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Abstract:  
 
A high torque vane rheometer is used to measure the yields stress of cement-based 

materials. It is shown that this apparatus is suitable for the evaluation of the yield stress of 

various concretes and mortars in the fresh state in comparison with slump tests realized with 

ASTM Abrams cone. Then, the rheological properties (yield stress and shear flow behaviour) 

of a homogeneous kaolin clay suspension are studied with the apparatus and favourably 

compared with other rheometers and geometries.  

 

Résumé:  

Un rheomètre à haut couple équipé d’une géométrie vane est utilisé pour mesurer le seuil de 

mise en écoulement de matériaux cimentaires. Il est montré que cet appareil est approprié 

pour évaluer le seuil de mise en écoulement de différents bétons et mortiers à l’état frais en 

comparaison aux seuils déterminés au cône d’Abrams. Finalement, les propriétés 

rhéologiques (seuil d’écoulement et comportement sous cisaillement) d’une suspension 

d’argile de kaolin sont étudiées avec le rhéomètre à béton, et favorablement comparées à 

celles obtenues par d’autres rhéomètres et géométries. 

 
Keywords :  

Vane rheometer; fresh concrete; rheology, yield stress; slump 

 
1. Introduction 

 
Cement-based mixtures and concretes, as many suspensions, are yield stress materials 

including also thixotropic effects due to cement hydration. So a minimum stress has to be 

applied to the material for irreversible deformation and flow to occur. The yield stress of 

concrete is of great interest in practice for transportation, pumping and casting, and this 

rheological parameter plays a great role in formwork pressure development [1-3], 
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sedimentation [4] and occurrence of distinct layer casting [5]. The yield stress of concrete is 

currently evaluated from practical tests [6-8], and from the slump test in particular. The slump 

test is a simple test which is used for a long time to evaluate the workability of concrete. The 

slump test consists of a mold of a given conical shape which is filled with the tested material. 

The mold is lifted and the material flows under gravity on a horizontal smooth metallic plate. 

The slump S is the difference between the height of the mold at the beginning of the test and 

that of material after flow stoppage. Several attempts have been made for determining the 

yield stress of concrete from the slump test [9-15]. Previous works have shown that concrete 

rheometers can also be used to evaluate the rheological properties of fresh concrete, and the 

yield stress in particular [16, 17]. The principle of these rheometers is to measure the torque 

acting on a rotating tool immersed in the material or in contact with the material. One can 

distinguish respectively, coaxial geometry [18-20], impeller tools [21, 22] and parallel plate 

geometry [23]. The main difficulty lies then in converting the torque-rotational speed data of 

the tool into a reliable relationship between shear stress and shear rate. This can be done 

following several approximations and assuming a priori knowledge of the rheological 

behaviour of the concrete, which is mainly considered as a Bingham fluid. So, the basic 

principle currently used is to measure the relationship between the torque and the rotational 

rate which are converted from linear regression in Bingham model parameters, eg. yield 

stress and plastic viscosity. This can result in discrepancy in the yield stress measurement of 

concretes, made with different rheometers [24]. Actually, these apparatus provide the same 

rheological classification of concretes but they do not give the same absolute values of yield 

stress. It was also shown that concretes can exhibit shear thickening behaviour for which a 

Bingham model is not consistent. 

The objective of this work is to evaluate the yield stress of different concretes and mortars 

with a high torque vane rheometer, in order to show the relevance of this device as a 

concrete rheometer, in comparison with the slump test. The design of the high torque vane 

rheometer is inspired from the IBB and ICAR rheometers [22, 25, 26] and consists in the 

measurement of the stress response on a bladed tool rotating in the material. Such a 

geometry is well known as a vane tool. Vane tool is widely used in rheology [28-34] as 

reviewed in [35,36]. It is also used for measurements in cementitious materials, as done in 

[37-40] as example. This geometry has two major advantages: the fluid structure is less 

disturbed by the vane entry than for a larger tool, which is crucial for structured and granular 

suspensions like concrete, and wall slip is subsequently reduced [35,41]. The main 

differences between the device presented here and the ones used in previous studies [16, 

17] are: 
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- The size of the gap between the vane and the outer cylinder wall. This gap is larger than 

several diameters of the largest coarse aggregate used in concretes. This is important to 

reduce the effect of change in particle packing near the wall, 

- The size of the vane probe is larger than the one of the ICAR rheometer, 

- The torque range which allows firm concretes to be tested, 

- The method for computing the shear flow behaviour of the tested material.  

The following section presents the materials investigated in this work. Section 3 shows the 

components and the working principle of the high torque vane rheometer, the derivation of 

vane shear flow data and the experiments. Finally, the main results are reported in section 4: 

we first show the efficiency of the high torque vane rheometer as a practical tool of concrete 

rheometry comparing the numerical prediction of the ASTM cone slump in term of concrete 

yield stress and density proposed in [14] with experimental slump flow values and measured 

yield stress obtained from high torque vane test for various fresh concretes and mortars. 

Then, we investigate the yield stress and the shear flow behaviour of a homogeneous 

suspension of clay in water with the fabricated rheometer, the results being compared with 

others rheometers and geometries. 

 
 
2. Materials  
 

2.1 Industrial concretes 

The industrial concretes presently investigated are intended to be cast under vibration and 

are used to produce reinforced concrete slab and prestressed beams. The composition of 

concretes is confidential. It is not necessary here as the link between concrete mix design 

and its flow properties in the fresh state is beyond the scope of this paper.  We focus here on 

the validation of the rheometer compared with other test geometries as slump test in 

particular. For all industrial concretes investigated, cement proportioning is close to 350 

kg/m3 of fresh concrete. The quantity of water is such that the solid volume fraction is close 

to 0.85, and superplasticizer admixture was used. Each batch of concrete is made on site 

with an industrial concrete-mixer of 1.25m3. The concrete sample required to make the 

rheological measurements is taken before the moulding. 

 

2.2 Mortars 

The investigated mortar components were proportioned using Portland cement CPA CEM I 

52.5 combined with limestone filler Betocarb P2. A siliceous dune sand (0/4 mm) was used. 

The sand has a specific gravity of 2.61. A polycarboxylate-based superplasticizer with a 

specific gravity of 1.07 and a solid content of 33% was employed. Commercial metal fibers 
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Dramix Sika were also used. The fibers have an aspect ratio of 55, where the aspect ratio is 

defined as l/d with l and d the length and diameter of the fibers respectively, with l=30mm. 

The composition of the different mortars is detailed in Tab.1. The mortars were prepared 

using a concrete-mixer at 20 rpm according to the following procedure. The dry sand is first 

mixed during 30s before introducing the fibers and 1/2 of mixing water. After 1min mixing, the 

cement and the filler are introduced into the concrete-mixer and mixed for 30s. Finally, the 

remaining water and the superplasticizer are added and the whole of the mixture is mixed for 

1min.  

 

2.3 Kaolin clay suspension 

A kaolin clay suspension expected as a homogeneous simple yield stress fluid was 

prepared. Powdered Polwhite BB from Imerys (Kaolins de Bretagne, Ploemeur, France) was 

used to prepare clay suspension. Chemical and physical properties of clay are reported in 

Tab. 2. The water to clay weight ratio used here was 1. The measured density of the paste is 

close to 1400 kg/m3. The suspension was prepared mixing the clay with water in a concrete 

mixer for 4 minutes at 20 rpm.  

 

3. Experiments 

In this section we first present the high torque vane rheometer, the principle of the yield 

stress measurement of concretes and mortars realized with this apparatus, and the 

procedure to compute the vane shear flow data. The principle of slump measurement made 

with the ASTM Abrams cone is also presented. Then, we detail the rheological 

measurements performed with the kaolin clay suspension. Rheological, slump and density 

measurements were realized five minutes later than the end of the mixing procedure of the 

materials. The mixing processes and experiments were conducted in a controlled ambient 

temperature of 20 ± 2°C. 

 

3.1. High torque vane rheometer: principle and meas urement methods 

A schematic picture of the fabricated rheometer is shown in Fig.1 to describe its components 

and working principle. The vane rheometer consists of a motor � which provides a maximal 

rotational velocity of 4000 rpm. This motor is fitted to a rotational velocity reducer �, which 

finally provides a maximal rotational velocity of 120 rpm. A sensor �, located between the 

transducer and the tool, is used to generate a controlled measure of both rotational velocity 

and torque during experiments. The torque measurement is frictionless. The torque value 

being able to be measured varies between 0 to 100 N.m. This corresponds to concretes 

having a yield stress varying between 0 and 17kPa if we consider the equation (1) and the 

dimension of the four-bladed tool presently used. The uncertainty in torque measurement is 
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0.1Nm. This induces an uncertainty in shear stress of 17Pa. The tool, see � in Fig.1, which 

is coaxially centered with the container before experiments, is immersed into the sample of 

material by moving up the container using a lifting table�. A PC interface communication � 

allows the instrument to be used imposing the rotational velocity of the probe from a specific 

software via a control device � and recording the measured torque as well as the real 

rotational velocity �. The data acquisition rate is 10-1s. The four-bladed tool used here is 

156.5 mm in diameter D and 150 mm in height h. The internal diameter of the cylindrical 

container is 350 mm. This results in a gap size of 96.75mm, which is larger than several 

diameters of coarse aggregates generally used in concretes, and a radius ratio of 0.44.  

The yield stress of materials is measured in two replicates with the high torque vane 

rheometer under rate-controlled mode [30], and the yield stress is defined by the shear 

stress plateau if the material is not thixotropic or by the maximum shear stress value if the 

material is thixotropic. In this way, tests are carried out at a constant and low rotational rate 

of 1 rpm for 1 min. This experimental procedure is similar to the stress growth test [22,32] or 

the vane method [29, 31]. The operating rotational rate is here reasonably low, as concretes, 

excluding self-compacting concretes, have a high yield stress. During experiments, the top of 

the vane was placed at the material surface. The surface of the cylindrical container is 

roughened to ensure no-slip at the wall during test. The roughness is close to 1 cm due to 

the large size of the coarse particles generally used with concretes. However, it should be 

noted that the material remains always partially sheared within the gap, due to the low 

rotational velocity of the tool presently used for the yield stress determination and the wide 

gap between the tool and the container.  

The shear stress and shear rate are expressed following Couette analogy. It is thus assumed 

that the material is sheared along a cylindrical surface defined by the vane dimensions and 

that the stress distribution is uniform over the cylindrical sheared surface. So, the shear 

stress reduces to equation (1) if the end effects are neglected, as previously used in 

[28,33,36,38,42]. It is related to vane geometry and recorded torque M during test. 

 

2

2

hD

M

π
τ =  (1) 

 
The shear rate is related to the vane geometry and set of torque velocity data (M ; Ω) from 

two equations depending on the flow condition within the gap between the vane tool and the 

cylinder [33]. The use of the maximization of the dissipation of energy allows discriminating 

between the partially sheared gap solution and the fully sheared one. So, from a series of 

increasing or decreasing rotational velocity Ω , the shear rate is computed as well as the 

corresponding shear stress.  
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This procedure allows in particular to avoid gap size approximation, shear factor calculation 

and the priori knowledge of the rheological behaviour of the material [33,43]. This method 

was previously developed in detail and its relevance was shown for Newtonian, non-

Newtonian and yield stress fluids in [33,44-46].  

 

3.2 Slump test 

We presently used the ASTM Abrams cone technique [6] for slump measurement of 

materials. So, the height of the cone is 30 cm, the radii are respectively 20 cm for the base 

and 10 cm for the top. The cone is placed on a rigid metallic plate then filled with the 

material. The cone is lifted and the measured slump S is the difference between the height of 

the mold at the beginning of the test and that of material after flow stoppage. It was shown 

that this test allows to determine the yield stress of tested material, as reviewed and 

investigated by Roussel and Coussot [13]. Moreover, it was proposed in [14] a numerical 

relationship to predict the ASTM cone slump in term of concrete yield stress and density. It 

results from this work a simple approximation between the slump S, the yield stress τ0 and 

the density ρ of the concrete which expresses as follows.  

ρ
τ 06.175.25 −=S  (2) 

This approximation was also checked by [14] comparing equation (2) with experimental 

slump and yield stress values of concretes. In the same way, it is the purpose in the following 

to compare the numerical prediction of Eq. (2) with the measured slump of various fresh 

concretes and mortars as well as their yield stresses obtained independently from high 

torque vane measurement. 

 

3.3 Measurements with the kaolin clay suspension 

The yield stress of the kaolin clay suspension was evaluated with the high torque vane 

rheometer as proposed above, as well as its slump. For comparison purpose, the yield stress 

of the kaolin clay suspension was also evaluated from a Brookfield Soft Solid Tester 

equipped with a four-bladed vane tool of 16 mm in both diameter and height immersed in a 

large baker with roughened surface. A rotational rate of 1 rpm for 1 min was also applied. 

These three measurements were made after a five minute resting time of the kaolin 

suspension.  

In addition, the shear flow behaviour of the kaolin clay suspension was investigated with the 

high torque vane rheometer. After a high preshear, a linear down ramp in controlled velocity 

of 45 to 0 rpm in 2mins was applied to the clay suspension without resting time of the clay 

suspension before the ramp. This was realized in two replicates and no difference was 
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achieved. The vane shear flow data were computed from the procedure described in section 

3.1. 

Moreover, the shear flow behaviour of kaolin clay suspension was determined independently 

and simultaneously using a Malvern Gemini rheometer equipped with a parallel-plate 

geometry of 40mm in diameter and 2mm in gap. Sand paper was glued on both plates to 

prevent slippage. The clay suspension was also preshear at high shear rate before applying 

a rate-controlled measurement in the shear rate range 100-0s-1 in 100s, from the rheometer 

software. The linear down ramp was applied to the clay suspension without resting time 

before the ramp. Two replicates of these tests were also performed and provide the same 

shear flow curve as the one described in Fig.4. 

 

4. Results and discussion 

The tested concretes and mortars exhibited the typical curves shown in Fig.2. The low 

overshoot presented by the shear stress in a shear stress vs time plot of figure 2 indicates 

that the investigated concretes behave as low thixotropic materials. A similar trend was 

obtained for all the concretes and mortars tested. As mentioned in [27,29,31], the curves 

evolve in three stages. First the stress increases quite linearly up to a break from linearity 

which is defined as the yield point. Then the stress reaches a maximum value, then 

decreases and tends to a constant value. The first part of the curve represents the elastic 

response of the material until the peak which corresponds to the yield stress value of the 

material. Then, the material flows and the last part is associated with the structure 

breakdown of the material under shear.. Fig.2 also shows low shear stress fluctuations 

beyond the yield point which can be explained by the movement of the coarse particles of the 

concretes and the sensitiveness of the torque transducer.  

As mentioned above, we focus here on the yield stress value of the concretes. So, Fig.3 

compares the numerical prediction of Eq. (2) with the measured slumps and the yield stress 

values obtained from the vane measurements. Fig.3 shows that a quite good agreement is 

achieved between the numerical prediction and the measurements. So, the high torque vane 

rheometer provides a reliable evaluation of the yield stress of concretes and mortars 

investigated here, in the tested range of yield stress values. While it is not the purpose here 

to compare the yield stress of fluids in function of material composition, we can mention that 

the yield stresses of industrial concretes are larger than the one of mortars, probably due to 

the presence of coarse particles. 

The yield stress of the clay suspension is evaluated respectively to 458 Pa with the high 

torque vane rheometer, and to 438 Pa with the Brookfield soft solid tester. So, the relative 

deviation is 4.6%. This is of the same order of magnitude as the experimental error. The 

measured slump of the clay suspension S is 19 cm. We can see in Fig.3, the agreement 
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between the numerical prediction of Eq. (2) and the measured slump and yield stress of the 

kaolin clay suspension. This is similar to the results obtained by [13] considering a cement 

paste as a homogeneous yield stress fluid and using ASTM minicone. 

Fig.4 compares the apparent viscosity of the presheared kaolin clay suspension between 

parallel plate measurement and high torque vane data. The shear rate range induced by the 

vane measurement varies between 10-3 and 10 s-1, which is similar to the shear rate range 

obtained by Heirman et al [18] with the last version of the BML viscometer. As can be seen, 

the parallel plate and high torque vane data compare well within the shear rate range of 0.5 

to 10s-1. This allows to conclude about the efficiency of the high torque vane rheometer in 

shear flow measurement. Finally, it is shown that the clay suspension investigated seems to 

behave as a simple shear thinning material. There has been some change in clay 

suspension structure during the high preshear. As no resting time was applied before the 

descending ramp, and the time of this ramp is very short, the suspension does not retrieve its 

initial structure. However, at the flow stoppage, the yield stress value tends to 296 ± 2 Pa. 

This is different and lower than the yield stress at which the flow starts which is obtained from 

the vane method.  

 

5. Conclusion 

In this paper, a high torque vane rheometer was used to evaluate the yield stress of various 

concretes and mortars. It was concluded that this rheometer is able to correctly evaluate the 

yield stress of these materials in comparison with slump test. Results are in agreement with 

the numerical prediction between slump and yield stress of concretes, as previously shown in 

the literature. The high torque vane rheometer was also tested with a homogeneous kaolin 

clay suspension. It was shown that the yield stress and the shear flow behavior of this 

suspension are correctly predicted by the vane rheometer, the results being compared to 

those obtained from other rheometers and geometries. Once validated, the concrete 

rheometer with the vane geometry has to be used now to investigate the rheological 

properties of concretes in the fresh state in relation with their composition. This is the 

objective of future works. 
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Figure Captions 
 
Figure 1.  Schematic diagram of the experimental setup (left) – View of the high torque vane 

rheometer (right). 

 

Figure 2.  Typical curves of concretes with vane test in rate-controlled mode. Upper curve: 

example of concrete produced for reinforced slab - lower curve: example of concrete 

produced for prestressed beams. 

 

Figure 3.  Yield stress-slump correlation – Comparison between numerical prediction and 

experimental results. 

 
Figure 4.  Apparent viscosity of kaolin clay suspension versus shear rate – comparison 

between the high torque vane rheometer and the parallel plate geometry.  

 

 
Table Caption 
 
Table 1.  Mortar components  

Table 2.  Chemical and physical properties of clay 
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Figure 2.  Typical curves of concretes with vane test in rate-controlled mode. Upper curve: 

example of concrete produced for reinforced slab - lower curve: example of concrete 

produced for prestressed beams. 
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Figure 3.  Yield stress-slump correlation – Comparison between numerical prediction and 

experimental results. 
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Figure 4.  Apparent viscosity of kaolin clay suspension versus shear rate – comparison 

between the high torque vane rheometer and the parallel plate geometry.  
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Table 1.  Mortar components. 

Mortar 1 2 3 4 

Sand 0/4 (kg/m3) 1427 1042 1074 1356 

Cement (kg/m3) 350 450 450 450 

Filler (kg/m3) 200 100 335 64,7 

Water (kg/m3) 220 225 270 270 

Superplasticizer (%) 0,78 0 0 0,64 

Volume of fiber (%) 0 0,5 1,05 1,05 

W/C 0,63 0,5 0,6 0,6 

Density (kg/m3) 2096 2077 2186 2160 
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Table 2.  Chemical and physical properties of clay 

Specific gravity 2.6 

pH 4.5 

Surface area (BET;m²/g) 10 

Aerated powder density 

(kg/m3) 
390 

Tapped powder density 

(kg/m3) 
750 

SiO2 (mass %) 48 

Al2O3 (mass %) 37 

 

 

 


