
HAL Id: hal-00673665
https://hal.science/hal-00673665v1

Submitted on 24 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Innovative Solution for Cloud Computing
Authentication: Grids of EAP-TLS Smart Cards

Pascal Urien, Estelle Marie, Christophe Kiennert

To cite this version:
Pascal Urien, Estelle Marie, Christophe Kiennert. An Innovative Solution for Cloud Com-
puting Authentication: Grids of EAP-TLS Smart Cards. ICDT, 2010, Greece. pp.22-27,
�10.1109/ICDT.2010.12�. �hal-00673665�

https://hal.science/hal-00673665v1
https://hal.archives-ouvertes.fr

An Innovative Solution for Cloud Computing
Authentication: Grids of EAP-TLS Smart Cards

Pascal Urien

Telecom ParisTech
Pascal.Urien@telecom-paristech.fr

Estelle Marie
EtherTrust

Estelle.Marie@EtherTrust.com

Christophe Kiennert

Telecom ParisTech
Christophe.Kiennert@telecom-paristech.fr

Abstract - The increase of authenticating solutions based on
RADIUS servers questions the complexity of their
administration whose security and confidentiality are often at
fault especially within Cloud Computing architectures. More
specifically, it raises the concern of server administration in a
secure environment for both the granting access’ company and
its clients. This paper aims to solve this issue by proposing an
innovative paradigm based on a grid of smart cards built on a
context of SSL smart cards. We believe that EAP-TLS server
smart cards offer the security and the simplicity required for
an administration based on distributed servers. We specify the
design of a RADIUS server in which EAP messages are fully
processed by SSL smart cards. We present the scalability of
this server linked to smart card grids whose distributed
computation manages the concurrence of numerous
authenticating sessions. Lastly, we relate the details of the first
experimental results obtained with the RADIUS server and an
array composed of 32 Java cards, and demonstrate the
feasibility and prospective scalability of this architecture.

Keywords- Security, Smart card, EAP, TLS, AAA, RADIUS,
Cloud Computing

I. INTRODUCTION
Nowadays RADIUS (Remote Authentication Dial In

User Service) protocol [16] is widely used by Internet
Service Providers (ISPs) or companies to grant access to
networks services. While it is very difficult to attack or
threaten a RADIUS server if it has been properly
implemented and secured, it is rather impossible to tell to
which extent those who manage this server can be trusted,
especially since the server private key is stored on the server
machine and can be easily stolen or the exchanges
eavesdropped by those who hold the proper rights. This
concern is raised by nowadays Cloud Computing technology
where the distribution of server can be critical when third-
parties are in charge of server management and when no one
knows for sure who is in charge of the server’s credentials or
to which point the person in charges can be trusted,
especially in term of industrial espionage. The SSL smart
cards grid has been designed to cope with the inherent
security issues which are naturally associated to a distributed
architecture such as Cloud Computing, since a unique X509
certificate and the SSL stack are securely embedded in each
SSL smart card. In fact, smart cards are reputed for the
physical security they provide considering it is infeasible to
easily access their content or their computing. In addition,
the fact that the SSL stack is embedded in the smartcard
offers an interesting practicality regarding TLS: would a new

TLS flaw be discovered and patched, the smartcards can be
conveniently loaded with a more secure and up-to-date TLS
stack. Lastly, in term of management, Certificate handling is
totally independent from Radius management. As such the
server certificates can be updated at will, and the scalability
of the server can easily be modulated with a cluster of grids
whose number depends of the estimated number of clients.
This makes this EAP-TLS smart card grid a convenient
paradigm, albeit its performances are reasonable yet far from
those of traditional computers.

This paper is organized as follows. Section 2 presents a
brief state-of-art of related works. Section 3 introduces the
TLS smart card concept. In Section 4, we describe the
smartcard enabled RADIUS server. In section 5, we give an
overview of the platform design and of its performance
based on a grid of 32 cards remotely accessed. Finally,
section 6 concludes this paper.

II. STATE OF ART
Most of RADIUS [16] servers support the EAP-TLS [13]

[14], i.e. a transparent encapsulation of the TLS protocol
[12], working with mutual authentication. Client and server
are equipped with X509 certificates and their associated
RSA private keys. Our framework merges two innovative
technologies: EAP-TLS server smart cards and clusters of
such devices, via cloud services.

A smart card [1] is a tamper resistant device, including
CPU, RAM and non volatile memory. Packets exchanged
to/from this device are named APDUs and are detailed by
the ISO7816 standard. Security is enforced by multiple
physical and logical countermeasures. Most of these
electronic chips support a Java Virtual machine (JVM) and
execute software written in this programming language [2]..
The use of smart cards in TLS authentication has now a
rather long history and has been largely developed according
to different models.

Classical frameworks deal with pkcs#15 [3] tokens that
store certificates, and compute RSA procedures.

In 2000, a first smart card performing SSL operations
was proposed in [4]. However, the weak computing
resources of the Java Cards of that time rendered infeasible a
full implementation.

Later on, a patent [5] described smart card computing
facilities performing functions for TLS exchange, such as
certificates checking or signature with private key.

2010 Fifth International Conference on Digital Telecommunications

978-0-7695-4071-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDT.2010.12

22

EAP-TLS smart cards, i.e., trusted computing platform
running EAP procedures were proposed in 2004 [6], and are
detailed later on.

The first grid was designed in [7] and was working with a
cluster of java cards. A Mandelbrot set was generated thanks
to the combined calculation of smart cards.

Lastly, the use of java cards, processing EAP messages in
RADIUS architecture, was previously discussed in [8] [9].
Figure 1 presents the first prototype structure, organized
around an USB hub. The RADIUS code is stored in a
FLASH disk, and EAP server smart cards are inserted in
USB tokens. This component works according to a plug and
play paradigm.

Figure 1. RADIUS server [8], based on EAP-TLS smart cards

In this paper, we propose an architecture that splits the
RADIUS server in two parts (see figure 2). First a pure
software bloc processes the RADIUS protocol. Second a
smart card grid, supports up to four hundred EAP-TLS smart
cards, and comprises a mother board and slave extensions,
each of them supporting up to 32 smart cards. This electronic
rack is usually employed by mobile phone manufacturers
who wish to check their compatibility with SIM cards issued
by multiple operators. Every smart card is associated with a
TCP socket, EAP-TLS procedure is fully managed by a
tamper resistant device, and each socket acts as a virtual link
used to exchange data with the RADIUS server.

Figure 2. The smart card grids architecture

The main idea behind this architecture is to deploy trust
as a service for cloud infrastructures. Each EAP-TLS smart
card autonomously processes the SSL protocol. Although the
authentication service is distributed over the WEB, critical

operations such as mutual authentication (either in full or
resume modes) are confined in a trusted computing platform.

III. ABOUT EAP-TLS SMART CARDS
EAP [15] is a universal and flexible authentication

framework. Because it can transport about any authentication
protocol, it solves the interoperability concerns that their
number and their disparity had risen. Formally, EAP
protocol is built on three kinds of messages: requests
delivered by servers; responses returned by clients; and
notifications issued by servers in order to indicate success or
failure of authentication procedures.

The EAP smart cards functionality and binary encoding
interface are detailed in [11]. These devices process EAP
methods [15] and act as server or client entity. They
communicate via a serial link, whose throughput ranges
between 9600 and 230,000 bauds. There are two classes of
operations, sending data (writing to smart card) and
receiving data (reading from smart card); information is
segmented in small blocks (up to 256 bytes) named APDUs,
described by the ISO 7816 standard.

NAS EAP-TLS

Server
RADIUS
Server

EAP-Identity.resp (25 Bytes)

EAP-TLS.req/Start (10 Bytes) 35 ms Access-Challenge

EAP-TLS.req/Ack

6 APDUs
440ms

Access-Request

4 APDUs
4300 ms

EAP-TLS.resp/Server-Finished (53 B)

EAP-TLS.resp/Client-Finished (990B)

EAP-TLS.resp/ACK (6 Bytes)

EAP-Success (4 Bytes) 285 ms

Total : 5080ms

Access-Request

EAP-TLS.req/Server-Hello (1310 B)
Fragment #1

Access-Challenge

EAP-TLS.req/Server-Hello (130B)
Fragment#2

GET-MSK-Key (64 Bytes)

Access-Request

Access-Challenge

Access-Request

Access-Success

Access-Request EAP-TLS.resp/Client-Hello (60 Bytes)

10 ms

Access-Challenge
10 ms

T11

T1

T2
T3

T4

T5

T6

T7

T8

T9

T10

Figure 3. Choreography and timings observed with an EAP-TLS smart

card server

In this paper we focus on arrays of EAP-TLS smart cards
deployed in grids. These devices run the OpenEapSmartcard
JAVA open stack, introduced in [10], and which comprises
four logical components (see figure 1):

1. The Engine Object is mostly in charge of the IO
management (i.e. APDUs exchange).It is also responsible of
EAP messages segmentation and reassembly. In fact, the
APDU payloads maximum length is 255 bytes for input data
and 256 bytes for output data, while EAP packets maximum
length is about 1300 bytes of data. Consequently, EAP
packets are split into several ISO 7816 units, and the Engine
entity parses them in order to rebuild the proper EAP packet.

RADIUS
Server

GRID
Server

EAP-TLS
Smart Card
Array

Internet

23

2. The Credential Object holds all the credentials
required by EAP-TLS method, that is to say: the
Certification Authority certificate, the server Certificate and
its associated private key. The EAP-TLS State Machine is
reset and its according method is initialized with appropriate
credentials, each time an EAP Identity.Response message is
received. This object also works as an Identity module. For
now, it only holds a unique server Identity but one could
possibly load different server Identities issued by several
companies which, upon success, would grant different kind
of access or services depending of the Client’s Identity and
its subscription to one or several companies’ Network.

3- The Authentication Interface object implements all
services fulfilled by EAP-TLS methods, whose main
procedures are initialization, packet processing or MSK key
downloading.

4- Lastly, the EAP-TLS object is in charge of packets
processing, as specified in EAP standard [15]. Since TLS
packets size may exceed the Ethernet frame capacity, EAP-
TLS supports internal segmentation and reassembly
mechanisms.

Example of computing performances are illustrated in
figure 3, the EAP-TLS server runs in the GX40 java card
manufactured by the Gemalto Company. For convenience,
the EAP authentication process is divided in eleven steps; the
total procedure costs 5s (with a RSA key size of 1024 bits)
and about 2,5 Kbytes of data are exchanged.

IV. ABOUT RADIUS
RADIUS technology was developed in the nineties as an

access server authentication and accounting protocol,
massively deployed in order to solve authentication concerns
raised by the increasing number of users who aimed to reach
their Internet Service Provider by mean of modems based on
PPP protocols. It was then again largely exploited when
IEEE 802.1x architecture was introduced, for RADIUS is the
key protocol of AAA architecture (Authentication,
Authorization and Accounting) and it supports access control
mechanisms for wired and wireless infrastructures.

A. Classical Architecture
RADIUS protocol is built on two entities: the NAS or

Network Access Server which can be a Point of Presence
(POP) or an Access Point (AP), and the AS (Authentication
Server).

In our platform we deal with Wi-Fi infrastructure,
compatible with the IEEE 802.1x standard. A wireless client
is called a supplicant. Before this supplicant is authenticated
and given an IP address, the NAS rejects all frames which do
not belong to an authenticated supplicant. For this purpose,
EAP authentication messages are exchanged between the
NAS and the AS; those messages are transported by LAN or
PPP frames and are encapsulated into RADIUS datagrams
routed over an UDP/IP stack. To each type of EAP message
corresponds a RADIUS datagram (Access-Challenge,
Access-Request and Access-Accept / Access-Reject)
according to the following scenario:

- The client, or supplicant, tries to access to a network
through the affiliated NAS and issues its user’s Identity to
start the authentication procedure. This Identity is sent by the
client terminal thanks to an EAP-Identity message which is
then encapsulated by the NAS in a RADIUS Access-Request
packet and forwarded to the AS. In the case of an EAP-TLS
scenario, there is a mutual authentication therefore the user’s
identity is the subject field of its X509 certificate.

- The AS extracts and analyses the EAP message from
the RADIUS datagram and depending on the user’s Identity,
it will then process the appropriate authentication method.
Typically, user’s account information and parameters are
stored in a LDAP file accessed by the AS, and this
information determines which procedure, in our case EAP-
TLS, should be initiated to authenticate the user.

- The whole EAP session is then supervised by RADIUS
Access-Challenge packets transporting EAP requests, and
RADIUS Access-Request packets transporting EAP
responses.

- Finally, once the authentication procedure has been
finished, the EAP server delivers a notification message,
either failure or success, which is respectively encapsulated
in a RADIUS Access-Accept or Access-Reject. Upon success,
the EAP server computes a Master Session Key (MSK)
which is delivered to the AS through the Access-Accept
packet. This MSK is both shared by the client terminal and
the NAS, and is handled to calculate the session keys needed
to encrypt the exchanges between the NAS and the client.

As stated previously, the EAP server is merged within
the whole RADIUS module of AS. Most of RADIUS
software implementations use the well known OpenSSL
library in order to support the EAP-TLS authentication
procedure, which is a quite transparent encapsulation of the
TLS protocol. In our proposal though, EAP server runs in the
smart cards and EAP messages are computed by the smart
card and forwarded to the AS which then dispatches them to
the NAS.

B. Distributed Architecture
We have concluded that the benefits of implementing

EAP servers into smart cards are the following:

- The server private key is secretly stored and used by the
smart card.

- The client certificate is autonomously checked by the
EAP server.

- The SSL stack processed by the smart card is
transparent to the RADIUS and the OS in which it has been
implemented; it can be easily updated in case of major
patches of SSL.

- If the EAP client also runs in a smart card, the TLS
stack is channelled from card to card and the EAP session is
then fully processed by a couple of tamper resistant devices,
working as Secure Access Module (SAM), a classical
paradigm deployed in highly trusted financial architectures.

24

Figure 4. Structure and choreography of the test platform

However, our experimental results demonstrate so far
that the performance of our server is much slower than
classical RADIUS servers, even if it assures the
simultaneous connection of a predetermined number of
users.

Our proposed Smartcard enabled RADIUS server is
typically a classical RADIUS server which has been split
into two main components: a RADIUS authentication server
and distributed EAP servers.

The RADIUS authentication server is located on a distant
host and is in charge of the following tasks:

- It sends and receives RADIUS datagrams from and to
the NAS, thanks to UDP sockets.

- It builds or analyses RADIUS messages and more
specifically encapsulates EAP messages from the smartcard
into RADIUS datagrams forwarded to the NAS, and
reciprocally extracts RADIUS datagrams from the NAS into
EAP messages forwarded to the appropriate server
smartcard.

- It parses and builds APDUs which are communication
units used to interact with the smartcards as explained below.

- It handles the RADIUS secret and computes or checks
the associated authentication digest and attributes.

- It opens stream sockets with the smartcards grid and
associates an incoming session with a single smartcard and
its related connection.

V. PLATFORM DESIGN AND EXPERIMENTAL RESULTS
The platform we have designed for experimental purposes
and performances evaluation is represented in figure 4, and
is built on three main components: a TLS proxy based on
OpenSSL and used to simulate a reasonable amount of
802.1x clients as well as an artificial NAS dialoguing with
our AS, a RADIUS Access Server, and a java card array
remotely located and managed by a specific dedicated
proxy, which we will call card proxy for comprehension
purposes.

The TLS proxy can run up to 30-35 connections, at
which point the computer’s computation power is not strong
enough to assure a decent simulation. It is possible to run this
proxy on two different hosts in order to distribute the
connections to our RADIUS server, but we have determined
that it did not change significantly our results. The SSL
proxy accesses our RADIUS server, either remotely, or on an
internal bus if the server and the proxy are located on the

25

same host. Our SSL proxy creates a predetermined amount
of SSL connections whose TLS messages are encapsulated
into EAP packets and then into RADIUS datagrams, which
are forwarded to the RADIUS server thanks to datagram
sockets directed on port 1812.

Once it has been launched, our RADIUS AS generates a
thread on port 1812, waiting for socket connections. Each
time it receives a connection on this port, the server creates a
new thread which will initiate a connection with one of the
server smartcards according to the following procedures (see
figure 4):

- It checks the incoming datagram, parses it and verifies
it is a proper RADIUS datagram.

- It checks the attribute 79 of the RADIUS message
which corresponds to the encapsulated EAP message.

- It splits the EAP message into the appropriate number
of APDUs. The EAP message is transported by APDUs
thanks to an EAP-Process command, created for that
purpose.

- It generates an appropriate context for the APDUs so
that they shall be recognized by the card proxy, which
redirects the incoming connexion to the proper java card and
whose syntax is specific.

- It associates a RADIUS session-ID with a specific
smartcard so that each incoming TLS session is associated to
the same smartcard throughout the whole TLS authentication
phase. Once the authentication is successful (or not) and
once the keys-blocs and MSK have been generated, the
smartcard associated to a RADIUS session is released and
free to be used by a new incoming session.

- It generates stream sockets connected with the distant
terminal which hosts the card proxy and the java cards array.
Those sockets are used to send the APDUs to the remote
card proxy and to receive the smartcard response.

- Upon answer from the smartcard, it parses and
reassemblies the EAP packets, in case it has been split by the
smartcard into several APDUs, and waits until all the EAP-
Request packets have been transmitted.

- It encapsulates the incoming EAP packet into a
RADIUS datagram, and forwards it to the TLS proxy located
on the client terminal and lastly closes the thread.

This procedure is renewed as often as necessary until all
sessions have been treated and all clients authenticated. In
case an internal error occurs or in case there is no more java
card available, the client’s incoming RADIUS request is
silently discarded.

The performance of a single EAP server card linked with
a single client has been previously measured [8][9][10].
Another type of java cards was used in our current
architecture, but the results we obtained are similar, albeit
slightly less efficient. At best, the total cost of an
authentication previously measured with a single EAP card
directly docked in the server host was about 5000ms,
whereas the authentication cost based on the cards we used

approximates 6000ms. Now if we initiate the same
authentication with the same card located remotely the
authentication time is almost doubled. The transfer time has
risen drastically, however, since the ping to this remote card
proxy is about 30ms, there is an issue here which needs to be
farther investigated and fixed in order to obtain reasonable
authentication times.

The following measurements have been determined
according to the APDU stream. Indeed, the EAP messages
are fragmented if necessary, and each EAP-Response packet
matches one or several EAP-Process APDUs coupled with
the appropriate status words answered by the server card.
Those status words indicate that the packets have been
properly transmitted or that the server card needs to emit a
specific answer which needs to be fetched. Reciprocally,
each EAP-request packet matches one or several APDUs
coupled with the proper EAP-Response APDU answered by
the client card.

Figure 5. Method for the measurement of transmission time

The transmission time of EAP-Request and Response
packets was measured according to the method illustrated by
figure 5. Indeed, the time measured for an EAP-Response
may be approximated to the time spent between the sending
of the APDUs by the RADIUS server, and the reception of
the status words sent by the server card. From this point
begins the time measurement for the next EAP-Request
packet.

 USB Card Distant Card
T1- Rx: EAP-Identity.response 30ms 100ms
T2- Tx: Start 5ms 60ms
T3- Rx: Client Hello 430ms 580ms
T4- Tx: Server Hello fragment#1 220ms 1850ms
T5- Rx: EAP-TLS-ACK 40ms 100ms
T6- Tx: Server Hello fragment#2 10ms 200ms
T7- Rx: Client-Finished 270ms 2100ms
T8- Tx: Server-Finished 4320ms 4500ms
T9- Rx: EAP-TLS-ACK 290ms 350ms
T10- Tx: EAP-Success 20ms 60ms
T11- Rx: Get-PMK 20ms 190ms
Total 5655ms 10090ms

Tx: EAP-TLS.Request, Rx: EAP-TLS.Response

Figure 6. Timing differences of two EAP sessions established with a USB
docked server card or a distant server card.

26

We will now compare the time measures given by a
server card directly docked to the AS terminal with the one
given by a distant server card. While a TCP exchange with
the distant server can be roughly approximated to 30ms, we
observe that the time elapsed to perform a full authentication
with the distant server card is greater than expected. In fact,
26 TCP packets are exchanged during a full session and
about 2500 bytes are transferred - which we will disregard,
considering nowadays broadband data rate. Thus, Tt being
the evaluated transfer time, we get:

Tt = 26*30 = 780 ms

In short and at worse, the total authentication time given
with a distant card should be one second longer than with a
card directly docked to the server terminal, and the results
obtained (see figure 6) are far from our expectations.

The total authentication time of a session performed with
a USB docked card reaches an average of 5700ms while a
session performed with a distant server card takes about
10000ms, which is roughly 3000ms more than expected.
Upon investigation of this issue, we noticed that the biggest
delays were induced by the largest packets (usually a few
hundred of bytes). For instance T7 is very short when the
session is performed with an USB server card; however and
since it matches the sending of the Client certificate, when
the session is performed with a distant server card T7 is ten
times longer. In fact the smart grid array works with a 9600
baud throughput for data exchange with smart cards.
Therefore, and because about 2500 bytes are required by an
EAP-TLS session, these hardware constraints cost 2500 ms.
There must be a delay induced with the data processing of
the distant proxy in charge of the redirection of the stream to
the appropriate server cards. Roughly speaking, an extra
delay of about 1000 ms (10000-5700-800-2500) is added by
the board Operating System.

To confirm this assumption, we tested the scalability and
the parallel performance of our distant SIM array with
concurrent connections.

 1 Card out
of 5

1 Card out
of 20

T1- Rx: EAP-Identity.response 220ms 580ms
T2- Tx: Start 100ms 390ms
T3- Rx: Client Hello 580ms 1300ms
T4- Tx: Server Hello fragment#1 2000ms 6300ms
T5- Rx: EAP-TLS-ACK 550ms 2200ms
T6- Tx: Server Hello fragment#2 400ms 1750ms
T7- Rx: Client-Finished 6500ms 21500ms
T8- Tx: Server-Finished 5000ms 6600ms
T9- Rx: EAP-TLS-ACK 350ms 350ms
T10- Tx: EAP-Success 60ms 60ms
T11- Rx: Get-PMK 190ms 200ms
Total 15950ms 41230ms

Tx: EAP-TLS.Request, Rx: EAP-TLS.Response

Figure 7. Average times of EAP-TLS sessions established with distant
cards within a 5 or 20 cards concurrency.

When we now start five or twenty simultaneous
connections to the remote SIM array; figure 7 shows the
average results for one authentication.

Strikingly enough, we can note that the unvarying times
such as T9 or T10 match the shortest APDUs, which also
means that the parallelisation does work. In addition and as
suspected, the certificate exchanges induce an increasing
delay (T4 and T7) which prevents the reasonable scalability
of this platform. In summary we observe a processing time
of 10s for one card, 3s per card for 5 five devices, and about
2s per card for twenty devices.

As of now, we can only establish the fact that there is an
obvious issue with the queuing management of the remote
server card proxy, which needs to be corrected in order to
significantly improve the performance of our SIM array.

VI. CONCLUSION
In conclusion, although the experimental results of our

platform demonstrates that the scalability performances are
not yet compatible with today network constraints, we are
confident that in a near future we will be able to achieve a
platform whose authentication time will be reasonable
enough to be massively deployed. Furthermore, the security
and practicality it provides shall be a great addition to the
802.1x architecture in general as well as a key asset to
securing Cloud Computing infrastructures.

REFERENCES
[1] Jurgensen, T.M. et. al., "Smart Cards: The Developer's Toolkit",

Prentice Hall PTR, ISBN 0130937304, 2002.
[2] Chen, Z., "Java CardTM Technology for Smart Cards: Architecture

and Programmer's (The Java Series) ", Addison-Wesley Pub Co 2002,
ISBN 020170329.

[3] RSA Laboratories, "PKCS #15 v1.1: Cryptographic Token
Information Syntax Standard", 2000.

[4] Urien, P., Saleh, H., Tizraoui, A., "SSL in smart card", in proceedings
of Journees Doctorales Informatique et Reseaux - JDIR’2000,
(Networking and Computer Science PHD days), 6-8 november 2000.

[5] "A Personal token and a method for controlled authentication",
Patent# WO 2006/021865.

[6] Urien, P.; Badra, M.; Dandjinou, M., "EAP-TLS smartcards, from
dream to reality", in proceedings of Applications and Services in
Wireless Networks (ASWN 2004), 2004.

[7] Chaumette S. et. al., "Secure distributed computing on a Java Card
grid". 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS'05), 2005.

[8] Urien, P., Dandjinou, M., "Introducing Smartcard Enabled RADIUS
Server", The 2006 International Symposium on Collaborative
Technologies and Systems (CTS 2006), 2006.

[9] Urien, P., "Open two-factor authentication tokens, for emerging
wireless LANs.", Fifth Annual IEEE Consumer Communications &
Networking Conference (CCNC’08), 2008.

[10] Urien, P., Pujolle, G., "Security and Privacy for the next Wireless
Generation", International Journal of Network Management, IJNM,
Volume 18 Issue 2 (March/April 2008), WILEY.

[11] IETF draft, , "EAP-Support in Smartcard", draft-urien-eap-smartcard-
18.txt, February 2010.

[12] RFC 2246, "The TLS Protocol Version 1.0", January 1999.
[13] RFC 2716, "PPP EAP TLS Authentication Protocol". October 1999.
[14] RFC 5216, "The EAP-TLS Authentication Protocol", March 2008.
[15] RFC 3748, "Extensible Authentication Protocol, (EAP)", June 2004.
[16] RFC 2865, "Remote Authentication Dial In User Service (RADIUS)

", 2000.

27

