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Gaussian multiplicative chaos and KPZ duality

Julien Barral ∗, Xiong Jin†, Rémi Rhodes ‡, Vincent Vargas §¶

February 23, 2012

Abstract

This paper is concerned with the KPZ formula. On the first hand, we
give a simplified (in comparison with the existing literature) proof of the
classical KPZ formula. On the other hand, we construct purely atomic random
measures corresponding to values of the parameter γ2 beyond the transition
phase (i.e. γ2 > 2d). We prove the dual KPZ formula for these measures and
check the duality relation. In particular, this framework allows to construct
singular Liouville measures and to understand the duality relation in Liouville
quantum gravity.

1. Introduction

Log-normal multiplicative martingales were introduced by Mandelbrot [23] in order
to build random measures describing energy dissipation and contribute explaining
intermittency effects in Kolmogorov’s theory of fully developed turbulence (see [5,
31, 33, 6, 14] and references therein). However, his model was difficult to define
mathematically and this is why he proposed in [24] the simpler model of random
multiplicative cascades whose detailed study started with Kahane’s and Peyrière’s
notes [15, 26], gathered in their joint paper [17].

From that moment on, multiplicative cascades have been widely used as refer-
ence models in many applications. However, they possess many drawbacks related
to their discrete scale invariance, mainly they involve a particular scale ratio and
they do not possess stationary fluctuations (this comes from the fact that they are
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constructed on a p-adic tree structure). In the eighties, Kahane [16] came back to
Mandelbrot’s initial model and developed a continuous parameter theory of suitable
stationary multifractal random measures, called Gaussian multiplicative chaos. His
efforts were followed by several authors [3, 31, 2, 27, 29, 13, 1, 30] coming up with
various generalizations at different scales. This family of random fields has found
many applications in various fields of science like mathematical finance, turbulence,
etc... Recently, the authors in [9] have drawn attention on the fact that Gaussian
multiplicative chaos should be considered as a natural model for Liouville Quantum
Gravity (see [21, 7, 9] among many others). In this context, the KPZ formula has
been proved rigorously [4, 9, 28] below the transition phase arising at γ2 = 4, where
the constant γ is related to the central charge c 6 1 of the underlying conformal
field theory by the relation (see [21])

γ =

√
25− c−

√
1− c√

6
.

However the issue of mathematically constructing singular Liouville measures bey-
ong the transition phase (i.e. for γ2 > 4) and proving the KPZ duality has never
been solved mathematically (see [18, 19, 20] for an account of physical motivations).

Let us draw up the framework a bit more precisely. Fix a simply connected
domain D ⊂ C. For γ2 < 4, the Liouville measure can formally be written as

Mγ(A) =

∫

A

eγXx− γ2

2
E[X2

x] dx (1)

where X is the Gaussian Free Field (GFF) over the domain D. For a given compact
set K ⊂ D, it has been proved that the Hausdorff dimension of K computed with
the Euclidian metric, call it dimLeb(K), is related to the Hausdorff dimension of K
computed with the measure Mγ , call it dimγ(K). The connection is the so-called
KPZ formula

dimLeb(K) = (1 +
γ2

4
)dimγ(K)− γ2

4
dimγ(K)2.

Based on the physics literature, the purpose of this paper it to propose a construction
in the spirit of (1) of (purely atomic) random measures Mγ̄ , for some parameter
values γ̄ > 4 (i.e. beyond the transition phase), that satisfies the KPZ relation

dimLeb(K) = (1 +
γ̄2

4
)dimγ̄(K)− γ̄2

4
dimγ̄(K)2.

Then, by considering the dual value γ = γ̄
4
of the parameter γ̄, we want to establish

the duality relation

dimγ̄(K) =
γ2

4
dimγ(K).

We point out that physicists can recover the (more classical) relation between the
scaling exponents by setting △γ = 1− dimγ(K) and △γ̄ = 1− dimγ̄(K).
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Our construction for dual measures is roughly the following. Consider a couple
of exponents (γ, γ̄) such that γ2 < 4 and γγ̄ = 4. We introduce an independently
scattered random measure nα characterized by its Laplace transform (|A| stands for
the Lebesgue measure of A)

∀A ⊂ R
2 Borelian, E[e−unα(A)] = e−uα|A|

where α = γ2

4
. The considered dual measure is then formally defined by (see below

for a rigorous construction)

Mγ̄(A) =

∫

A

eγ̄Xx−2E[X2
x] nα(dx). (2)

Let us mention that our measures (Mγ,Mγ̄) are approximately ⋆-scale invariant
random measures in the sense of [1]. As a consequence, they satisfy the scaling
heuristics developed in [10] to quantify the measure of a Euclidean ball of size ǫ (see
in particular the section Liouville quantum duality). In fact, such heuristics amount
to considering ⋆-scale invariant random measures (see [1, 30]). We conjecture that
the ⋆-scale invariance property characterizes the measures that one can consider in
this context (work in progress; see [11] for a precise statement and a rigorous proof
in the case of random multiplicative cascades).

In the present paper, we will tackle the above problem in great generality: we
will not restrict ourselves to the 2-dimensional case and we will not consider the
only GFF but more generally log-correlated Gaussian distributions.

2. Background

In this section, we will briefly explain Kahane’s theory of multiplicative chaos in Rd.
In fact, Kahane’s theory is valid in any open domain D ⊂ Rd with no substantial
change. At the end of the section, we will also roughly recall the connection with
measures formally given by the exponential of the GFF.

2.1 Sigma positive kernels

We consider a covariance kernel K of σ-positive type ([16]), namely that K can be
rewritten as a sum

∀x, y ∈ R
d, K(x, y) =

∑

n > 1

qn(x, y) (3)

where (qn)n is a sequence of continuous positive kernels of positive type. We further
assume that

∀x ∈ R
d, K(x, y) = ln+

T

|x− y| + g(x, y) (4)

where g is a bounded continuous function over Rd×Rd (and ln+(x) = max(0, ln(x))).
We can consider a sequence of independent centered Gaussian processes (Y n)n > 1
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where, for each n > 1, (Y n
x )x∈Rd is a centered continuous Gaussian field with covari-

ance function given by

∀x, y ∈ R
d, Cov(Y n

x , Y
n
y ) = qn(x, y).

Finally, for n > 1, we define:

Xn
x =

n∑

p=1

Y p
x .

It is a centered continuous Gaussian process with covariance function:

∀x, y ∈ R
d, kn(x, y)

def
= Cov(Xn

x , X
n
y ) =

n∑

k=1

qk(x, y). (5)

The reader may find several important examples of sigma-positive kernels in Ap-
pendix A.

2.2 Gaussian multiplicative chaos

For each n > 1, we can define a Radon measure Mn on the Borelian subsets of Rd

by

Mn(A) =

∫

A

eγX
n
x− γ2

2
E[(Xn

x )2] dx.

For each Borelian set A, the sequence (Mn(A))n is a positive martingale. Thus
it converges almost surely towards a random variable denoted by M(A). One can
deduce that the sequence of measures (Mn)n weakly converges towards a random
Radon measure M , commonly denoted by

M(A) =

∫

A

eγXx− γ2

2
E[X2

x] dx (6)

and called Gaussian multiplicative chaos associated to the kernel γ2K. Roughly
speaking, (6) can be understood as a measure admitting as density the exponential
of a Gaussian distribution X with covariance kernel γ2K. Of course, this is purely
formal because the exponential of a random distribution cannot be directly defined.
Kahane proved that the martingale (Mn(A))n, for some Borelian set A with non-
null finite Lebesgue measure, is uniformly integrable if and only if γ2 < 2d. This
condition is necessary and sufficient in order for the limiting measure M to be non
identically null. Furthermore, he proved that the law of the limiting measure M
does not depend on the decomposition (3) of K into a sum of positive continuous
kernels. For kernels K that cannot be written as a sum of nonnegative terms as (3),
we refer to the extended Gaussian multiplicative theory developed in [27].
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2.3 Application to the construction of Liouville measure

Formally, the GFF (or Euclidian bosonic massless free field) in a bounded domain
D ⊂ R2 is a ”Gaussian Field” X with covariance given by:

E[XxXy] = G(x, y),

whereG is the Green function ofD with zero boundary condition(see for instance [32]
or chapter 2.4 in [22] for the definition and main properties). Let B be a Brownian
motion starting from x ∈ D under the measure P x and consider the stopping time
TD = inf{t > 0, Bt 6∈ D}. If we denote pD(t, x, y) = P x(Bt ∈ dy, TD > t), we have:

G(x, y) = π

∫ ∞

0

pD(t, x, y)dt.

Note that, for each t > 0, pD(t, x, y) is a continuous positive and positive definite
kernel on D. Therefore, following Kahane’s theory, we can define the Gaussian
multiplicative chaos M associated to the kernel γ2G. Since the Green function
takes on the form (4), this measure is not trivial provided that γ2 < 4. We point
out that the authors in [9] have suggested a slightly different construction of the
Liouville meaure. Based on the uniqueness criterion in [27], it can be proved that
their construction has the same law as that originally proposed by Kahane.

3. Multiplicative chaos and dual chaos

We stick to the notations of the previous section. We nevertheless assume that the
considered Gaussian fields are stationary. Though it may appear as a restriction,
the proofs in the general case work exactly the same. Actually, being stationary or
not is just hidden in the ”small noise g” appearing in (4).

So, we consider the Gaussian multiplicative chaos M understood as the limit
(in the sense previously described) as n → ∞ of the following sequence of random
measures

Mn(dx) = eγX
n
x− γ2

2
E[(Xn

x )2] dx (7)

M is a non trivial random measure for γ2 < 2d with no atoms. Its power-law
spectrum ξ, defined through the relation

E[M(B(0, λ)q] ≃ Cqλ
ξ(q), λ → 0

for all q > 0 such that the expectation makes sense (i.e. for 0 6 q < 2d
γ2 , see [16]), is

given by

ξ(q) = (d+
γ2

2
)q − γ2

2
q2.

We introduce a positive Radon random measure NM distributed on Rd × R∗
+,

whose law conditionnally to M is that of a Poisson random measure with intensity

M(dx) dz

z1+α
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for some 0 < α < 1, which is chosen to be α = γ2

2d
. Then we introduce the family of

purely atomic positive random measures

∀A ∈ B(Rd), M(A) =

∫

A

∫

R+

z NM(dx, dz). (8)

Theorem 1. For γ < 2d, the law of the random measure M does not depend on
the decomposition of K into a sum of positive continuous kernels of positive type.
Furthermore, M is almost surely a purely atomic measure.

The law of M is characterized by the following relation

E[e−u1M(A1)+···−unM(Ap)] = E
[
e−

Γ(1−α)
α

(
uα
1M(A1)+···+uα

nM(An)
)]

(9)

valid for all u1, . . . , up ∈ R+ and all disjoint Borelian subsets A1, . . . , Ap ⊂ Rd.
There is another way of seeing the law of the measure M̄ , which highlights the

presentation that we made in introduction. We define γ by the relation

γγ = 2d. (10)

We have:

Theorem 2. Consider a Poisson random measure Nα distributed on Rd ×R∗
+ with

intensity dx dz
z1+α and independent of the sequence (Y n

x )x∈Rd. Set

nα(dx) =

∫

·

∫ +∞

0

z Nα(dx, dz).

Define the sequence of random measures

∀A ∈ B(Rd), Mn(A) =

∫

A

e
γ
α
Xn

x− γ2

2α
E[(Xn

x )2]nα(dx)

=

∫

A

eγX
n
x−dE[(Xn

x )2]nα(dx). (11)

The sequence of random measures (Mn(dx))n weakly converges in law towards a
random measure M , the law of which is given by (8).

The above theorem justifies to write formally the law of M as

M(dx) =

∫

·
eγXx−dE[X2

x]nα(dx) (12)

where X is a stationary Gaussian distribution with covariance kernel K. This ex-
pression also justifies the fact that the measure M can be seen as a Gaussian multi-
plicative chaos. Furthermore, it is defined for values of γ2 beyond the critical value
γ2 = 2d. Notice that the renormalization (i.e. dE[X2

x]) differs from the sub-critical
Gaussian multiplicative chaos (i.e. γ2 < 2d).
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3.1 Power-law spectrum and moments of the dual chaos

Let us define

∀q ∈ R, ξ(q) =
( d
α
+

γ2

2α

)
q − γ2

2α2
q2.

We will show below that this function coincides with the power law spectrum of the
measure M . The choice of α can be understood now since it is the only possible
value of 0 < α < 1 ensuring the renormalization condition ξ(1) = d. The function ξ
can also be rewritten as:

ξ(q) =
(
d+

γ2

2

)
q − γ2

2
q2. (13)

In particular, we see that ξ(q) = ξ( q
α
).

Now we precise the existence of moments for the measure M :

Proposition 3. For all Borelian set A with finite (not null) Lebesue measure, the
random variable M(A) possesses a moment of order β > 0 if and only if β < α.

Furthermore, we can make explicit the connection between the moments of M
and M : for all 0 6 β < α,

E[(M(A))β] =
Γ(1− β/α)Γ(1− α)β/α

Γ(1− β)αβ/α
E[(M(A))

β
α ] (14)

Theorem 4. (Perfect scaling). If the kernel K is given by

K(x) = ln+
T

|x| + g(x)

where g is a continuous bounded function that is constant in a neighborhoud of 0
then, for some R > 0:

∀0 < λ < 1, (M(λA))A⊂B(0,R)
law
= λd/αe

Ωλ
α (M(A))A⊂B(0,R) (15)

where Ωλ is a Gaussian random variable independent of the measure (M(A))A⊂B(0,R)

the law of which is characterized by:

E[eqΩλ ] = λ
γ2

2
q− γ2

2
q2.

In particular, for all 0 6 q < α:

E[M(B(0, λR))q] = λξ(q)
E[M (B(0, R))q].

Corollary 5. Assume that the kernel K takes on the form (4) and that γ > 2d.
Then, for all 0 6 q < α:

E[M(B(0, λR))q] ≃ Cq,Rλ
ξ(q)

as λ → 0 for some positive constant Cq,R only depending on q, R.
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4. KPZ formula and duality

The KPZ formula is a relation between the Hausdorff dimensions of a given set A
as measured by the Lebesgue measure, M or M . So we first recall how to define
these dimensions. Given a Radon measure µ on Rd and s ∈ [0, 1], we define

Hs,δ
µ (A) = inf

{∑

k

µ(Bk)
s
}

where the infimum runs over all the covering (Bk)k of A with open Euclidean balls
centered at A with radius rk 6 δ. Clearly, the mapping δ > 0 7→ Hs,δ

µ (A) is
decreasing. Hence we can define the s-dimensional µ-Hausdorff outer measure:

Hs
µ(A) = lim

δ→0
Hs,δ

µ (A).

The limit exists but may be infinite. Hs
µ is a metric outer measure on Rd (see [12]

for the definitions). We point out that the fact that µ possesses atoms or not does
not give rise to any additional difficulty. Thus Hs

µ is a measure on the σ-field of
Hs

µ-measurable sets, which contains all the Borelian sets.
The µ-Hausdorff dimension of the set A is then defined as the value

dimµ(A) = inf{s > 0; Hs
µ(A) = 0}. (16)

Notice that dimµ(A) ∈ [0, 1]. However, it is not clear, in great generality, that we
have the classical property:

dimµ(A) = sup{s > 0; Hs
µ(A) = +∞}. (17)

This is due to the possible presence of atoms for the measure µ. However we claim

Proposition 6. If we take µ = Leb then (17) holds. If we take µ = M then, almost
surely, (17) holds for every bounded Borelian set. If we take µ = M and A a compact
set with null Lebesgue measure then (17) holds almost surely.

This proposition allows to characterize the Hausdorff dimension as the critical
value at which the mapping s 7→ Hs

µ(A) jumps from +∞ to 0.
In what follows, given a compact set K of Rd with null Lebesgue measure,

we define its Hausdorff dimensions dimLeb(K), dimM(K), dimM(K) computed as
indicated above with µ respectively equal to the Lebesgue measure, M and M .

Theorem 7. KPZ duality. Let K be a compact set of Rd with null Lebesgue
measure. Almost surely, we have the relations

dimLeb(K) =
ξ(dimM(K))

d
dimLeb(K) =

ξ(dimM(K))

d

where ξ(q) = (d+ γ2

2
)q − γ2

2
q2 and ξ(q) =

(
d + γ2

2

)
q − γ2

2
q2. In particular, we have

the duality relation between the scaling exponents

dimM(K) =
γ2

2d
dimM(K). (18)
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Remark 8. Note that, in the classical physics literature (in particular d = 2), it is
more usual to focus on the scaling exponents

△γ = 1− dimM(K), △γ = 1− dimM(K), x = 1− dimLeb(K),

instead of dimM(K), dimM(K), dimLeb(K). Then the KPZ relations read

x =
γ2

4
△2

γ + (1− γ2

4
)△γ and x =

γ2

4
△2

γ + (1− γ2

4
)△γ.

The duality relation then becomes

△γ − 1 =
γ2

2d
(△γ − 1) =

2d

γ2 (△γ − 1).

Remark 9. If one looks for random measures satisfying the duality relation (18),
it is plain to deduce that such a relation implies that the power law spectrum is
necessarily given by (13). Such a power law spectrum indicates that the searched
random measures cannot be defined by (7) in the sense that the integrating measure
(dx in (7)) cannot be the Lebesgue measure. Indeed, otherwise Kahane’s theory
ensures that such measure is identically null. So one has to look for other integrating
measures in (7) than the Lebesgue measure. By noticing that ξ̄(q) = ξ( q

α
), one

can intuitively recover our construction, namely that the searched measures should
be Gaussian multiplicative chaos integrated against independently scattered α-stable
random measures, as stated in Theorem 2.

A. Examples of sigma-positive kernels

In this section, we detail a few examples of sigma-positive kernels, apart from the
Green function already explained in subsection 2.3. More precisely, we give two dif-
ferent classes of sigma-positive kernels, which yield two different notions of stochasic
scale invariance for the associated Gaussian multiplicative chaos.

A.1 Exact stochastic scale invariance

In this section, we describe how to construc kernels yielding the exact scale invariance
relations of Theorem 4. This is useful in computations and it is possible to deduce
all the other situations from this one.

We define on R+ the measure νT (dt) = 1[0,T ](t)
dt
t2
+ 1

T
δT (dt) where δx denotes the

Dirac mass at x. For µ > 0, it is straightforward to check that

∀x ∈ R
d, ln+

T

|x| =
1

µ

∫ +∞

0

(t− |x|µ)+νTµ(dt). (19)

9



-In dimension d = 1, it is straightforward to check that the function x 7→ (t−|x|)+
is of positive type. So, the kernel K(x) = γ2 ln+

T
|x| is of sigma positive type. The

kernels kn can be easily computed:

kn(x) =





0 if |x| > T,
γ2 ln+

T
|x| if T

n
6 |x| 6 T,

γ2 lnn +
(
1− n|x|

T

)
if 0 6 |x| 6 T

n
.

-In dimension d = 2, Pasenchenko [25] proved that the function (1 − |x|1/2)+ is
positive definite in dimension 2. Choosing µ = 2 in (19), we can thus write

∀x ∈ R
2, γ2 ln+

T

|x| =
∑

n > 1

qn(x),

where qn is the continuous positive and positive definite kernel

∀x ∈ R
2, qn(x) = 2γ2

∫ T1/2

(n−1)1/2

T1/2

n1/2

(t− |x|µ)+νT 1/2(dt).

A simple computation shows that

kn(x) =





0 if |x| > T,
γ2 ln+

T
|x| if T

n
6 |x| 6 T,

γ2 lnn + 2
(
1−

√
n|x|
T

)
if 0 6 |x| 6 T

n
.

-In dimension d > 3, it is proved in [29] that there exists a continuous bounded
function g : Rd → R, constant in a neighborhood of 0 such that

K(x) = γ2 ln+
T

|x| + g(x) (20)

is of sigma positive type.

A.2 ⋆-scale invariance

A simple way of constructing sigma positive kernels is given by

∀x ∈ R
d, K(x) =

∫ ∞

1

k(xu)

u
du, (21)

where k is a continuous positive kernel of positive type. Such kernel is of sigma
positive type since the decomposition can be realized by

qn(x) =

∫ 2n+1

2n

k(xu)

u
du.

Furthermore, K takes on the form (4) with γ2 = k(0). Such kernels are related to
the notion of ⋆-scale invariance (see [1, 30]).

10



B. Proofs of Section 3

Preliminary computations

We will use the following relation valid for any 0 < β < 1 and x > 0:

xβ =
β

Γ(1− β)

∫ ∞

0

(1− e−xz)
dz

z1+β
. (22)

Thus we have for all u > 0:

E[e−uM(A)] = E

[
e
∫
A

∫
R+

(e−zu−1) 1
z1+α dzM(dx)

]
= E[e−

Γ(1−α)
α

uαM(A)]. (23)

Similarly, we have

E[e−u1M(A1)+···−unM(Ap)] = E
[
e−

Γ(1−α)
α

(
uα
1M(A1)+···+uα

nM(An)
)]

(24)

valid for all u1, . . . , up ∈ R+ and all disjoint Borelian subsets A1, . . . , Ap ⊂ R
d.

Then we have for 0 < β < α:

E[(M (A))β] =
β

Γ(1− β)

∫ ∞

0

(
1− E[e−wM(A)]

) dw

w1+β

=
β

Γ(1− β)

∫ ∞

0

(
1− E[e−

Γ(1−α)
α

wαM(A)]
) dw

w1+β
.

We make the change of variables y = wα to get:

E[(M(A))β] =
β

αΓ(1− β)

∫ ∞

0

(
1− E[e−

Γ(1−α)
α

yM(A)]
) dy

y1+
β
α

(25)

=
Γ(1− β/α)Γ(1− α)β/α

Γ(1− β)αβ/α
E[(M(A))

β
α ].

Proof of Theorem 1.

We first stress that N can be constructed as the limit in law of a sequence (Nn)n
of Poisson random measures distributed on R

d × R
∗
+ with intensity Mn(dx)⊗ dz

z1+α .

From (24), we deduce that the law of M is characterized by that of M , which
does not depend on the chosen decomposition (see [16]). Furthermore, since N is
a Poisson random measure conditionally to M , it is clear that it is almost surely
purely atomic.

Proofs of Theorem 2

We have for all u > 0:

E[e−uMn(A)] = E

[
e
∫
A

∫
R+

(e−zu−1) 1
z1+α dzMn(dx)

]
= E[e−

Γ(1−α)
α

uαMn(A)]. (26)

11



Similarly, we have

E[e−u1Mn(A1)+···−unMn(Ap)] = E
[
e−

Γ(1−α)
α

(
uα
1Mn(A1)+···+uα

nMn(Ap)
)]

(27)

valid for all u1, . . . , up ∈ R+ and all disjoint Borelian subsets A1, . . . , Ap ⊂ Rd.
Since (Mn)n almost surely weakly converges towards M , it is obvious to check the
convergence in law as well as to characterize the law of the limiting measure.

Proofs of Proposition 3

For β < α, we can use relation (25) to show the existence of the moments and the
dual relation (14). If M possesses a moment of order α then the left-hand side of
equation (14) must converge as β → α. But it is equal to the right-hand side, which
diverges because of the term Γ(1−β/α) and the fact that the measure M possesses
a non trivial moment of order 1.

Proof of Theorem 4

First we stress that it has already been proved that the chaos measure M , associated
to the given kernel K, satisfies the scale invariance relation (see [29]) for some R > 0:

∀0 < λ < 1, (M(λA))A⊂B(0,R)
law
= λdeΩλ(M(A))A⊂B(0,R)

where Ωλ is a Gaussian random variable independent of the measure (M(A))A⊂B(0,R)

the law of which is characterized by:

E[eqΩλ ] = λ
γ2

2
q− γ2

2
q2.

The results then easily follows from the relation

E[eiu1M(A1)+···+iunM(An)] = E[e−uα
1M(A1)+···−uα

nM(An)]

valid for all u1, . . . , un ∈ R and all disjoint Borelian subsets A1, . . . , An ⊂ Rd.

Proof of Corollary 5

Let us write the kernel K as

K(x) = Kp(x) + h(x)

where Kp is the ”perfect kernel given by (20) and g is some continuous bounded
function over Rd. Even if it means adding to K a constant, we may assume that
h(0) = 0 and, without loss of generality, we assume R = 1. For t > 0, we define

Gt = sup
|x| 6 t

|h(x)|.

12



Let us also consider the measures Mp,M
p
associated to the perfect kernel Kp. Let

us denote by Bλ the ball centered at 0 with radius λ. From Kahane’s concentration
inequalities, we have for all q 6 1:

E[(M(Bλ))
q] > E

[(
Mp(Bλ)e

γ
√
GλZ− γ2

2
Gλ

)q]

where Z is a standard Gaussian random variable independent of Mp. Hence, by
using Theorem 4, we have:

E[(M(Bλ))
q] > E

[(
Mp(Bλ)

)q]
E
[(
eγ

√
GλZ− γ2

2
Gλ

)q]

= λξ(q)
E[M

p
(B1)

q]eq
2 γ2

2α2 Gλ−q γ2

2α2 Gλ .

With the same argument we prove

eq
2 γ2

2
Gλ−q γ2

2
GλE[(M(Bλ))

q] 6 λξ(q)
E[Mp(B1)

q].

Because Gλ → 0 as λ → 0, the result follows from relation (14).

C. Proofs of Section 4.

C.1 Proof of Proposition 6

We assume that A is bounded, say included in the ball B(0, 1). We have for s < t:

H t,δ
µ (A) 6 Hs,δ

µ (A) sup
B ball centered in A,

B⊂B(0,1),diam(B) 6 δ

µ(B)t−s.

Obviously, it suffices to prove that the quantity sup B ball centered in A,
B⊂B(0,1),diam(B) 6 δ

µ(B) converges

to 0 as δ → 0. It is clear if µ is the Lebesgue measure. If µ = M , this results from
the fact that M does not possess any atom (see Lemma 10 below). It remains to
investigate the situation when µ = M . Let A be a compact subset included in the
ball B(0, 1) with null Lebesgue measure. For 0 < β < α, we have E[M(A)β] =

cα,βE[M(A)
β
α ] = 0 since M(A) = 0 almost surely. Therefore, almost surely, the

measure M does not possess any atom on the set A. Now we prove that, almost
surely,

sup
B ball centered in A,

B⊂B(0,1),diam(B) 6 δ

M(B) → 0 as δ → 0.

We argue by contradiction. Assume that this quantity does not converge towards 0.
We can find ǫ > 0, a sequence (xn)n of points in A and a sequence (rn)n of positive
radius such that M(B(xn, rn)) > ǫ. Even if it means extracting a subsequence,
we may assume that the sequence (xn)n converges towards x ∈ A. We deduce
M({x}) > ǫ. This means that M possesses an atom on A. Contradiction.

13



Lemma 10. Almost surely, the measure M does not possess any atom.

Proof. By stationarity, it is enough to prove that, almost surely, the measure M does
not possess any atom on the cube [0, 1]d. For n ∈ N∗ and k1, . . . , kd ∈ {1, . . . , n}, let
us denote by Ink1,...,kd the cube

∏d
i=1[

ki−1
n

, ki
n
]. From [8, Corollary 9.3 VI], it is enough

to check that for each η > 0:
n∑

k1,...,kd=1

P

(
M(Ink1,...,kd) > η

)
= nd

P

(
M(In0,...,0) > η

)
→ 0 as n → ∞.

This is a direct consequence of the Markov inequality

nd
P

(
M(In0,...,0) > η

)
6

nd

ηq
E[M(In0,...,0)

q]

and the relation, for 1 < q < 2d
γ2 (see the proof of corollary 5),

E[M(In0,...,0)
q] 6 Cn−ξ(q).

Indeed, for 1 < q < 2d
γ2 , we have ξ(q) > d.

C.2 Proof of the usual KPZ formula

We first prove the usual KPZ relation though it has already been proved in [9, 28].
For the sake of clarity and completeness, we sketch here a simple proof in the Gaus-
sian case. It relies on the intensive use of the scaling properties of the Gaussan
multiplicative chaos as well as the use of the Girsanov transform, which much sim-
plifies the computations in comparison with [9, 28]. For the sake of simplicity of
notations, we make the proof in dimension d = 1 but the proof in higher dimension
can be identically reproduced word for word. We also assume that M is the perfect
measure, namely the measure with associated kernel given by γ2 ln+

T
|x| . Actually,

it can easily be proved with the Kahane concentration inequalities (see [16] or [27,
cor. 6.2]) that this is not a restriction. We also mention that M can be constructed
as the limit

M(dx) = lim
l→0

Ml(dx)
def
= eγX

l
x− 1

2
E[(Xl

x)
2] dx

where Xl is a stationary Gaussian process with covariance kernel given by:

kl(x) =





0 if |x| > T,
ln+

T
|x| if lT 6 |x| 6 T,

ln 1
l
+
(
1− |x|

T l

)
if 0 6 |x| 6 lT.

Such a family of kernels possesses useful scaling properties, namely that for |x| 6 T
and 0 < λ < 1, kλl(λx) = kl(x) + ln 1

λ
. In particular, we have the following scaling

relation for all 0 < l < 1 and all 0 < λ < 1:
(
(Xλl

λx)x∈B(0,T ), (Mλl(λA))A⊂B(0,T )

) law
=

(
(X l

x+Ωλ)x∈B(0,T ), (λe
γΩλ− γ2

2
ln 1

λMl(A))A⊂B(0,T )

)
.

(28)

14



where Ωλ is a centered Gaussian random variable with variance ln 1
λ
and indepen-

dent of the couple
(
(X l

x)x∈B(0,T ), (Ml(A))A⊂B(0,T )

)
We will use the above relation

throughout the proof.

Now we begin with the proof. Without loss of generality we assume that T =
1. Let K be a compact subset of R, included in the ball B(0, 1), with Hausdorff
dimension dimLeb(K). Let 1 > q > 0 be such that ξ(q) > dimLeb(K). For ǫ > 0,
there is a covering of K by a countable family of balls (B(xn, rn))n such that

∑

n

rξ(q)n < ǫ.

Since we have (we use the power law spectrum and the stationarity of the measure)

E

[∑

n

M(B(xn, rn))
q
]
=

∑

n

E

[
M(B(0, rn))

q
]

6 Cq

∑

n

rξ(q)n

6 Cqǫ,

we deduce by the Markov inequality

P

(∑

n

M(B(xn, rn))
q
6 Cq

√
ǫ
)
> 1−

√
ǫ.

Thus, with probability 1−√
ǫ, there is a covering of balls ofK such that

∑
nM(B(xn, rn))

q 6 Cq

√
ǫ.

So q > dimM(K) almost surely.
Conversely, consider q > 0 such that ξ(q) < dimLeb(K). By the Frostman

Lemma, there is a probability measure γ supported by K such that
∫

B(0,T )2

1

|x− y|ξ(q)γ(dx)γ(dy) < +∞.

Let us define the random measure γ̃ as the almost sure limit of the following family
of positive random measures:

γ̃(dx) = lim
l→0

eqγX
l
x− q2γ2

2
E[(Xl

x)
2]γ(dx). (29)

The limit is non trivial because q2γ2/2 < ξ(q) for γ2 < 2 (see [16]) and supported
by K. From the Frostman lemma again, we just have to prove that the quantity

∫

B(0,T )2

1

M([x, y])q
γ̃(dx)γ̃(dy)

is finite almost surely. It suffices to prove that the above quantity has a finite ex-
pectation. Moreover, by using the Fatou lemma and the stationarity of the measure
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M , we have

E

[ ∫

B(0,T )2

1

M([x, y])q
γ̃(dx)γ̃(dy)

]
6 lim inf

l

∫

B(0,T )2
E

[eqγXl
x+qγXl

y−q2γ2E[(Xl
x)

2]

Ml([x, y])q

]
γ(dx)γ(dy)

= lim inf
l

2

∫

y > x

E

[eqγXl
0+qγXl

y−x−q2γ2E[(Xl
x)

2]

Ml([0, y − x])q

]
γ(dx)γ(dy).

We decompose the last integral into two terms:

∫

y > x

E

[eqγXl
0+qγXl

y−x−q2γ2E[(Xl
x)

2]

Ml([0, y − x])q

]
γ(dx)γ(dy)

=

∫

0 6 y−x 6 l

E

[eqγXl
0+qγXl

y−x−q2γ2E[(Xl
x)

2]

Ml([0, y − x])q

]
γ(dx)γ(dy) +

∫

y−x > l

E

[eqγXl
0+qγXl

y−x−q2γ2E[(Xl
x)

2]

Ml([0, y − x])q

]
γ(dx)γ

def
= A1

l + A2
l .

For each of the above terms, we will use an appropriate scaling relation.
By using (28), we deduce

A2
l =

∫

y−x > l

E

[e2qγΩy−x−q2γ2 ln 1
y−xeqγX

l
y−x
0 +qγX

l
y−x
1 −q2γ2E[(X

l
y−x
x )2]

(y − x)qeqΩy−x−q γ2

2
ln 1

y−xM l
y−x

([0, 1])q

]
γ(dx)γ(dy)

=

∫

y−x > l

E

[eqγΩy−x−(q2γ2−q γ2

2
) ln 1

y−x

(y − x)q

]
E

[eqγX
l

y−x
0 +qγX

l
y−x
1 −q2γ2E[(X

l
y−x
x )2]

M l
y−x

([0, 1])q

]
γ(dx)γ(dy)

=

∫

y−x > l

1

(y − x)ξ(q)
E

[eqγX
l

y−x
0 +qγX

l
y−x
1 −q2γ2E[(X

l
y−x
x )2]

M l
y−x

([0, 1])q

]
γ(dx)γ(dy)

By using a Girsanov transform, we have

E

[eqγX
l

y−x
0 +qγX

l
y−x
1 −q2γ2E[(X

l
y−x
x )2]

M l
y−x

([0, 1])q

]
= E

[ e
k l
y−x

(1)

( ∫ 1

0
e
γX

l
y−x
r − γ2

2
E[(X

l
y−x
x )2]+qγ2k l

y−x
(1−r)+qγ2k l

y−x
(r)

dr
)q

]

6 CE

[ 1
( ∫ 3/4

1/4
eγX

l
y−x
r − γ2

2
E[(X

l
y−x
x )2] dr

)q

]

= CE
[ 1(

M l
y−x

([1/4, 3/4])
)q

]

for some positive constant C. Notice that we have just used the fact that k l
y−x

(1) = 0

and that k l
y−x

is bounded (independently of l
y−x

) over the complement of any non-

empty ball centered at 0. It is a standard fact that the measureM possesses moments
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of negative order so that we have proved

lim
l
A2

l 6 C

∫

B(0,T )2

1

|y − x|ξ(q)γ(dx)γ(dy) < +∞.

To treat the term A1
l , we use quite a similar argument excepted that we use the

scaling relation on l instead of y − x, and the Girsanov transform again:

A2
l =

∫

0 6 y−x 6 l

E

[e2qγΩl−q2γ2 ln 1
l e

qγX1
0+qγX1

y−x
l

−q2γ2E[(X1
x)

2]

lqeqΩl−q γ2

2
ln 1

l M1([0,
y−x
l
])q

]
γ(dx)γ(dy)

=

∫

0 6 y−x 6 l

E

[eqγΩl−(q2γ2−q γ2

2
) ln 1

l

lq

]
E

[e
qγX1

y−x
l

+qγX1
0−q2γ2E[(X1

x)
2]

M1([0,
y−x
l
])q

]
γ(dx)γ(dy)

=

∫

0 6 y−x 6 l

1

lξ(q)
E

[ eq
2γ2k1(

y−x
l )( ∫ y−x

l
0

eqγX
1
r− q2γ2

2
E[(X1

r )
2]+qγ2k1(

y−x
l

−r)+q2γ2k1(r) dr
)q

]
γ(dx)γ(dy).

By using the fact that k1 is positive bounded by 1 we have

A2
l 6

∫

0 6 y−x 6 l

1

lξ(q)
E

[ 1( ∫ y−x
l

0
eqγX

1
r− q2γ2

2
E[(X1

r )
2] dr

)q

]
γ(dx)γ(dy).

By using Kahane’s concentration inequalities to the convex mapping x 7→ 1
xq , we

deduce (for some positive constant C)

A2
l 6 C

∫

0 6 y−x 6 l

1

lξ(q)
E

[ 1( ∫ y−x
l

0
dr
)q

]
γ(dx)γ(dy)

6 C

∫

0 6 y−x 6 l

lq

lξ(q)(y − x)q
γ(dx)γ(dy)

6 C

∫

0 6 y−x 6 l

1

(y − x)ξ(q)
γ(dx)γ(dy).

Hence

lim
l
A1

l 6 C

∫

B(0,T )2

1

|y − x|ξ(q)γ(dx)γ(dy) < +∞.

The KPZ formula is proved.

C.3 Proof of the dual KPZ formula

This time, we do not restrict to the dimension 1. Let K be a compact subset of
Rd, included in the ball B(0, 1) with Hausdorff dimension 0 6 dimLeb(K) < 1. Let

δ0 be the unique solution in [0, α[ such that ξ(δ0)
d

= dimLeb(K). We want to prove
δ0 = dimM(K).
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Let 0 6 q < α be such that ξ(q)
d

> dimLeb(K). For ǫ > 0, there is a covering of
K by a countable family of balls (B(xn, rn))n such that

∑

n

rξ(q)n < ǫ.

Since we have (see Theorem 4)

E

[∑

n

M(B(xn, rn))
q
]
=

∑

n

E

[
M(B(0, rn))

q
]

6 Cq

∑

n

rξ(q)n

6 Cqǫ,

we deduce by the Markov inequality

P

(∑

n

M(B(xn, rn))
q
6 Cq

√
ǫ
)
> 1−

√
ǫ.

Thus, with probability 1−√
ǫ, there is a covering of balls ofK such that

∑
nM(B(xn, rn))

q 6 Cq

√
ǫ.

So q > dimM(K) almost surely.

Conversely, consider p ∈ [0, α[ such that ξ(p)
d

< dimLeb(K). Since ξ(p) = ξ( p
α
),

we can set q = p
α
∈ [0, 1[ and we have ξ(q)

d
< dimLeb(K). As we proved above, we

can consider the measure γ̃ introduced in (29). It is almost surely supported by K
and non trivial. Furthermore, it satisfies

E

[ ∫

B(0,T )2

1

M(B(x, |y − x|))q γ̃(dx)γ̃(dy)
]
< +∞.

Let us prove that

E

[ ∫

B(0,T )2

1

M(B(x, |y − x|))p
γ̃(dx)γ̃(dy)

]
< +∞. (30)

By using the relation for p, x > 0

Γ(p) = xp

∫ +∞

0

up−1e−ux du,

we deduce:

E

[ ∫

B(0,T )2

1

M(B(x, |y − x|))p
γ̃(dx)γ̃(dy)

]

=
1

Γ(p)
E

[ ∫ +∞

0

up−1

∫

B(0,T )2
e−uM(B(x,|y−x|))γ̃(dx)γ̃(dy) du

]

=
1

Γ(p)
E

[ ∫ +∞

0

up−1

∫

B(0,T )2
E

[
e−uM(B(x,|y−x|))|Yn, n > 1

]
γ̃(dx)γ̃(dy) du

]

=
1

Γ(p)
E

[ ∫ +∞

0

up−1

∫

B(0,T )2
e−uαM(B(x,|y−x|))γ̃(dx)γ̃(dy) du

]
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Now we make the change of variable y = uαM(B(x, |y − x|)) to obtain:

E

[ ∫

B(0,T )2

1

M(B(x, |y − x|))p
γ̃(dx)γ̃(dy)

]

=
1

αΓ(p)
E

[ ∫

B(0,T )2

1

M(B(x, |y − x|))q γ̃(dx)γ̃(dy)
] ∫ +∞

0

y
p
α
−1e−y dy

=
Γ( p

α
+ 1)

Γ(p+ 1)
E

[ ∫

B(0,T )2

1

M(B(x, |y − x|))q γ̃(dx)γ̃(dy)
]
.

Hence, the above quantity is finite and (30) is proved. As usually, we conclude by
using the Frostman lemma that p < dimM(K). The dual KPZ formula is proved.

C.4 Proof of the duality relation

By inverting the KPZ relations, we have

dimM(K) =
1 + γ2

2d
−
√

(1 + γ2

2d
)2 − 4γ2

2d
dimLeb(K)

γ2

d

and

dimM(K) =
1 + γ2

2d
−

√
(1 + γ2

2d
)2 − 4γ2

2d
dimLeb(K)

2γ2

2d

=
1

2

(
1 +

2d

γ2 −
√
(1 +

2d

γ2 )
2 − 4

2d

γ2 dimLeb(K)
)

By using the relation 2d
γ2 = γ2

2d
, we deduce:

dimM(K) =
γ2

2d
dimM(K).

We point out that this duality relation can be directly recovered from the relation
dimM (K) = α dimM(K) we just proved above.
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