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STABILITY OF THE DETERMINATION OF A TIME-DEPENDENT COEFFICIENT

IN PARABOLIC EQUATIONS

MOURAD CHOULLI AND YAVAR KIAN

Abstract. We establish a Lipschitz stability estimate for the inverse problem consisting in the determi-
nation of the coefficient σ(t), appearing in a Dirichlet initial-boundary value problem for the parabolic
equation ∂tu − ∆xu + σ(t)f(x)u = 0, from Neumann boundary data. We extend this result to the same
inverse problem when the previous linear parabolic equation in changed to the semi-linear parabolic equation
∂tu−∆xu = F (t, x, σ(t), u(x, t)).

Key words : parabolic equation, semi-linear parabolic equation, inverse problem, determination of time-
depend coefficient, stability estimate.
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1. Introduction

Throughout this paper, we assume that Ω is a C3 bounded domain of Rn with n > 2. Let T > 0 and set

Q = Ω× (0, T ), Γ = ∂Ω, Σ = Γ× (0, T ).

We consider the following initial-boundary value problem










∂tu−∆xu+ σ(t)f(x)u = 0, (x, t) ∈ Q,

u(x, 0) = h(x), x ∈ Ω,

u(x, t) = g(x, t), (x, t) ∈ Σ.

(1.1)

We introduce the following assumptions :

(H1) f ∈ C2(Ω), h ∈ C2,α(Ω), g ∈ C2+α,1+α
2 (Σ), for some 0 < α < 1, and satisfy the compatibility

condition
∂tg(x, 0)−∆xh(x) + σ(0)f(x)h(x) = 0, x ∈ Γ.

(H2) There exists x0 ∈ Γ such that

inf
t∈[0,T ]

|g(x0, t)f(x0)| > 0.

Under assumption (H1), It is well known that, for σ ∈ C1[0, T ], the initial-boundary value problem (1.1)
admits a unique solution u = u(σ) ∈ C2+α,1+α

2 (Q) (see Theorem 5.2 of [LSU]). Moreover, given M > 0,
there exists a constant C > 0 depending only on data (that is Ω, T , f , g and h) such that ‖σ‖W 1,∞(0,T ) 6 M
implies

‖u(σ)‖C2+α,1+α/2(Q) 6 C. (1.2)

1
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In the present paper we are concerned with the inverse problem consisting in the determination of the
time dependent coefficient σ(t) from Neumann boundary data ∂νu(σ) on Σ, where ∂ν is the derivative in the
direction of the unit outward normal vector to Γ.

We prove the following theorem, where B(M) is the ball of C1[0, T ] centered at 0 and with radius M > 0.

Theorem 1. Assume that (H1) and (H2) are fulfilled. For i = 1, 2, let σi ∈ B(M) and ui = u(σi). Then
there exists a constant C > 0, depending only on data, such that

‖σ2 − σ1‖L∞(0,T ) 6 C ‖∂t∂νu2 − ∂t∂νu1‖L∞(Σ) . (1.3)

Following [COY], it is quite natural to extend Theorem 1 when the linear parabolic equation is changed
to a semi-linear parabolic equation. To this end, introduce the following semi-linear initial-boundary value
problem :











∂tu−∆xu = F (x, t, σ(t), u(x, t)), (x, t) ∈ Q,

u(x, 0) = h(x), x ∈ Ω,

u(x, t) = g(x, t), (x, t) ∈ Σ

(1.4)

and consider the following assumptions

(H3) h ∈ C2,α(Ω), g ∈ C2+α,1+α
2 (Σ), for some 0 < α < 1, and satisfy the compatibility condition

∂tg(x, 0)−∆xh(x) = F (0, x, σ(0), h(x)), x ∈ Γ.

(H4) F ∈ C1(Ωx × Rt × Rσ × Ru) is such that ∂uF and ∂σF are C1, F and ∂σF are C2 with respect to x
and u.

(H5) There exist M > 0 and x0 ∈ Γ such that

inf
t∈[0,T ],σ∈[−M,M ]

|∂σF (x0, t, σ, g(x0, t))| > 0.

(H6) There exist two non negative constants c and d such that

uF (x, t, σ(t), u) 6 cu2 + d, t ∈ [0, T ], x ∈ Ω, u ∈ R.

Under the above mentioned conditions, for any σ ∈ C1[0, T ], the initial-boundary value problem (1.4)
admits a unique solution u = u(σ) ∈ C2+α,1+α

2 (Q) (see Theorem 6.1 in [LSU]) and, given M > 0, there exists
a constant C > 0 depending only on data (that is Ω, T , F , g and h) such that ‖σ‖W 1,∞(0,T ) 6 M implies

‖u(σ)‖C2+α,1+α/2(Q) 6 C. (1.5)

We have the following extension of Theorem 1.

Theorem 2. Assume that (H3), (H4), (H5) and (H6) are fulfilled. For i = 1, 2, let σi ∈ B(M) and
ui = u(σi). Then there exists a constant C > 0, depending only on data, such that

‖σ2 − σ1‖L∞(0,T ) 6 C ‖∂t∂νu2 − ∂t∂νu1‖L∞(Σ) . (1.6)

Remark 1. Let us observe that we can generalize the results in Theorems 1 and 2 as follows:

i) In (1.1), we can replace σ(t)f(x) by
∑p

k=1 σk(t)fk(x), where fk, 1 6 k 6 p, are known. Assume that
(H1) is satisfied, with f = fk for each k, where the compatibility condition is changed to

∂tg(x, 0)−∆xh(x) +

p
∑

k=1

σk(0)fk(x)h(x) = 0, x ∈ Γ.

Therefore, to each (σ1, . . . , σp) ∈ C[0, T ]p corresponds a unique solution u = u(σ1, . . . , σp) ∈ C2+α,1+α/2(Q)
and max{‖σk‖W 1,∞(0,T ); 1 6 k 6 p} 6 M implies

‖u(σ1, . . . , σp)‖C2+α,1+α/2(Q) 6 C,

for some positive constant C depending only on data.
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Following the proof of Theorem 1, we prove that, under the following conditions : there exists x1, . . . , xp ∈
Γ such that the matrix M(t) = (fk(xl)g(xl, t)) is invertible for any t ∈ [0, T ],

max
16k6p

‖σ1
k − σ2

k‖L∞(0,T ) 6 C ‖∂t∂νu2 − ∂t∂νu1‖L∞(Σ) ,

if σj
k ∈ B(M), 1 6 k 6 p and j = 1, 2. Here C is a constant that can depend only on data and uj =

u(σj
1, . . . , σ

j
p), j = 1, 2.

ii) We can replace the semi-linear parabolic equation in (1.4) by a semi-linear integro-differential equa-
tion. In other words, F can be changed to

F1(x, t, σ(t), u(x, t)) +

∫ t

0

F2(x, s, σ(t− s), u(x, s))ds.

Under appropriate assumptions on F1 and F2, one can establish that Theorem 2 is still valid in the present
case.

ii) Both in (1.1) and (1.4), the Laplace operator can be replaced by a second order elliptic operator in
divergence form :

E = ∇ · A(x)∇ +B(x) · ∇,

where A(x) = (aij(x)) is a symmetric matrix with coefficients in C1+α(Ω), B(x) = (bi(x)) is a vector with

components in Cα(Ω) and the following ellipticity condition holds

A(x)ξ · ξ > λ |ξ|2 , ξ ∈ R
n, x ∈ Ω.

Actually, the normal derivative associated to E is the boundary operator ∂νE = ν(x) ·A(x)∇.

To our knowledge, there are only few results concerning the determination of a time-dependent coefficient
in an initial-boundary value problem for a parabolic equation from a single measurement. The determination
of a source term of the form f(t)χD(x), where χD the characteristic function of the known subdomain D, was
considered by J. R. Canon and S. P. Esteva. They established in [CE86-1] a logarithmic stability estimate
in 1D case in a half line when the overdetermined data is the trace at the end point. A similar inverse
problem problem in 3D case was studied by these authors in [CE86-2], where they obtained a Lipschitz
stability estimate in weighted spaces of continuous functions. The case of a non local measurement was
considered by J. R. Canon and Y. Lin in [CL88] and [CL90], where they proved existence and uniqueness
for both quasilinear and semi-linear parabolic equations. The determination of a time dependent coefficient
in an abstract integrodifferential equation was studied by the first author in [Ch91-1]. He proved existence,
uniqueness and Lipschitz stability estimate, extending earlier results by [Ch91-2], [LS87], [LS88], [PO85-1]
and [PO85-2]. In [CY06], the first author and M. Yamamoto obtained a stability result, in a restricted
class, for the inverse problem of determining a source term f(x, t), appearing in a Dirichlet initial-boundary
value problem for the heat equation, from Neumann boundary data. In a recent work, the first author
and M. Yamamoto [CY11] considered the inverse problem of finding a control parameter p(t) that reach a
desired temperature h(t) along a curve γ(t) for a parabolic semi-linear equation with homogeneous Neumann
boundary data and they established existence, uniqueness as well as Lipschitz stability. Using geometric optic
solutions, the first author [Ch09] proved uniqueness as well as stability for the inverse problem of determining
a general time dependent coefficient of order zero for parabolic equations from Dirichlet to Neumann map. In
[E07] and [E08], G. Eskin considered the same inverse problem for hyperbolic and the Schrödinger equations
with time-dependent electric and magnetic potential and he established uniqueness by gauge invariance.
Recently, R. Salazar [Sa] extended the result of [E07] and obtained a stability result for compactly supported
coefficients.

We would like to mention that the determination of space dependent coefficient f(x), in the source
term σ(t)f(x), from Neumann boundary data was already considered by the first author and M. Yamamoto
[CY06]. But, it seems that our paper is the first work where one treats the determination of a time dependent
coefficient, appearing in a parabolic initial-boundary value problem, from Neumann boundary data.
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This paper is organized as follows. In section 2 we come back to the construction of the Neumann
fundamental solution by [It] and establish time-differentiability of some potential-type functions, necessary
for proving Theorems 1 and 2. Section 3 is devoted to the proof of Theorems 1 and 2.

2. Time-differentiability of potential-type functions

In this section, we establish time-differentiability of some potential-type functions, needed in the proof
of our stability estimates. In our analysis we follow the construction of the fundamental solution by S. Itô
[It].

First of all, we recall the definition of fundamental solution associate to the heat equation plus a time-
dependent coefficient of order zero, in the case of Neumann boundary condition. Consider the initial-
boundary value problem











∂tu = ∆xu+ q(x, t)u, (x, t) ∈ Ω× (s, t0),

lim
t→s

u(x, t) = u0(x), x ∈ Ω,

∂νu(x, t) = 0, (x, t) ∈ Γ× (s, t0).

(2.1)

Here s0 < t0 are fixed, s ∈ (s0, t0), u0 and q(x, t) are continuous respectively in Ω and in Ω × [s, t0]. Let
U(x, t; y, s) be a continuous function in the domain s0 < s < t < t0, x ∈ Ω, y ∈ Ω. We recall that U is the
fundamental solution of (2.1) if for any u0 ∈ C(Ω),

u(x, t) =

∫

Ω

U(x, t; y, s)u0(y)dy

is the solution of (2.1). We refer to [It] for the existence and uniqueness of this fundamental solution.

We start with time-differentiability of volume potential-type functions1.

Lemma 1. Fix s ∈ (s0, t0). Let f ∈ C(Ω× [s, t0]) be C2 with respect to x, q ∈ C1(Ω× [s, t0]) and define, for
(x, t) ∈ Ω× (s, t0),

f1(x, t; τ) =

∫

Ω

U(x, t; y, τ)f(y, τ)dy, t > τ > s.

Then, f1 admits a derivative with respect to t and

∂f1

∂t
(x, t; τ) =

∫

Ω

U(x, t; y, τ)(∆y + q(x, τ))f(y, τ)dy

+

∫ t

τ

∫

Ω

∫

Ω

U(x, t; z, τ ′)∂tq(z, τ
′)U(z, τ ′; y, τ)f(y, τ)dzdydτ ′.

(2.2)

Moreover, F given by

F (x, t) =

∫ t

s

f1(x, t; τ)dτ, (x, t) ∈ Γ× (s0, t0),

possesses a derivative with respect to t,

∂F

∂t
(x, t) = f(x, t) +

∫ t

s

∂f1

∂t
(x, t; τ)dτ (2.3)

and
∣

∣

∣

∣

∫ t

s

∂f1

∂t
(x, t; τ)dτ

∣

∣

∣

∣

6 C

∫ t

s

‖f(., τ)‖C2
x(Ω)

dτ. (2.4)

1Recall that if ϕ = ϕ(x, t) is a continuous function then the corresponding volume potential is given by

ψ(x, t) =

∫
t

s

∫
Ω

U(x, t; y, τ)ϕ(y, τ)dydτ.
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Proof. We have only to prove (2.2) and (2.4), because (2.3) follows immediately from (2.2).

Let then u0 ∈ C2(Ω) and consider the function

u(x, t) =

∫

Ω

U(x, t; y, s)u0(y)dy, x ∈ Ω, s < t < t0.

We show that u admits a derivative with respect to t and

∂tu(x, t) = ∂t

(
∫

Ω

U(x, t; y, s)u0(y)dy

)

=

∫

Ω

U(x, t; y, s)(∆y + q(x, s))u0(y)dy

−
∫ t

s

∫

Ω

∫

Ω

U(x, t; z, τ)qt(z, τ)U(z, τ ; y, s)u0(y)dzdydτ.

(2.5)

We need to consider first the case u0 = w0 ∈ C∞(Ω). Set

w(x, t) =

∫

Ω

U(x, t; z, s)w0(y)dy, x ∈ Ω, s < t < t0.

Clearly, w(x, t) is the solution of the following initial-boundary value problem










∂tw −∆xw − q(x, t)w = 0, (x, t) ∈ Ω× (s, t0),

lim
t→s

w(x, t) = w0(x), x ∈ Ω,

∂νw(x, t) = 0, (x, t) ∈ Γ× (s, t0)

and w1 = ∂tw satisfies










∂tw1 −∆xw1 − q(x, t)w1 = −∂tqw, (x, t) ∈ Ω× (s, t0),

lim
t→s

w1(x, t) = (∆x + q(x, s))w0(x), x ∈ Ω,

∂νw1(x, t) = 0, (x, t) ∈ Γ× (s, t0).

Therefore, (2.5), with w in place of u, is a consequence of Theorem 9.1 of [It].

Next, let (wn
0 )n be a sequence in C∞(Ω) converging to u0 in C2(Ω) and v(x, t) given by

v(x, t) =

∫

Ω

U(x, t; y, s)(∆x + q(x, s))u0(y)dy

−
∫ t

s

∫

Ω

∫

Ω

U(x, t; z, τ)∂tq(z, τ)U(z, τ ; y, s)u0(y)dzdydτ.

Consider (wn)n, the sequence of functions, defined by

wn(x, t) =

∫

Ω

U(x, t; z, s)wn
0 (y)dy.

We proved that, for any n ∈ N,

∂twn(x, t) =

∫

Ω

U(x, t; y, s)(∆y + q(x, s))wn
0 (y)dy

−
∫ t

s

∫

Ω

∫

Ω

U(x, t; z, τ)∂tq(z, τ)U(z, τ ; y, s)wn
0 (y)dzdydτ.

(2.6)

From the proof of Theorem 7.1 of [It],
∫

Ω

|U(x, t; y, s)| dy 6 CeC(t−s), (x, t) ∈ Ω× (s, t0). (2.7)

Therefore, we can pass to the limit, as n goes to infinity, in (2.6). We deduce that ∂twn converges to v in
C(Ω × [s, t0]). But, wn converges to u in C(Ω × [s, t0]). Hence u admits a derivative with respect to t and
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∂tu = v. That is we proved (2.5) and consequently (2.2) holds true. Finally, we note that (2.4) is deduced
easily from (2.7). �

Next, we consider time-differentiability a single layer potential-type function2.

Lemma 2. Fix s ∈ (s0, t0). Let f ∈ C(Γ × [s, t0]) be C1 with respect to t ∈ [s, t0] with f(x, s) = 0. Define,
for (x, t) ∈ Γ× (s, t0),

f1(x, t; τ) =

∫

Γ

U(x, t; y, τ)f(y, τ)dσ(y), t > τ > s.

Then

F (x, t) =

∫ t

s

f1(x, t; τ)dτ

is well defined, admits a derivative with respect to t and we have
∥

∥

∥

∥

∂F

∂t

∥

∥

∥

∥

L∞(Γ×(s,t0))

6 C ‖∂tf‖L∞(Γ×(s,t0))
. (2.8)

Contrary to Lemma 1, for Lemma 2 we cannot use directly the general properties of the fundamental so-
lutions developed in [It]. We need to come back to the construction of the fundamental solution of (2.1) intro-
duced by [It]. First, consider the heat equation ∂tu = ∆xu in the half space Ω1 = {x = (x1, . . . , xn); x1 > 0}
in R

n with the boundary condition ∂x1u = 0 on Γ1 = {x = (0, x2, . . . , xn); (x2, . . . , xn) ∈ R
n−1}. For any

y = (y1, y2, . . . , yn), we define y by y = (−y1, y2, . . . , yn). Let

G(x, t) =
1

(4πt)
n
2
e−

|x|2

t

denotes the Gaussian kernel and set

G1(x, t; y) = G(x− y, t) +G(x− y, t).

Then, the fundamental solution U0(x, t; y, s) of










∂tu = ∆xu, (x, t) ∈ Ω1 × (s, t0),

lim
t→s

u(x, t) = u0(x), x ∈ Ω1,

∂νu(x, t) = 0, (x, t) ∈ Γ1 × (s, t0)

(2.9)

is given by
U0(x, t; y, s) = G1(x, t− s; y).

In order to construct the fundamental solution in the case of an arbitrary domain Ω, Itô introduced the
following local coordinate system around each point z ∈ Γ.

Lemma 3. (Lemma 6.1 and its corollary, Chapter 6 of [It]) For every point z ∈ Γ, there exist a coordinate
neighborhood Wz of z and a coordinate system (x∗

1, . . . , x
∗
n) satisfying the following conditions:

1) the coordinate transformation between the coordinate system (x∗
1, . . . , x

∗
n) and the original coordinate

system in Wz is of class C2 and the partial derivatives of the second order of the transformation functions
are Hölder continuous ;
2) Γ ∩Wz is represented by the equation x∗

1 = 0 and Ω ∩Wz is represented by x∗
1 > 0 ;

3) let L be the diffeomorphism from Wz to L(Wz) defined by

L : Wz → L(Wz)

x 7→ (x∗
1(x), . . . , x

∗
n(x)).

2The single-layer potential corresponding to a continuous function ϕ = ϕ(x, t) is given by

ψ(x, t) =

∫
t

s

∫
Γ

U(x, t; y, τ)ϕ(y, τ)dσ(y)dτ.
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Then, for any u ∈ C1(Ω) we have

∂νu(ξ) = −∂x1(u ◦ L−1)(x), ξ ∈ Γ ∩Wz and x = L(ξ).
From now on, for any z ∈ Γ, we view coordinate system (x∗

1, . . . , x
∗
n) as a rectangular coordinate system.

Moreover, using the local coordinate system of Lemma 3, for any y = (y1, y2, . . . , yn) ∈ L(Wz), we define
y = (−y1, y2, . . . , yn) and, without loss of generality, we assume that, for any y ∈ L(Wz), we have y ∈ L(Wz).
For any interior point z of Ω, we fix an arbitrary local coordinate system and a coordinate neighborhood Wz

contained in Ω. For any z ∈ Ω and δ > 0, we set W (z, δ) = {x : |x− z|2 < δ} and δz > 0 such that, for any

z ∈ Ω we have W (z, δz) ⊂ Wz .

Recall the following partition of unity lemma.

Lemma 4. (Lemma 7.1, Chapter 7 of [It]) There exist a finite subset {z1, . . . , zm} of Ω and a finite sequence
of functions {ω1, . . . , ωm} with the following properties:
1) supp ωl ⊂ W (zl, δzl), l = 1, . . . ,m, and each ωl is of class C3 with respect to the local coordinates in Wzl ;
2) {ωl(x)

2; l = 1, . . . ,m} forms a partition of unity in Ω ;
3)∂νωl(ξ) = 0, l = 1, . . . ,m, ξ ∈ Γ.

Let {z1, . . . , zm} be the finite subset of Ω, introduced in the previous lemma. For any k ∈ {1, . . . ,m},
let Lk denotes the diffeomorphism from Wzk to Lk(Wzk) defined by

Lk : Wzk → Lk(Wzk)

x 7→ (x∗
1(x), . . . , x

∗
n(x)),

where (x∗
1, . . . , x

∗
n) is the local coordinate system of Lemma 3 defined in Wzk . For any k ∈ {1, . . . ,m}, the

differential operator
∂t −∆x − q(x, t)

becomes, in terms of local coordinate system x∗ = (x∗
1, . . . , x

∗
n),

Lk
t,x∗ = ∂t −

1
√

ak(x∗)

n
∑

i,j=1

∂x∗
i

(

√

ak(x∗)aijk (x
∗)∂x∗

j
·
)

− qk(x
∗, t)

in Lk(Wzk) × (s0, t0). Here qk(x
∗, t) is Hölder continuous on Lk(Wzk) × (s0, t0) and (aij(x∗)) is the con-

travariant tensor of degree 2 defined by
(

aijk (x
∗)
)

=
(

JLk
(L−1

k (x∗))
)T (

JLk
(L−1

k (x∗))
)

,

with

JLk
(x) =

(

∂x∗
j (x)

∂xi

)

.

According to the construction of [It] given in Chapter 6 (see pages 42 to 45 of [It]),
(

aijk (x
∗)
)

is of class

C2 in Lk(Ω ∩ Wzk) and it is a positive definite symmetric matrix at every point x∗ ∈ Lk(Wzk). We set

(akij(x
∗)) = (aijk (x

∗))−1 and ak(x
∗) = det(akij(x

∗)). Consider the volume element dx∗ =
√

ak(x∗)dx∗
1 . . .dx

∗
n

on Lk(Wzk) and dx′ =
√

a(0, x′)dx∗
2 . . .dx

∗
n on Lk(Wzk ∩ Γ) with x′ = (x∗

2, . . . , x
∗
n). Note that, by the

construction of S. Itô [It] (see page 45), for any k = 1, . . . ,m, we have

aijk (Lk(x)) = aijk (Lk(x)), x ∈ Ω ∩Wzk , for i = j = 1 or i, j = 2, . . . , n, (2.10)

a1jk (Lk(x)) = aj1k (Lk(x)) = −a1jk (Lk(x)), x ∈ Ω ∩Wzk , for j = 1, . . . , n (2.11)

and
a1jk (Lk(ξ)) = aj1k (Lk(ξ)) = δj1, ξ ∈ Γ ∩Wzk , j = 1, . . . , n, (2.12)

where δj1 denotes the kronecker’s symbol. For any k ∈ {1, . . . ,m}, let Gk(x, t; y) be defined, in the region

Dk = {(x, t, y); x, y ∈ Lk(Wzk), 0 < t < t0 − s},
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by

Gk(x, t; y) =
1

(4πt)
n
2
e−

∑n
i,j=1

ak
ij(y)(xi−yi)(xj−yj)

4t .

Next , define Hzk(x, t; y) = Gk(Lk(x), t;Lk(y)), for k ∈ {1, . . . ,m} and zk ∈ Ω ; Hzk(x, t; y) =

Gk(Lk(x), t;Lk(y))+Gk(Lk(x), t;Lk(y)), for k ∈ {1, . . . ,m}, zk ∈ Γ, x ∈ Wzk and y ∈ Wzk ; Hzk(x, t; y) = 0
if x /∈ Wzk or y /∈ Wzk . Consider also H(x, t; y), defined in the region

D = {(x, t, y); x ∈ Ω, y ∈ Ω, 0 < t < t0 − s},
as follows

H(x, t; y) =

m
∑

l=1

ωl(x)Hzl(x, t; y)ωl(y).

As in Lemma 7.2 of [It], we define successively:

J0(x, t; y, s) = (∂t −∆x − q(x, t))(H(x, t − s; y)),

Jk(x, t; y, s) =

∫ t

s

∫

Ω

J0(x, t; z, τ)Jk−1(z, τ ; y, s)dzdτ,

K(x, t; y, s) =

+∞
∑

k=0

Jk(x, t; y, s).

Then, following [It] (see page 53), the fundamental solution of (2.1) is given by

U(x, t; s, y) = H(x, t− s; y) +

∫ t

s

∫

Ω

H(x, t− τ ; z)K(z, τ ; y, s)dzdτ. (2.13)

We are now able to prove Lemma 2 with the help of representation (2.13), the properties of H(x, t; y)
and K(x, t; y, s).

Proof of Lemma 2. Without loss of generality, we assume that s = 0. Set

F1(x, t) =

∫ t

0

∫

Γ

H(x, t− s; y)f(y, s)dσ(y)ds,

F2(x, t) =

∫ t

0

∫

Γ

∫ t

s

∫

Ω

H(x, t− τ ; z)K(z, τ ; y, s)f(y, s)dzdτdσ(y)ds.

According to representation (2.13), one needs to show that F1 and F2 admit a derivative with respect to t
and

|∂tF1(x, t)|+ |∂tF2(x, t)| 6 C ‖∂tf‖L∞(Γ×(0,t0))
(2.14)

for (x, t) ∈ Γ× (0, t0). We start by considering F1. Applying a simple substitution, we obtain

F1(x, t) =

∫ t

0

∫

Γ

H(x, s; y)f(y, t− s)dσ(y)ds. (2.15)

Next, for x ∈ Γ, there exist l1, . . . , lr ⊂ {1, . . . ,m} such that x ∈ suppωl for l ∈ {l1, . . . , lr} and
x /∈ suppωl for l /∈ {l1, . . . , lr}. Moreover, since x ∈ Γ, we have zl1 , . . . , zlr ∈ Γ. Then, from the construction
of H(x, t; y), we obtain

∫

Γ

H(x, s; y)dσ(y) =

∫

Γ

r
∑

k=1

ωlk(x)Hzlk
(x, s; y)ωlk(y)dσ(y)

= 2
r

∑

k=1

∫

Rn−1

χlk(0, x
′)

1

(4πs)
n
2
e−

∑n
i,j=1

a
lk
ij

(0,y′)(x′
i−y′i)(x

′
j−y′j)

4s χlk(0, y
′)
√

alk(0, y
′)dy′
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with, for l ∈ {1, . . . ,m}, χl ∈ C3
0 (Ll(suppωl)) such that χl(x) = ωl(L−1

l (x)) and with (x′
1, . . . , x

′
n) = (0, x′),

(y′1, . . . , y
′
n) = (0, y′). Using the substitution y′ → z′ = x′−y′

√
s

, we derive

∫

Γ

H(x, s; y)dσ(y)

6 C

r
∑

k=1

∫

Rn−1

χlk(0, x
′)

1√
s
e−

∑n
i,j=1 a

lk
ij (0,x

′−
√
sz′)z′

iz
′
jχlk(0, x

′ −
√
sz′)

√

alk(0, x
′ −

√
sz′)dz′.

(2.16)

Therefore,
∫

Γ

|H(x, s; y)| dσ(y) 6 C√
s

∫

Rn−1

e−a0|z′|2dz′ 6 C√
s
,

where a0 > 0 is a constant. From this estimate, we deduce that
∫

Γ

|H(x, s; y)f(y, t− s)| dσ(y) 6 C
‖f‖L∞(Γ×(0,t0))√

s

and
∣

∣

∣

∣

∂t

(
∫

Γ

H(x, s; y)f(y, t− s)dσ(y)

)∣

∣

∣

∣

6 C
‖∂tf‖L∞(Γ×(0,t0))√

s
.

Thus, F1 admits a derivative with respect to t,

∂tF1(x, t) =

∫

Γ

H(x, t; y)f(y, 0)dσ(y) +

∫ t

0

∫

Γ

H(x, s; y)∂tf(y, t− s)dσ(y)ds

and, since f(y, 0) = 0 for y ∈ Γ, we obtain

|∂tF1(x, t)| 6 C ‖∂tf‖L∞(Γ×(0,t0))
, (x, t) ∈ Γ× (0, t0). (2.17)

Let us now consider F2. We want to show that ∂tF2 exists and the following estimate holds:

|∂tF2(x, t)| 6 C ‖∂tf‖L∞(Γ×(0,t0))
, (x, t) ∈ Γ× (0, t0). (2.18)

For this purpose, using the local coordinate system, it suffices to prove
∣

∣∂tF2(L−1
l (0, x′), t)

∣

∣ 6 Cl ‖∂tf‖L∞((Γ×(0,t0))
, ((0, x′), t) ∈ Ll(Γ ∩Wzl)× (0, t0), l ∈ {1, . . . ,m}. (2.19)

From now on we set x = L−1
l (0, x′) with (0, x′) ∈ Ll(Γ ∩Wzl) ⊂ {0} ×R

n−1 and we will show (2.19). First,
note that

J0(z, τ ; s, y) =(∂τ −∆z − q(z, t))H(z, τ − s; y)

=
m
∑

l=1

ωl

(

L−1
l (z∗)

)

Ll
τ,z∗Hzl(L−1

l (z∗), τ − s; y)ωl(y)

+

m
∑

l=1

[Ll
τ,z∗ , ωl(L−1

l (z∗))]Hzl(L−1
l (z∗), τ − s; y)ωl(y).

According to the results in Chapter 4 of [It] (pages 26 and 27), using the local coordinate system, we obtain

Ll
τ,z∗Hzl(L−1

l (z∗), τ − s;L−1
l (y∗)) =

n
∑

i,j=1

(aijl (z
∗)− aijl (y

∗))
∂2Hzl

∂z∗
i
∂z∗

j

(L−1
l (z∗), τ − s;L−1

l (y∗))

+ [Bl(z
∗, y∗, ∂z∗) + ql(z

∗, t)]Hzl(L−1
l (z∗), τ − s;L−1

l (y∗)),

where Bl(z
∗, y∗, ∂z∗) is a differential operator of order 6 1 in z∗ with continuous coefficients in z∗, y∗ ∈

Ll(suppωl). In view of the results in Chapter 4 of [It] (see pages 26 and 27), combining (2.10), (2.11), (2.12)
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and (2.16), applying the substitution y′′ = z′−y′

√
τ−s

, with z∗ = (z∗1 , z
′) and y∗ = (0, y′), we obtain

∫

Γ

J0(L−1
l (z∗), τ ; y, s)dσ(y) =

2
∑

j=0

Pj

(

z∗1√
τ − s

)

e−
(z∗1 )2

τ−s

[

∫

Rn−1

Jj
0 (z

∗, τ ; y′′, s; τ − s)

(τ − s)
j
2

dy′′

]

,

for 0 < s < τ < t0 and z∗ ∈ Ll(Ω ∩Wzk), where, for j = 0, 1, 2, Pj are polynomials and Jj
0 are continuous

functions, C1 with respect to τ, s ∈ (0, t0) and satisfy

max
i=0,1,2

α1+α261

∫

Rn−1

∣

∣

∣
∂α1
τ ∂α2

s Jj
0 (z

∗, τ ; y′′, s; v1)
∣

∣

∣
dy′′ 6 Cl, 0 < s < τ < t0, z∗1 > 0, 0 < v1 < t0,

for some constant Cl > 0. We note that ∂v1J
j
0 ((z

′
1, z

′′), τ ; y′′, s; v1) is not necessarily bounded. Indeed, we
show

∣

∣

∣
∂v1J

j
0 ((z

′
1, z

′′), τ ; y′′, s; v1)
∣

∣

∣
6

Cl√
v1

, 0 < v1 < t0, j = 0, 1, 2.

This representation and the construction of K(z, τ ; y, s) in Chapter 5 of [It] (see pages 31 to 32 for the
construction in R

n and page 53 for the construction in a bounded domain) lead

∫

Γ

K(L−1
l (z∗), τ ; y, s)dσ(y) =

2
∑

j=0

Qj

(

z∗1√
τ − s

)

e−
(z∗1 )2

τ−s

[

∫

Rn−1

Kj (z
∗, τ ; y′′, s; τ − s)

(τ − s)
j
2

dy′′

]

, (2.20)

for 0 < s < τ < t0 and z∗ ∈ Ll(Ω ∩Wzk), where, for j = 0, 1, 2, Qj are polynomials and Kj are continuous
functions, C1 with respect to τ, s ∈ (0, t0) and satisfy

max
i=0,1,2

α1+α261

∫

Rn−1

|∂α1
τ ∂α2

s Kj (z
∗, τ ; y′′, s; v1)|dy′′ 6 Cl, 0 < s < τ < t0, z∗1 > 0, 0 < v1 < t0,

where Cl > 0 is a constant. Furthermore, using representation (2.20), we have, for s < τ < t < t0,

∫

Ω

H(x, t− τ ; z)

∫

Γ

K(τ, z; y, s)f(y, s)dσ(y)dz

=
2

∑

j=0

m
∑

l=1

∫

R
n
+

ωl(x)Hzl(x, t− τ ;L−1
l (z∗))χl(z

∗)Qj

(

z∗1√
τ − s

)

e−
(z∗1 )2

τ−s

[

∫

Rn−1

Kj (z
∗, τ ; y′′, s; τ − s)

(τ − s)
j
2

dy′′

]

dz∗

with R
n
+ = {(z∗1 , . . . , z∗n) ∈ R

n; z∗1 > 0}. Then, applying the substitutions z′′ = x′−z′
√
t−τ

and z′1 =
z∗
1√

τ−s
, we

deduce, in view of the form of the functions Kj, the following
∫

Ω

H(x, t− τ ; z)

∫

Γ

K(z, τ ; y, s)dσ(y)dz

=

1
∑

j=0

∫

R
n
+

H ′
l(x

′, t− τ ; (z′1, z
′′), τ − s)√

t− τ

[

∫

Rn−1

K ′
j ((z

′
1, z

′′), τ ; y′′, s; τ − s)

(τ − s)
j
2

dy′′

]

dz′′dz′1, s < τ < t < t0,

(2.21)
for some continuous functions K ′

0, K
′
1 and H ′

l such that K ′
0, K

′
1 are C1, with respect to s and τ , and the

following estimates hold:
∫

R
n
+

|H ′
l(x

′, t− τ ; (z′1, z
′′), τ − s)| dz′′ 6 Cl, 0 < s < τ < t < t0, (2.22)

max
j=0,1

α1+α261

∫

Rn−1

∣

∣∂α1
τ ∂α2

s K ′
j ((z

′
1, z

′′), τ ; y′′, s; v1)
∣

∣dy′′ 6 Cl, 0 < s < τ < t0, 0 < v1 < t0, (2.23)
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for some constant Cl > 0. Repeating the arguments used for (2.21) and applying some results of page 31 of
[It], we obtain, for 0 < t < t0,

∫ t

0

∫ t

s

∫

Ω

|H(x, t− τ ; z)|
∫

Γ

|K(z, τ ; y, s)|dσ(y)dzdτds 6 Cl

∫ t

0

∫ t

s





1
∑

j=0

1√
t− τ

· 1

(τ − s)
j
2



dτds

6 Cl

1
∑

j=0

∫ t

0

(t− s)1−
j
2 ds 6 Cl.

(2.24)

This estimate and Fubini’s theorem imply

F2(x, t) =

∫ t

0

∫ t

s

∫

Ω

H(x, t− τ ; z)

∫

Γ

K(z, τ ; y, s)f(y, s)dσ(y)dzdτds.

Then, in view of representation (2.21), for all 0 < t < t0,

F2(x, t) =

∫ t

0

∫ t

s

1
∑

j=0

∫

R
n
+

H ′
l(x

′, t− τ ; (z′1, z
′′), τ − s)√

t− τ

×
[

∫

Rn−1

K ′
j ((z

′
1, z

′′), τ ; y′′, s; τ − s)

(τ − s)
j
2

f1(x
′, s; y′′, z′′)dy′′

]

dz′′dz′1dτds,

where f1(x
′, s; y′′, z′′) = f

(

L−1
l (0, x′ − (

√
t− s)z′′ − (

√
τ − s)y′′), s

)

. Making the substitution τ ′ = t− τ , we
obtain

F2(t, x) =

∫ t

0

∫ t−s

0

1
∑

j=0

∫

R
n
+

H ′
l(x

′, τ ′; (z′1, z
′′), t− s− τ ′)√
τ ′

×
[

∫

Rn−1

K ′
j ((z

′
1, z

′′), t− τ ′; y′′, s; t− s− τ ′)

(t− s− τ ′)
j
2

f1(x
′, s; y′′, z′′)dy′′

]

dz′′dz′1dτ
′ds.

Then, the substitution s′ = t− s yields

F2(x, t) =

∫ t

0

∫ s′

0

1
∑

j=0

∫

R
n
+

H ′
l(x

′, τ ′; (z′1, z
′′), s′ − τ ′)√

τ ′

×
∫

Rn−1

K ′
j ((z

′
1, z

′′), t− τ ′; y′′, t− s′; s′ − τ ′)

(s′ − τ ′)
j
2

f1(x
′, t− s′; y′′, z′′)dy′′dz′1dz

′′dτ ′ds′.

But, for 0 < τ ′ < s′ < t < t0, estimates (2.22), (2.23) and f(y, 0) = 0, y ∈ Γ, imply

∣

∣

∣

1
∑

j=0

∫

R
n
+

H ′
l(x

′, τ ′, x′; (z′1, z
′′), s′ − τ ′)√

τ ′

∫

Rn−1

K ′
j ((z

′
1, z

′′), t− τ ′; y′′, t− s′; s′ − τ ′)

(s′ − τ ′)
j
2

× f1(x
′, t− s′; y′′, z′′)dy′′dz′′dz′1

∣

∣

∣
6 Cl

1
∑

j=0

‖∂tf‖L∞(Γ×(0,t0))√
τ ′

1

(s′ − τ ′)
j
2

(2.25)

and

∣

∣

∣
∂t

(

1
∑

j=0

∫

R
n
+

H ′
l(x

′, τ ′; (z′1, z
′′), s′ − τ ′)√

τ ′

∫

Rn−1

K ′
j ((z

′
1, z

′′), t− τ ′; y′′, t− s′; s′ − τ ′)

(s′ − τ ′)
j
2

× f1(x
′, t− s′; y′′, z′′)dy′′dz′1dz

′′
)
∣

∣

∣
6 Cl

1
∑

j=0

‖∂tf‖L∞(Γ×(0,t0))√
τ ′

1

(s′ − τ ′)
j
2

.

(2.26)
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From estimates (2.25), (2.26) and f(y, 0) = 0, y ∈ Γ, we conclude that F2 admits a derivative with respect
to t and

∂tF2(x, t) =

∫ t

0

∫ s′

0

∂t

(

1
∑

j=0

∫

R
n
+

H ′
l(x

′, τ ′; (z′1, z
′′), s′ − τ ′)√

τ ′

∫

Rn−1

K ′
j((z

′
1, z

′′), t− τ ′; y′′, t− s′; s′ − τ ′)

(s′ − τ ′)
j
2

× f1(x
′, t− s′; y′′; z′′)dy′′dz′1dz

′′
)

dτ ′ds′.

Moreover, (2.24) and (2.26) imply (2.19) and (2.18). Finally, we obtain (2.14) from (2.17) and (2.18). This
completes the proof. �

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Let u = u1 − u2 and σ = σ2 − σ1. Then u is the solution of the following
initial-boundary value problem











∂tu−∆xu+ σ2(t)f(x)u = σ(t)f(x)u1(x, t), (x, t) ∈ Q,

u(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ Σ.

(3.1)

Let U(x, t; y, s) be the fundamental solution of (2.1) with q(x, t) = −σ2(t)f(x). Applying Theorem 9.1
of [It], we obtain

u(x, t) =

∫ t

0

∫

Ω

U(x, t; y, s)σ(s)f(y)u1(y, s)dyds+

∫ t

0

∫

Γ

U(x, t; y, s)∂νu(y, s)dσ(y)ds. (3.2)

Now, since u(x, t) = 0, (t, x) ∈ Σ and x ∈ Γ,
∫ t

0

∫

Ω

U(x, t; y, s)σ(s)f(y)u1(y, s)dyds = −
∫ t

0

∫

Γ

U(x, t; y, s)∂νu(y, s)dσ(y)ds. (3.3)

In view of differentiability properties in Lemma 1 and 2, we can take the t-derivative of both sides of
identity (3.2). We find

f(x)g(x, t)σ(t) =−
∫ t

0

∂t

(
∫

Ω

U(x, t; y, s)σ(s)f(y)u1(y, s)dy

)

ds

− ∂t

(
∫ t

0

∫

Γ

U(x, t; y, s)(∂νu2(y, s)− ∂νu1(y, s))dσ(y)ds

)

and, for x = x0, condition (H2) implies

σ(t) = h(t)

∫ t

0

∂t

(
∫

Ω

U(x0, t; y, s)σ(s)f(y)u1(y, s)dy

)

ds

+ h(t)∂t

(
∫ t

0

∫

Γ

U(x0, t; y, s)∂νu(y, s)dσ(y)ds

)

,

(3.4)

where h(t) = −1/(g(t, x0)f(x0)).

Since u(x, 0) = 0, x ∈ Ω, we have ∂νu(x, 0) = 0, x ∈ Γ. Thus, the estimates in Lemma 1 and 2 lead
∣

∣

∣

∣

∫ t

0

∂t

(
∫

Ω

U(x0, t; y, s)σ(s)f(y)u1(y, s)dy

)

ds

∣

∣

∣

∣

6 C

∫ t

0

|σ(s)| ds, (3.5)

∣

∣

∣

∣

∂t

(
∫ t

0

∫

Γ

U(x, t; y, s)∂νu(y, s)dσ(y)ds

)
∣

∣

∣

∣

6 C ‖∂t∂νu‖L∞(Σ) . (3.6)
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Therefore, representation (3.4) and estimates (1.5), (3.5), (3.6) imply

|σ(t)| 6
∫ t

0

C |σ(s)| ds+ C ‖∂t∂νu‖L∞(Σ) .

Here and henceforth, C > 0 is a generic constant depending only on data. Hence, Gronwall’s lemma yields

|σ(t)| 6 C ‖∂t∂νu‖L∞(Σ) e
Ct 6 CeCT ‖∂t∂νu‖L∞(Σ) , t ∈ (0, T ).

Then (1.3) follows and the proof is complete. �

Proof of Theorem 2. Set u = u1 − u2 = u(σ1) − u(σ2). Then, according to (H4) and (H6), u is the
solution of the following initial-boundary value problem











∂tu−∆xu− q(x, t)u = F (t, x, σ1(t), u2(x, t))− F (t, x, σ2(t), u2(x, t)) , (x, t) ∈ Q,

u(x, 0) = 0, x ∈ Ω,

u(t, x) = 0, (t, x) ∈ Σ,

(3.7)

with

q(x, t) =

∫ 1

0

∂uF [t, x, σ1(t), u2(x, t) + τ(u1(x, t) − u2(x, t))] dτ. (3.8)

Note that assumptions (H4) and (H6) imply that q ∈ C1(Q).

On the other hand, in view of (H4),

F (t, x, σ1(t), u2(x, t))− F (t, x, σ2(t), u2(x, t)) = (σ1(t)− σ2(t))G(x, t),

with

G(x, t) =

∫ 1

0

∂σF (t, x, σ2(t) + s(σ1(t)− σ2(t)), u2(x, t)) ds.

Using this representation, we deduce that u is the solution of










∂tu−∆xu− q(x, t)u = (σ1(t)− σ2(t))G(x, t), (x, t) ∈ Q,

u(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, (t, x) ∈ Σ.

(3.9)

Let us remark that (H4) and (H6) imply that G ∈ C2,1(Q). Let U(t, x; s, y) be the fundamental solution of
(2.1) with q(x, t) defined by (3.8). Then, according to Theorem 9.1 of [It], for σ(t) = σ1(t)− σ2(t), we have
the representation

u(x, t) =

∫ t

0

∫

Ω

U(x, t; y, s)σ(s)G(y, s)dyds+

∫ t

0

∫

Γ

U(x, t; y, s)∂νu(y, s)dσ(y)ds.

Since u(x, t) = 0, (t, x) ∈ Σ, we obtain
∫ t

0

∫

Ω

U(x0, t; y, s)σ(s)G(y, s)dyds = −
∫ t

0

∫

Γ

U(x0, t; y, s)∂νu(y, s)dσ(y)ds, (3.10)

with x0 defined in assumption (H5). Combining Lemma 1 and Lemma 2 with some arguments used in the
proof of Theorem 1, we prove that f1 and f2 defined respectively by

f1(t) =

∫ t

0

∫

Ω

U(x0, t; y, s)σ(s)G(y, s)dyds,

f2(t) =

∫ t

0

∫

Γ

U(x0, t; y, s)∂νu(y, s)dσ(y)ds,

admit a derivative with respect to t and

f ′
1(t) = σ(t)G(x0, t) +

∫ t

0

∂t

(
∫

Ω

U(x0, t; y, s)σ(s)G(y, s)dy

)

ds,
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f ′
2(t) =

∫ t

0

∂t

(
∫

Γ

U(x0, t; y, s)∂νu(y, s)dσ(y)

)

ds,

∣

∣

∣

∣

∫ t

0

∂t

(
∫

Ω

U(x0, t; y, s)σ(s)G(y, s)dy

)

ds

∣

∣

∣

∣

6 C

∫ t

0

|σ(s)| ‖G(·, s)‖C2
x(Ω) ds 6 C

∫ t

0

|σ(s)| ds (3.11)

and
∣

∣

∣

∣

∫ t

0

∂t

(
∫

Γ

U(x0, t; y, s)∂νu(y, s)dσ(y)

)

ds

∣

∣

∣

∣

6 C ‖∂t∂νu‖L∞(Σ) . (3.12)

Here and in the sequel C > 0 is a generic constant that can depend only on data.

Taking the t-derivative of both sides of identity (3.10), we obtain

σ(t)G(x0 , t) = −
∫ t

0

∂t

(
∫

Ω

U(x0, t; y, s)σ(s)G(y, s)dy

)

ds

−
∫ t

0

∂t

(
∫

Γ

U(x0, t; y, s)∂νu(y, s)dσ(y)

)

ds.

Let us observe that (H5) and max(‖σ1‖∞ , ‖σ2‖∞) 6 M imply

|G(x0, t)| =
∫ 1

0

|∂σF (t, x0, σ2(t) + s(σ1(t)− σ2(t)), g(x0, t)) |ds

> inf
t∈[0,T ],σ∈[−M,M ]

|∂σF (t, x0, σ, g(x0, t))| > 0. (3.13)

Then,

σ(t) = H(t)

∫ t

0

∂t

(
∫

Ω

U(x0, t; y, s)σ(s)G(y, s)dy

)

ds

+H(t)

∫ t

0

∂t

(
∫

Γ

U(x0, t; y, s)∂νu(y, s)dσ(y)

)

ds,

where H(t) = −1/G(x0, t). Hence, (3.11), (3.12) and (3.13) imply

|σ(t)| 6
∫ t

0

C |σ(s)| ds+ C ‖∂t∂νu‖L∞(Σ) .

We complete the proof of Theorem 2 by applying Gronwall’s lemma. �
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