmetric matrix with coecients in C 1+α (Ω), B(x) = (b i (x)
) is a vector with components in C α (Ω) and the following ellipticity condition holds

A(x)ξ • ξ λ |ξ| 2 , ξ ∈ R n , x ∈ Ω.
Actually, the normal derivative associated to E is the boundary operator

∂ ν E = ν(x) • A(x)∇.
To our knowledge, there are only few results concerning the determination of a time-dependent coecient in an initial-boundary value problem for a parabolic equation from a single measurement. The determination of a source term of the form f (t)χ D (x), where χ D the characteristic function of the known subdomain D, was considered by J. R. Canon and S. P. Esteva. They established in [CE86-1] a logarithmic stability estimate in 1D case in a half line when the overdetermined data is the trace at the end point. A similar inverse problem problem in 3D case was studied by these authors in [CE86-2], where they obtained a Lipschitz stability estimate in weighted spaces of continuous functions. The case of a non local measurement was considered by J. R. Canon and Y. Lin in [START_REF] Cannon | Determination of a parameter p(t) in some quasi-linear parabolic dierential equations[END_REF] and [START_REF] Cannon | An Inverse Problem of Finding a Parameter in a Semi-linear Heat Equation[END_REF], where they proved existence and uniqueness for both quasilinear and semi-linear parabolic equations. The determination of a time dependent coecient in an abstract integrodierential equation was studied by the rst author in [Ch91-1]. He proved existence, uniqueness and Lipschitz stability estimate, extending earlier results by [Ch91-2], [START_REF] Lorenzi | Stability results for a partial integrodierential equation[END_REF], [START_REF] Lorenzi | An inverse problem in the theory of materials with memory[END_REF], [PO85-1] and [PO85-2]. In [START_REF] Choulli | Some stability estimates in determining sources and coecients[END_REF], the rst author and M. Yamamoto obtained a stability result, in a restricted class, for the inverse problem of determining a source term f (x, t), appearing in a Dirichlet initial-boundary value problem for the heat equation, from Neumann boundary data. In a recent work, the rst author and M. Yamamoto [START_REF] Choulli | Global existence and stability for an inverse coecient problem for a semilinear parabolic equation[END_REF] considered the inverse problem of nding a control parameter p(t) that reach a desired temperature h(t) along a curve γ(t) for a parabolic semi-linear equation with homogeneous Neumann boundary data and they established existence, uniqueness as well as Lipschitz stability. Using geometric optic solutions, the rst author [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF] proved uniqueness as well as stability for the inverse problem of determining a general time dependent coecient of order zero for parabolic equations from Dirichlet to Neumann map. In [E07] and [E08], G. Eskin considered the same inverse problem for hyperbolic and the Schrödinger equations with time-dependent electric and magnetic potential and he established uniqueness by gauge invariance. Recently, R. Salazar [Sa] extended the result of [E07] and obtained a stability result for compactly supported coecients.

We would like to mention that the determination of space dependent coecient f (x), in the source term σ(t)f (x), from Neumann boundary data was already considered by the rst author and M. Yamamoto [START_REF] Choulli | Some stability estimates in determining sources and coecients[END_REF]. But, it seems that our paper is the rst work where one treats the determination of a time dependent coecient, appearing in a parabolic initial-boundary value problem, from Neumann boundary data.

This paper is organized as follows. In section 2 we come back to the construction of the Neumann fundamental solution by [It] and establish time-dierentiability of some potential-type functions, necessary for proving Theorems 1 and 2. Section 3 is devoted to the proof of Theorems 1 and 2.

Time-differentiability of potential-type functions

In this section, we establish time-dierentiability of some potential-type functions, needed in the proof of our stability estimates. In our analysis we follow the construction of the fundamental solution by S. Itô [It].

First of all, we recall the denition of fundamental solution associate to the heat equation plus a timedependent coecient of order zero, in the case of Neumann boundary condition. Consider the initialboundary value problem

     ∂ t u = ∆ x u + q(x, t)u, (x, t) ∈ Ω × (s, t 0 ), lim t→s u(x, t) = u 0 (x), x ∈ Ω, ∂ ν u(x, t) = 0, (x, t) ∈ Γ × (s, t 0 ).
(2.1)

Here s 0 < t 0 are xed, s ∈ (s 0 , t 0 ), u 0 and q(x, t) are continuous respectively in Ω and in Ω × [s, t 0 ]. Let U (x, t; y, s) be a continuous function in the domain s 0 < s < t < t 0 , x ∈ Ω, y ∈ Ω. We recall that U is the fundamental solution of (2.1) if for any

u 0 ∈ C(Ω), u(x, t) = Ω U (x, t; y, s)u 0 (y)dy
is the solution of (2.1). We refer to [It] for the existence and uniqueness of this fundamental solution.

We start with time-dierentiability of volume potential-type functions 1 .

Lemma

1. Fix s ∈ (s 0 , t 0 ). Let f ∈ C(Ω × [s, t 0 ]) be C 2 with respect to x, q ∈ C 1 (Ω × [s, t 0 ]
) and dene, for

(x, t) ∈ Ω × (s, t 0 ), f 1 (x, t; τ ) = Ω U (x, t; y, τ )f (y, τ )dy, t > τ > s.
Then, f 1 admits a derivative with respect to t and

∂f 1 ∂t (x, t; τ ) = Ω U (x, t; y, τ )(∆ y + q(x, τ ))f (y, τ )dy + t τ Ω Ω U (x, t; z, τ )∂ t q(z, τ )U (z, τ ; y, τ )f (y, τ )dzdydτ .
(2.2)

Moreover, F given by

F (x, t) = t s f 1 (x, t; τ )dτ, (x, t) ∈ Γ × (s 0 , t 0 ),
possesses a derivative with respect to t,

∂F ∂t (x, t) = f (x, t) + t s ∂f 1 ∂t (x, t; τ )dτ (2.3) and t s ∂f 1 ∂t (x, t; τ )dτ C t s f (., τ ) C 2 x (Ω) dτ. (2.4) 1 Recall that if ϕ = ϕ(x, t
) is a continuous function then the corresponding volume potential is given by

ψ(x, t) = t s Ω U (x, t; y, τ )ϕ(y, τ )dydτ.
Proof. We have only to prove (2.2) and (2.4), because (2.3) follows immediately from (2.2).

Let then u 0 ∈ C 2 (Ω) and consider the function

u(x, t) = Ω U (x, t; y, s)u 0 (y)dy, x ∈ Ω, s < t < t 0 .
We show that u admits a derivative with respect to t and

∂ t u(x, t) = ∂ t Ω U (x, t; y, s)u 0 (y)dy = Ω U (x, t; y, s)(∆ y + q(x, s))u 0 (y)dy - t s Ω Ω U (x, t; z, τ )q t (z, τ )U (z, τ ; y, s)u 0 (y)dzdydτ.
(2.5)

We need to consider rst the case

u 0 = w 0 ∈ C ∞ (Ω). Set w(x, t) = Ω U (x, t; z, s)w 0 (y)dy, x ∈ Ω, s < t < t 0 .
Clearly, w(x, t) is the solution of the following initial-boundary value problem

     ∂ t w -∆ x w -q(x, t)w = 0, (x, t) ∈ Ω × (s, t 0 ), lim t→s w(x, t) = w 0 (x), x ∈ Ω, ∂ ν w(x, t) = 0, (x, t) ∈ Γ × (s, t 0 )
and

w 1 = ∂ t w satises      ∂ t w 1 -∆ x w 1 -q(x, t)w 1 = -∂ t qw, (x, t) ∈ Ω × (s, t 0 ), lim t→s w 1 (x, t) = (∆ x + q(x, s))w 0 (x), x ∈ Ω, ∂ ν w 1 (x, t) = 0, (x, t) ∈ Γ × (s, t 0 ).
Therefore, (2.5), with w in place of u, is a consequence of Theorem 9.1 of [It].

Next, let (w n 0 ) n be a sequence in C ∞ (Ω) converging to u 0 in C 2 (Ω) and v(x, t) given by

v(x, t) = Ω U (x, t; y, s)(∆ x + q(x, s))u 0 (y)dy - t s Ω Ω U (x, t; z, τ )∂ t q(z, τ )U (z, τ ; y, s)u 0 (y)dzdydτ.
Consider (w n ) n , the sequence of functions, dened by

w n (x, t) = Ω U (x, t; z, s)w n 0 (y)dy.
We proved that, for any n ∈ N,

∂ t w n (x, t) = Ω U (x, t; y, s)(∆ y + q(x, s))w n 0 (y)dy - t s Ω Ω U (x, t; z, τ )∂ t q(z, τ )U (z, τ ; y, s)w n 0 (y)dzdydτ.
(2.6)

From the proof of Theorem 7.1 of [It],

Ω |U (x, t; y, s)| dy Ce C(t-s) , (x, t) ∈ Ω × (s, t 0 ).
(2.7)

Therefore, we can pass to the limit, as n goes to innity, in (2.6). We deduce that

∂ t w n converges to v in C(Ω × [s, t 0 ]). But, w n converges to u in C(Ω × [s, t 0 ]).
Hence u admits a derivative with respect to t and

∂ t u = v.
That is we proved (2.5) and consequently (2.2) holds true. Finally, we note that (2.4) is deduced easily from (2.7).

Next, we consider time-dierentiability a single layer potential-type function 2 .

Lemma 2. Fix s ∈ (s

0 , t 0 ). Let f ∈ C(Γ × [s, t 0 ]) be C 1 with respect to t ∈ [s, t 0 ] with f (x, s) = 0. Dene, for (x, t) ∈ Γ × (s, t 0 ), f 1 (x, t; τ ) = Γ U (x, t; y, τ )f (y, τ )dσ(y), t > τ > s.
Then

F (x, t) = t s f 1 (x, t; τ )dτ
is well dened, admits a derivative with respect to t and we have

∂F ∂t L ∞ (Γ×(s,t0)) C ∂ t f L ∞ (Γ×(s,t0)) .
(2.8)

Contrary to Lemma 1, for Lemma 2 we cannot use directly the general properties of the fundamental solutions developed in [It]. We need to come back to the construction of the fundamental solution of (2.1) introduced by [It]. First, consider the heat equation

∂ t u = ∆ x u in the half space Ω 1 = {x = (x 1 , . . . , x n ); x 1 > 0} in R n with the boundary condition ∂ x1 u = 0 on Γ 1 = {x = (0, x 2 , . . . , x n ); (x 2 , . . . , x n ) ∈ R n-1 }. For any y = (y 1 , y 2 , . . . , y n ), we dene y by y = (-y 1 , y 2 , . . . , y n ). Let G(x, t) = 1 (4πt) n 2 e -|x| 2 t
denotes the Gaussian kernel and set

G 1 (x, t; y) = G(x -y, t) + G(x -y, t).
Then, the fundamental solution U 0 (x, t; y, s) of

     ∂ t u = ∆ x u, (x, t) ∈ Ω 1 × (s, t 0 ), lim t→s u(x, t) = u 0 (x), x ∈ Ω 1 , ∂ ν u(x, t) = 0, (x, t) ∈ Γ 1 × (s, t 0 )
(2.9) is given by

U 0 (x, t; y, s) = G 1 (x, t -s; y).
In order to construct the fundamental solution in the case of an arbitrary domain Ω, Itô introduced the following local coordinate system around each point z ∈ Γ.

Lemma 3. (Lemma 6.1 and its corollary, Chapter 6 of [It]) For every point z ∈ Γ, there exist a coordinate neighborhood W z of z and a coordinate system (x * 1 , . . . , x * n ) satisfying the following conditions: 1) the coordinate transformation between the coordinate system (x * 1 , . . . , x * n ) and the original coordinate system in W z is of class C 2 and the partial derivatives of the second order of the transformation functions are Hölder continuous ; 2) Γ ∩ W z is represented by the equation

x * 1 = 0 and Ω ∩ W z is represented by x * 1 > 0 ; 3) let L be the dieomorphism from W z to L(W z ) dened by L : W z → L(W z ) x → (x * 1 (x), . . . , x * n (x)).
2

The single-layer potential corresponding to a continuous function ϕ = ϕ(x, t) is given by ψ(x, t) = Then, for any u ∈ C 1 (Ω) we have

∂ ν u(ξ) = -∂ x1 (u • L -1 )(x), ξ ∈ Γ ∩ W z and x = L(ξ).
From now on, for any z ∈ Γ, we view coordinate system (x * 1 , . . . , x * n ) as a rectangular coordinate system. Moreover, using the local coordinate system of Lemma 3, for any y = (y 1 , y 2 , . . . , y n ) ∈ L(W z ), we dene y = (-y 1 , y 2 , . . . , y n ) and, without loss of generality, we assume that, for any y ∈ L(W z ), we have y ∈ L(W z ). For any interior point z of Ω, we x an arbitrary local coordinate system and a coordinate neighborhood W z contained in Ω. For any z ∈ Ω and δ > 0, we set W (z, δ) = {x : |x -z| 2 < δ} and δ z > 0 such that, for any z ∈ Ω we have W (z, δ z ) ⊂ W z .

Recall the following partition of unity lemma.

Lemma 4. (Lemma 7.1, Chapter 7 of [It]) There exist a nite subset {z 1 , . . . , z m } of Ω and a nite sequence of functions {ω 1 , . . . , ω m } with the following properties: 1) supp ω l ⊂ W (z l , δ z l ), l = 1, . . . , m, and each ω l is of class C 3 with respect to the local coordinates in W z l ; 2) {ω l (x) 2 ; l = 1, . . . , m} forms a partition of unity in Ω ;

3

)∂ ν ω l (ξ) = 0, l = 1, . . . , m, ξ ∈ Γ.
Let {z 1 , . . . , z m } be the nite subset of Ω, introduced in the previous lemma. For any k ∈ {1, . . . , m}, let L k denotes the dieomorphism from

W z k to L k (W z k ) dened by L k : W z k → L k (W z k ) x → (x * 1 (x), . . . , x * n (x)),
where

(x * 1 , . . . , x * n )
is the local coordinate system of Lemma 3 dened in W z k . For any k ∈ {1, . . . , m}, the dierential operator

∂ t -∆ x -q(x, t) becomes, in terms of local coordinate system x * = (x * 1 , . . . , x * n ), L k t,x * = ∂ t - 1 a k (x * ) n i,j=1 ∂ x * i a k (x * )a ij k (x * )∂ x * j • -q k (x * , t)
in L k (W z k ) × (s 0 , t 0 ). Here q k (x * , t) is Hölder continuous on L k (W z k ) × (s 0 , t 0 ) and (a ij (x * )) is the contravariant tensor of degree 2 dened by

a ij k (x * ) = J L k (L -1 k (x * )) T J L k (L -1 k (x * )) , with J L k (x) = ∂x * j (x) ∂x i .
According to the construction of [It] given in Chapter 6 (see pages 42 to 45 of [It]),

a ij k (x * ) is of class C 2 in L k (Ω ∩ W z k )
and it is a positive denite symmetric matrix at every point x * ∈ L k (W z k ). We set

(a k ij (x * )) = (a ij k (x * )) -1 and a k (x * ) = det(a k ij (x * )). Consider the volume element dx * = a k (x * )dx * 1 . . . dx * n on L k (W z k ) and dx = a(0, x )dx * 2 . . . dx * n on L k (W z k ∩ Γ) with x = (x * 2 , . . . , x * n ).
Note that, by the construction of S. Itô [It] (see page 45), for any k = 1, . . . , m, we have

a ij k (L k (x)) = a ij k (L k (x)), x ∈ Ω ∩ W z k , for i = j = 1 or i, j = 2, . . . , n,
(2.10)

a 1j k (L k (x)) = a j1 k (L k (x)) = -a 1j k (L k (x)), x ∈ Ω ∩ W z k , for j = 1, . . . , n
(2.11) and

a 1j k (L k (ξ)) = a j1 k (L k (ξ)) = δ j1 , ξ ∈ Γ ∩ W z k , j = 1, . . . , n,
(2.12) where δ j1 denotes the kronecker's symbol. For any k ∈ {1, . . . , m}, let G k (x, t; y) be dened, in the region

D k = {(x, t, y); x, y ∈ L k (W z k ), 0 < t < t 0 -s}, by G k (x, t; y) = 1 (4πt) n 2 e -n i,j=1 a k ij (y)(x i -y i )(x j -y j ) 4t . Next , dene H z k (x, t; y) = G k (L k (x), t; L k (y)), for k ∈ {1, . . . , m} and z k ∈ Ω ; H z k (x, t; y) = G k (L k (x), t; L k (y)) + G k (L k (x), t; L k (y)), for k ∈ {1, . . . , m}, z k ∈ Γ, x ∈ W z k and y ∈ W z k ; H z k (x, t; y) = 0 if x / ∈ W z k or y / ∈ W z k .
Consider also H(x, t; y), dened in the region

D = {(x, t, y); x ∈ Ω, y ∈ Ω, 0 < t < t 0 -s},
as follows

H(x, t; y) = m l=1 ω l (x)H z l (x, t; y)ω l (y).
As in Lemma 7.2 of [It], we dene successively:

J 0 (x, t; y, s) = (∂ t -∆ x -q(x, t))(H(x, t -s; y)), J k (x, t; y, s) = t s Ω J 0 (x, t; z, τ )J k-1 (z, τ ; y, s)dzdτ, K(x, t; y, s) = +∞ k=0 J k (x, t; y, s).
Then, following [It] (see page 53), the fundamental solution of (2.1) is given by

U (x, t; s, y) = H(x, t -s; y) + t s Ω H(x, t -τ ; z)K(z, τ ; y, s)dzdτ.
(2.13)

We are now able to prove Lemma 2 with the help of representation (2.13), the properties of H(x, t; y) and K(x, t; y, s).

Proof of Lemma 2. Without loss of generality, we assume that s = 0. Set

F 1 (x, t) = t 0 Γ
H(x, t -s; y)f (y, s)dσ(y)ds,

F 2 (x, t) = t 0 Γ t s Ω
H(x, t -τ ; z)K(z, τ ; y, s)f (y, s)dzdτ dσ(y)ds.

According to representation (2.13), one needs to show that F 1 and F 2 admit a derivative with respect to t and

|∂ t F 1 (x, t)| + |∂ t F 2 (x, t)| C ∂ t f L ∞ (Γ×(0,t0))
(2.14) for (x, t) ∈ Γ × (0, t 0 ). We start by considering F 1 . Applying a simple substitution, we obtain

F 1 (x, t) = t 0 Γ
H(x, s; y)f (y, t -s)dσ(y)ds.

(2.15)

Next, for x ∈ Γ, there exist l 1 , . . . , l r ⊂ {1, . . . , m} such that x ∈ supp ω l for l ∈ {l 1 , . . . , l r } and

x / ∈ supp ω l for l / ∈ {l 1 , . . . , l r }. Moreover, since x ∈ Γ, we have z l1 , . . . , z lr ∈ Γ. Then, from the construction of H(x, t; y), we obtain

Γ H(x, s; y)dσ(y) = Γ r k=1 ω l k (x)H z l k (x, s; y)ω l k (y)dσ(y) = 2 r k=1 R n-1 χ l k (0, x ) 1 (4πs) n 2 e -n i,j=1 a l k ij (0,y )(x i -y i )(x j -y j ) 4s χ l k (0, y ) a l k (0, y )dy
with, for l ∈ {1, . . . , m}, χ l ∈ C 3 0 (L l (supp ω l )) such that χ l (x) = ω l (L -1 l (x)) and with (x 1 , . . . , x n ) = (0, x ), (y 1 , . . . , y n ) = (0, y ). Using the substitution y → z = x -y √ s , we derive

Γ H(x, s; y)dσ(y) C r k=1 R n-1 χ l k (0, x ) 1 √ s e -n i,j=1 a l k ij (0,x - √ sz )z i z j χ l k (0, x - √ sz ) a l k (0, x - √ sz )dz .
(2.16) Therefore,

Γ |H(x, s; y)| dσ(y) C √ s R n-1 e -a0|z | 2 dz C √ s ,
where a 0 > 0 is a constant. From this estimate, we deduce that

Γ |H(x, s; y)f (y, t -s)| dσ(y) C f L ∞ (Γ×(0,t0)) √ s and ∂ t Γ H(x, s; y)f (y, t -s)dσ(y) C ∂ t f L ∞ (Γ×(0,t0)) √ s .
Thus, F 1 admits a derivative with respect to t,

∂ t F 1 (x, t) = Γ H(x, t; y)f (y, 0)dσ(y) + t 0 Γ H(x, s; y)∂ t f (y, t -s)dσ(y)ds
and, since f (y, 0) = 0 for y ∈ Γ, we obtain

|∂ t F 1 (x, t)| C ∂ t f L ∞ (Γ×(0,t0)) , (x, t) ∈ Γ × (0, t 0 ).
(2.17)

Let us now consider F 2 . We want to show that ∂ t F 2 exists and the following estimate holds:

|∂ t F 2 (x, t)| C ∂ t f L ∞ (Γ×(0,t0)) , (x, t) ∈ Γ × (0, t 0 ).
(2.18)

For this purpose, using the local coordinate system, it suces to prove . . . , m}. (2.19) From now on we set x = L -1 l (0, x ) with (0, x ) ∈ L l (Γ ∩ W z l ) ⊂ {0} × R n-1 and we will show (2.19). First, note that

∂ t F 2 (L -1 l (0, x ), t) C l ∂ t f L ∞ ((Γ×(0,t0)) , ((0, x ), t) ∈ L l (Γ ∩ W z l ) × (0, t 0 ), l ∈ {1,
J 0 (z, τ ; s, y) =(∂ τ -∆ z -q(z, t))H(z, τ -s; y) = m l=1 ω l L -1 l (z * ) L l τ,z * H z l (L -1 l (z * ), τ -s; y)ω l (y) + m l=1 [L l τ,z * , ω l (L -1 l (z * ))]H z l (L -1 l (z * ), τ -s; y)ω l (y).
According to the results in Chapter 4 of [It] (pages 26 and 27), using the local coordinate system, we obtain

L l τ,z * H z l (L -1 l (z * ), τ -s; L -1 l (y * )) = n i,j=1 (a ij l (z * ) -a ij l (y * )) ∂ 2 H z l ∂ z * i ∂ z * j (L -1 l (z * ), τ -s; L -1 l (y * )) + [B l (z * , y * , ∂ z * ) + q l (z * , t)]H z l (L -1 l (z * ), τ -s; L -1 l (y * )),
where B l (z * , y * , ∂ z * ) is a dierential operator of order 1 in z * with continuous coecients in z * , y * ∈ L l (supp ω l ). In view of the results in Chapter 4 of [It] (see pages 26 and 27), combining (2.10), (2.11), (2.12) and (2.16), applying the substitution y = z -y √ τ -s , with z * = (z * 1 , z ) and y * = (0, y ), we obtain

Γ J 0 (L -1 l (z * ), τ ; y, s)dσ(y) = 2 j=0 P j z * 1 √ τ -s e -(z * 1 ) 2 τ -s R n-1 J j 0 (z * , τ ; y , s; τ -s) (τ -s) j 2 dy , for 0 < s < τ < t 0 and z * ∈ L l (Ω ∩ W z k ),
where, for j = 0, 1, 2, P j are polynomials and J j 0 are continuous functions, C 1 with respect to τ, s ∈ (0, t 0 ) and satisfy

max i=0,1,2 α1+α2 1 R n-1 ∂ α1 τ ∂ α2 s J j 0 (z * , τ ; y , s; v 1 ) dy C l , 0 < s < τ < t 0 , z * 1 > 0, 0 < v 1 < t 0 ,
for some constant C l > 0. We note that ∂ v1 J j 0 ((z 1 , z ), τ ; y , s; v 1 ) is not necessarily bounded. Indeed, we show

∂ v1 J j 0 ((z 1 , z ), τ ; y , s; v 1 ) C l √ v 1 , 0 < v 1 < t 0 , j = 0, 1, 2.
This representation and the construction of K(z, τ ; y, s) in Chapter 5 of [It] (see pages 31 to 32 for the construction in R n and page 53 for the construction in a bounded domain) lead

Γ K(L -1 l (z * ), τ ; y, s)dσ(y) = 2 j=0 Q j z * 1 √ τ -s e -(z * 1 ) 2 τ -s R n-1 K j (z * , τ ; y , s; τ -s) (τ -s) j 2 dy ,
(2.20)

for 0 < s < τ < t 0 and z * ∈ L l (Ω ∩ W z k ),
where, for j = 0, 1, 2, Q j are polynomials and K j are continuous functions, C 1 with respect to τ, s ∈ (0, t 0 ) and satisfy

max i=0,1,2 α1+α2 1 R n-1 |∂ α1 τ ∂ α2 s K j (z * , τ ; y , s; v 1 )| dy C l , 0 < s < τ < t 0 , z * 1 > 0, 0 < v 1 < t 0 ,
where C l > 0 is a constant. Furthermore, using representation (2.20), we have, for s < τ < t < t 0 ,

Ω H(x, t -τ ; z) Γ K(τ, z; y, s)f (y, s)dσ(y)dz = 2 j=0 m l=1 R n + ω l (x)H z l (x, t -τ ; L -1 l (z * ))χ l (z * )Q j z * 1 √ τ -s e -(z * 1 ) 2 τ -s R n-1 K j (z * , τ ; y , s; τ -s) (τ -s) j 2 dy dz * with R n + = {(z * 1 , . . . , z * n ) ∈ R n ; z * 1 > 0}.
Then, applying the substitutions z = x -z √ t-τ and z 1 = z * 1 √ τ -s , we deduce, in view of the form of the functions K j , the following

Ω H(x, t -τ ; z) Γ K(z, τ ; y, s)dσ(y)dz = 1 j=0 R n + H l (x , t -τ ; (z 1 , z ), τ -s) √ t -τ R n-1 K j ((z 1 , z ), τ ; y , s; τ -s) (τ -s) j 2
dy dz dz 1 , s < τ < t < t 0 ,

(2.21) for some continuous functions K 0 , K 1 and H l such that K 0 , K 1 are C 1 , with respect to s and τ , and the following estimates hold:

R n + |H l (x , t -τ ; (z 1 , z ), τ -s)| dz C l , 0 < s < τ < t < t 0 , (2.22) max j=0,1 α1+α2 1 R n-1 ∂ α1 τ ∂ α2 s K j ((z 1 , z ), τ ; y , s; v 1 ) dy C l , 0 < s < τ < t 0 , 0 < v 1 < t 0 ,
(2.23)

for some constant C l > 0. Repeating the arguments used for (2.21) and applying some results of page 31 of [It], we obtain, for 0 < t < t 0 ,

t 0 t s Ω |H(x, t -τ ; z)| Γ |K(z, τ ; y, s)| dσ(y)dzdτds C l t 0 t s   1 j=0 1 √ t -τ • 1 (τ -s) j 2   dτds C l 1 j=0 t 0 (t -s) 1-j 2 ds C l .
(2.24)

This estimate and Fubini's theorem imply

F 2 (x, t) = t 0 t s Ω H(x, t -τ ; z) Γ K(z, τ ; y, s)f (y, s)dσ(y)dzdτ ds.
Then, in view of representation (2.21), for all 0 < t < t 0 ,

F 2 (x, t) = t 0 t s 1 j=0 R n + H l (x , t -τ ; (z 1 , z ), τ -s) √ t -τ × R n-1 K j ((z 1 , z ), τ ; y , s; τ -s) (τ -s) j 2
f 1 (x , s; y , z )dy dz dz 1 dτds,

where f 1 (x , s; y , z ) = f L -1 l (0, x -( √ t -s)z -( √ τ -s)y ), s .
Making the substitution τ = t -τ , we obtain

F 2 (t, x) = t 0 t-s 0 1 j=0 R n + H l (x , τ ; (z 1 , z ), t -s -τ ) √ τ × R n-1 K j ((z 1 , z ), t -τ ; y , s; t -s -τ ) (t -s -τ ) j 2
f 1 (x , s; y , z )dy dz dz 1 dτ ds.

Then, the substitution s = t -s yields

F 2 (x, t) = t 0 s 0 1 j=0 R n + H l (x , τ ; (z 1 , z ), s -τ ) √ τ × R n-1 K j ((z 1 , z ), t -τ ; y , t -s ; s -τ ) (s -τ ) j 2
f 1 (x , t -s ; y , z )dy dz 1 dz dτ ds .

But, for 0 < τ < s < t < t 0 , estimates (2.22), (2.23) and f (y, 0) = 0, y ∈ Γ, imply

1 j=0 R n + H l (x , τ , x ; (z 1 , z ), s -τ ) √ τ R n-1 K j ((z 1 , z ), t -τ ; y , t -s ; s -τ ) (s -τ ) j 2 × f 1 (x , t -s ; y , z )dy dz dz 1 C l 1 j=0 ∂ t f L ∞ (Γ×(0,t0)) √ τ 1 (s -τ ) j 2
(2.25) and

∂ t 1 j=0 R n + H l (x , τ ; (z 1 , z ), s -τ ) √ τ R n-1 K j ((z 1 , z ), t -τ ; y , t -s ; s -τ ) (s -τ ) j 2 × f 1 (x , t -s ; y , z )dy dz 1 dz C l 1 j=0 ∂ t f L ∞ (Γ×(0,t0)) √ τ 1 (s -τ ) j 2
.

(2.26)

From estimates (2.25), (2.26) and f (y, 0) = 0, y ∈ Γ, we conclude that F 2 admits a derivative with respect to t and Proof of Theorem 1. Let u = u 1 -u 2 and σ = σ 2 -σ 1 . Then u is the solution of the following initial-boundary value problem

∂ t F 2 (x, t) = t 0 s 0 ∂ t 1 j=0 R n + H l (x , τ ; (z 1 , z ), s -τ ) √ τ R n-1 K j ((z 1 , z ), t -τ ; y , t -s ; s -τ ) (s -τ ) j 2 × f 1 (x ,
     ∂ t u -∆ x u + σ 2 (t)f (x)u = σ(t)f (x)u 1 (x, t), (x, t) ∈ Q, u(x, 0) = 0, x ∈ Ω, u(x, t) = 0, (x, t) ∈ Σ.
(3.1)

Let U (x, t; y, s) be the fundamental solution of (2.1) with q(x, t) = -σ 2 (t)f (x). Applying Theorem 9.1 of [It], we obtain

u(x, t) = t 0 Ω U (x, t; y, s)σ(s)f (y)u 1 (y, s)dyds + t 0 Γ
U (x, t; y, s)∂ ν u(y, s)dσ(y)ds.

(3.2)

Now, since u(x, t) = 0, (t, x) ∈ Σ and x ∈ Γ, (3.3)

In view of dierentiability properties in Lemma 1 and 2, we can take the t-derivative of both sides of identity (3.2). We nd

f (x)g(x, t)σ(t) = - t 0 ∂ t Ω U (x, t; y, s)σ(s)f (y)u 1 (y, s)dy ds -∂ t t 0 Γ U (x, t; y, s)(∂ ν u 2 (y, s) -∂ ν u 1 (y, s))dσ(y)ds
and, for x = x 0 , condition (H2) implies (3.6) Therefore, representation (3.4) and estimates (1.5), (3.5), (3.6) imply

σ(t) = h(t) t 0 ∂ t Ω U (x 0 , t; y, s)σ(s)f (y)u 1 (y, s)dy ds + h(t)∂ t t 0 Γ U (x 0 , t; y, s)∂ ν u(y, s)dσ(y)ds , (3.4) where h(t) = -1/(g(t, x 0 )f (x 0 )). Since u(x, 0) = 0, x ∈ Ω, we have ∂ ν u(x, 0) = 0, x ∈ Γ.
|σ(t)| t 0 C |σ(s)| ds + C ∂ t ∂ ν u L ∞ (Σ) .
Here and henceforth, C > 0 is a generic constant depending only on data. Hence, Gronwall's lemma yields

|σ(t)| C ∂ t ∂ ν u L ∞ (Σ) e Ct Ce CT ∂ t ∂ ν u L ∞ (Σ) , t ∈ (0, T ).
Then (1.3) follows and the proof is complete. Proof of Theorem 2. Set u = u 1 -u 2 = u(σ 1 ) -u(σ 2 ). Then, according to (H4) and (H6), u is the solution of the following initial-boundary value problem

     ∂ t u -∆ x u -q(x, t)u = F (t, x, σ 1 (t), u 2 (x, t)) -F (t, x, σ 2 (t), u 2 (x, t)) , (x, t) ∈ Q, u(x, 0) = 0, x ∈ Ω, u(t, x) = 0, (t, x) ∈ Σ,
(3.7) with q(x, t) = 1 0 ∂ u F [t, x, σ 1 (t), u 2 (x, t) + τ (u 1 (x, t) -u 2 (x, t))] dτ.

(3.8)

Note that assumptions (H4) and (H6) imply that q ∈ C 1 (Q).

On the other hand, in view of (H4), F (t, x, σ 1 (t), u 2 (x, t)) -F (t, x, σ 2 (t), u 2 (x, t)) = (σ 1 (t) -σ 2 (t))G(x, t), with G(x, t) = 1 0 ∂ σ F (t, x, σ 2 (t) + s(σ 1 (t) -σ 2 (t)), u 2 (x, t)) ds.

Using this representation, we deduce that u is the solution of

    
∂ t u -∆ x u -q(x, t)u = (σ 1 (t) -σ 2 (t))G(x, t), (x, t) ∈ Q, u(x, 0) = 0, x ∈ Ω, u(x, t) = 0, (t, x) ∈ Σ.

(3.9)

Let us remark that (H4) and (H6) imply that G ∈ C 2,1 (Q). Let U (t, x; s, y) be the fundamental solution of (2.1) with q(x, t) dened by (3.8). Then, according to Theorem 9.1 of [It], for σ(t) = σ 1 (t) -σ 2 (t), we have the representation (3.12)

Here and in the sequel C > 0 is a generic constant that can depend only on data. We complete the proof of Theorem 2 by applying Gronwall's lemma.
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Γ U (x 0 , t; y, s)∂ ν u(y, s)dσ(y) ds, where H(t) = -1/G(x 0 , t). Hence, (3.11), (3.12) and (3.13) imply

|σ(t)| t 0 C |σ(s)| ds + C ∂ t ∂ ν u L ∞ (Σ) .