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Gaussian multiplicative chaos and KPZ duality

Julien Barral ∗, Xiong Jin†, Rémi Rhodes ‡, Vincent Vargas §¶

March 7, 2012

Abstract

This paper is concerned with the KPZ formula. On the first hand, we
give a simplified (in comparison with the existing literature) proof of the
classical KPZ formula. On the other hand, we construct purely atomic random
measures corresponding to values of the parameter γ2 beyond the transition
phase (i.e. γ2 > 2d). We prove the dual KPZ formula for these measures and
check the duality relation. In particular, this framework allows to construct
singular Liouville measures and to understand the duality relation in Liouville
quantum gravity.

1. Introduction

Log-normal multiplicative martingales were introduced by Mandelbrot [26] in order
to build random measures describing energy dissipation and contribute explaining
intermittency effects in Kolmogorov’s theory of fully developed turbulence (see [7,
34, 36, 8, 16] and references therein). However, his model was difficult to define
mathematically and this is why he proposed in [27] the simpler model of random
multiplicative cascades whose detailed study started with Kahane’s and Peyrière’s
notes [17, 29], gathered in their joint paper [19].

From that moment on, multiplicative cascades have been widely used as reference
models in many applications. However, they possess many drawbacks related to their
discrete scale invariance, mainly they involve a particular scale ratio and they do not
possess stationary fluctuations (this comes from the fact that they are constructed
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on a p-adic tree structure). In the eighties, Kahane [18] came back to Mandelbrot’s
initial model and developed a continuous parameter theory of suitable stationary
multifractal random measures, called Gaussian multiplicative chaos. His efforts
were followed by several authors [3, 34, 2, 30, 32, 15, 1, 33] coming up with various
generalizations at different scales. This family of random fields has found many
applications in various fields of science like mathematical finance, turbulence, etc...
Recently, the authors in [11] have drawn attention on the fact that 2d-Gaussian
multiplicative chaos should be considered as a natural model for Liouville Quantum
Gravity (see [23, 9, 11] among many others). In this context, the KPZ formula has
been proved rigorously [5, 11, 31] below the transition phase arising at γ2 = 4, where
the constant γ is related to the central charge c 6 1 of the underlying conformal
field theory by the relation (see [23])

γ =

√
25− c−

√
1− c√

6
.

However the issue of mathematically constructing singular Liouville measures be-
yond the transition phase (i.e. for γ2 > 4) and proving the KPZ duality has never
been solved mathematically (see [20, 21, 22] for an account of physical motivations).

Let us draw up the framework a bit more precisely. Fix a simply connected
domain D ⊂ C. For γ2 < 4, the Liouville measure can formally be written as

Mγ(A) =

∫
A

eγXx−
γ2

2
E[X2

x] dx (1)

where X is the Gaussian Free Field (GFF) over the domain D. For a given compact
set K ⊂ D, it has been proved that the Hausdorff dimension of K computed with
the Euclidian metric, call it dimLeb(K), is related to the Hausdorff dimension of K
computed with the measure Mγ, call it dimγ(K). The connection is the so-called
KPZ formula

dimLeb(K) = (1 +
γ2

4
)dimγ(K)− γ2

4
dimγ(K)2.

Based on the physics literature, the purpose of this paper it to propose a construction
in the spirit of (1) of (purely atomic) random measures Mγ̄, for parameter values
γ̄2 > 4 (i.e. beyond the transition phase), that satisfy the KPZ relation

dimLeb(K) = (1 +
γ̄2

4
)dimγ̄(K)− γ̄2

4
dimγ̄(K)2.

Then, by considering the dual value γ = 4
γ̄

of the parameter γ̄, we want to establish
the duality relation

dimγ̄(K) =
γ2

4
dimγ(K).

We point out that physicists can recover the (more classical) relation between the
scaling exponents by setting 4γ = 1− dimγ(K) and 4γ̄ = 1− dimγ̄(K).
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Our construction for dual measures is roughly the following. Consider a couple
of exponents (γ, γ̄) such that γ2 < 4 and γγ̄ = 4. We introduce an independently
scattered random measure nα characterized by its Laplace transform (|A| stands for
the Lebesgue measure of A)

∀A ⊂ R2 Borelian, E[e−unα(A)] = e−u
α|A|

where α = γ2

4
. The considered dual measure is then formally defined by (see below

for a rigorous construction)

Mγ̄(A) =

∫
A

eγ̄Xx−2E[X2
x] nα(dx). (2)

We point out that the above expression is not a Gaussian multiplicative chaos in
the usual sense. Indeed the lognormal weight is not normalized to have expectation
1. Actually, the expectation explodes giving rise to a strong competition between
the atoms produced by the random measure nα and the ability of the lognormal
weight to kill these atoms. Since the big atoms produced by the measure nα are
not numerous enough, the fact that the measure Mγ̄ is not trivial is only due to
the production of small atoms. Notice that the production of atoms is directly
connected to the parameter γ (and therefore to the central charge) by the relation

α = γ2

4
= 4

γ2 . We illustrate these remarks in Section 5.
We prove that the measure Mγ̄ can be obtained as an almost sure limit of suit-

ably regularized versions, giving sense to a new and exciting theory of (non-standard)
multiplicative chaos with respect to atomic measures. Beyond the applications in
Liouville Quantum Gravity, we have the feeling that this approach offers new per-
spectives in the theory of Gaussian multiplicative chaos that we develop in Section
6.

Let us finally mention that our measures (Mγ,Mγ̄) are approximately ?-scale
invariant random measures in the sense of [1]. As a consequence, they satisfy the
scaling heuristics developed in [12] to quantify the measure of a Euclidean ball
of size ε (see in particular the section Liouville quantum duality). In fact, such
heuristics amount to considering ?-scale invariant random measures (see [1, 33]).
We conjecture that the ?-scale invariance property characterizes the measures that
one can consider in this context (work in progress; see [13] for a precise statement
and a rigorous proof in the case of random multiplicative cascades).

In the present paper, we will tackle the above problem in great generality: we
will not restrict ourselves to the 2-dimensional case and we will not consider the
only GFF but more generally log-correlated Gaussian distributions.

2. Background

In this section, we will briefly explain Kahane’s theory of multiplicative chaos in Rd.
In fact, Kahane’s theory is valid in any open domain D ⊂ Rd with no substantial
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change. At the end of the section, we will also roughly recall the connection with
measures formally given by the exponential of the GFF.

2.1 Sigma positive kernels

We consider a covariance kernel K of σ-positive type ([18]), namely that K can be
rewritten as a sum

∀x, y ∈ Rd, K(x, y) =
∑
n > 1

qn(x, y) (3)

where (qn)n is a sequence of continuous positive kernels of positive type. We further
assume that

∀x ∈ Rd, K(x, y) = ln+
T

|x− y|
+ g(x, y) (4)

where g is a bounded continuous function over Rd×Rd (and ln+(x) = max(0, ln(x))).
We can consider a sequence of independent centered Gaussian processes (Y n)n > 1

where, for each n > 1, (Y n
x )x∈Rd is a centered continuous Gaussian field with covari-

ance function given by

∀x, y ∈ Rd, Cov(Y n
x , Y

n
y ) = qn(x, y).

Finally, for n > 1, we define:

Xn
x =

n∑
p=1

Y p
x .

It is a centered continuous Gaussian process with covariance function:

∀x, y ∈ Rd, kn(x, y)
def
= Cov(Xn

x , X
n
y ) =

n∑
k=1

qk(x, y). (5)

The reader may find several important examples of sigma-positive kernels in Ap-
pendix A.

2.2 Gaussian multiplicative chaos

For each n > 1, we can define a Radon measure Mn on the Borelian subsets of Rd

by

Mn(A) =

∫
A

eγX
n
x−

γ2

2
E[(Xn

x )2] dx. (6)

For each Borelian set A, the sequence (Mn(A))n is a positive martingale. Thus
it converges almost surely towards a random variable denoted by M(A). One can
deduce that the sequence of measures (Mn)n weakly converges towards a random
Radon measure M , commonly denoted by

M(A) =

∫
A

eγXx−
γ2

2
E[X2

x] dx (7)
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and called Gaussian multiplicative chaos associated to the kernel γ2K. Roughly
speaking, (7) can be understood as a measure admitting as density the exponential
of a Gaussian distribution X with covariance kernel γ2K. Of course, this is purely
formal because the exponential of a random distribution cannot be directly defined.
Kahane proved that the martingale (Mn(A))n, for some Borelian set A with non-
null finite Lebesgue measure, is uniformly integrable if and only if γ2 < 2d. This
condition is necessary and sufficient in order for the limiting measure M to be non
identically null. Furthermore, he proved that the law of the limiting measure M
does not depend on the decomposition (3) of K into a sum of positive continuous
kernels. For kernels K that cannot be written as a sum of nonnegative terms as (3),
we refer to the extended Gaussian multiplicative theory developed in [30].

2.3 Application to the construction of Liouville measures

Formally, the GFF (or Euclidian bosonic massless free field) in a bounded domain
D ⊂ R2 is a ”Gaussian Field” X with covariance given by:

E[XxXy] = G(x, y),

where G is the Green function of D with zero boundary condition (see for instance
[35] or chapter 2.4 in [24] for the definition and main properties). Let B be a
Brownian motion starting from x ∈ D under the measure P x and consider the
stopping time TD = inf{t > 0, Bt 6∈ D}. If we denote pD(t, x, y) = P x(Bt ∈
dy, TD > t), we have:

G(x, y) = π

∫ ∞
0

pD(t, x, y)dt.

Note that, for each t > 0, pD(t, x, y) is a continuous positive and positive definite
kernel on D. Therefore, following Kahane’s theory, we can define the Gaussian
multiplicative chaos M associated to the kernel γ2G. Since the Green function
takes on the form (4), this measure is not trivial provided that γ2 < 4. We point
out that the authors in [11] have suggested a slightly different construction of the
Liouville measure. Based on the uniqueness criterion in [30], it can be proved that
their construction has the same law as that originally proposed by Kahane.

3. Multiplicative chaos and atomic chaos

We stick to the notations of the previous section. We nevertheless assume that the
considered Gaussian fields are stationary. Though it may appear as a restriction,
the proofs in the general case work exactly the same. Actually, being stationary or
not is just hidden in the ”small noise g” appearing in (4).

So, we consider the Gaussian multiplicative chaos M understood as the limit
(in the sense previously described) as n → ∞ of the following sequence of random
measures

Mn(dx) = eγX
n
x−

γ2

2
E[(Xn

x )2] dx. (8)
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M is a non trivial random measure for γ2 < 2d with no atoms. Its power-law
spectrum ξ, defined through the relation

E[M(B(0, λ)q] ' Cqλ
ξ(q), λ→ 0

for all q > 0 such that the expectation makes sense (i.e. for 0 6 q < 2d
γ2 , see [18]), is

given by

ξ(q) = (d+
γ2

2
)q − γ2

2
q2.

Now we introduce what we call atomic Gaussian multiplicative chaos:

Theorem 1. For α ∈]0, 1[, we consider a Poisson random measure Nα distributed
on Rd × R∗+ with intensity dx dz

z1+α and independent of the sequence (Y n
x )x∈Rd. We

introduce the random measure

nα(dx) =

∫ +∞

0

z Nα(dx, dz).

Then we define the sequence of random measures

∀A ∈ B(Rd), Mn(A) =

∫
A

e
γ
α
Xn
x−

γ2

2α
E[(Xn

x )2]nα(dx). (9)

For each bounded Borelian set A, the sequence (Mn(A))n converges in probability
towards a non trivial random variable. Therefore, for each subsequence, we can ex-
tract a (deterministic) subsequence such that, almost surely, the sequence of random
measures (Mn(dx))n weakly converges towards a random Radon measure M , the law
of which is characterized by the following relation:

E[e−u1M(A1)+···−unM(Ap)] = E
[
e−

Γ(1−α)
α

(
uα1M(A1)+···+uαnM(An)

)]
(10)

valid for all u1, . . . , up ∈ R+ and all disjoint Borelian subsets A1, . . . , Ap ⊂ Rd. In
particular, the limiting measure M is non trivial for γ2 < 2d and all α ∈]0, 1[.

The above theorem justifies to write formally the law of M as (with γ = γ
α

)

M(·) =

∫
·
eγXx−

αγ2

2
E[X2

x]nα(dx) (11)

where X is a stationary Gaussian distribution with covariance kernel K. This ex-
pression also justifies the fact that the measure M can be seen as a non standard
Gaussian multiplicative chaos since the weight has not expectation 1. Furthermore,
it can be defined for values of γ2 beyond the critical value γ2 = 2d. Notice that the
renormalization (i.e. αγ2

2
E[X2

x]) differs from the standard Gaussian multiplicative
chaos.
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Theorem 2. For γ2 < 2d and α ∈]0, 1[, the law of the random measure M does
not depend on the decomposition of K into a sum of positive continuous kernels of
positive type. Furthermore, M is almost surely a purely atomic measure.

There is another way of seeing the law of the measure M . We introduce a positive
Radon random measure NM distributed on Rd×R∗+, whose law conditionally to M
is that of a Poisson random measure with intensity

M(dx) dz

z1+α
.

Then we introduce the family of purely atomic positive random measures

∀A ∈ B(Rd), M(A) =

∫
A

∫
R+

z NM(dx, dz). (12)

Then the law of the random measure M is the same as that of Theorem 1.

3.1 Power-law spectrum and moments of the atomic chaos

In this subsection, we assume that γ2 < 2d. Let us define

∀q ∈ R, ξ(q) =
( d
α

+
γ2

2α

)
q − γ2

2α2
q2.

We will show below that this function coincides with the power law spectrum of the
measure M . In particular, we see that ξ(q) = ξ( q

α
).

Now we precise the existence of moments for the measure M :

Proposition 3. For all Borelian set A with finite (not null) Lebesgue measure, the
random variable M(A) possesses a moment of order β > 0 if and only if β < α.

Furthermore, we can make explicit the connection between the moments of M
and M : for all 0 6 β < α,

E[(M(A))β] =
Γ(1− β/α)Γ(1− α)β/α

Γ(1− β)αβ/α
E[(M(A))

β
α ] (13)

Theorem 4. (Perfect scaling). If the kernel K is given by

K(x) = ln+
T

|x|
+ g(x)

where g is a continuous bounded function that is constant in a neighborhood of 0
then, for some R > 0:

∀0 < λ < 1, (M(λA))A⊂B(0,R)
law
= λd/αe

Ωλ
α (M(A))A⊂B(0,R) (14)
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where Ωλ is a Gaussian random variable independent of the measure (M(A))A⊂B(0,R)

the law of which is characterized by:

E[eqΩλ ] = λ
γ2

2
q− γ

2

2
q2

.

In particular, for all 0 6 q < α:

E[M(B(0, λR))q] = λξ(q)E[M(B(0, R))q].

Corollary 5. Assume that the kernel K takes on the form (4). Then, for all
0 6 q < α:

E[M(B(0, λR))q] ' Cq,Rλ
ξ(q)

as λ→ 0 for some positive constant Cq,R only depending on q, R.

4. KPZ formula and duality

In this section, we adjust the parameters to stick to Liouville quantum gravity issues.
We consider γ2 < 2d and define γ by the relation

γγ = 2d. (15)

This gives γ = γ
α

with

α =
γ2

2d
∈]0, 1[. (16)

With this value of (γ, α), the power law spectrum of the corresponding random
measure M

∀A ∈ B(Rd), M(A) =

∫
A

e
γ
α
Xx− γ

2

2α
E[(Xx)2]nα(dx)

=

∫
A

eγXx−dE[(Xx)2]nα(dx). (17)

can be rewritten as:

ξ(q) =
(
d+

γ2

2

)
q − γ2

2
q2. (18)

Given γ2 < 2d, we stress that this value of α is the only possible value of 0 < α < 1
ensuring the (statistically) volume preserving condition ξ(1) = d.

The KPZ formula is a relation between the Hausdorff dimensions of a given set
A as measured by the Lebesgue measure, M or M . So we first recall how to define
these dimensions. Given a Radon measure µ on Rd and s ∈ [0, 1], we define

Hs,δ
µ (A) = inf

{∑
k

µ(Bk)
s
}

8



where the infimum runs over all the covering (Bk)k of A with open Euclidean balls
centered at A with radius rk 6 δ. Clearly, the mapping δ > 0 7→ Hs,δ

µ (A) is
decreasing. Hence we can define the s-dimensional µ-Hausdorff outer measure:

Hs
µ(A) = lim

δ→0
Hs,δ
µ (A).

The limit exists but may be infinite. Hs
µ is a metric outer measure on Rd (see [14]

for the definitions). We point out that the fact that µ possesses atoms or not does
not give rise to any additional difficulty. Thus Hs

µ is a measure on the σ-field of
Hs
µ-measurable sets, which contains all the Borelian sets.

The µ-Hausdorff dimension of the set A is then defined as the value

dimµ(A) = inf{s > 0; Hs
µ(A) = 0}. (19)

Notice that dimµ(A) ∈ [0, 1]. However, it is not clear, in great generality, that we
have the classical property:

dimµ(A) = sup{s > 0; Hs
µ(A) = +∞}. (20)

This is due to the possible presence of atoms for the measure µ. However we claim

Proposition 6. If we take µ = Leb then (20) holds. If we take µ = M then, almost
surely, (20) holds for every bounded Borelian set. If we take µ = M and A a compact
set with null Lebesgue measure then (20) holds almost surely.

This proposition allows to characterize the Hausdorff dimension as the critical
value at which the mapping s 7→ Hs

µ(A) jumps from +∞ to 0.
In what follows, given a compact set K of Rd with null Lebesgue measure,

we define its Hausdorff dimensions dimLeb(K), dimM(K), dimM(K) computed as
indicated above with µ respectively equal to the Lebesgue measure, M and M .

Theorem 7. KPZ duality. Let K be a compact set of Rd with null Lebesgue
measure. Almost surely, we have the relations

dimLeb(K) =
ξ(dimM(K))

d
dimLeb(K) =

ξ(dimM(K))

d

where ξ(q) = (d + γ2

2
)q − γ2

2
q2 and ξ(q) =

(
d + γ2

2

)
q − γ2

2
q2. In particular, we have

the duality relation between the scaling exponents

dimM(K) =
γ2

2d
dimM(K). (21)
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Remark 8. Note that, in the classical physics literature (in particular d = 2), it is
more usual to focus on the scaling exponents

4γ = 1− dimM(K), 4γ = 1− dimM(K), x = 1− dimLeb(K),

instead of dimM(K), dimM(K), dimLeb(K). Then the KPZ relations read

x =
γ2

4
42
γ + (1− γ2

4
)4γ and x =

γ2

4
42
γ + (1− γ2

4
)4γ.

The duality relation then becomes

4γ − 1 =
γ2

2d
(4γ − 1) =

2d

γ2 (4γ − 1).

Remark 9. If one looks for random measures satisfying the duality relation (21),
it is plain to deduce that such a relation implies that the power law spectrum is
necessarily given by (18). Such a power law spectrum indicates that the searched
random measures cannot be defined by (7) in the sense that the integrating measure
(dx in (7)) cannot be the Lebesgue measure. Indeed, otherwise Kahane’s theory
ensures that such measure is identically null. So one has to look for other integrating
measures in (7) than the Lebesgue measure. By noticing that ξ̄(q) = ξ( q

α
), one

can intuitively recover our construction, namely that the searched measures should
be Gaussian multiplicative chaos integrated against independently scattered α-stable
random measures, as stated in Theorem 1.

5. Simulations

In this section, we present a few simulations to understand more intuitively the
structure of the dual chaos as introduced in section 4, i.e. γ2 < 2d, γγ = 4 and
α = γ2

4
.

For each figure 1, 2 and 3 we plot on the left hand side the ”density” of the
usual chaos. The two other figures (middle and right) are concerned with the cor-
responding dual measures. In the middle, we plot the position and weights of the
atoms of the dual measure. Notice that there are only a very small quantity of
atoms with a very big weight. The other atoms have much smaller weights. To have
a better picture of the values of these weights, we plot on the right-hand side the
same picture with a logarithmic ordinate scale.

Notice that the chaos tends to kill the atoms. The bigger γ is, the stronger
the chaos is. We observe that for small values of γ (i.e. large values of γ) the
corresponding value of α is small. Hence the Poisson random measure produces
small jumps with a weak intensity and this is sufficient to compensate for the killing
of the chaos. When γ becomes larger (close to 2), the chaos is much more powerful
to kill the atoms. So the Poisson random measure needs to produce much more
atoms (α is close to 1) to survive to the killing of the chaos (see Figure 3).
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Figure 1: Chaos and dual chaos for the value γ2 = 0, 25 (and then α = 0.051)

Figure 2: Chaos and dual chaos for the value γ2 = 1 (and then α = 0.25)

6. Perspectives

Here we develop a few comments and open problems related to this work.

6.1 Dual chaos and possible renormalisations of degenerate
Gaussian multiplicative chaos

We continue to assume to be under exact scale invariance. For θ ≥ 0 consider the
associated sequence of measures

Mθ,n(A) =

∫
A

eθX
n
x− θ

2

2
E((Xn

x )2) dx, n ≥ 1, A ∈ B(Rd).

11



Figure 3: Chaos and dual chaos for the value γ2 = 2, 56 (and then α = 0.64)

Also define

ξθ(q) = (d+
θ2

2
)q − θ2

2
q2, q ≥ 0.

Recall that (Mθ,n)n≥1 converges almost surely in the weak-star topology to a Radon
measure Mθ, which is almost surely positive or null according to whether θ2 < 2d
or θ2 ≥ 2d.

By analogy with the study of Mandelbrot cascades and the fixed points of the
associated smoothing transformation [13, 25], we may conjecture that when θ2 = 2d,
the signed measures − d

dθ
Mθ,n|θ=

√
2d weakly converge to a non-degenerate positive

measure M̃√2d.
If θ2 > 2d, we have ξ′θ(1) < 0 so that there exists a unique α ∈ (0, 1) and a

unique α̃ ∈ (α, 1) such that

ξθ(α) = d and ξ∗θ(ξ
′
θ(α̃)) = −d,

where ξ∗θ(s) = infq≥0 sq−ξθ(q). Indeed, the concavity of ξθ and the fact that ξθ(0) =
0 < ξθ(1) = d and ξ′θ(1) < 0 yields the existence and uniqueness of α, at which we
necessarily have ξ′θ(α) > ξθ(α)/α = d/α. Then, we have ξ∗θ(ξ

′
θ(α)) = ξ′(α)α− d > 0.

Since ξ∗θ(ξ
′
θ(1)) = ξ′θ(1) − d < −d and ξ∗θ is concave, we get the existence and

uniqueness of α̃.

Calculations show that α = 2d
θ2 and α̃ =

√
α. Consequently, if we set γ = θ and

γ = αγ, we see that γγ = 2d and α is exactly the exponent used in the previous
sections to establish the duality formula starting from the measure Mγ. Moreover,
continuing the analogy with Mandelbrot cascades, the dual chaos Mγ is the expected
non trivial solution, in “replacement” of Mγ which vanishes, of the equation

∀0 < λ < 1, (Mγ(λA))A⊂B(0,R)
law
= eΩ′λ(M(A))A⊂B(0,R) (22)
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where Ω′λ is a Gaussian random variable independent of the measure (Mγ(A))A⊂B(0,R)

the law of which is characterized by:

E[eqΩλ ] = λξγ(q)

(for Mandelbrot cascades, in dimension 1, such measures have been identified as
stable Lévy subordinators in Mandelbrot time in [4]).

Thus, from the exact scale invariance point of view, the dual chaos of Mγ provides
a first way to renormalize Mγ, by giving a non trivial solution to the functional
equation that would satisfy Mγ if it was not degenerate.

Another way to build a non degenerate object from Mθ,n when θ2 > 2d is to
consider the sequence of normalized measures Mθ,n/‖Mθ,n‖ (the equilibrium Gibbs
measures considered for instance in [6]). Examining the behavior of ‖Mθ,n‖ shows
that it approximately goes to 0 like exp(−nξ′θ(α̃)) when E[(Xn

0 )2] = n. Then, a

tempting conjecture is that Mθ,n/‖Mθ,n‖ converges weakly, in law, to M̃
(α̃)√

2d
/‖M̃ (α̃)√

2d
‖,

where M̃
(α̃)√

2d
is defined in the same way as M was in (12): fix a random measure

NM̃√2d
distributed on Rd × R∗+, and whose law conditionnally on M̃ is that of a

Poisson random measure with intensity M̃(dx) dz

z1+α̃ . Then,

∀A ∈ B(Rd), M̃
(α̃)√

2d
(A) =

∫
A

∫
R+

z NM̃√2d
(dx, dz).

Notice, however, that this second family of random measures cannot satisfy the
duality relation since their power law spectrum, say ξα̃, satisfies ξα̃(1) < d.

Remark 10. To continue the interpretation of duality as renormalization:
Consider an exact scale invariant log-infinitely divisible random measure (see [2, 32])
for which we have enough exponential moments to discuss. We have a paramaterized
family of multiplicative chaos Qθ,ε(r) = exp(θΛ(Cr(t))/E(exp(θΛ(Cr(t))) and the
associated measures Mθ,ε.

Let ψ(q) = limr→0 log(E(Qq
1,r(x)))/ log(r). Now we have ,

ξθ(q) = (d+ ψ(θ))q − ψ(θq)

and ξ′θ(1) = d + ψ(θ) − θψ′(θ). There is at most one positive (and at most one
negative) solution θ0 to the equation ξ′θ(1) = 0, and if θ0 > 0 exists, then for θ > 0
we have ξ′θ(1) > 0 iff θ < θ0.

If γ = θ > θ0, we can have exactly the same discussion as in the Gaussian
case, by considering the unique root α of ξθ(α) = 0 and defining the dual chaos
associated with γ = αθ. The dual KPZ relation is then naturally expressed via
dimMγ

(K) = α dimMγ (K), of which the Gaussian case is a special case.

13



6.2 Singularity spectrum

It would be interesting to compute the free energy of the measure M , namely proving
that the following limit is not trivial:

lim
n→∞

2n(ξ(q)−d)
∑
I∈Cn

M(I)q (q ∈ R),

where Cn stands for the set of all dyadic cubes (included in the unit cube) with side
length 2−n. This thermodynamic point of view is closely related to the calculation
of the Lq-spectrum of the measure M , defined as

q ∈ R 7→ τM(q) = lim inf
r→0+

log sup
{∑

iM(B(xi, r))
q
}

log(r)
,

where the supremum is taken over all the centered packing of [0, 1]d by closed balls
of radius r. By analogy with the study achieved in [4], we conjecture that on the
one hand,

τM(q) =


ξ
′
(q−)q if q ≤ q−,

ξ(q)− d if q− ≤ q ≤ α,

0 if q ≥ α,

where q− is the unique negative solution of ξ
∗
(ξ
′
(q)) = −d, and on the other hand

that the multifractal formalism holds for M : defining

Eδ =
{
x ∈ [0, 1]d; lim inf

r→0+

lnM(B(x, r))

ln(r)
= δ
}

(δ ≥ 0),

with probability 1, the singularity spectrum of M , i.e. the mapping δ ≥ 0 7→ dimEδ,
is given by δ ≥ 0 7→ τ ∗

M
(δ) = inf{δq− τM(q) : q ∈ R}, a negative dimension meaning

that Eδ = ∅.

A. Examples of sigma-positive kernels

In this section, we detail a few examples of sigma-positive kernels, apart from the
Green function already explained in subsection 2.3. More precisely, we give two dif-
ferent classes of sigma-positive kernels, which yield two different notions of stochastic
scale invariance for the associated Gaussian multiplicative chaos.

A.1 Exact stochastic scale invariance

In this section, we describe how to construct kernels yielding the exact scale invari-
ance relations of Theorem 4. This is useful in computations and it is possible to
deduce all the other situations from this one.

14



We define on R+ the measure νT (dt) = 1[0,T ](t)
dt
t2

+ 1
T
δT (dt) where δx denotes the

Dirac mass at x. For µ > 0, it is straightforward to check that

∀x ∈ Rd, ln+
T

|x|
=

1

µ

∫ +∞

0

(t− |x|µ)+νTµ(dt). (23)

-In dimension d = 1, it is straightforward to check that the function x 7→ (t−|x|)+

is of positive type. So, the kernel K(x) = γ2 ln+
T
|x| is of sigma positive type. The

kernels kn can be easily computed:

kn(x) =


0 if |x| > T,
γ2 ln+

T
|x| if T

n
6 |x| 6 T,

γ2 lnn+
(
1− n|x|

T

)
if 0 6 |x| 6 T

n
.

-In dimension d = 2, Pasenchenko [28] proved that the function (1 − |x|1/2)+ is
positive definite in dimension 2. Choosing µ = 2 in (23), we can thus write

∀x ∈ R2, γ2 ln+
T

|x|
=
∑
n > 1

qn(x),

where qn is the continuous positive and positive definite kernel

∀x ∈ R2, qn(x) = 2γ2

∫ T1/2

(n−1)1/2

T1/2

n1/2

(t− |x|µ)+νT 1/2(dt).

A simple computation shows that

kn(x) =


0 if |x| > T,
γ2 ln+

T
|x| if T

n
6 |x| 6 T,

γ2 lnn+ 2
(
1−

√
n|x|
T

)
if 0 6 |x| 6 T

n
.

-In dimension d > 3, it is proved in [32] that there exists a continuous bounded
function g : Rd → R, constant in a neighborhood of 0 such that

K(x) = γ2 ln+
T

|x|
+ g(x) (24)

is of sigma positive type.

A.2 ?-scale invariance

A simple way of constructing sigma positive kernels is given by

∀x ∈ Rd, K(x) =

∫ ∞
1

k(xu)

u
du, (25)
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where k is a continuous positive kernel of positive type. Such kernel is of sigma
positive type since the decomposition can be realized by

qn(x) =

∫ 2n+1

2n

k(xu)

u
du.

Furthermore, K takes on the form (4) with γ2 = k(0). Such kernels are related to
the notion of ?-scale invariance (see [1, 33]).

B. Proofs of Section 3

Preliminary computations

We will use the following relation valid for any 0 < β < 1 and x > 0:

xβ =
β

Γ(1− β)

∫ ∞
0

(1− e−xz) dz

z1+β
. (26)

Thus we have for all u > 0:

E[e−uM(A)] = E
[
e
∫
A

∫
R+

(e−zu−1) 1
z1+α dzM(dx)

]
= E[e−

Γ(1−α)
α

uαM(A)]. (27)

Similarly, we have

E[e−u1M(A1)+···−unM(Ap)] = E
[
e−

Γ(1−α)
α

(
uα1M(A1)+···+uαnM(An)

)]
(28)

valid for all u1, . . . , up ∈ R+ and all disjoint Borelian subsets A1, . . . , Ap ⊂ Rd.
Then we have for 0 < β < α:

E[(M(A))β] =
β

Γ(1− β)

∫ ∞
0

(
1− E[e−wM(A)]

) dw
w1+β

=
β

Γ(1− β)

∫ ∞
0

(
1− E[e−

Γ(1−α)
α

wαM(A)]
) dw
w1+β

.

We make the change of variables y = wα to get:

E[(M(A))β] =
β

αΓ(1− β)

∫ ∞
0

(
1− E[e−

Γ(1−α)
α

yM(A)]
) dy

y1+ β
α

(29)

=
Γ(1− β/α)Γ(1− α)β/α

Γ(1− β)αβ/α
E[(M(A))

β
α ].

Proof of Theorem 2.

We first stress that N can be constructed as the limit in law of a sequence (Nn)n
of Poisson random measures distributed on Rd × R∗+ with intensity Mn(dx)⊗ dz

z1+α .

From (28), we deduce that the law of M is characterized by that of M , which
does not depend on the chosen decomposition (see [18]). Furthermore, since N is
a Poisson random measure conditionally to M , it is clear that it is almost surely
purely atomic.
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Proofs of Theorem 1

We have for all u > 0:

E[e−uMn(A)] = E
[
e
∫
A

∫
R+

(e−zu−1) 1
z1+α dzMn(dx)

]
= E[e−

Γ(1−α)
α

uαMn(A)]. (30)

Similarly, we have

E[e−u1Mn(A1)+···−upMn(Ap)] = E
[
e−

Γ(1−α)
α

(
uα1Mn(A1)+···+uαpMn(Ap)

)]
(31)

valid for all u1, . . . , up ∈ R+ and all disjoint Borelian subsets A1, . . . , Ap ⊂ Rd.
Since (Mn)n almost surely weakly converges towards M , it is obvious to check the
convergence in law as well as to characterize the law of the limiting measure.

Now we tackle the convergence in probability. We will prove that we can extract
from each subsequence a subsequence converging in probability. So we consider a
subsequence (φ(n))n. Since Var(X

φ(n)
0 ) =

∑φ(n)
k=1 Var(Y k

0 ) → ∞ as n → ∞, we can
find a subsequence (ψ(n))n such that

ψ(n)∑
k=ψ(n−1)+1

Var(Y k
0 ) > ρ lnn (32)

where ρ > 8
γ2 . So, it remains to prove that the sequence (Mψ(n)(A))n almost surely

converges for every bounded Borelian subset A of Rd.
We can rearrange the (Y n)n and set

Y
′n =

ψ(n)∑
k=ψ(n−1)+1

Y k, X
′n =

n∑
k=1

Y
′k. (33)

For the sake of clarity, we will omit the superscript ′ from the notations. So we will
just assume below that the processes (Xn)n, (Y

n)n satisfy the usual properties of
Section 2 together with the constraint (32).

We fix c > 0. We denote by Fn (n > 0) the sigma algebra generated by the
random measure nα and the random processes (Xp)p 6 n. We set

M
c

n(A) =

∫
A

∫ ce
γ
αX

n
x−

γ2

2α E[(Xnx )2]

0

e
γ
α
Xn
x−

γ2

2α
E[(Xn

x )2]z nα(dx, dz) (34)

=

∫
A

∫ +∞

0

1
{0 6 z 6 ce

γ
αX

n
x−

γ2

2α E[(Xnx )2]}
e
γ
α
Xn
x−

γ2

2α
E[(Xn

x )2]z nα(dx, dz)

17



We have

E
[
(M

c

n+1(A))α|Fn
]

=E
[( ∫

A

∫ ce
γ
αX

n+1
x − γ

2

2α E[(Xn+1
x )2]

0

e
γ
α
Xn+1
x − γ

2

2α
E[(Xn+1

x )2]z nα(dx, dz)
)α
|Fn
]

> E
[( ∫

A

∫ ce
γ
αX

n+1
x − γ

2

2α E[(Xn+1
x )2]

0

1{ γ
α
Y n+1
x − γ2

2α
E[(Y n+1

x )2] > 0
}e γαXn+1

x − γ
2

2α
E[(Xn+1

x )2]z nα(dx, dz)
)α
|Fn
]

> E
[( ∫

A

∫ ce
γ
αX

n
x−

γ2

2α E[(Xnx )2]

0

1{ γ
α
Y n+1
x − γ2

2α
E[(Y n+1

x )2] > 0
}e γαXn+1

x − γ
2

2α
E[(Xn+1

x )2]z nα(dx, dz)
)α
|Fn
]
,

using the fact that γ
α
Xn+1
x − γ2

2α
E[(Xn+1

x )2] = γ
α
Y n+1
x − γ2

2α
E[(Y n+1

x )2] + γ
α
Xn
x −

γ2

2α
E[(Xn

x )2]. Since the mapping x ∈ R+ 7→ xα is concave, we apply Jensen’s in-

equality with respect the restriction to A of the measure M
c

n/M
c

n(A), conditionally
on M

c

n(A) 6= 0, and get:

E
[
(M

c

n+1(A))α|Fn
]

>
∫
A

∫ ce
γ
αX

n
x−

γ2

2αE[(Xnx )2]

0

E
[
eγY

n+1
x − γ

2

2
E[(Y n+1

x )2]1{ γ
α
Y n+1
x − γ2

2α
E[(Y n+1

x )2] > 0
}]× . . .

· · · × e
γ
α
Xn
x−

γ2

2α
E[(Xn

x )2]z nα(dx, dz) 1{Mc
n(A)6=0}(M

c

n(A))α−1

=1{Mc
n(A)6=0}(M

c

n(A))αE
[
eγY

n+1
0 − γ

2

2
E[(Y n+1

0 )2]1{ γ
α
Y n+1

0 − γ2

2α
E[(Y n+1

0 )2] > 0
}]

=(M
c

n(A))αE
[
eγY

n+1
0 − γ

2

2
E[(Y n+1

0 )2]1{ γ
α
Y n+1

0 − γ2

2α
E[(Y n+1

0 )2] > 0
}].

By using a Girsanov transform we deduce

E
[
(M

c

n+1(A))α|Fn
]
> (M

c

n(A))α P
(
γY n+1

0 +
γ2

2
E[(Y n+1

0 )2] > 0
)

=(M
c

n(A))α
(

1− P
(
N (0, 1) >

γ

2
Var(Y n+1

0 )
1
2

))
.

Let us set bn = P
(
N (0, 1) > γ

2
Var(Y n+1

0 )1/2
)

in such a way that

E
[
(M

c

n+1(A))α|Fn
]
> (M

c

n(A))α
(

1− bn
)
.

We further stress that (32) implies that the series
∑

n bn is absolutely convergent.
Let us define

cn =
n∏
k=1

1

1− bn

18



and
An = cn(M

c

n(A))α.

The sequence (An)n is a positive sub-martingale. Let us prove that it is bounded in
L1. We have

E[An] =cnE
[
(M

c

n(A))α
]

=
αcn

Γ(1− α)

∫ +∞

0

1− E[e−uM
c
n(A)]

u1+α
du

=
αcn

Γ(1− α)

∫ +∞

0

(
1− E

[
e
∫
A

∫ ce γαXnx− γ2

2αE[(Xnx )2]

0

(
e−uze

γ
αX

n
x−

γ2

2α E[(Xnx )2]
−1
)

1
z1+α dzdx

]) 1

u1+α
du

=
αcn

Γ(1− α)

∫ +∞

0

(
1− E

[
e
∫
A

∫ c
0

(
e−uy−1

)
1

y1+α dy e
γXnx−

γ2

2 E[(Xnx )2]dx
]) 1

u1+α
du

=
αcn

Γ(1− α)

∫ +∞

0

(
1− E

[
e−Mn(A)Lc(u)

]) 1

u1+α
du,

where Lc(u) =
∫ c

0

(
1 − e−uy

)
1

y1+α dy. Notice that Lc(u) > 0 for each u > 0. Since

the mapping x 7→ −e−xLc(u) is concave, we can use Jensen’s inequality to get

E[An] 6
αcn

Γ(1− α)

∫ +∞

0

(
1− E

[
e−|A|Lc(u)

]) 1

u1+α
du

=cnE
[( ∫

A

∫ c

0

z nα(dx, dz)
)α]

.

The expectation in the above right-hand side is finite. Furthermore, the conver-
gence of the series

∑
n bn implies the convergence of the sequence (cn)n towards∏+∞

k=1
1

1−bn ∈]0,+∞[. Therefore, the sub-martingale (An)n almost surely converges.

So does (M
c

n(A))n. Let us denote by M
c
(A) its limit. Obviously, the mapping

c 7→ M
c
(A) is increasing and thus converges as c goes to ∞. Let us denote by

M
∞

(A) the limit.
Now we prove that the sequence (Mn(A))n almost surely converges towards

M
∞

(A). We have for δ > 0:

P(|Mn(A)−M∞
(A)| > δ)

6 P(|Mn(A)−M c

n(A)| > δ

3
) + P(|M c

n(A)−M c
(A)| > δ

3
) + P(|M c

(A)−M∞
(A)| > δ

3
)

6
3β

δβ
E[|Mn(A)−M c

n(A)|β] + P(|M c

n(A)−M c
(A)| > δ

3
) + P(|M c

(A)−M∞
(A)| > δ

3
)

(35)
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where β < α. We evaluate the first quantity. We have:

E[|Mn(A)−M c

n(A)|β]

=
β

Γ(1− β)

∫ +∞

0

1− E[e−u(Mn(A)−Mc
n(A))]

u1+β
du

=
β

Γ(1− β)

∫ +∞

0

(
1− E

[
e

∫
A

∫ +∞

ce
γ
αX

n
x−

γ2

2αE[(Xnx )2]

(
e−uze

γ
αX

n
x−

γ2

2α E[(Xnx )2]
−1
)

1
z1+α dzdx]) 1

u1+β
du

=
β

Γ(1− β)

∫ +∞

0

(
1− E

[
e
∫
A

∫ +∞
c

(
e−uy−1

)
1

y1+α dy e
γXnx−

γ2

2 E[(Xnx )2]dx
]) 1

u1+β
du

=
β

Γ(1− β)

∫ +∞

0

(
1− E

[
e−Mn(A)Uc(u)

]) 1

u1+β
du

where Uc(u) =
∫ +∞
c

(
1− e−uy

)
1

y1+α dy. Notice that Uc(u) > 0 for each u > 0. From
Jensen’s inequality again, we have

E[|Mn(A)−M c

n(A)|β] 6
β

Γ(1− β)

∫ +∞

0

(
1− E

[
e−|A|Uc(u)

]) 1

u1+β
du

=E
[( ∫

A

∫ +∞

c

z nα(dx, dz)
)β]

. (36)

This latter quantity converges to 0 as c goes to ∞ (uniformly with respect to n).
Now we come back to (35) to complete the proof. We can fix c > 0 so as to

make the first and third quantity as small as we please. Indeed, concerning the
first quantity, it results from the bound just above (36) and concerning the third
quantity, it results from the almost sure convergence of M

c
(A) towards M

∞
(A). For

such a c, we can find N such that the second quantity is also as small as we please
for n > N .

Remark 11. The reader may find the above proof more tricky than expected. Actu-
ally, the truncation suggested in (34) is not the more natural way that we may think
of to tackle the problem. The first idea that we may come up with is rather to define

M
c

n(A) =

∫
A

∫ c

0

e
γ
α
Xn
x−

γ2

2α
E[(Xn

x )2]z nα(dx, dz).

It is straightforward to check that (M
c

n(A)α)n is a submartingale. But it is not
bounded in L1. Indeed, if it was, its limit would be M(A)α regardless of the value of

c because the chaos ”kills” the big jumps, i.e.
∫
A

∫∞
c
e
γ
α
Xn
x−

γ2

2α
E[(Xn

x )2]z nα(dx, dz)→ 0

as n→∞ almost surely. Thus, M(A) would admit a moment of order α, which is
impossible (see below).
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Proofs of Proposition 3

For β < α, we can use relation (29) to show the existence of the moments and the
dual relation (13). If M possesses a moment of order α then the left-hand side of
equation (13) must converge as β → α. But it is equal to the right-hand side, which
diverges because of the term Γ(1−β/α) and the fact that the measure M possesses
a non trivial moment of order 1.

Proof of Theorem 4

First we stress that it has already been proved that the chaos measure M , associated
to the given kernel K, satisfies the scale invariance relation (see [32]) for some R > 0:

∀0 < λ < 1, (M(λA))A⊂B(0,R)
law
= λdeΩλ(M(A))A⊂B(0,R)

where Ωλ is a Gaussian random variable independent of the measure (M(A))A⊂B(0,R)

the law of which is characterized by:

E[eqΩλ ] = λ
γ2

2
q− γ

2

2
q2

.

The results then easily follows from the relation

E[eiu1M(A1)+···+iunM(An)] = E[e−u
α
1M(A1)+···−uαnM(An)]

valid for all u1, . . . , un ∈ R and all disjoint Borelian subsets A1, . . . , An ⊂ Rd.

Proof of Corollary 5

Let us write the kernel K as

K(x) = Kp(x) + h(x)

where Kp is the ”perfect kernel” given by (24) and g is some continuous bounded
function over Rd. Even if it means adding to K a constant, we may assume that
h(0) = 0 and, without loss of generality, we assume R = 1. For t > 0, we define

Gt = sup
|x| 6 t

|h(x)|.

Let us also consider the measures Mp,M
p

associated to the perfect kernel Kp. Let
us denote by Bλ the ball centered at 0 with radius λ. From Kahane’s concentration
inequalities [18], we have for all q 6 1:

E[(M(Bλ))
q] > E

[(
Mp(Bλ)e

γ
√
GλZ− γ

2

2
Gλ
)q]
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where Z is a standard Gaussian random variable independent of Mp. Hence, by
using Theorem 4, we have:

E[(M(Bλ))
q] > E

[(
Mp(Bλ)

)q]E[(eγ√GλZ− γ2

2
Gλ
)q]

= λξ(q)E[Mp(B1)q]eq
2 γ

2

2
Gλ−q γ

2

2
Gλ .

With the same argument we prove

eq
2 γ

2

2
Gλ−q γ

2

2
GλE[(M(Bλ))

q] 6 λξ(q)E[Mp(B1)q].

Because Gλ → 0 as λ→ 0, the result follows from relation (13).

C. Proofs of Section 4.

C.1 Proof of Proposition 6

We assume that A is bounded, say included in the ball B(0, 1). We have for s < t:

H t,δ
µ (A) 6 Hs,δ

µ (A) sup
B ball centered in A,
B⊂B(0,1),diam(B) 6 δ

µ(B)t−s.

Obviously, it suffices to prove that the quantity sup B ball centered in A,
B⊂B(0,1),diam(B) 6 δ

µ(B) converges

to 0 as δ → 0. It is clear if µ is the Lebesgue measure. If µ = M , this results from
the fact that M does not possess any atom (see Lemma 12 below). It remains to
investigate the situation when µ = M . Let A be a compact subset included in the
ball B(0, 1) with null Lebesgue measure. For 0 < β < α, we have E[M(A)β] =

cα,βE[M(A)
β
α ] = 0 since M(A) = 0 almost surely. Therefore, almost surely, the

measure M does not possess any atom on the set A. Now we prove that, almost
surely,

sup
B ball centered in A,
B⊂B(0,1),diam(B) 6 δ

M(B)→ 0 as δ → 0.

We argue by contradiction. Assume that this quantity does not converge towards 0.
We can find ε > 0, a sequence (xn)n of points in A and a sequence (rn)n of positive
radius such that M(B(xn, rn)) > ε. Even if it means extracting a subsequence,
we may assume that the sequence (xn)n converges towards x ∈ A. We deduce
M({x}) > ε. This means that M possesses an atom on A. Contradiction.

Lemma 12. Almost surely, the measure M does not possess any atom.

Proof. By stationarity, it is enough to prove that, almost surely, the measure M does
not possess any atom on the cube [0, 1]d. For n ∈ N∗ and k1, . . . , kd ∈ {1, . . . , n},
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let us denote by Ink1,...,kd
the cube

∏d
i=1[ki−1

n
, ki
n

]. From [10, Corollary 9.3 VI], it is
enough to check that for each η > 0:

n∑
k1,...,kd=1

P
(
M(Ink1,...,kd

) > η
)

= ndP
(
M(In0,...,0) > η

)
→ 0 as n→∞.

This is a direct consequence of the Markov inequality

ndP
(
M(In0,...,0) > η

)
6
nd

ηq
E[M(In0,...,0)q]

and the relation, for 1 < q < 2d
γ2 (see the proof of corollary 5),

E[M(In0,...,0)q] 6 Cn−ξ(q).

Indeed, for 1 < q < 2d
γ2 , we have ξ(q) > d.

C.2 Proof of the usual KPZ formula

The usual KPZ relation has already been proved in [11, 31]. For the sake of clarity
and completeness, we sketch here a simple proof in the Gaussian case. We further
have the feeling that this short proof is worth being written as it helps to understand
the KPZ formula in an easy way. It relies on the intensive use of the scaling properties
of the Gaussian multiplicative chaos as well as the use of the Girsanov transform,
which much simplifies the computations in comparison with [11, 31]. For the sake
of simplicity of notations, we make the proof in dimension d = 1 but the proof in
higher dimensions can be identically reproduced word for word. We also assume
that M is the perfect measure, namely the measure with associated kernel given by
γ2 ln+

T
|x| . Actually, it can easily be proved with the Kahane convexity inequalities

(see [18] or [30, cor. 6.2]) that this is not a restriction. We also mention that M can
be constructed as the limit

M(dx) = lim
l→0

Ml(dx)
def
= eγX

l
x−

γ2

2
E[(Xl

x)2] dx

where Xl is a stationary Gaussian process with covariance kernel given by:

kl(x) =


0 if |x| > T,
ln+

T
|x| if lT 6 |x| 6 T,

ln 1
l

+
(
1− |x|

T l

)
if 0 6 |x| 6 lT.

Such a family of kernels possesses useful scaling properties, namely that for |x| 6 T
and 0 < λ < 1, kλl(λx) = kl(x) + ln 1

λ
. In particular, we have the following scaling

relation for all 0 < l < 1 and all 0 < λ < 1:(
(Xλl

λx)x∈B(0,T ), (Mλl(λA))A⊂B(0,T )

) law
=
(
(X l

x+Ωλ)x∈B(0,T ), (λe
γΩλ− γ

2

2
ln 1
λMl(A))A⊂B(0,T )

)
.

(37)
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where Ωλ is a centered Gaussian random variable with variance ln 1
λ

and indepen-
dent of the couple

(
(X l

x)x∈B(0,T ), (Ml(A))A⊂B(0,T )

)
. We will use the above relation

throughout the proof.

Now we begin with the proof. Without loss of generality we assume that T =
1. Let K be a compact subset of R, included in [0, 1], with Hausdorff dimension
dimLeb(K). Let q ∈ [0, 1] be such that ξ(q) > dimLeb(K). For ε > 0, there is a
covering of K by a countable family of balls (B(xn, rn))n such that∑

n

rξ(q)n < ε.

By using in turn the stationarity and the power law spectrum of the measure, we
have

E
[∑

n

M(B(xn, rn))q
]

=
∑
n

E
[
M(B(0, rn))q

]
6 Cq

∑
n

rξ(q)n

6 Cqε,

we deduce by the Markov inequality

P
(∑

n

M(B(xn, rn))q 6 Cq
√
ε
)
> 1−

√
ε.

Thus, with probability 1−
√
ε, there is a covering of balls ofK such that

∑
nM(B(xn, rn))q 6 Cq

√
ε.

So q > dimM(K) almost surely.
Conversely, consider q > 0 such that ξ(q) < dimLeb(K). By the Frostman

Lemma, there is a probability measure γ supported by K such that∫
[0,1]2

1

|x− y|ξ(q)
γ(dx)γ(dy) < +∞.

Let us define the random measure γ̃ as the almost sure limit of the following family
of positive random measures:

γ̃(dx) = lim
l→0

eqγX
l
x−

q2γ2

2
E[(Xl

x)2]γ(dx). (38)

For γ2 < 2, the limit is non trivial because q2γ2/2 < ξ(q) and supported by K (see
[18]). From the Frostman lemma again, we just have to prove that the quantity∫

[0,1]2

1

M([x, y])q
γ̃(dx)γ̃(dy)
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is finite almost surely. It suffices to prove that the above quantity has a finite ex-
pectation. Moreover, by using the Fatou lemma and the stationarity of the measure
M , we have

E
[ ∫

[0,1]2

1

M([x, y])q
γ̃(dx)γ̃(dy)

]
6 lim inf

l

∫
[0,1]2

E
[eqγXl

x+qγXl
y−q2γ2E[(Xl

x)2]

Ml([x, y])q

]
γ(dx)γ(dy)

= lim inf
l

2

∫
y > x

E
[eqγXl

0+qγXl
y−x−q2γ2E[(Xl

x)2]

Ml([0, y − x])q

]
γ(dx)γ(dy).

We decompose the last integral into two terms:∫
y > x

E
[eqγXl

0+qγXl
y−x−q2γ2E[(Xl

x)2]

Ml([0, y − x])q

]
γ(dx)γ(dy)

=

∫
0 6 y−x 6 l

E
[eqγXl

0+qγXl
y−x−q2γ2E[(Xl

x)2]

Ml([0, y − x])q

]
γ(dx)γ(dy)

+

∫
y−x > l

E
[eqγXl

0+qγXl
y−x−q2γ2E[(Xl

x)2]

Ml([0, y − x])q

]
γ(dx)γ(dy)

def
=A1

l + A2
l .

For each of the above terms, we will use an appropriate scaling relation.
By using (37), we deduce

A2
l =

∫
y−x > l

E
[e2qγΩy−x−q2γ2 ln 1

y−x eqγX
l

y−x
0 +qγX

l
y−x
1 −q2γ2E[(X

l
y−x
x )2]

(y − x)qeqΩy−x−q
γ2

2
ln 1
y−xM l

y−x
([0, 1])q

]
γ(dx)γ(dy)

=

∫
y−x > l

E
[eqγΩy−x−(q2γ2−q γ

2

2
) ln 1

y−x

(y − x)q

]
E
[eqγX l

y−x
0 +qγX

l
y−x
1 −q2γ2E[(X

l
y−x
x )2]

M l
y−x

([0, 1])q

]
γ(dx)γ(dy)

=

∫
y−x > l

1

(y − x)ξ(q)
E
[eqγX l

y−x
0 +qγX

l
y−x
1 −q2γ2E[(X

l
y−x
x )2]

M l
y−x

([0, 1])q

]
γ(dx)γ(dy)

By using a Girsanov transform, we have

E
[eqγX l

y−x
0 +qγX

l
y−x
1 −q2γ2E[(X

l
y−x
x )2]

M l
y−x

([0, 1])q

]
= E

[ e
q2γ2k l

y−x
(1)

( ∫ 1

0
e
γX

l
y−x
r − γ2

2
E[(X

l
y−x
x )2]+qγ2k l

y−x
(1−r)+qγ2k l

y−x
(r)
dr
)q
]

6 CE
[ 1( ∫ 1

0
eγX

l
y−x
r − γ2

2
E[(X

l
y−x
x )2] dr

)q ]
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for some positive constant C. Notice that we have just used the fact that k l
y−x

(1) = 0

and that k l
y−x

is positive. It is a standard fact that the measure M possesses

moments of negative order so that we have proved

lim
l
A2
l 6 C

∫
[0,1]2

1

|y − x|ξ(q)
γ(dx)γ(dy) < +∞.

To treat the term A1
l , we use quite a similar argument excepted that we use the

scaling relation on l instead of y − x, and the Girsanov transform again:

A2
l =

∫
0 6 y−x 6 l

E
[e2qγΩl−q2γ2 ln 1

l e
qγX1

0 +qγX1
y−x
l

−q2γ2E[(X1
x)2]

lqeqΩl−q
γ2

2
ln 1

lM1([0, y−x
l

])q

]
γ(dx)γ(dy)

=

∫
0 6 y−x 6 l

E
[eqγΩl−(q2γ2−q γ

2

2
) ln 1

l

lq

]
E
[eqγX1

y−x
l

+qγX1
0−q2γ2E[(X1

x)2]

M1([0, y−x
l

])q

]
γ(dx)γ(dy)

=

∫
0 6 y−x 6 l

1

lξ(q)
E
[ eq

2γ2k1( y−x
l )( ∫ y−x

l

0
eγX

1
r−

γ2

2
E[(X1

r )2]+qγ2k1( y−x
l
−r)+qγ2k1(r) dr

)q ]γ(dx)γ(dy).

By using the fact that k1 is positive and bounded by 1, we have (for some positive
constant C independent of l)

A2
l 6 C

∫
0 6 y−x 6 l

1

lξ(q)
E
[ 1( ∫ y−x

l

0
eγX

1
r−

γ2

2
E[(X1

r )2] dr
)q ]γ(dx)γ(dy).

Since E[X1
rX

1
0 ] 6 E[(X1

0 )2], we can use Kahane’s convexity inequalities to the convex
mapping x 7→ 1

xq
. We deduce (for some positive constant C ′)

A2
l 6 C

∫
0 6 y−x 6 l

1

lξ(q)
E
[ 1( ∫ y−x

l

0
eγX

1
0−

γ2

2
E[(X1

0 )2] dr
)q ]γ(dx)γ(dy)

6 C ′
∫

0 6 y−x 6 l

lq

lξ(q)(y − x)q
γ(dx)γ(dy)

6 C ′
∫

0 6 y−x 6 l

1

(y − x)ξ(q)
γ(dx)γ(dy).

Hence

lim
l
A1
l 6 C ′

∫
B(0,T )2

1

|y − x|ξ(q)
γ(dx)γ(dy) < +∞.

The KPZ formula is proved (by using scaling relations only).
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C.3 Proof of the dual KPZ formula

This time, we do not restrict to the dimension 1. Let K be a compact subset of
Rd, included in the ball B(0, 1) with Hausdorff dimension 0 6 dimLeb(K) < 1. Let

δ0 be the unique solution in [0, α[ such that ξ(δ0)
d

= dimLeb(K). We want to prove
δ0 = dimM(K).

Let 0 6 q < α be such that ξ(q)
d
> dimLeb(K). For ε > 0, there is a covering of

K by a countable family of balls (B(xn, rn))n such that∑
n

rξ(q)n < ε.

Since we have (see Theorem 4)

E
[∑

n

M(B(xn, rn))q
]

=
∑
n

E
[
M(B(0, rn))q

]
6 Cq

∑
n

rξ(q)n

6 Cqε,

we deduce by the Markov inequality

P
(∑

n

M(B(xn, rn))q 6 Cq
√
ε
)
> 1−

√
ε.

Thus, with probability 1−
√
ε, there is a covering of balls ofK such that

∑
nM(B(xn, rn))q 6 Cq

√
ε.

So q > dimM(K) almost surely.

Conversely, consider p ∈ [0, α[ such that ξ(p)
d
< dimLeb(K). Since ξ(p) = ξ( p

α
),

we can set q = p
α
∈ [0, 1[ and we have ξ(q)

d
< dimLeb(K). As we proved above, we

can consider the measure γ̃ introduced in (38). It is almost surely supported by K
and non trivial. Furthermore, it satisfies

E
[ ∫

B(0,T )2

1

M(B(x, |y − x|))q
γ̃(dx)γ̃(dy)

]
< +∞.

Let us prove that

E
[ ∫

B(0,T )2

1

M(B(x, |y − x|))p
γ̃(dx)γ̃(dy)

]
< +∞. (39)

By using the relation for p, x > 0

Γ(p) = xp
∫ +∞

0

up−1e−ux du,
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we deduce:

E
[ ∫

B(0,T )2

1

M(B(x, |y − x|))p
γ̃(dx)γ̃(dy)

]
=

1

Γ(p)
E
[ ∫ +∞

0

up−1

∫
B(0,T )2

e−uM(B(x,|y−x|))γ̃(dx)γ̃(dy) du
]

=
1

Γ(p)
E
[ ∫ +∞

0

up−1

∫
B(0,T )2

E
[
e−uM(B(x,|y−x|))|Y n, n > 1

]
γ̃(dx)γ̃(dy) du

]
=

1

Γ(p)
E
[ ∫ +∞

0

up−1

∫
B(0,T )2

e−u
αM(B(x,|y−x|))γ̃(dx)γ̃(dy) du

]
Now we make the change of variables y = uαM(B(x, |y − x|)) to obtain:

E
[ ∫

B(0,T )2

1

M(B(x, |y − x|))p
γ̃(dx)γ̃(dy)

]
=

1

αΓ(p)
E
[ ∫

B(0,T )2

1

M(B(x, |y − x|))q
γ̃(dx)γ̃(dy)

] ∫ +∞

0

y
p
α
−1e−y dy

=
Γ( p

α
+ 1)

Γ(p+ 1)
E
[ ∫

B(0,T )2

1

M(B(x, |y − x|))q
γ̃(dx)γ̃(dy)

]
.

Hence, the above quantity is finite and (39) is proved. As usually, we conclude by
using the Frostman lemma that p < dimM(K). The dual KPZ formula is proved.
Notice that we have also proved We point out that this duality relation can be
directly recovered from the relation dimM(K) = α dimM(K), which is nothing but
the duality relation.

Remark 13. Notice that the above proof is much simplified by the fact our con-
struction of M,M allows to construct these measures on the same probability space.
Therefore the proof of the dual KPZ formula boils down to a conditioning argument
and a small computation.
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