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THE HEART OF A CONVEX BODY
LORENZO BRASCO AND ROLANDO MAGNANINI

ABSTRACT. We investigate some basic properties of the heart O(K) of a convex set K. It is a subset
of KC, whose definition is based on mirror reflections of euclidean space, and is a non-local object.
The main motivation of our interest for Q(kC) is that this gives an estimate of the location of the hot
spot in a convex heat conductor with boundary temperature grounded at zero. Here, we investigate
on the relation between O(K) and the mirror symmetries of KC; we show that O(K) contains many
(geometrically and phisically) relevant points of XC; we prove a simple geometrical lower estimate for
the diameter of Q(K); we also prove an upper estimate for the area of O(K), when K is a triangle.

1. INTRODUCTION

Let K be a convex body in the euclidean space RY, that is K is a compact convex set with
non-empty interior. In [1] we defined the heart Q(K) of K as follows. Fix a unit vector w € SV1
and a real number \; for each point z € RY let T} (=) denote the reflection of z in the hyperplane
Taw Of equation (z,w) = X (here, (r,w) denotes the usual scalar product of vectors in RY); then
set

Krw={ze:(z,w) > A}
(see Figure 1). The heart of K is thus defined as

OK)= [ {K-rw:TrwlKrw) C K}

weSN -1

Our interest in Q(K) was motivated in [1] in connection to the problem of locating the (unique)
point of maximal temperature — the hot spot — in a convex heat conductor with boundary tem-
perature grounded at zero. There, by means of A.D. Aleksandrov’s reflection principle, we showed
that O(K) must contain the hot spot at each time and must also contain the maximum point of the
first Dirichlet eigenfunction of the Laplacian, which is known to control the asymptotic behaviour
of temperature for large times. By the same arguments, we showed in [1] that O(K) must also
contain the maximum point of positive solutions of nonlinear equations belonging to a quite large
class. By these observations, the set QO(K) can be viewed as a geometrical means to estimate the
positions of these important points.

Another interesting feature of O(K) is the non-local nature of its definition. We hope that the
study of Q(K) can help, in a relatively simple setting, to develop techniques that may be useful in
the study of other objects and properties of non-local nature, which have lately raised interest in
the study of partial differential equations.

A further reason of interest is that the shape of O(K) seems to be related to the mirror symmetry
of K. By means of a numerical algorithm, developed in [1], that (approximately) constructs Q(K)
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2 BRASCO AND MAGNANINI

FIGURE 1. The sets Ky, and K_ _,.

for any given convex polyhedron /C, one can observe that relationship — and other features of O(K)
— and raise some questions.

(i) We know that, if I has a hyperplane of symmetry, then Q(K) is contained in that hyperplane;
is the converse true?
(ii) How small Q(K) can be? Can we estimate from below the ratio between the diameters of
Q(K) and K?
(iii) How big Q(K) can be? Can we estimate from above the ratio between the volumes of Q(K)
and K7

The purpose of this note is to collect results in that direction.

In Section 2, we give a positive answer to question (i) (see Theorem 2.4).

In Section 3, we start by showing that many relevant points related to a convex set lie in its heart.
For instance, we shall prove that, besides the center of mass My of K (as seen in [1, Proposition
4.1]), Q(K) must also contain the center Cx of the smallest ball containing K — the so-called
circumcenter —and the center of mass of the set of all the incenters of IC,

M(K) ={z € K : dist(z,0K) = ri};

here ri is the inradius of IC, i.e. the radius of the largest balls contained in . This information
gives a simple estimate from below of the diameter of O(K), thus partially answering to question
(ii) (see Theorem 3.5).

By further exploring in this direction, we prove that Q(K) must also contain the points minimiz-
ing each p-moment of the set K (see Subsection 3.2) and other more general moments associated to
Q(K). As a consequence of this general result, we relate O(K) to a problem in spectral optimiza-
tion considered in [5] and show that Q(K) must contain the center of a ball realizing the so-called
Fraenkel asymmetry (see [4] and Section 3 for a definition).

Finally, in Section 4, we begin an analysis of problem (iii). Therein, we discuss the shape
optimization problem (4.1) and prove that an optimal shape does not exist in the subclass of
triangles. In fact, in Theorem 4.2 we show that

3
IO(K)| < 3 || for every triangle IC;
the constant 3/8 is not attained but is only approached by choosing a sequence of obtuse triangles.

2. DIMENSION OF THE HEART AND SYMMETRIES

Some of the results in Subsection 2.1 where proved in [1] but, for the reader’s convenience, we
reproduce them here.
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2.1. Properties of the maximal folding function. The mazimal folding function Ry : SN =1 —
R of a convex body K C RY was defined in [1] by

Ric(w) =min{A € R : Th,(Kao) CK}, wesSV
The heart of IC can be defined in terms of Ry :

(2.1) OK)={zeK : (z,w) < Rx(w), for every w € SN_I} .
It is important to remark that we have
Jw) < Ri(w), e sV-1
zé%a(’fq@ w) < Ric(w) w

and in general the two terms do not coincide: in other words, Rx does not coincide with the
support function of Q(K) (see [1, Example 4.8]).
;SN

Lemma 2.1. The maximal folding function Ri — R is lower semicontinuous. In particular,

Ric attains its minimum on SN,
Proof. Fix A € R and let wp € {w € S¥"1: Ric(w) > A}. Then
‘T)vwo (K:)\#’JO) n (RN \ K)| > 0.

The continuity of the function w > |T w(Kxw) N (RN \ K)| implies that, for every w in some
neighborhood of wp, we have that Ric(w) > A. O

Remark 2.2. In general Rx is not continuous on SY~!: it sufficient to take a rectangle K =

[—a,a] x [—b,b] and observe that we have Ry (1,0) = 0, since K is symmetric with respect to the
y-axis but, for a sufficiently small ¢, Ry (cos¥,sin}) = a cos¥ — b sin, so that

lim Ric(¥) = a > Ri(1,0).
9—0
Observe that here the lack of continuity of the maximal folding function is not due to the lack of
smoothness of the boundary of IC, but rather to the presence of non-strictly convex subsets of K.

Proposition 2.3. Let K C RN be a convex body and define its center of mass by

1
My = / ydy.
Kl Jx
Then we have that

(2.2) Ric(w) > (Mi,w),  for every w € SN1,

SNfl

and the equality sign can hold for some w € if and only if K is w—symmetric, i.e. if Ty ,(K) =

K for some X € R. In particular, My € Q(K).

Proof. Set A = Rx(w) and consider the set Q = Ky, U Ty ,(Kxw); by the definition of center of
mass and since €) is symmetric with respect to the hyperplane 7, ,, we easily get that

K] [Ric(w) — (M, w)] = /,< [Ric(w) — ()] dy = /K R — ]

Observe that the last integral contains a positive quantity to be integrated on the region K \ :
this already shows (2.2). Moreover, the same identity implies:

Ri(w) = (Mi,w) =0 < |K\Q[=0,

and the latter condition is equivalent to say that K is w—symmetric. Finally, by combining (2.2)
with the definition (2.1) of Q(K), it easily follows My € O(K). O
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2.2. On the mirror symmetries of . A first application of Proposition 2.3 concerns the relation
betwwen Q(K) and the mirror symmetries of .

Theorem 2.4. Let K C RY be a convex body.

(i) If K there exist k (1 < k < N) independent directions wy,...,w, € SN=1 such that K is
wj-symmetric for j =1,...,k, then Rx(w;) = (Mx,wj) for j=1,...,k and

k
QQ(IC) - ﬂ TR(wj)w; -
i=1

In particular, the co-dimension of Q(K) is at least k.
(ii) If Q(K) has dimension k (1 < k < N —1), then there exists at least a direction 8 € SN~ such
that Ric(0) = (M, 0), and K is 0-symmetric.

Proof. (i) The assertion is a straightforward consequence of Proposition 2.3.

(ii) By Lemma 2.1, the function w — Rx(w) — (M), w) attains its minimum for some 6 €
Set r = Rx(0) — (M, 0) and suppose that r > 0.

Then, for every = € B(My,r), we have that

(r,w) = (M, w) + (x — Mi,w) < (M,w) +r < Rr(w) —r+1r=Rr(w),

for every w € SV¥1, and hence x € O(K) by (2.1). Thus, B(z,r) C Q(K) — a contradiction to the
fact that 1 <k < N — 1. Hence, Ri(0) = (Mx,0) and K is §-symmetric by Proposition 2.3. O

SN-L

Remark 2.5. It is clear that the dimension of the heart only gives information on the minimal
number of symmetries of a convex body: the example of a ball is quite explicative.
We were not able to prove the following result:

if Q(K) has co-dimension m (1 < m < N), then there exist at least m independent
directions 01, ...,0n € SN~ such that Ric(0;) = (Mx,60;), j=1,...,m, and K is
0;-symmetric for j =1,...,m.

We leave it as a conjecture.

3. RELEVANT POINTS CONTAINED IN THE HEART

In this section, we will show that many relevant points of a convex set are contained in its heart
(e.g. the incenter and the circumcenter, besides the center mass). This fact will give us a means
to estimate from below the diameter of the heart.

3.1. An estimate of the heart’s diameter.
Proposition 3.1. Let K C RY be a convex body. Then its circumcenter Cxc belongs to (K).

Proof. Suppose that Cx ¢ O(K) and let ¢ € Q(K) be its (unique) projection on the set Q(K); then,
define:
HY={z RN : (z —q,Cx — ¢) > 0} and M=0H".
Since Cx € K, then H™ N K is non-empty and its reflection in II is contained in K, by the
definition of Q(K), and hence is contained in Br(Cx). Thus, K must be contained in the set
BR(C/C> N BR(Qq - CK>
This is a contradiction, since the smallest ball containig K would have a radius that is at most

\/R2—\C;C—q|2<R. U
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We now consider the incenters of KC: these are the centers of the balls of largest radius ri
inscribed in K. Needless to say, a convex body may have many incenters. We start with the
simpler case of a convex body with a unique incenter.

Proposition 3.2. Let K C RY be a convex body; if its incenter Ixc is unique, then Ix € O(K). In
particular, Ix € Q(K) if K is strictly convez.

Proof. Consider the unique maximal ball B(Ix,rx) inscribed in K and suppose that Ix ¢ Q(K);
this implies that there exists w € S¥~! such that

R;g(w) - <I;<,w) < 0.
Set A = Ri(w) and define I}- = T),(Ix); then Ij- # Ix and (I},w) < (Ik,w). Now, the half-
ball Bt = {z € B(Ix,7x) : {(x,w) > A)} and its reflection Ty, (B") in the hyperplane 7, are
contained in K, since BT is contained in the maximal cap K.
This fact implies in particular that the reflection of the whole ball B is contained in KC: but the

latter is still a maximal ball of radius ri, with center I} different from Ix. This is a contradiction,
since it violates the assumed uniqueness of the incenter. O

To treat the general case, we need the following simple result.

Lemma 3.3. Let I C RY be a convex body and let us set
M(K) ={zx € K : dist(z,0K) = r}.

Then M(K) is a closed convex set with |M(K)| = 0; in particular, the dimension of M(K) is at
most N — 1.

Proof. The quasi-convexity® of dist(z,dK) (being K convex) immediately implies that M(K) is
convex. For the reader’s convenience, here we give a proof anyway. Let us take z,z € M(K) two
distinct points, then by definition of inradius we have

B(x,r) U B(z,r¢) C K.
Since K is convex, it must contain the convex hull of B(x,r) U B(z,rx), as well: hence, for every
t € [0,1] we have
B(1-t)xz+tz,rx) CK,
that is (1 —t) z + tw € M(K), which proves the convexity of M(K).
Now, suppose that |[M(K)| > 0; since M(K) is convex, it must contain a ball B(z, ). The
balls of radius rx having centers on dB(z, p/2) are all contained in K, so that their whole union is

contained in K as well. Observing that this union is given by B(x, 0/2+ ri), we obtain the desired
contradiction, since we violated the maximality of ri. O

Proposition 3.4. Let K C RY be a convexr body and let us suppose that M(K) has dimension
kEe{l,...,N—1}.
Then the center of mass of M(K), defined by
I — fM(IC) dek(y)
M HAMK)

belongs to Q(K). Here, H* denotes the standard k-dimensional Hausdorff measure.

IThis means that the superlevel sets of the function are convex.
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Proof. The proof is based on the observation that
(3.1) Rumpo)(w) € Re(w),  wesSN

where R () is the maximal folding function of M(K), thought as a subset of RN, Assuming (3.1)
to be true, we can use the definition of heart and Proposition 2.3 to obtain that the center of mass
I belongs to O(M(K)) and hence to O(K), which would conclude the proof.

Now, suppose by contradiction that there is an w € S¥~! such that Rk (w) > Ri(w), and
set A = Ri(w), as usual. Then, there exists x € M(K) with (z,w) > X such that its reflection
2* = T\, (x) in the hyperplane 7, falls outside M(K): this would imply in particular that
B(z*,rx) ¢ K. Observe that by definition of M(K), the ball B(z,7x) lies inside K, so that the cap
B(z,ri) N {(y,w) > A} is reflected in K; thus, as before, we obtain that the union of this cap and
its reflection is contained in K. This shows that the ball B(2*,rx) is contained in K, thus giving
a contradiction. O

The result here below follows at once from Propositions 2.3, 3.1 and 3.4.
Theorem 3.5. Let K C RN be a convex body, then
diam[Q(K)] > max(|Mx — Ck|, |Cx — Iml|, [ Im — Mk]).
Remark 3.6. Notice that, when Q(K) degenerates to a single point, then clearly
O(K) = {Mx} = {Ix} = {Ck}-

Needless to say, it may happen that the three points My, Ix and Cx coincide, but Q(K) is not
a point. For example, take an ellipse parametrized in polar coordinates as

E = {(9,19) 1 0<0<Va2cos29 + b2 sin ¥, 9 € [—ﬂ,ﬂ]}

and a m-periodic, smooth non-negative function n on [—m, x|, having its support in two small
neighborhoods of —37/4 and 7/4. Then, if ¢ is sufficiently small, the deformed set

Ee = {(Q’ﬁ) £ 0< o< Va2cos? + b sin 9 —en(v), ¥ € [—7r,7r]}

is still convex and centrally symmetric. Moreover, it is easy to convince oneself that {Mpg } =
{Ig.} = {Cg.} = {(0,0)}, whereas, by Theorem 2.4, Q(E;) is not a point, since E. has no mirror
symmetries.

3.2. The p-moments of £ and more. We recall that the point My can also be characterized
as the unique point in K which minimizes the function

:U»—>/]:v—y]2dy, x ek,
K

that can be viewed as the moment of inertia (or 2-moment) of K about the point x. In this
subsection, we will extend the results of Subsection 3.1 to more general moments of X, that include
as special cases the p-moments [ [z — y|P dy.

We first establish a preliminary lemma.

Lemma 3.7. Let ¢, : [0,00) — R be, respectively, an increasing and a decreasing function and
suppose that ¢ is also integrable in [0,00). Define the two functions

b
F(t)—/ ols —t)ds, teab],
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and
G(t)—/_ ¢(t—s)ds+/b W(s—t)ds, telab],

where a and b are two numbers with 0 < a < b.

Then, both F' and G are convex and attain their minimum at the midpoint (a + b)/2 of |a,b]. If
@ 1s strictly increasing (resp. v is strictly decreasing), then F (resp. G) is strictly convex and the
minimum point 1S unique.

Proof. (i) Let us introduce a primitive of ¢, i.e.

mw:A¢@Ma

observe that this is a convex function, since its derivative is increasing. Now, we can write

t b
F(t):/ go(t—s)ds+/t o(s—t)ds=d(t —a)+ P(b—1t),

and notice that both functions on the right-hand side are convex, thus F' is convex as well. It is
not difficult to see that the graph of F' is symmetric with respect to (a + b)/2, indeed for every
t € [a,b] we have that

Fla+b—-t)=®(a+b—t—a)+Pb—a—-b+1t)=D(b—t)+ P(t —a) = F(t).

This shows that F' attains its minimum at the midpoint. Clearly, if ¢ is strictly increasing, then F'
is strictly convex and the minimum point is unique.
(ii) It is enough to rewrite the function G as follows

b
G@=Aww—$%—/ww—$%7 e [a,b];

then we notice that the first term is a constant, while the second one gives a convex function,
thanks to the first part of this lemma, since —1) is increasing. O

Theorem 3.8. Let K C RY be a convex body and let ¢ : [0,00) — R be an increasing function.
The function defined by

w(w):/’Cw(\x—y)dy, r €K,

is convex in K. Moreover, if we set

m(u,) = {x € K : py(r) = min p,},
then
(3:2) m(u,) N O(K) # .

Proof. We shall refer to p,(z) as the p-moment of K about the point x.

We first prove the convexity of u, on K. It is clearly enough to prove that for every fixed
direction, p, is convex along each chord of K having such a direction. By a rotation of coordinates,
we can always suppose that our fixed direction is that of the xi-axis. Then, we observe that we
can parametrize K as

K={(y) vy €S aly) <y <by)},
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for some convex subset S of RV~! and functions a,b : S — R. In this way, we fix 2’ € S and, by
Fubini’s theorem, for a(z’) < x1 < b(2') we compute:

, b(y") ,
pnola) = mpfora!) = [ § ] (VPP T =) dun fay.

(")
Now, notice that, for each fixed z’/,4, the integral in the braces is a convex function in zy for
x1 € [a(2"),b(2")]; in fact, we can apply Lemma 3.7 with the function ¢ replaced by the function

t— <\/ |2/ — o2 + t2> , that is still increasing. Thus, we conclude that, for fixed o/, py(z1,2") is

a convex function of x1, being an integral of convex functions.

The existence of a minimum point follows from the continuity of j, and the compactness of K:
as a consequence of the convexity of p,, we get that the closed set m(u,) is convex. In order to
show that m(u,) N Q(K) # @, we will prove that

(3.3) Rum(p,) (W) < Ric(w), for every w € SV L.

Indeed this will show that Q(m(u,)) C O(K) and thus m(u,) N O(K) # 2.
Let us suppose that (3.3) is not true: then, there exist w € S¥ 1 and X, € m(p,) such that

Ri(w) < Rm(w)(w) < (Xy,w)
We set A = R (w), N = (Xy,w), so that A < X', and define the new point
Yo=T\w(X,) =X, —2(N - MNw.
We notice that
(3.4) Yo € K\ m(py,),

by construction and by the definition of O(m(su,)).
Now, we write the function p, as

() = /Q oz — yl) dy + /K ey

where (2 is the w—symmetric set Ky o, U T ,(Ky) contained in K. Thanks to the symmetry of 2,
we can easily infer that

(3.5) /Q (1 X — yl) dy = /Q (Y, — yl) dy.

On the other hand, if y € I\ Q, then (y,w) < A, and hence

(Yo, w) = (y,w)] = [(Xp,w) —2(X" = A) = (y,w)]
< [(Xp, w) = (y, W)l
Since we also have (Y, &) = (X, ) for every direction ¢ orthogonal to w, we get
Yo —yl <[ Xy —yl, for every y € K\ ©,

and, by the monotonicity of ¢, we infer:

/ oYy —yl)dy < / (X, — y]) dy.
K\Q K\Q
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(observe that it may happen |\ Q| = 0). By adding this inequality to (3.5), we obtain that

(V) = /}C (Y, — ) dy < /}C (X — ) dy = po(X,),

which implies that Y, is still a minimum point for f,.
Thus, Y, € m(pu,): this contradicts (3.4), and hence (3.3) holds true. O

In the case of a strictly increasing function ¢, the conclusions of Theorem 3.8 can be strengthened.

Corollary 3.9. Let K C RY be a conver body and ¢ : [0,00) — R be a strictly increasing function.
Then the p-moment i, is strictly convex on IC and its unique minimum point belongs to Q(IC).

The analogous of Theorem 3.5 is readily proved.
Theorem 3.10. Let K be a convex body. Then the convexr hull of the set
U {m(u,) NO(K) : ¢ is increasing on [0,00)}
is contained in Q(K).

Remark 3.11. By similar arguments, we can prove that, if ¢ is decreasing and such that the
function

@)= [ vl =)y

is finite for every = € KC, then vy, is convex and m(vy) N Q(K) # @. Here, as well, if ¢ is strictly
decreasing, then vy is strictly convex and its unique minimum point belongs to Q(K).

Particularly interesting are the cases in which ¢(t) = t? with p > 0 and ¢ (t) = ¢~P with p > N.

Corollary 3.12. Consider the functions

pp(x) = //C |z —ylPdy, =€k,
forp >0 or
wia)= [ eyl Ty wek.
RN\KC

forp> N.
Then, their unique minimum points in KC belong to Q(K).

Remark 3.13. Propositions 2.3, 3.1 and 3.2 can be re-proved by means of Corollary 3.12 by
choosing p = 2 or, respectively, by taking limits as p — oc.
Notice, in fact, that

li 1/p — —
Jim iy () r;leaglw vl

and

li —-1/P — i —
Jin vy (z) ryrg,glsv yl,

and hence the circumradius px and inradius rx are readily obtained as

px = min max [z —y| = lim min p,(z)"/? and r¢ = max min |z —y| = lim max v, (z) VP
zeK yedk p—+o00 zek el yeok p—+o00 e

These observations quite straightforwardly imply that Cx and I belong to Q(K).
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A final remark concerns the case p = 0. It is well-known that

lim (”f,é?)”p ~exp { [ ozl —y ﬁ,éj} — exp{iog(@)/IK]},

p—07+

that can be interpreted as the geometric mean of the function y — |z — y| on K; needless to say,
the set of its minimum points intersects O (k).

3.3. On Fraenkel’s asymmetry.
Lemma 3.14. Let K C RN be a convex body. For r > 0, define the function

~v(x) = KN B(x,r)|, zeRN.
Then v is log-concave and, if M(y) = {x € RV ,: y(x) = max~}, then
(3.6) M(v) N O(K) # 2.

Proof. The log-concavity of G is a consequence of Prékopa—Leindler’s inequality, that we recall here
for the reader’s convenience: let 0 < t < 1 and let f,¢g and h be nonnegative integrable functions
on RY satisfying

(3.7) h((1—t)z+ty) > fx)' " g(y)',  for every z,y € RY;

then

(3.8) /RN h(z) dz > ( [ J@) dm)lt </RN g(z) dm)t.

(For a proof and a discussion on the links between (3.8) and the Brunn-Minkowski inequality, the
reader is referred to [3].)

Indeed, we pick two points z,w € R™ and a number ¢ € (0,1), and apply Prékopa-Leindler’s
inequality to the triple of functions

J=1knBir) 9= lknBwyr)s 7= lknB((1=t) s+t w,r)}
then, (3.7) is readily satisfied. Thus, (3.8) easily implies
Y(1=t)z+tw)=KNB(1—-t)z+tw,r)] >
KN Bz, ) KN Bw,r)|" =~(2) " (w),

and, by taking the logarithm on both sides, we get the desired convexity. A straightforward

consequence is that the set M(v) is convex.
Once again, the validity of (3.6) will be a consequence of the inequality

(3.9) Rmy) (W) < Ri(w), for every w € sV-L
By contradiction: let us suppose that there exist w € S¥~! and « € M(7y) such that
Ri(w) < Rmy)(w) < (z,w).
In particular, this implies that the point z* = T) (), with A = Ry (w), does not belong to M(v)
— i.e. the reflection of x with respect to the hyperplane ), falls outside M(7).

We set for brevity B = B(x,r) and B» = B(z*,r), and we again consider the w—symmetric set
Q=KxwUTxw(Krw) € K. Then, observe that

BN(K\Q)={xe B : (x,w) <A} N((L\NQ)
C(BNBMN((K\Q)CBn(K\Q),
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which implies that |B N (K \ Q)| < [B* N (K \ Q)]. Also, notice that since € is symmetric in the
hyperplane 7y, and B = T) ,,(B), we have that |[B*N Q| = |BN Q.
By using these informations and the maximality of x, we can infer that

y(@) = KN B = [Qn B +|(K\ Q)N B
> QN B+ |(K\ Q)N B|= QN B| =y(z),

that is z* is also a maximum point, i.e. z* € M(vy) — a contradiction. O

As a consequence of this lemma, we obtain a result concerning the so-called Fraenkel asymmetry

of IC:
. |[KAB(z,r%)|
AK) = min ————~~
( ) :EGRN ‘IC| )

where A denotes the symmetric difference of the two sets and the radius rg is determined by
|B(x,7%)| = |K|. This is a measure of how a set is far from being spherically symmetric and was
introduced in [4]; we refer the reader to [2] for a good account on A(K).

Corollary 3.15. Let K C RN be a convex body. Then A(K) is attained for at least one ball centered
at a point belonging to Q(K).

Proof. 1t is sufficient to observe that |CAB(z,ri)| = 2(|K| = |KNB(x,rg)l|), since |B(z,r¢)| = |K|,

and hence
|ICAB(x, 75| :2< _*y(:c))
K] Kl
Thus, A(K) is attained by points that maximize 7; hence, Lemma 3.14 provides the desired con-
clusion. 0

Remark 3.16. Observe in particular that if JC has N hyperplanes of symmetry, then an optimal
ball can be placed at their intersection. However, in general, even under this stronger assumption,
such optimal ball is not unique. For example, take the rectangle Q. = [—m/4¢e, w/4¢] X [—¢, €| with
0 < e < m/4; any unit ball centered at a point in the segment (—m/4e + 1, 7/4e — 1) x {0} realizes
the Fraenkel asymmetry A(Q.). Thus, in general it is not true that all optimal balls are centered
in the heart.

Remark 3.17. The following problem in spectral optimization was considered in [5]: given a
(convex) set K C RY and a radius 0 < r < rx, find the ball B(zg,7) C K which maximizes the
quantity

M (KA B(z, 7))
as a function of x: here, \1(£2) stands for the first Dirichlet-Laplacian eigenvalue of a set ). By

considerations similar to the ones used in this section and remarks contained in [5, Theorem 2.1],
it can be proved that xy € O(K).

4. ESTIMATING THE VOLUME OF THE HEART

In this section, we begin an analysis of the following problem in shape optimization:

Q)
K

(4.1) maximize the ratio among all convex bodies K C RY;
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solving (4.1) would give an answer to question (iii) in the introduction. Since this ratio is scaling
invariant, (4.1) is equivalent to the following problem:

©C)]
K

(4.2) maximize the ratio among all convex bodies K C [0, 1]V;

here, [0,1]" is the unit cube in R¥.

We notice that the class of the competing sets in problem (4.2) is relatively compact in the
topology induced by the Hausdorff distance (see [6, Chapter 2]) — the most natural topology when
one deals with the constraint of convexity. This fact implies, in particular, that any maximizing
sequence {K,} nen C [0,1]V of convex bodies converges — up to a subsequence — to a compact
convex set K C [0, 1]".

However, there are two main obstructions to the existence of a maximizing set for (4.2): (a) in
general, the limit set K may not be a convex body, i.e. K could have empty interior; in other words,
maximizing sequences could “collapse” to a lower dimensional object; (b) it is not clear whether
the shape functional K — |Q(K))| is upper semicontinuous or not in the aforementioned topology.

The next example assures that the foreseen semicontinuity property fails to be true in general.

Example 4.1. Let Q = [-2,2] x [—1, 1] and take the points
pe=(11+¢e)  and  pl=(-2-¢1/2),
and define Q. as the convex hull of Q U {p’, p?}. As ¢ vanishes, Q(Q.) shrinks to the quadrangle
having vertices
0,00 (LO)  (1/21/2)  and  (0,1/2),
while clearly ©(Q) = {0}: indeed, observe that due to the presence of the new corners p! and p?,

it is no more possible to use {x = 0} and {y = 0} as maximal axis of reflection in the directions
e; = (1,0) and ez = (0,1). In particular, we get that

0= 19(Q)] < lim [2(Q2)!

FIGURE 2. The heart of Q..

These considerations show that the existence of a solution of (4.1) is not a trivial issue. Indeed,
we are able to show that an optimal shape does not exist in the class of triangles. This is the content
of the main result of this section.
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Theorem 4.2. [t holds that
K 3
sup {m\(lﬂ)‘ K isa tm’angle} =3

and the supremum is attained by a sequence of obtuse triangles.

The proof of Theorem 4.2 is based on the following lemma, in which we exactly determine Q(K),
when £ is a triangle.

Lemma 4.3. Let K be a triangle. Then the following assertions hold:

(i) if K is acute, Q(K) is contained in the triangle formed by the segments joining the midpoints
of the sides of IC; also, O(K) equals the quadrangle Q formed by the bisectors of the smallest
and largest angles and the axes of the shortest and longest sides of K;

(i) if K is obtuse, O(K) is contained in the parallelogram whose vertices are the midpoints men-
tioned in (i) and the vertex of the smallest angle in K; also, Q(K) equals the polygon P
formed by the largest side of IC and the bisectors and azes mentioned in (i); P may be either
a pentagon or a quadrangle.

Proof. Observe that bisectors of angles and axes of sides are admissible axes of reflection. If K is
acute, Cx and I fall in its interior and are the intersection of the axes and bisectors, respectively.
If K is obtuse, Ix still falls in the interior of K, while Cy is the midpoint of the largest side of K
and is no longer the intersection of the axes. These remarks imply that Q(K) C Q in case (i) and
Q(K) C P in case (ii); also Cx, Ix € QN O(K) and Ck, Ix € PN O(K).

The segments specified in (i) are also admissible axes of reflection if K is acute; thus, the inclusion
in the triangle mentioned in (i) easily follows. If K is obtuse, only the segment joining the midpoints
of the smallest and intermediate side is an axis of reflection. However, we can still claim that Q(K)
is contained in the parallelogram mentioned in (ii), since Ci is now the midpoint of the largest side
from which one of the axes is issued: thus, QO(K) must stay below that axis.

Now, if Q(K) were smaller than Q (or P), then there would be an axis of reflection that cuts
off one of the vertices of Q (or P) different from Cx and Ix (that always belong to ©(K)). In any
case, such an axis would violate the maximality that axes of sides and bisectors of angles enjoy
with respect of reflections. O

We are now ready to prove Theorem 4.2.

Proof. First of all, thanks to the inclusion mentioned in Lemma 4.3, we get |O(K)| < 1/4|K| when
K is acute. Thus, we can restrict ourselves to the case of X obtuse.

Here, we refer to Figure 4. We observe that, by what we proved in Lemma 4.3, O(K) is always
contained in the quadrangle DEFG (when the angle in B is much larger than 7/2, DEFG and
Q(K) coincide), which is contained in the trapezoid DELH. Thus, |Q(K)| < |DELH|; hence it is
enough to prove that, if the angle in B increases, | DELH| increases and both ratios |Q(K)|/|K|
and |[DELH|/|K| tend to 3/8.

We proceed to compute |©O(K)|, when the angle in B is large. We fix a base and a height of K :
as a base we choose the smallest side and we suppose it has length b; h will denote the length of
its corresponding height. In this way, || = bh/2.

In Figure 4, the lines through the points B and G, and C' and L bisect the angles in B and C,
respectively. The line through D and E is the only axis that contributes to form O (), that equals
the quadrangle DEFG; thus, Q(K) is obtained as

VK) =T\ (T UT),
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/ﬂ b
é ‘ G
H
L
A B

FI1GURE 3. The heart of a triangle.

where the T;’s are triangles:
T, = CBG, Ty = CBF, Ty = CED.
We place the origin of cartesian axes in A and set B = (b,0); we also set C' = (¢, h). Finally, we

denote by «, 8 and y the respective measures of the angles in A, B and C.
Trigonometric formulas imply that

_ 1o 21 sin(B/2) sin(y)
’T1’—§[h + (=) ]W’
_ 1o 2, 8in(B3/2) sin(y/2)
(4.3) 2] = 5 [P° + (¢ = b)7] (32 /2) "
T3] = § 112 + ] tan(y/2),
where the angles 8 and  are related by the theorem of sines:
h ~sin(B)  sin(y)

VIZ+ 2\ R2+(t—b)2 VhZy2 b

The area of DELH is readily computed as
1 b? h? 1
2 (h? +t?) tan(v/2) 8

Now, observe that this quantity increases with ¢, since it is the composition of two decreasing
functions: s — b%h%/(2s) — s/8 and t — (h? +t2) tan(y/2).

As t — o0, |K]| does not change, the angle v vanishes and the angle 8 tends to m; moreover, we
have that

(4.4) |DELH| = (h% 4 %) tan(v/2).

tsin(B) — h, t*sin(y) — bh as t — oco.
Formulas (4.3) then yield:

1 1 1 1 1
’T1’_>§bh:“c’7 ’T2’—>th: K|, ’T3’—>*bh:§m’-

2 16
Thus, since |Q(K)| = |T1| — |T2| — |T3|, we have that |O(K)| — 2 |K|; by (4.4), [DELH| — 3 |K] as
well.

The proof is complete. O



THE HEART OF A CONVEX BODY 15

Remark 4.4. Thus, Theorem 4.2 sheds some light on problem (4.1). In fact, observe that the max-
imizing sequence, once properly re-scaled, gives a maximizing sequence for the equivalent problem
(4.2), that precisely collapses to a one-dimensional object.

Numerical evidence based on the algorithm developed in [1] suggests that, the more K is round,
the more O(K) is small compared to K. We conjecture that

sup {w“(é? : K ¢ R? is a convex body} = g,

and the supremum is realized by a sequence of obtuse triangles.
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