
HAL Id: hal-00673667
https://hal.science/hal-00673667v1

Submitted on 24 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A breakthrough for prepaid payment: End to end token
exchange and management using secure SSL channels

created by EAP-TLS smart cards
Pascal Urien, Marc Pasquet, Christophe Kiennert

To cite this version:
Pascal Urien, Marc Pasquet, Christophe Kiennert. A breakthrough for prepaid payment: End to end
token exchange and management using secure SSL channels created by EAP-TLS smart cards. CTS,
2011, United States. pp.476 - 483, �10.1109/CTS.2011.5928726�. �hal-00673667�

https://hal.science/hal-00673667v1
https://hal.archives-ouvertes.fr

A Breakthrough for Prepaid Payment: End to End Token Exchange and

Management Using Secure SSL Channels Created by EAP-TLS Smart Cards

Pascal Urien
Telecom ParisTech

23 av. d’italie, Paris, France
pascal.urien@telecom-

paristech.fr

Marc Pasquet
GREYC CNRS UMR 6072

laboratory, Higher Education
National Engineering School

of Caen, France
marc.pasquet@ensicaen.fr

Christophe Kiennert
EtherTrust

62bis rue Gay Lussac, Paris,
France

christophe.kiennert@ethertru
st.com

ABSTRACT

In this paper we present an innovative architecture for
prepaid services. Digital tokens are securely exchanged
between EAP-TLS smart cards used both by merchant
and customer. We describe the global framework that
comprises a back-office server delivering tokens, a front-
office server collecting tokens from merchant terminal,
merchants and customers equipped with smart cards. We
detail data exchange choreography and discuss
performances issues for the experimental platform built
with commercial devices.

KEYWORDS: Security, EMV, TLS, WEB, Smart Card

1. INTRODUCTION

Prepaid facilities refer to services bought in advance;
from a legal and practical point of view, they are very
different from fiduciary money.

Fiduciary money (coming from the Latin fiducia meaning
confidence or trust), is typically a paper certificate
including some typographic authenticity proofs
(banknote…) used to acquire any goods. As an
illustration the US dollar could be converted in gold until
1971.

Prepaid services (see [1] for a more detailed analysis)
target a specific class of consumer goods, which have
been (pre) paid before their purchase.

We divide prepaid systems in two classes, centralized and
distributed.

Centralized architectures, such as phone prepaid calls
[14], deal with serial numbers, typically printed on
vouchers, and hidden by a scratch area. The serial
number lifecycle is managed by a database, whose
interface may be a RADIUS server. The user is registered
in the system; his account is credited with the value
associated with the serial number, and afterwards is
managed by on-line facilities.

In distributed infrastructures, prepaid transactions are
performed off-line. The customer generally gets a
voucher, with a serial number and some typographic
authenticity proofs. The serial number may include
cryptographic digits, typically computed with a signature
algorithm. As an illustration Cheque Dejeuner, a French
company specialized in prepaid services, delivered (in
2006) vouchers to 15 millions of customers, for an
amount of 2,6 billions €.

In this paper we present a distributed architecture that
aims at replacing printed tickets by digital tokens,
securely exchanged [5] between smart cards. These
tamper resistant devices are widely used for electronic
payments, mainly in the EMV framework [4]; they are
also deployed as electronic purse [15] in Europe, for
micro-payments (a few €) operations.

The central idea of our proposal is to establish secure SSL
tunnels between smart cards, or between smart cards and
SSL servers. SSL [8] [9] is the de facto standard for the
Internet security; it is the cornerstone of the e-Commerce.
Digital tokens are provisioned from back office servers.
They are exchanged via customers and merchant smart
cards. They are cleared through sessions between
merchant smart cards and front office servers.

978-1-61284-639-2/11/$26.00 ©2011 IEEE 476

This paper is organized according to the following plan.
Section two introduces payment systems. Section three
unveils our new prepaid framework. Section four presents
EAP-TLS smart cards and performances issues. Finally
section five concludes this paper.

2. ABOUT PAYMENT SYSTEMS

According to [1] "Commerce always involves a payer and
a payee – who exchange money for goods of services –
and at least one financial institution – who links bits to
money". Generally two financial entities are involved in a
transaction, an issuer acting for the payer, and an
acquirer used by the payee (frequently refereed as the
merchant).

2.1. About card transaction

A payment card transaction usually consists of two steps
[2], transaction flow and clearing and settlement.
Depending on the card type payer and payee may be
credited / debited according to different policies.

The transaction flow is used for authorization purpose.
Merchant-acquirer and issuer bank are connected via a
secure payment card network (PCN) managed by card
companies. Some of them (like American Express) may
also play the role of acquirers. The merchant collects
information about the card (number, date of expiry, type,
etc.) via a terminal device, and sends it to the acquirer.
This latter forwards these data (but this is not always
mandatory) to the issuer financial institution (through the
PCN) that checks the account status. A response is
returned to the acquirer, which upon success, delivers an
authorization code to the merchant terminal.

The Clearing and Settlement process deals with payment
operations and funds transfer, typically occurring within a
few days.

2.2. Security Issues

The payment card industry data security standard (or PCI
DSS [3]), specifies security requirements dispatched in six
main groups.

1- Build and Maintain a Secure Network, by deploying
secure physical infrastructure (firewall…) and logical
protections (Virtual Private Networks…).

2- Protect Cardholder Data, by using cryptographic
means (strong encryption…) for data storage and
transmission.

3- Maintain a Vulnerability Management Program, by
deploying anti-virus software, updating operating systems
with security patches, developing secure WEB
applications.

4- Implement Strong Access Monitor Control Measures,
by avoiding passwords for access control and using two
factors authentications tokens or biometric means,
especially for operations dealing with cardholder data.

5- Regularly Monitor and Test Networks, by tracking and
monitoring accesses to the network and by regularly
testing system security and processes.

6- Maintain Information Security Policy, which targets
information security for both employees and contractors.

2.3. The EMV Use Case.

EMV acronym comes from Europay MasterCard and
Visa, the three companies that in 1994 initiated this
standard [4]. Today most of electronic payments are
performed with EMV cards. In 2009 more than 944
million EMV compliant chip-based payment cards were
deployed in the world.

In non electronic payment, card information (number,
validity date…) is read from the magnetic strip. In the
EMV technology a tamper resistant micro-controller (a
smart card), stores cardholder data, but also supports
additional security features.

The card is equipped with an issuer certificate, and
contains a signature (called the SSAD, Signed Static
Application Data) of the embedded information,
computed with the associated private key.

The device optionally includes an individual certificate
(delivered by the issuer), and a private key, which proves
the electronic chip authenticity thanks to a
challenge/response mechanism, called DDA (dynamic
authentication).

The EMV card generates application cryptograms (AC)
generally based on a triple DES algorithm working with a
112 bits secret key.

A transaction is initiated by the merchant terminal, via a
GENERATE AC command (ARQC, Authorization
Request Cryptogram), conveying various parameters such
as the amount or the date. Upon success, the device
returns a cryptogram data information (CDI).

The merchant forwards an authorization request to the
acquirer that comprises the ARQC, the CDI, and

477

additional attributes. Depending on the response, the
terminal indicates its decision to accept or decline the
transaction in a second GENERATE AC command.

The card generates a Transaction Certificate (TC) for an
approval or an Application Authentication Cryptogram
(AAC) for a decline.

The merchant transmits this notification to the acquirer
via a confirmation message.

The datagram collected by the first GENERATE AC
command, indicates if a PIN was successfully given by
the cardholder. This mechanism enforces a dual factor
authentication, i.e. a cryptographic key stored in the chip
and a PIN known by a human user.

2.4. Prepaid Systems

As mentioned by [1] in prepaid systems, "a certain
amount of money is taken away from the payer, before
purchases are made". This mode of operation works for
electronic purse and bank checks.

3. A NEW PREPAID FRAMEWORK

Figure 1. Main Components

3.1. Overview

The customer generally gets about twenty vouchers for a
month. Each has a serial number, a value date, a value
(e.g. 7.5 €) and some typographic authenticity proofs. The
serial number may include cryptographic digits, typically
computed with a signature algorithm. The Front End
issues the vouchers by delegation of the Back End. These
vouchers are sent to the card, by the way of a secure
channel and are stored in the chip, through the terminal.
Then the card is able to use these vouchers, but only one
or two each time. The voucher(s) is (are) sent by the card
to the Merchant terminal, by a secure channel, to be
stored in the chip of the SAM (Secure Access Module). At
the end of the day, the different vouchers stored during
the day in the SAM are collected by the Front End by a

secure channel, verified and destroyed. The value is used
to credit the merchant through the Back End.

3.2. Bearer

The cardholder belongs to a company that offers him a
value added service we can call “lunch voucher”. This
voucher is paid half by the company, half by the bearer. It
can be used to pay a part, or the totality, of the bearer’s
lunch. The bearer’s company buys the vouchers to a
specialized company as Cheque Dejeuner, in Europe. The
former system delivered these prepaid vouchers in paper
checks. They were sent to the company and given to the
bearer who may use no more than two vouchers per day.
The vouchers are accepted as lunch payment in a large
number of European restaurants.
We have designed the new electronic architecture to be as
close as possible to the former one, for two main reasons:
in one hand to protect the value added chain of the
specialized company, and in another hand not to confuse
the bearers.
The bearer could use an Internet connection to know how
many tokens are still available.

3.3. Smart Card

The smart card is issued by the specialized company from
its Back End and send to the Bearer’s company which
delivers it to the cardholder. This Smart Card is empty
and has to be inserted in the Merchant terminal to be
filled with tokens. A technical description of the card is
given in § 4.1.

3.4. Tokens

Tokens are issued by the Front End, which gets a list of
tokens to issue from the Back End. The life cycle of the
token is: existence in the Back End, creation in the Front
End, life in the bearer’s Smart card or in the Merchant’s
SAM, destruction in the Front End and trace of existence
in the Back End.
The token is made of: an X509 certificate and a record
containing the voucher value (the bearer’s company can
choose any values for the voucher from 1€ up to 20€) in
clear and seal in the certificate. Thus, the value can be
read by the merchant terminal and compared in the Front
End after the daily collection.
Tokens are stored only in secure devices: Smart card,
SAM, HSM (Hardware Security Module).

478

3.5. Merchant Terminal

The merchant terminal dialogs with the bearer’s card to
accept the payment with tokens. The terminal verifies the
value date, the value of the token and gets one or two
tokens as ordered by the terminal dialog with the bearer.
The PIN code is not necessary at this level. This terminal
is contactless for payments by tokens and uses its contact
capability to fill the card with tokens (when the card is
empty, the cardholder enters his PIN code, the terminal
calls the Front End and lets the smart card create a secure
channel to transfer the tokens from the Front End to the
smartcard).
The merchant terminal assures the transmission flow:
from the smartcard to the SAM plugged under the
terminal, from this SAM to the Front End, from the Front
End to the smartcard as shown in figure 2.

Figure 2. Token exchanges

A phone line, a GSM line or an Internet connection,
connects the Merchant terminal to the Front End either.
Today the terminals are specific but in the future software
will be included in EMV POS to limit the implementation
costs.

3.6. Issuer/Acquirer Front End

The Front End is:

• Issuer of tokens. In fact, the Front End is
connected to a Hardware Security Module. This
HSM creates tokens, which are stored encrypted
in the Database of the Front End (FE). Only the
registered cards can be fulfilled by the
corresponding Tokens (cards and tokens belong
to the bearer’s company).

• Acquirer of Merchant’s Terminal data. The
terminal phone calls one time each day the FE to
perform the collection of tokens stored in the
SAM. The FE can collect only registered
terminals.

If the verification of the token is valid, the FE destroys
the different tokens and advises the Back End to credit
the merchant account.
Security software manages fraud prevention.

3.7. Issuer Back End

The Back End (BE):

• Issues the different cards: bearer’s cards and
SAM, as well as the PIN code (the cards are
personalized with the files issued from the Back
End)

• Manages the different flows: token creation,
accounts credit and debit.

A specific Web access for the Bearer, the Bearer’s
Company and the Merchant is interfaced from the Back
Office (the Back End is considered as a part of the Back
Office of the specific company).

4. EAP-TLS smartcards

An EAP-TLS [11] [12] [13] device establishes a secure
TLS tunnel between the bearer and the merchant terminal.
The card located in the terminal is called the Secure
Access Module (SAM). It supports server and client
resources, is used first to collect tokens from the customer,
and second to backup these elements to the front office
server.

4.1. About Smartcards and EAP-TLS Devices.

A smart card [5] is a tamper resistant microcontroller,
whose size is about 25 mm2, which includes a CPU (8, 16,
32 bits), and various type of memories such as ROM (a
few hundred KB), RAM (about 10 KB), and non volatile
memory (FLASH or E2PROM, about 128 KB). Security
is enforced by multiple hardware and software
countermeasures. About 5 billions of these electronics
chips were produced in 2010, for telecommunication
applications (SIM cards, 70% of the market) or financial
transactions (EMV cards, 20% of the market). Most of
these components run a Java Virtual Machine (JVM) [6],
and therefore may execute applications written for
Javacards with a subset of the Java language.

The SSL protocol (and TLS, a modified version
standardized in 1999 by the IETF) is the cornerstone for
secure exchanges over the Internet [8] [9]. Everyday
billions of net surfers establish protected HTTP sessions
for various purposes such as eMail reading, or electronic
commerce transactions. This protocol has been deeply
analyzed by the research community and enforces strong
security; it supports a wide range of cryptographic
algorithms such as asymmetric calculations for key
exchanges (RSA, DH, ECC...), symmetric functions for
data privacy (RC4, 3xDES, AES) and hash procedures
(MD5, SHA1, SHA256) for ephemeral keys generation.

Front End
HSM

Merchant’s
SAM

Bearer’s
smartcard

479

Although TLS messages are usually shuttled by the TCP
transport, a new protocol (EAP-TLS) was invented in
1999 [10] in order to establish TLS sessions without TCP
flavors, according to a datagram paradigm.

EAP-TLS smartcards [11] [12] [13] were initially
designed for access control in Wi-Fi networks, in an
IEEE 802.1x infrastructure. They may be used both on
the client terminal, and on the authentication server side
(typically a RADIUS server); they dialog through EAP
packets and setup TLS tunnels.

EAP-TLS applications are written for javacards, the code
sizes are respectively 20KB and 25 KB for client only
and client/server applet.

4.2. Performances Issues

A TLS session is opened according to two different
modes: full and resume.

A full session is opened via a four way handshake; it
usually deals with PKI facilities. The server delivers his
certificate (and those of the Certification Authority), the
client computes a PreMasterKey and forwards it
encrypted with the server public key (found in its
certificate). Optionally, but in our case we always
implement this facility, the client is equipped with a X509
certificate sent to the server and authenticated by a
signature generated with the client private key.

A resume (or abbreviated session) re-uses a previously
computed MasterSecret by a full session. It works
according to a three ways handshake and only deals with
symmetric cryptographic procedures.

We need to perform a transaction between the cardholder
and the merchant terminal in an acceptable amount of
time, five seconds seems a realistic limit.

EAP-TLS applications are written for javacards; these
components are equipped with crypto-processors offering
RSA facilities, but hash functions are provided by
procedures executed by a modest CPU.

RSA
Pub
1024

RSA
Priv
1024

MD5
/bloc
64B

SHA1
/bloc
64B

3xDES
/bloc
8B

AES
/bloc
16B

RC4
/byte

25 550 0,50 0,90 2,10 2,60 0,50

Figure 3. Computing Performances (in ms)

Basic cryptographic performances are illustrated by figure
3, for the best Javacard available on the market that we

could test. Furthermore we notice a data throughput of
about 6000 Bytes/s.

The opening of a full session based on 1024 bits RSA
cryptography, requests 2,0s. It exchanges 2,500 bytes,
whose transfer costs 0,40s. About 230 MD5 and SHA1
calculations are performed (dealing with 64 bytes blocs),
which consumes 0,32s. One RSA operation with the
private key, and two RSA procedures with public keys,
are computed in 0,60s. The sum of the previously cited
operations is 1,32s; the remaining time (0,68s = 2,00 -
1,32) is burnt by the java code execution.

The opening of a resume session costs 0,50s. It requires
the exchange of 250 bytes (0,04s), and the calculation of
75 MD5 and SHA1 that consumes 0,11 s. The remaining
time (0,35s) is needed by the java code execution.

Because both the customer and the merchant terminal use
an EAP-TLS device, a session opening costs 4,0s or 1,0s
depending on the operating mode either full or resume.

Once the secure TLS channel has been established,
messages exchanged by the client and the server are
encrypted with the selected algorithm and integrity is
enforced by a HMAC procedure. According to figure 3,
we observe that the computing time is mostly consumed
by encryption and decryption operations (in other word
hash calculations have a second order effect). As an
illustration, for a classical RC4, HMAC-MD5 cipher suite,
the transfer of 1000 bytes burnt 500ms for encryption,
16ms for MD5 hash, and 170ms for data transmission.

4.3. A Transaction Scenario

Figure 4. A Transaction Scenario

480

As described in [11], EAP messages are transported by
ISO7816 [5] packets whose maximum size is about 256
bytes; consequently a segmentation/reassembly process is
managed by the ISO7816 driver.

When the merchant terminal starts a new transaction (see
annex I for packets details) it performs a reset both on
client and SAM cards (see figure 4).

Afterwards according to the EAP standard it sends an
EAP-Identity.request message to the client, which returns
an EAP-Identity.response, forwarded to the server.

This later produces an EAP-TLS-Start.request packet that
notifies the beginning of an EAP-TLS session.

Thereafter TLS messages are shuttled in EAP-TLS
packets, the client receives requests and transmits
responses, while the server works in a symmetric way.

Upon success, the server forwards a last packet, called
EAP-Success, which indicates that a new SSL session has
been opened.

At this step client and server devices are ready to
exchange encrypted information in EAP-TLS packets.

The terminal delivers a ServerTrigger message, expressed
as an EAP-TLS-ACK.response. The SAM builds a
command encrypted according to the negotiated
CipherSuite, and encapsulated in an EAP-TLS.request
packet.

Thereafter commands used for token exchange are
encapsulated by EAP-TLS requests (delivered by the
server) and responses (produced by the client),
transparently conveying TLS messages.

4.4. Connection to the Front End server

This scenario (see figure 5) occurs when the SAM needs
to backup previously collected tokens to the front office.
Packets are detailed in annex II.

The terminal manages the TCI/IP connectivity thanks to
the well know sockets API. It opens a TCP session with
the remote Front Office server on the port 443.

It sends a Reset command to the SAM, and an EAP-TLS-
Start.request packet indicating the beginning of the EAP-
TLS session. The SAM returns an EAP-TLS.response
packet transporting the first TLS message (the TLS Client
Hello Message).

A software bridge converts EAP-TLS.response packets in
outgoing TLS messages (forwarded to the remote server),
and ingoing TLS messages (received from the remote
server) in EAP-TLS.request packets (sent to the SAM)

If a TLS session is successfully opened, the terminal
sends a ClientTrigger message, expressed as an EAP-
TLS-Ack.request packet. The SAM builds a command,
encrypted according to the negotiated CipherSuite, and
encapsulated in an EAP-TLS.response.

Afterwards the software bridge transforms EAP-TLS
response in a TLS message, and a secure dialog occurs
between the SAM and the Front Office in order to extract
tokens.

Figure 5. Connection to the Front Office server

5. CONCLUSION

In this paper we have presented an innovative architecture
for prepaid services. Experimental platform demonstrated
that performances are compatible with real time
constraints. The next step targets the deployment of this
system for a set of beta customers.

We strongly thank Cheque Dejeuner Group for their help.
The deployment will be realized on a set of their
customers.

ANNEX I

This annex illustrates an EAP-TLS dialog, in the resume
mode between the client and the SAM. EAP-TLS header
is underlined, TLS message is in bold.

Commands sent to smart cards are called APDUs, and are
defined by the ISO7816 standard. Request messages have
a prefix, whose length is five bytes, respectively noted

481

CLA INS P1 P2 P3. The P3 attribute is the size of the
body, or the size of the requested information. Response
messages have an optional body, and end by a two bytes
status; the hexadecimal value 9000 indicates a successful
operation. EAP-TLS messages [10] begin by a four bytes
prefix noted, code, identifier, and length. Code defines
the class of the message: 01 for request, 02 for response
and 03 for success Identifier is a label used both for
requests and responses. The length attribute is the EAP
message size. The fifth byte indicates the type of
operation, 01 is used for Identity and 0B for EAP-TLS.
The sixth byte (the flag attribute) gives more details about
the EAP-TLS packet structure. The hexadecimal value 80
is followed by the content size coded by a 32 bits number;
a null value means that no options are used. The content
of an EAP-TLS packet is a TLS message whose format is
precisely detailed in [9].

The Terminal sends Reset to the Client.
Tx: A0 19 10 00 00
Rx: 90 00

The Terminal sends Reset to the SAM.
Tx: A0 19 10 01 00
Rx: 90 00

The Terminal sends EAP-Identity.request to the Client.
Tx: A0 80 00 00 05 01 A5 00 05 01

The Terminal sends EAP-Identity.response to the SAM.
Tx: A0 80 00 00 0B 02 A5 00 0B 01 63 6C 69 65 6E 74

The SAM sends EAP-TLS-Start.request to the Terminal.
Rx: 01 A6 00 06 0D 20 90 00

The Terminal sends EAP-TLS.response to the SAM.
Tx: A0 80 00 00 5C 02 A6 00 5C 0D 80 00 00 00 52 16
03 01 00 4D 01 00 00 49 03 01 4D 08 FA F0 06 D4
E5 C2 80 74 D6 54 54 3D 96 04 6D D1 A9 4D 8B 98
AF 5C 49 8D EB 1A C8 96 5A 42 20 57 25 5C 81 71
17 79 C8 E1 44 1A 51 6E FD 53 21 32 EC 2D 07 F8
75 96 36 90 DA BC 37 45 B1 9B C0 00 02 00 04 01
00

The SAM sends EAP-TLS.request to the Terminal,
Rx: 01 A7 00 84 0D 80 00 00 00 7A 16 03 01 00 4A 02
00 00 46 03 01 4D 08 FA F0 6C AC 27 C3 26 C8 0E
46 F7 84 08 A6 45 B8 EC 0D 57 37 93 4C 53 E5 01
19 83 17 25 E3 20 57 25 5C 81 71 17 79 C8 E1 44
1A 51 6E FD 53 21 32 EC 2D 07 F8 75 96 36 90 DA
BC 37 45 B1 9B C0 00 04 00 14 03 01 00 01 01 16
03 01 00 20 A7 3D 21 C8 98 95 A1 B6 ED 74 C2 F0
D1 9D 04 E0 75 DC C1 CF 67 0A 0E B3 9B 90 87 CD
A6 64 BF AD 90 00

The Terminal sends EAP-TLS.response to the SAM.
Tx: A0 80 00 00 35 02 A7 00 35 0D 80 00 00 00 2B 14
03 01 00 01 01 16 03 01 00 20 B9 3C 03 09 E1 F9
A 60 C0 D9 F3 28 51 DF D5 6F 66 29 60 23 5A 10
0A E1 A1 67 A2 F9 70 73 81 C7

The SAM sends EAP-Success to the Terminal.
Rx: 03 A7 00 04 90 00

The Terminal sends the Server Trigger to the SAM.
Tx: A0 80 00 00 06 02 A8 00 06 0D 00

The SAM sends EAP-TLS.request to the Terminal. One
data byte is sent encrypted and HMACed by the SAM.
Rx: 01 A9 04 1F 0D 80 00 00 00 16 17 03 01 00 11 AB
6C B3 96 B4 D9 59 2B 03 94 9F C6 13 F2 E4 D1 81
9000

ANNEX II

This annex illustrates a TLS connection, in the resume
mode, between the SAM and the Front Office server.
EAP-TLS header is underlined, TLS message is in bold.

The Terminal sends Reset to the SAM.
Tx: A0 19 10 00 00
Rx: 90 00

The Terminal sends EAP-Identity.request to the SAM.
Tx: A0 80 00 00 05 01 A5 00 05 01

The SAM sends EAP-Identity.response to the Terminal.
Rx: 02 A5 00 0B 01 63 6C 69 65 6E 74

The Terminal sends EAP-TLS-Start.request to the SAM.
Tx: A0 80 00 00 0A 01 A6 00 06 0D 20 6E 07 16 4D

The SAM sends EAP-TLS.response to the Terminal.
Rx: 02 A6 00 5C 0D 80 00 00 00 52 16 03 01 00 4D 01
00 00 49 03 01 6E 07 16 4D 0F FE F3 77 29 E7 B2
75 02 F7 BE 89 6C CB CB 52 15 9A CB EC 9B 38 C7
F9 3E 45 E8 32 20 FC F1 46 8E 74 CF F7 44 17 78
9B A2 C5 C9 A1 97 A9 2D BC D1 58 7B 0B BC 63 73
AA 2A EA CE 97 88 00 02 00 04 01 00 90 00

The Terminal sends EAP-TLS.request to the SAM.
Tx: A0 80 00 00 80 01 A7 00 80 0D 00 16 03 01 00 4A
02 00 00 46 03 01 4D 16 07 6E E7 AB C0 25 F6 E5
0B DA 97 49 7D 31 0F 6E 9F 3F EA FD 68 75 CB E8
50 86 A5 27 8B 0E 20 FC F1 46 8E 74 CF F7 44 17
78 9B A2 C5 C9 A1 97 A9 2D BC D1 58 7B 0B BC 63
73 AA 2A EA CE 97 88 00 04 00 14 03 01 00 01 01
16 03 01 00 20 C6 A3 AF 49 D2 8E 06 97 2A 94 6C
4C 9D 69 A5 DA 9D 29 41 DB 57 31 47 23 72 42 C4
0F 0A 8A FD 66

482

The SAM sends EAP-TLS.response to the Terminal.

Rx: 02 A7 00 35 0D 80 00 00 00 2B 14 03 01 00 01 01
16 03 01 00 20 40 F9 AF FF D9 E9 4F 8D 58 24 D1
A9 67 36 D1 34 C2 F3 D7 EC 56 D3 46 F7 9E D7 5B
32 43 7F D9 E0 90 00

The Terminal sends the trigger command (EAP-TLS-
ACK.request) to the SAM.
Tx: A0 80 00 00 06 01 A8 00 06 0D 00

The SAM sends EAP-TLS-ACK.response to the Terminal,
indicating that no data are available.
Rx: 02 A8 00 0A 0D 80 00 00 00 00 90 00

The Terminal sends EAP-TLS.request to the SAM,
including four bytes of data, HMACed by the TLS server.
Tx: A0 80 00 00 21 01 A9 00 21 0D 00 17 03 01 00 16
E2 F1 90 92 A8 87 D3 0E CC 9E 41 DD 39 77 0E 7A
39 D6 E8 ED 30 4A

The SAM sends EAP-TLS.response to the TLS server,
including four bytes of data, HMACed by the SAM.
Rx: 02 A9 00 25 0D 80 00 00 00 1B 17 03 01 00 16 CA
2C B8 9F 8A 43 A7 33 D0 2E DA 76 0D 27 A8 0A 14
A6 02 25 3E 19 90 00

REFERENCES

[1] Asokan, N.; Janson, P.A.; Steiner, M.; Waidner, M.; "The
state of the art in electronic payment systems", Computer
Volume: 30, Issue: 9, 1997

[2] Jing Liu; Yang Xiao; Hui Chen; Ozdemir, S.; Dodle, S.;
Singh, V.; "A Survey of Payment Card Industry Data Security
Standard", Communications Surveys & Tutorials, IEEE
Volume: 12, Issue: 3, 2010

[3] PCI Security Standard Council, "Payment Card Industry
Data Security Standard", http://www.pcisecuritystandards.org.
September 2006.

[4] EMV Books, 1 - Application Independent ICC to Terminal
Interface Requirement and Application Selection, Book 2 -
Security and Key Management, Book 3 - Application
Specification, Book 4 - Cardholder, Attendant, and Acquirer
Interface Require, www.emvco.org

[5] T.M. Jurgensen, et al., SMART CARDS: THE
DEVELOPER’S TOOLKIT, Prentice Hall, 2002.

[6] Z. Chen, JAVACARDTM TECHNOLOGY FOR SMART
CARDS: ARCHITECTURE AND PROGRAMMER’S, The
Java Series, Addison-Wesley, 2002

[7] M. Pasquet, "La sécurisation d’un système informatique
complexe: le cas de la monétique", Habilitation à Diriger des
Recherches, France, November 2008.

[8] E. Rescorla, SSL AND TLS DESIGNING AND BUILDING
SECURE SYSTEMS, Addison-Wesley, 2001

[9] RFC 2246, The TLS Protocol Version 1.0, IETF, 1999

[10] RFC 2716 "PPP EAP TLS Authentication Protocol ", 1999

[11] P.Urien, G.Pujolle, "Security and Privacy for the next
Wireless Generation", International Journal of Network
Management, IJNM, Volume 18 Issue 2 (March/April 2008),
WILEY

[12] P. Urien, "Collaboration of SSL smart cards within the
WEB2 landscape", Collaborative Technologies and Systems,
2009. CTS'09. International Symposium, May 2009

[13] P.Urien, "EAP Support in Smartcard", draft-urien-eap-
smartcard-20.txt, IETF DRAFT, 2011.

[14] Cakaj, S.; Shefkiu, M.; Haxha, S.; "Implementation of
prepaid services in Kosovo's fixed network", ELMAR '09.
International Symposium

[15] CEPSCO, Common Electronic Purse Specification,
Technical Specification version 2.2, 2000

483

