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Abstract

We address the problem of quantitatively assessing myocardial function from tagged MRI sequences. We develop a two-step
method comprising (i) a motion estimation step using a novel variational non-rigid registration technique based on generalized
information measures, and (ii) a measurement step, yielding local and segmental deformation parameters over the whole myocar-
dium. Experiments on healthy and pathological data demonstrate that this method delivers, within a reasonable computation time
and in a fully unsupervised way, reliable measurements for normal subjects and quantitative pathology-specific information. Beyond
cardiac MRI, this work redefines the foundations of variational non-rigid registration for information-theoretic similarity criteria
with potential interest in multimodal medical imaging.

Keywords: Cardiac motion analysis; Myocardial function; MR tagging; Non-rigid registration; Generalized information measures

1. Introduction

Cardiovascular diseases are the leading cause of mor-
tality in industrialized countries, and therefore a major
public health challenge. In this framework, magnetic
resonance imaging (MRI) is recognized as a key modal-
ity for dynamically imaging the heart anatomy and func-
tion. It provides a valuable investigation tool for early
diagnosis and clinical/therapeutical follow-up, capable
of delivering, in single examination, all the necessary
information for assessing a large variety of cardiovascu-
lar pathologies, including those related to morphology
and flow rate of coronary arteries, cardiac function,

and myocardial perfusion/viability. In particular, the
relevance of MRI for identifying and localizing acute
and chronic myocardial ischemia through the detection
of kinematic abnormalities has been established (Lipton
et al., 2002). Accordingly, abundant research efforts
have been devoted to cardiac motion recovery and
deformation assessment from MR image sequences
(Duncan and Ayache, 2000; Frangi et al., 2001, 2002).

The reference MR modality for imaging myocardial
strain is tagged MRI (Zerhouni et al., 1988; Axel and
Dougherty, 1989). Measuring myocardial deformations
from tagged MR sequences relies on estimating a dense
displacement field consistent with the motion of the
structured tagging pattern (Kerwin et al., 2001; Amini
and Prince, 2001; McVeigh and Öztürk, 2001). Classical
approaches comprise: (i) differential optical flow-based
methods coupled with intensity correction schemes
(Prince and McVeigh, 1992; Denney, 1994; Denney
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and Prince, 1994; Gupta and Prince, 1995; Gupta et al.,
1997; Dougherty et al., 1999); (ii) phase-based optical
flow methods such as HARP (Osman et al., 1999; Os-
man and Prince, 2000; Amini and Prince, 2001); (iii) seg-
mentation-based approaches combining tag
segmentation, sparse motion estimation along tags,
and dense motion interpolation over the image domain
(Kumar and Goldgof, 1994; Guttman et al., 1994; Den-
ney and Prince, 1995; Kraitchman et al., 1995; Young
et al., 1995; Park et al., 1996; Declerck, 1997; Guttman
et al., 1997; Amini et al., 1998; Denney, 1999;
Huang et al., 1999; Kerwin and Prince, 1999; Clarysse
et al., 2000; Haber et al., 2000; Öztürk and McVeigh,
2000; Amini et al., 2001). However, their clinical appli-
cability is questioned by intrinsic limitations: differential
optical flow fails for large displacements due to the local
nature of constraint equations; phase-based optical flow
is limited to 1-D tags and proves to be sensitive to arti-
facts; tag segmentation often requires supervision to
deal with tag contrast attenuation over time due to T1
demagnetization (tag fading out), and tag destruction
along myocardial boundaries induced by blood flows
within the cardiac chambers.

Recently, intensity-based non-rigid registration
(NRR) methods (Maintz and Viergever, 1998; Mäkelä
et al., 2002; Pluim et al., 2003) have been suggested inde-
pendently by Petitjean et al. (2002) and Chandrashekara
et al. (2002) as robust, segmentation-free techniques to
obtain dense myocardial motion estimates in a non-
supervised way. Here, the use of information-theoretic
similarity criteria allows for efficiently dealing with tag
fading out without specifying a demagnetization model.
Based on Rueckert�s method (Rueckert et al., 1999), ini-
tially designed for aligning breast MR images, the ap-
proach in Chandrashekara et al. (2002), Perperidis
et al. (2003) and Rao et al. (2003) delivers parametric
motion estimates by maximizing normalized mutual
information (Studholme et al., 1999) over a space of free
form deformations. The hereby presented approach re-
lies on the Ali-Silvey class of generalized information
measures for which a generic variational optimization
framework is developed (Petitjean et al., 2002; Petitjean,
2003c). It includes mutual information and normalized
mutual information as subcases, and encompasses both
non-parametric and parametric motion spaces. It is,
therefore, applicable to model-free (Petitjean et al.,
2003a) as well as compact model-based motion estima-
tion using a dedicated statistical cardiac motion atlas
(Petitjean et al., 2004).

1.1. Outline of the method

The proposed approach makes use of tagged MRI se-
quences acquired at multiple slice levels under short-axis
or/and long-axis views, and of cine MRI sequences
jointly acquired at the same slice levels in identical con-

ditions. Tagged MR data provide access to intra-myo-
cardial motion information, whereas cine MR data
allow for dynamically assessing myocardium anatomy.
Datasets are processed either integrally in a frame-to-
frame fashion, yielding dynamic quantitative analysis
during systole, or partially by restricting to end-diastolic
(ED) and end-systolic (ES) frames to directly derive sys-
tolic deformation parameters. The latter mode is rele-
vant in a clinical routine framework where fast
quantitative assessment of cardiac function is desirable.
It is enabled by the ability of the motion estimation and
tracking methods to deal with large displacements and
non-linear contrast variations.

The measurement of myocardial deformations is
achieved in three steps:

(1) dense non-parametric motion estimation over the
whole image domain from tagged MR data;

(2) dynamic myocardium segmentation via non-rigid
alignment of cine MR data, and non-rigid propa-
gation against the resulting transforms of an initial
myocardium segmentation derived from the ED
cine MR image;

(3) computation of local and segmental deformation

parameters over the myocardium from displace-
ment estimates.

Non-rigid motion estimation and anatomical align-
ment are both achieved via non-parametric NRR based
on generalized information measures, which is, there-
fore, the core of the approach. Myocardium segmenta-
tion at ED can be achieved by any technique of choice
(Suri, 2000). In the current implementation, we have fa-
vored mathematical morphology.

1.2. Non-rigid registration using statistical similarity

measures

Statistical similarity measures underlie efficient tech-
niques for matching mono-modal data with significant
local gray level variations or multi-modal data. In these
cases, the relationship between signals is generally com-
plex and not explicitly known. The correlation ratio
(Roche et al., 1998) provides an optimal answer for
functionally dependent signals (Roche et al., 1999).
The weaker assumption of statistically dependent data
leads to using information theoretic measures, such as
joint entropy (Collignon et al., 1995) and mutual infor-
mation (MI) (Viola and Wells, 1997; Maes et al., 1997),
which have motivated an abundant literature (Pluim
et al., 2003).

Maximizing these measures is most often performed
over low-dimensional parametric transform spaces.
Optimization is achieved via direct techniques using
empirical histogram-based (Maes et al., 1997; Pluim,
2000) or parametric (Leventon and Crimson, 1998)
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probability estimates, or via gradient descent methods
relying on analytic (Rueckert et al., 1999) or non-para-
metric Parzen probability estimates (Viola and Wells,
1997). Moreover, Parzen estimation provides a path
for performing variational optimization over non-para-
metric transform spaces (Hermosillo et al., 2001; Her-
mosillo, 2002; D�Agostino et al., 2003), leading to
well-posed models (Faugeras and Hermosillo, 2001).

Despite good performances, MI is sensitive to image
overlap and can be trapped into local minima when
dealing with large deformations (Pluim, 2000). This is
illustrated in Fig. 1 for MI-based NRR between ED
and ES cine MR images. To overcome these limitations,
several solutions have been proposed and investigated
for parametric transforms: building probabilistic priors
via supervised learning (Leventon and Crimson, 1998);
incorporating spatial information by weighting MI by
a gradient-dependent term (Pluim et al., 2000); using
alternative entropic criteria such as normalized informa-
tion measures based on Shannon entropy (Maes et al.,
1997; Studholme et al., 1999), or non-Shannon measures
such as f-informations (Pluim, 2000; He et al., 2003).

This paper elaborates along the latter direction by
bringing forward the Ali-Silvey class of generalized
information measures as a superset of robust statistical

similarity criteria which extend the previously proposed
Shannon measures. It comprises f-informations as well
as novel normalized generalized information measures
which are introduced. Using Parzen estimation, we iden-
tify closed-form expressions for their gradient flows over
non-parametric and parametric transform spaces. New
results relative to previously proposed measures are
readily derived as subcases, such as the flows for
(i) MI for parametric transforms, (ii) normalized
Shannon information measures for arbitrary trans-
forms, and (iii) Ia-information (Pluim, 2000) and Renyi
information (He et al., 2003) for arbitrary transforms.

1.3. Structure of the paper

The paper is organized as follows. Section 2 intro-
duces the Ali-Silvey class of generalized information
measures as an extension of the classical Shannon
framework. In Section 3, a generic variational NRR ap-
proach based on these measures is developed, yielding
simple and computationally efficient algorithms. Ap-
plied to tagged MR data, they deliver dense non-para-
metric displacement estimates in a robust and fully
unsupervised way. Applied to cine MR data, they allow
for dynamically segmenting the myocardium by warping

Fig. 1. Influence of the information metrics f on NRR between ED and ES cine MR images. The f-information similarity criterion

SðuÞ ¼ �If ðI1; I
u
2Þ has been used.
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an initial segmentation map. Section 4 deals with the
computation of local and segmental deformation
parameters over the segmented myocardium from esti-
mated displacements. Section 5 details evaluation on
simulated tagged MR data, and demonstrates perfor-
mances for assessing cardiac function on healthy and
pathological data. A discussion on the benefits and pos-
sible extensions of the proposed approach is given in
Section 6 before concluding.

2. Generalized information measures

Let X and Y denote continuous random variables
over a state space X with pdf pX and pY, respectively.
We also consider the joint variable (X,Y) over X2 with
pdf pX,Y.

2.1. The Shannon framework

The Shannon entropy HS(X) of the random variable
X, defined as

HSðX Þ :¼ �

Z

X

pX ðxÞ log pX ðxÞ dx

measures its uncertainty or randomness. The Shannon
entropy HS(X,Y) of the joint variable (X,Y) is defined
similarly. When X and Y are independent, the following
additivity property holds: HS(X,Y) = HS(X) + HS(Y).

Information gain between random variables is mea-
sured via relative entropy and mutual information
(MI). The relative entropy, or Kullback–Leibler (KL)
divergence, is the non-symmetric measure DKL(X iY)
such that

DKLðXkY Þ :¼

Z

X

pX ðxÞ log
pX ðxÞ

pY ðxÞ
dx.

MI is a symmetric entropic measure, denoted by I(X,Y),
which quantifies the reduction of the uncertainty of Y gi-
ven X (and vice versa)

IðX ; Y Þ :¼ HSðX Þ þ HSðY Þ � HSðX ; Y Þ.

Equivalently, MI is the relative entropy DKL((X,Y) i
X · Y) between the joint variable (X,Y) and the product
distribution (X · Y)

IðX ; Y Þ ¼

Z

X2

pX ;Y ðx; yÞ log
pX ;Y ðx; yÞ

pX ðxÞpY ðyÞ
dxdy.

MI, thus, measures the statistical distance between X

and Y and the reference case where these variables are
assumed to be independent.

2.1.1. Normalized information measures

Alternative information gain measures, with en-
hanced robustness to lacunar joint statistics, have been
proposed in the literature of image registration (Hajnal

et al., 2001). They comprise normalized measures, such
as the entropy correlation coefficient (ECC) (Maes
et al., 1997)

ECCðX ; Y Þ :¼ 2
IðX ; Y Þ

HSðX Þ þ HSðY Þ
ð1Þ

and the normalized mutual information (NMI) (Stud-
holme et al., 1999)

NMIðX ; Y Þ :¼
HSðX Þ þ HSðY Þ

HSðX ; Y Þ
. ð2Þ

Another information gain measure, denoted by Z, has
also been proposed in (Maes et al. (1997)) without given
terminology

ZðX ; Y Þ :¼ HSðX ; Y Þ � IðX ; Y Þ. ð3Þ

Since I(X,Y) quantifies the information gain resulting
from observing X and Y jointly compared to observing
them separately, and HS(X,Y) is the information of the
joint variable (X,Y), Z measures the information exclu-
sively contained in X and Y when observed jointly
(Fig. 2). We, thus, refer to Z as exclusive information.1

2.1.2. Limitations of the Shannon framework

It is known from information theory that MI leads to
optimal statistical decision when uncertainty measure-
ment is constrained to be additive2 and no assumption
is made about data statistics. MI provides, therefore, a
simple and universal answer for statistically comparing
arbitrary data. However, blind statistical decision may
be unrobust to consistently deal with complex joint
and/or marginal statistics which largely deviate from
the Gaussian case.3 Overcoming this intrinsic limitation
requires relaxing the additivity hypothesis and allowing
some prior statistical information to be accounted for.

Based on this idea, extensions of the Shannon frame-
work have been proposed, where statistical prior knowl-
edge is incorporated by specifying some given, non-
additive uncertainty measurement model for the class
of data under consideration. In this approach, Shannon
entropy is a limiting case of more general entropies
which fall into two categories: integral entropies and
non-integral entropies. They induce integral and non-
integral divergences from which generalized information
gain measures are defined, according to the same design
principles as for the Shannon case (Vajda, 1989).

1 In Section 3.1.3, we show that exclusive information belongs to the

same class of Shannon information gain measures as ECC and NMI.

For this reason, and with an abuse of terminology in the case of Z,

they will be uniformly referred to as normalized information measures.
2 i.e., there exists a formal entropy H such that: H(X,Y) =

H(X) +H(Y) for independent random variables X and Y.
3 In the framework of image registration, complex joint statistics can

arise from large deformations or from highly multimodal matching

problems (e.g., MR-US registration).
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2.2. Generalized information measures

Entropy is basically defined for probability measures.
In this setting, the entropy of a given measure explicitly
depends on a reference measure. Hence, the terminology
of relative entropy. In what follows, f (resp. w) will de-
note a continuous convex (resp. monotonic) function
over Rþ.

Definition 1 (f-entropy). The integral (resp. non-inte-
gral) entropy Hf,m(l) (resp. Hw,m(l)) of a probability
measure l w.r.t. the reference measure m is

H f ;mðlÞ ¼ �

Z

f
dl

dm

� �

dm;

Hw;mðlÞ ¼ � logw�1

Z
dl

dm
w

dl

dm

� �

dm

� �

.

These definitions can be specialized to continuous
random variables by letting l ” X and m be the natural
Borel measure, and by using Radon–Nikodym deriva-
tives dl

dx
� pX ðxÞ and dm

dx
� 1. The Kullback metrics

fKL(x): = x logx or wKL(x): = logx leads to Shannon
entropy which has both an integral and a non-integral
form. Many other entropies, corresponding to specific
choices for the information metrics f or w, have been
proposed, allowing to tune the measurement of uncer-
tainty to specific statistical contexts (Vajda, 1989).

Similarity between probability measures is formalized
via the notion of divergence, which derives from relative
entropy. Several paths to defining divergence are possi-
ble (Vajda, 1989). Comparing probability measures indi-
vidually (rather than comparing mixtures) leads to
f-divergence.

Definition 2 (f-divergence). An f-divergence Df is for-
mally defined as: Df (l i m) = �Hf,m(l).

Definition 2 delimits the Ali-Silvey class of diver-
gences, which is divided into integral and non-integral
f-divergences. Letting l and m be random variables X

and Y such that dl
dx
� pX ðxÞ and dm

dx
� pY ðxÞ yield the def-

initions for an integral f-divergence Df (X iY) and a non-
integral f-divergence Dw(X iY) of X w.r.t. Y. Choosing
f = fKL or w = wKL yields KL divergence. Setting
f = fa with faðxÞ :¼

xa�axþa�1
aða�1Þ

ða 6¼ f0; 1gÞ leads to the

Ia-divergence Ia (Vajda, 1989) which verifies: li-
ma! 1Ia = DKL. When w = wr with wr(x): = xr � 1

(r > 0, r 6¼ 1), one obtains the Renyi divergence Ir of or-
der r which verifies: limr! 1Ir = DKL.

The notion of information gain induced by simulta-
neously observing two probability measures compared
to their separate occurrence is tightly related to diver-
gence. It results from quantifying the information con-
tent of the joint measure using f-entropy w.r.t. the
product measure corresponding to independence. This
leads to f-information.

Definition 3 (f-information). An f-information If is for-
mally defined as: If (l,m) = Df ((l,m) i l · m).

f-information measures the reduction of the uncertainty
of l given m (and vice versa) w.r.t. the information met-
rics f. One distinguishes between integral and non-inte-
gral f-informations. Setting dl

dxdy
� pX ;Y ðx; yÞ and

dm
dxdy

� pX ðxÞpY ðyÞ lead to specialized definitions of
f-information for random variables. Choosing f = fKL

yields MI, simply denoted by I.

2.2.1. Duality properties

Duality properties arise when studying relationships
between integral and non-integral f-divergences. The
so-called mirror function of function f, denoted by �f

and defined as

�f ðxÞ :¼ xf
1

x

� �

ð4Þ

is then the key notion.4 The terminology is motivated by

the idempotence of the transform f ! �f , i.e.,
��f ¼ f .

From Definition 1, it is seen that, barring a one-to-one
mapping, integral and non-integral f-divergences are re-
lated by the following connection identity:

wðxÞ ¼ ��f
1

x

� �

. ð5Þ

Eq. (5) provides the foundation for a unified axiomatic
framework, based on homeomorphic idempotent infor-
mation metrics, which integrates the various instances
of f-divergences proposed in the literature (Vajda, 1989).

2.2.2. Normalized generalized information measures

Entropy correlation coefficient, normalized mutual
information and exclusive information can be extended
to generalized information measures in a consistent
fashion with the Shannon case (Petitjean et al., 2002).
To this end, Definitions 1–3 are first rewritten using
the identities HS(X,Y) = HS(X) + HS(Y) � I(X,Y) and

4 The mirror function is also involved in the pseudo-symmetry

property satisfied by f-divergences: Df ðl k mÞ ¼ D�f ðm k lÞ. The latter

states that permuting the reference measure when quantifying similar-

ity between probability measures requires switching from the primal to

the mirror information metrics.

Y
X

Y
X

I(X,Y) Z(X,Y)

Fig. 2. Mutual information I(X,Y) and exclusive information Z(X,Y)

of 2 random variables X and Y.
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HS(X) = I(X,X). Switching from fKL to arbitrary f in the
resulting expressions then leads to the following
definitions:

� generalized entropy correlation coefficient

ECCf ðl; mÞ :¼ 2
If ðl; mÞ

If ðl; lÞ þ If ðm; mÞ
; ð6Þ

� generalized normalized mutual information

NMIf ðl; mÞ :¼
If ðl; lÞ þ If ðm; mÞ

I f ðl; lÞ þ If ðm; mÞ � If ðl; mÞ
; ð7Þ

� exclusive f-information

Zf ðl; mÞ :¼ I f ðl; lÞ þ If ðm; mÞ � 2If ðl; mÞ. ð8Þ

By construction, a uniform convergence to the Shan-
non framework is verified: limf!fKL

ECCf ¼ ECC,
limf!fKL

NMIf ¼ NMI, and limf!fKL
Zf ¼ Z.

3. Variational non-rigid registration using generalized

information measures

Let I1 and I2 be images defined over a compact do-
main D � R

n with values in an interval X. Registering
I2 onto I1 consists in finding a transformation
/: D ! D within some function space T so that I2 � /

is similar to I1 according to a predefined criterion. This
amounts to finding a displacement field
u :¼ /� Id 2 T such that Iu2ðxÞ :¼ I2ðxþ uðxÞÞ is sim-
ilar to I1(x) for any x 2 D.

This problem is ill-posed and must be regularized. A
classical approach defines a solution as a minimizer u* of
a functional JðuÞ :¼ SðuÞ þ kRðuÞ over the space T.
S is a similarity functional which quantifies the discrep-
ancy between I1 and Iu2. In this paper, S is defined as a
generalized information measure. Depending on its
extremality properties, this yields the possible choices:
SðuÞ :¼ �If ðI1; I

u
2Þ, SðuÞ :¼ �ECCf ðI1; I

u
2Þ, SðuÞ :¼

�NMIf ðI1; I
u
2Þ and SðuÞ :¼ Zf ðI1; I

u
2Þ. R is a stabilizing

functional ensuring almost-everywhere smooth solu-
tions (see Section 3.2). The regularization parameter
k > 0 controls the trade-off between data consistency
and smoothing.

Minimizing J in a variational way is achieved by
integrating, via some gradient descent technique, the
associated Euler–Lagrange equations, obtained by zero-
ing its Gâteaux derivative. Defining the latter depends
on the modeling context chosen for u:

� Non-parametric motion models: letting T be a space
of regular mappings leads to a dense minimization
problem: u� ¼ argminu2TJðuÞ. It yields a flow over
D: otuðxÞ ¼ �ouJðuðxÞÞ where ouJ is the 1st varia-
tion of J over T.

� Parametric motion models: when u := uH lies in a
space of smooth mappings depending on a parameter
H 2 R

p, u* is searched as a solution uH
�
of a sparse

minimization: H
� ¼ argminHJðuHÞ. This yields a

flow over R
p
: otH ¼ �oHJðuHÞ, where oHJ is the

1st variation of J. Here, we restrict to linear models
for which uH(x) = B(x)H and B(x) is a matrix encod-
ing a local basis5 of T.

In each setting, the key point relies on computing the
flows ouSðuÞ or oHSðuHÞ for f-informations. For the
targeted application, we have focused on non-paramet-
ric motion models, for which computations are pre-
sented in detail. For the sake of completeness, the
results for linear parametric motions, whose derivation
follows the same lines, are given directly in a second
step. They have been applied to atlas-based myocardial
motion recovery in tagged MRI by means of statistical
parametric motion models (Petitjean et al., 2004).

3.1. Gradient flow of generalized information measures

3.1.1. Integral f-information measures

Referring to Section 2, an integral f-information
functional between reference image I1 and deformed im-
age Iu2 is

SðuÞ ¼ �I f ðI1; I
u
2Þ

¼ �

Z

X2

pI1ði1Þp
Iu
2ði2Þf quði1; i2Þð Þ di1 di2; ð9Þ

where we have set quði1; i2Þ :¼
p
I1 ;I

u
2 ði1;i2Þ

pI1 ði1Þp
Iu
2 ði2Þ

. Here, pI1ði1Þ

(resp. pI
u
2ði2Þ) denotes the probability that a pixel in im-

age I1 (resp. I
u
2) has intensity i1 (resp. i2), and pI1;I

u
2ði1; i2Þ

is the probability that corresponding pixels x in image I1
and x + u(x) in image Iu2 have intensities i1 and i2,
respectively.

Following Hermosillo et al. (2001) and Hermosillo
(2002), the first variation ouSðuÞ of SðuÞ is obtained
by computing the derivative oSðuþehÞ

oe
of the perturbed cri-

5 Important instances within this class are affine and B-splines

models. In the 2-D case, the matrix B(x) has the generic block form:

BðxÞ :¼
MðxÞ 0

0 MðxÞ

� �

where M(x) is a row vector depending on

x := (x,y). For affine models, H is a 6-dimensional vector and

M(x) = (1 x y). For B-spline models (Rueckert et al., 1999), H is a

(2nxny)-dimensional vector gathering the x- then y-coordinates of a

(nx · ny) rectangular mesh of raster-ordered control points. Letting

~x :¼ x
nx

and ~y :¼ y

ny
, and setting i :¼ b~xc � 1, j :¼ b~yc � 1, u :¼ ~x� b~xc

and v :¼ ~y � b~yc, M(x) is the (nxny)-dimensional vector with compo-

nen t s Mnnxþm :¼ BkðuÞBlðvÞdiþk;jþlðm; nÞ ððk; lÞ 2 ½0 . . . 3� � ½0 . . . 3�;
ðm; nÞ 2 ½1 . . . nx� � ½1 . . . ny �Þ. Here, Bk represents the kth basis function

of the cubic B-spline and di,j(m,n) denotes the standard Kronecker

symbol which is 1 iff. (i = m)� (j = n), and 0 otherwise. The extension

to the 3D case is straightforward.
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terionSðuþ ehÞ; h 2 T at e = 0. The latter involves the

derivatives op
I1 ;I

uþeh
2

oe
and op

Iuþeh
2

oe
which are expressed under

closed form by approximating pI1;I
u
2 (resp. pI

u
2 ) with a glo-

bal Parzen estimator with 2-D (resp. 1-D) kernel K2

(resp. K1) over the region of overlap D := D\/(D) of
both images:

pI1;I
u
2ði1; i2Þ 	

1

jDj

Z

D

K2 I1ðxÞ � i1; I
u
2ðxÞ � i2

� �
dx; ð10Þ

pI
u
2ði2Þ 	

1

jDj

Z

D

K1ðI
u
2ðxÞ � i2Þdx; ð11Þ

where jDj is the volume of D (Viola and Wells, 1997;
Hermosillo et al., 2001). It is then shown in Appendix A
that

ouSðuÞ ¼ �ouIf ðI1; I
u
2Þ ¼ �V

I1;I
u
2

1 ðxÞrIu2ðxÞ; ð12Þ

V
I1;I

u
2

1 ðxÞ :¼ K K2H
oLu

1

oi2

� �

I1ðxÞ; I
u
2ðxÞ

� �
�

þ EI1 K1H
oL

uji1
2

oi2

" #

ðIu2ðxÞÞ

 !)

; ð13Þ

where EI1ð
Þ denotes expectation w.r.t. the random var-
iable I1 and the symbol % is the 2-D (resp. 1-D) convo-
lution operator over the intensity space X2 (resp. X). The
symbols KðI1; I

u
2Þ, L

u
1 and Lu

2 are defined in Table 1 and
L
uji1
2 ð
Þ :¼ Lu

2ði1; 
Þ for any given intensity value i1 2 X.
One has

oL
uji1
2

oi2
¼ �qu oL

u
1

oi2
; ð14Þ

oLu
1

oi2
¼ quf 00 quð Þ

o log pI1;I
u
2

oi2
�
o log pI

u
2

oi2

� �

. ð15Þ

The flow (12) is along rIu2. Thus, constant intensity re-
gions remain unaltered and are deformed only through
interactions along their boundaries. Its magnitude is
controlled both by contrast and luminance statistics, en-

coded in krIu2k and V
I1;I

u
2

1 , respectively. From (13), it is

seen that V
I1;I

u
2

1 involves regularized i2-derivatives (de-
fined via linear filtering against Parzen kernels) of the
terms Lu

i ði ¼ 1; 2Þ. The latter are functions of the vari-
able qu which measures the dependence between lumi-

nance distributions, and are interpreted as follows.
Deforming the floating image Iu2 during the registration
process causes the information between I1 and Iu2 to
vary, inducing a statistical force. Quantifying these vari-
ations w.r.t. the information metrics f requires defining
an observed variable and a reference measure. Two
choices are possible, yielding respective contributions
to the statistical force:

1. The observed variable is the joint distribution
ðI1; I

u
2Þ: in this case, the reference measure is chosen

as the product distribution I1 � Iu2. This leads to
considering the variable qu. The variation of infor-
mation w.r.t. the primal metrics f is then the flux
f 0(qu), i.e., Lu

1.
2. The observed variable is the marginal distribution

Iu2: comparison with I1 requires generating hypothe-
ses on possible realizations i1 of I1. Sampling I1
allows to define the product observation I1 � Iu2
whose information can be quantified w.r.t. to the
joint measure ðI1; I

u
2Þ. This leads to considering

the variable 1
qu
. The appropriate information metrics

is then the dual metrics �f , and the variation of
information w.r.t. �f is the flux �f

0
ð 1
qu
Þ, i.e., L

uji1
2 .

The process is repeated for every possible realiza-
tion of I1. Finally, the average value of information
variation, corresponding to expectation w.r.t. I1, is
retained.

Eq. (12) generalizes to arbitrary integral f-informa-
tions the result derived in (Hermosillo et al., 2001;
Hermosillo, 2002) for MI, which corresponds to
f = fKL. In this case, the expectation in (13) vanishes
and

oLu
1

oi2
¼

o log pI1;I
u
2

oi2
�
o log pI

u
2

oi2
. ð16Þ

The term Lu
2 is, thus, informationless in the Shannon

framework. In contrast, using f 6¼ fKL allows to exploit
the information content of Iu2 in a more extensive
fashion.

3.1.2. Non-integral f-information measures

A non-integral f-information similarity functional is

SðuÞ ¼ �IwðI1; I
u
2Þ ¼ � logw�1

BwðI1; I
u
2Þ

� �
; ð17Þ

BwðI1; I
u
2Þ ¼

Z

X2

pI1;I
u
2ði1; i2Þw quði1; i2Þð Þ di1 di2. ð18Þ

Its variational derivative ouSðuÞ is derived along the
same lines as above (Petitjean et al., 2002; Petitjean,
2003c). One obtains the same expressions (12) and (13)
as for integral f-information, with specific definitions
for the symbols KðI1; I

u
2Þ, L

u
1 and Lu

2 given in Table 2.
One has

Table 1

Analytical structure of the variational derivative of integral f-

informations

Lu
1

f 0(qu)

Lu
2 f ðquÞ � quf 0ðquÞ ¼ �f

0
1
qu

� 	

Lu
3 2f 1

p
Iu
2

� �

pI
u
2 � f 0 1

p
Iu
2

� �

KðI1; I
u
2Þ

1
jDj
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oL
uji1
2

oi2
¼ �qu oL

u
1

oi2
; ð19Þ

oLu
1

oi2
¼ qu 2w0ðquÞ þ quw00ðquÞ½ �

o log pI1;I
u
2

oi2
�
o log pI

u
2

oi2

� �

.

ð20Þ

Setting w = wKL yields the MI flow (Hermosillo et al.,
2001). For w = wr, one obtains the Renyi information
flow.

Using the identity (5) relating integral and non-inte-
gral f-divergences, it is straightforward to show that
the defining equations for Lu

1 and Lu
2 provided in Tables 1

and 2, and, consequently, their derivatives expressed by
Eqs. (14) and (15) and (19) and (20), are dual. It follows
that the gradient flows for integral and non-integral
informations are dual.

3.1.3. Normalized generalized information measures

Following the perturbative approach of Section 3.1.1,
the variational derivative of the similarity functionals
SðuÞ ¼ �ECCf ðI1; I

u
2Þ, SðuÞ ¼ �NMIf ðI1; I

u
2Þ and

SðuÞ ¼ Zf ðI1; I
u
2Þ induced by normalized generalized

information measures are shown to be of the following
generic form (Petitjean et al., 2002; Petitjean, 2003c):

ouSðuÞ ¼ �w
I1;I

u
2

0 w
I1;I

u
2

1 ouIf ðI1; I
u
2Þ � w

I1;I
u
2

2 ouIf ðI
u
2; I

u
2Þ

h i

;

ð21Þ

where the weighting coefficients w
I1;I

u
2

i (i 2 {0,1,2}) are
defined in Table 3. The variational derivative
ouIf ðI1; I

u
2Þ of f-information is given by (12) and (13).

The variational derivative ouIf ðI
u
2; I

u
2Þ of self f-informa-

tion is easily computed. The result is the following:

ouIf ðI
u
2; I

u
2Þ ¼ V

Iu
2
2 ðxÞrIu2ðxÞ; ð22Þ

V
Iu
2
2 ðxÞ :¼ K K1H

oLu
3

oi2

� �

Iu2ðxÞ
� �

� 


; ð23Þ

where KðI1; I
u
2Þ and Lu

3 are defined in Table 1 for the
integral case where

oLu
3

oi2
¼ 2f

1

pI
u
2

� �

�
2

pI
u
2

f 0 1

pI
u
2

� �

þ
1

pI
u
2

� �2
f 00 1

pI
u
2

� �" #

opI
u
2

oi2

ð24Þ

and in Table 2 for the non-integral case where

oLu
3

oi2
¼

1

pI
u
2

� �3
w00 1

pI
u
2

� �
opI

u
2

oi2
. ð25Þ

One can verify that Eqs. (24) and (25) are dual. The
structure of this flow is similar to (12) and (13), the sta-
tistical control being here based on the variation of the
information content of Iu2, analyzed via the term Lu

3.
When f = fKL, one obtains the flow for the Shannon
marginal entropy HSðI

u
2Þ.

The flow (21) can be finally written as

ouSðuÞ ¼ �V
I1;I

u
2

3 ðxÞrIu2ðxÞ; ð26Þ

V
I1;I

u
2

3 ðxÞ :¼ w
I1;I

u
2

0 w
I1;I

u
2

1 V
I1;I

u
2

1 ðxÞ � w
I1;I

u
2

2 V
Iu
2
2 ðxÞ

h i

. ð27Þ

When f = fKL, Eqs. (26) and (27) describe the gradient
flow for ECC, NMI and exclusive information. It is eas-
ily shown that they reduce to (12) and (13) with null
expectation and

oLu
1

oi2
¼ w

I1;I
u
2

3

�

w
I1;I

u
2

4

o log pI1;I
u
2

oi2
� w

I1;I
u
2

5

o log pI
u
2

oi2

�

; ð28Þ

where the weighting coefficients w
I1;I

u
2

i (i 2 {3,4,5}) are
defined in Table 4. Studying their asymptotic behavior
when u ! u* enlightens interesting properties of ECC,
NMI and exclusive information. Assuming perfect regis-
tration, i.e., the random variables I1 and Iu

�

2 obey the
same distribution, and recalling the property
HS(X,X) = HS(X), it is straightforward to prove that:
limu!u�w

I1;I
u
2

4 ¼ 2 and limu!u�w
I1;I

u
2

5 ¼ 1. Comparing this
result to the MI case (16), for which one has:
w

I1;I
u
2

4 ¼ w
I1;I

u
2

5 ¼ 1, shows that MI, on the one hand,
and ECC, NMI and Z, on the other hand, belong to dif-
ferent families of Shannon information measures. We
conjecture that the increased robustness of normalized
information measures to image overlap (Maes et al.,
1997; Studholme et al., 1999) originates from the specific
weighting of o

oi2
log pI1;I

u
2 and o

oi2
log pI

u
2 . This observation

can be extended to f-informations vs. ECCf, NMIf and
exclusive f-informations (Petitjean, 2003c), taking into
account that: limu!u�w

I1;I
u
2

1 ¼ 2 and limu!u�w
I1;I

u
2

2 ¼ 1.

3.1.4. Linear parametric motion models

Similar computations can be carried out for deriving
the expressions of the 1st variation of generalized infor-
mation measures over linear parametric motion spaces.
The resulting flows can be expressed under the following
unified form:

Table 2

Analytical structure of the variational derivative of non-integral

f-informations

Lu
1

w(qu) + quw 0(qu)

Lu
2

�(qu)2w 0(qu)

Lu
3 w 1

p
Iu
2

� �

� 1

p
Iu
2
w0 1

p
Iu
2

� �

KðI1; I
u
2Þ

1
jDj

ðw�1Þ0ðBwðI1;I
u
2
ÞÞ

w�1ðBwðI1;I
u
2
ÞÞ

By defining f(x) := �xw(x) according to the connection identity (5), the

symbols Lui ði ¼ 1; 2; 3Þ rewrite as in Table 1. It follows that the vari-

ational derivatives of integral and non-integral f-informations are dual.
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oHSðuHÞ ¼ �

Z

D

V I1;I
u
2ðxÞ rIu2

� �t
B

h i

ðxÞdx; ð29Þ

where V I1;I
u
2 :¼ V

I1;I
u
2

1 for f-informations and
V I1;I

u
2 :¼ V

I1;I
u
2

3 for normalized generalized information
measures. The flow in the parameter space appears to
be the sum of local contributions along the projection
½ðrIu2Þ

t
B� of rIu2 onto the basis B of T. Notice that,

for f = fKL, the resulting expressions differ from Viola�s
approach (Viola and Wells, 1997). This is because we ex-
actly optimize the MI similarity functional instead of
using an ergodic approximation as in (Viola and Wells,
1997).

3.2. First-order regularization

Non-parametric and high-order parametric motion
models require explicit regularization. Since regularizing
functionals involving low-order motion derivatives al-
low for reduced over-smoothing artifacts and computa-
tionally efficient schemes, 1st-order differential
stabilizers have been retained. Moreover, in our applica-
tion context, NRR is targeted towards motion estima-
tion instead of geometric alignment as in most
situations. Ensuring the physical consistency of recov-
ered motion is, therefore, a key requirement. This im-
plies using a functional RðuÞ which guarantees that
smoothing is confined within the boundaries of moving
structures. This condition is not met by classical stabiliz-
ers (e.g., thin-plate (Bookstein, 1989; Rueckert et al.,
1999), linear elasticity (Bajcsy and Kovac̆ic̆, 1989; Chris-
tensen et al., 1996), viscous fluid (Christensen et al.,

1996b)) which do not incorporate discontinuity infor-
mation and prove to be excessively diffusive, resulting
into inter-region smoothing even though yielding excel-
lent alignment of anatomical structures. Applied to car-
diac tagged MR data, these stabilizers deliver unrealistic
vector fields which exhibit strong blurring artifacts in
the vicinity of endocardial and epicardial boundaries.
These artifacts originate from mixing unrelated motion
information between myocardium and blood pools or
thoracic structures.

As in Hermosillo (2002), we have used the
Nagel–Enkelmann oriented smoothness constraint
(Nagel and Enkelmann, 1986), which is a classical
1st-order geometric stabilizer involving the Jacobian
$u of u:

RðuÞ :¼
1

2
traceðrutT I1ruÞ; ð30Þ

T I1 :¼
1

krI1k
2
þ 2b

bþ jjrI1jj
2

� 	

Id�rI1rI t1

h i

. ð31Þ

Here, Id denotes the identity tensor and b > 0 is a
contrast parameter. The tensor T I1 defines a projector
onto the hyperplane orthogonal to $I1, inhibiting reg-
ularization along $I1. Consequently, RðuÞ promotes
intra-region smoothing, yielding motion estimates
localized within image objects. The first variation of
RðuÞ is

ouRðuÞ ¼ �r 
 T I1ruð Þ. ð32Þ

An alternative choice is half-quadratic regularization
(Hellier et al., 2001), which allows for motion disconti-
nuity preservation.

3.3. Implementation issues

We have chosen a simple and computationally effi-
cient implementation which has proven to perform ro-
bustly. Obviously, more sophisticated choices can be
made at every stage, potentially yielding improvements
to be assessed. The hyperparameters of the method have
been tuned empirically. We have verified experimentally
that using a fixed image acquisition protocol allows to
guarantee the robustness of these settings.

Table 3

Weighting coefficients involved in the variational derivative of generalized normalized information measures

Criterion
w

I1;I
u
2

1 w
I1;I

u
2

2 w
I1;I

u
2

0

ECCf 2 ECCf ðI1; I
u
2Þ

1
If ðI1;I1ÞþIf ðI

u
2
;Iu
2
Þ

NMIf NMIf ðI1; I
u
2Þ NMIf ðI1;I

u
2
ÞECCf ðI1;I

u
2
Þ

2

NMIf ðI1;I
u
2
Þ

If ðI1;I1ÞþIf ðI
u
2
;Iu
2
Þ

Zf 2 1 1

Table 4

Weighting coefficients involved in the variational derivative of

normalized information measures

Criterion
w

I1;I
u
2

4 w
I1;I

u
2

5 w
I1;I

u
2

3

ECC 2 2
NMIðI1;I

u
2
Þ

1
HSðI1ÞþHSðI

u
2
Þ

NMI NMIðI1; I
u
2Þ 1 1

HSðI1;I
u
2
Þ

Z 2 1 1
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� Estimating the probability distributions: Empirical pdf
estimates derived from normalized histograms have
been used. The joint histogram of I1 and Iu2 over the
domain of overlap D is constructed by binning inten-
sity pairs using 256 bins for both images. Bilinear or
partial volume (Maes et al., 1997) interpolation can
be used for estimating Iu2 at transformed positions
u(x), yielding similar performances. Marginal pdf
are obtained by summing over rows and columns of
the (smoothed) normalized joint histogram. A known
side effect is that the resulting estimate of pI1 does
depend on u.

� Computing the statistical forces: Isotropic Parzen
Gaussian kernels K1 and K2, with respective stan-
dard deviations r1 and r2, have been retained, yield-
ing Gaussian derivatives in the luminance domain.
The latter are computed by smoothing the joint histo-
gram using a 4th-order IIR approximation of the
Gaussian filter (Deriche, 1993), and estimating the

derivatives
oLu

1

oi2
and

oL
uji1
2

oi2
using central finite differences

(FD). The expectation EI1ð
Þ w.r.t. the random vari-
able I1 is estimated empirically as an arithmetic aver-
age w.r.t. the variable i1. The Parzen kernel widths,
which have a critical impact on convergence and
accuracy (D�Agostino et al., 2003), have been empir-
ically set to r1 = r2 = 3. Alternatively, the leave-k-
out cross-validation technique proposed in (Hermo-
sillo, 2002) can be applied to marginal histograms
to automate their optimal determination.

� Computing the image derivatives: Image gradients are
robustly estimated using the Canny–Deriche filter
with smoothing parameter set to 1.5.

� Computing the regularization forces: The Nagel–
Enkelmann tensor is computed analytically from
Eq. (31) with b = 10000. Central FD are used for esti-
mating the partial derivatives of u and discretizing
(32). The regularization parameter has been empiri-
cally set to k = 20.

� Discretizing the flow: Gradient descent is performed
via a crude Euler explicit scheme

utðxÞ ¼ ut�1ðxÞ � DtouJðut�1ðxÞÞ

with fixed time step Dt = 0.015.
� Multiresolution implementation: In order to deal with
large displacements, a standard coarse-to-fine strat-
egy based on Gaussian dyadic pyramids for lumi-
nance and displacement has been considered (Lester
and Arridge, 1999). We have used 3 resolution levels,
including full resolution.

� Testing for convergence: Since generalized informa-
tion measures do not contain spatial information,
testing convergence by monitoring their evolution
along iterations is not practical. Instead, we monitor
the variations of displacement estimates between two
iterations, and decide for convergence by comparing

against a predefined threshold (consistently dilated
according to the resolution level). In practice, we
have used the following norm:

kut � ut�1kT :¼ max
x2D

kutðxÞ � ut�1ðxÞkL2
� �

.

Computation time per exam, typically consisting of 6
sequences (3 short-axis (SA) and 3 long-axis (LA) levels)
of 18 images of size 80 · 80, is about 30 min on a PC
with a PIII 1.2 GHz processor. Extracting systolic mo-
tions at 3 SA levels requires 	60 s.

4. Quantifying myocardial deformations

Performing NRR between successive image pairs of a
tagged MR sequence (It)06 t6T delivers frame-to-frame
displacement estimates ðu�t;tþ1Þ06t<T . Integrating them
over time starting from ED (t = 0) yields absolute dis-
placements ðu�t Þ06t6T . Systolic motions can be derived
in this way, or, for static studies, by direct NRR between
ED and ES frames.6 Quantifying myocardial deforma-
tions can then be achieved either from frame-to-frame
or absolute displacements.

4.1. Computing deformation parameters

The myocardium has a complex structure consisting
of locally parallel muscle cells (myocytes), a vascular
network and a dense plexus of connective tissue (Glass
et al., 1991). Myocytes are tied together by a collagenous
network and bundled together into fibers. Fibers are or-
ganized into a nested architecture with a continuously
varying transmural orientation distribution: fibers in
the mid wall are circumferential whereas subendocardial
fibers are longitudinally directed (Nielsen et al., 1991).
From a mechanical point of view, the myocardium is
therefore an inhomogeneous, anisotropic and nearly
incompressible material characterized by a complex
stress-strain relationship correlated to fiber structure
(Glass et al., 1991; Hu et al., 2003). The left ventricle
(LV) deformations comprise radial thickening, circum-
ferential shortening, torsion, and longitudinal shorten-
ing. For the right ventricle (RV), the longitudinal fiber
orientation governs the dominant motion.

6 Experiments have shown that the two approaches yield similarly

accurate results, indicating that error propagation artifacts inherently

induced by integration are limited. This can be explained by the

conjunction of two factors: (i) as shown in Section 5.2, the proposed

NRR technique delivers very accurate frame-to-frame displacements

estimates; (ii) tags undergo a stationary demagnetization process and

are persistent within the myocardium during systole; this eliminates the

tedious problem of devising robust integration schemes w.r.t. missing

information.
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Local deformation information is derived either from
the recovered displacement fields themselves (0th-order
attributes), or from their spatial variations (1st-order
attributes) encoded by the strain tensor E(u), defined as:

EðuÞ :¼ 1
2
ruþrut þrutruð Þ. ð33Þ

Letting d and d 0 denote unit vector fields over D

(idi = id 0i = 1, d 6¼ d 0):

� 0th-order attributes allow for assessing directional
displacements (dtu)d. For SA views, radial displace-
ment (resp. rotation/torsion along the LA of the
heart) is defined by letting d be the vector field n

(resp. t) normal (resp. tangent) to myocardial bound-
aries. For LA views, radial (resp. longitudinal) dis-
placement is obtained by letting d be the vector
field z^ (resp. z) normal (resp. parallel) to LA.

� Relevant 1st-order attributes comprise radial (d = n),
circumferential (d = t) and longitudinal (d = z)
strains Qd := dtE(u)d and shears Qd,d 0: = dtE(u)d 0,
and eigenvectors/eigenvalues of E(u) which define
extremal deformation directions/magnitudes.

In practice, the fields t and n are derived either from a
polar coordinate system located at the center of gravity
of the LV (Fig. 3), or from the gradient of a distance
function over a binary segmentation map of the myocar-
dium (cf. Section 4.2). The latter solution applies to the
whole heart and accounts for its intrinsic geometry
whereas the former is restricted to LV analysis and in-
volves an extrinsic geometry. For non-parametric mo-
tions, the strain tensor E(u) is computed numerically
using central FD. For parametric motions, a closed-
form expression onto the local motion basis can be de-
rived, allowing analytic computations.

Averaging these various attributes over each region
of a layered regional model of the myocardium yields
segmental descriptions of the deformation. Due to the
lack of consensus regarding RV segmentation, which is
made difficult by its relative thinness and complex geom-
etry, only LV segmental measurements are reported in
this paper. They refer to a 3 SA-levels, 16-segments
LV model compliant with the American Heart Associa-
tion (AHA) recommendations (Cerqueira et al., 2002),
shown in Fig. 4.

For the healthy heart, both individualized and popu-
lation-related measurements have been investigated dur-
ing the whole cardiac cycle. The latter have been derived
by averaging individual segmental parameters over a
reference database (cf. Section 5.1).

4.2. Segmenting and tracking the myocardium

Using a stabilizer with intra-region smoothing prop-
erties allows to considerably decrease the bias of sur-
rounding tissues onto displacement estimates within

the myocardium. Since NRR operates over the whole
image domain, additional motion data are recovered
within the heart chambers and over the thorax. For
myocardial function quantification purpose, the latter
are useless and must be discarded to reduce computa-
tions and enhance visualization. Myocardium segmenta-
tion is thus a necessary step.

To this end, rather than processing the tagged MR
data in which the tagging pattern interferes with myo-
cardial boundaries, we use the jointly acquired cine
MR images which provide a direct access to heart anat-
omy. Segmentation is then achieved within the same
NRR framework as for motion estimation by:

1. segmenting the ED image by any technique of choice
(Suri, 2000); in our implementation, we have favored
mathematical morphology and used a classical
watershed segmentation scheme;

2. performing frame-to-frame NRR over the whole cine
MR sequence, starting from the ED image; thanks to
the use of a uniform acquisition protocol for tagged
and cine MR data (cf. Section 5.1), the information
metrics and hyperparameter set used for motion esti-
mation are applicable;

3. integrating the estimated frame-to-frame displace-
ments over time to produce absolute displacements;

4. warping the ED segmentation mask with the absolute
displacement fields to generate segmentations in sub-
sequent phases.

For static studies, NRR is performed between the ED
and ES frames only, yielding directly absolute systolic
displacements.

LV RVRV LV

d
d

(a)

(b)

Short-axis view.

RV

LV LV

RVd d

Long-axis view.

Fig. 3. Relevant orientations for deformation assessment in (a) short-

axis and (b) long-axis views. For the LV, a cylindrical coordinate

system with origin at the LV gravity center and along the long-axis of

the heart is often used.
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5. Results

5.1. Materials

Experiments have been performed on a cardiac MRI
database comprising healthy and pathological data.
Healthy exams originate from an homogeneous popula-
tion of 12 volunteers (9 men/3 women, mean
age ± SD = 30 ± 4 years). Pathological data consist of
acute ischemia, dilated cardiomyopathies (DCM) and
sarcoı̈dosis. Tagged MR data were acquired during mul-
tiple breath holds on a 1.5T GE scanner using the
SPAMM (SPAtial Modulation of Magnetization) (Axel
and Dougherty, 1989) tagging technique with ECG trig-
gering.7,8 For each patient, 10 base-to-apex SA and 8
LA sequences were captured. A sequence comprised
15–21 images depending on the heart rate. The cine
MR sequences required for myocardium segmentation
were acquired at the same slice levels in identical condi-
tions.9 3 SA levels, in compliance with the AHA recom-

mendations (Cerqueira et al., 2002), and 3 LA levels
have been effectively processed.

5.2. Evaluation and information metrics selection

An objective evaluation of the proposed approach
has been carried out using simulated tagged MR data.
The latter are created by warping real images by realis-
tic synthetic motion data and simulating tag fading out.
The synthetic motion consists of the mean displacement
component ðuatlast Þ06 t6 T of a multi-phase statistical car-
diac motion atlas (Petitjean, 2003c; Petitjean et al.,
2004). Tag fading out is simulated by histogram specifi-
cation. Formally, starting from a reference tagged MR
sequence (It)0 6 t 6 T, a simulated image ~I t at phase t

(0 < t 6 T) is obtained by warping the initial frame I0
by uatlast , and by imposing to the transformed image
I
uatlast

0 the histogram of the real image It by means of his-
togram specification. Accuracy is assessed by compar-
ing the displacement u�t , estimated by registering I0
onto ~I t, to the ground truth uatlast using the classical L2

norm

eðxÞ :¼ kuatlast ðxÞ � u�t ðxÞkL2 .

Experiments have been carried on simulated
SPAMM, CSPAMM and DANTE data. Due to the
lack of a theoretical basis for automatically selecting a
suitable information metrics, systematic testing has been
achieved for various integral and non-integral diver-
gences. Specifically, the Ia, va, Matusita and Renyi diver-
gences (Vajda, 1989) have been tested, for various values
of their control parameter. The best results have been
obtained for the information metrics fa associated to
Ia-divergence with a = 1.2, which was found to allow
for accurately recovering both frame-to-frame and sys-
tolic motions.
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Fig. 4. (a) Myocardial walls and (b) bull-eye representation of the 3-levels, 16-segments LV model recommended by the AHA. Segments #1–6, #7–12

and #13–16 refer to the basal, mid and apical levels, respectively. Segment #17, associated with the apex, is optional and has not been used.

7 The acquisition parameters were as follows: 285 mm field of view,

256 · 128 acquisition matrix, 1.48 · 1.48 mm in-plane resolution,

45 ms time interval, 10 mm slice thickness, 10 mm tag spacing.
8 Additional datasets were also collected using the CSPAMM

(Continuous SPAMM) (Fischer et al., 1993) and DANTE (Delays

Alternating with Nutations for Tailored Excitations) (Mosher and

Smith, 1990) sequences to assess sensitivity w.r.t. the tagging protocol.
9 Despite using identical levels, acquisitions at different breath holds

potentially yield spatial misalignment of tagged and MR data due to

respiratory-induced through-plane motion and in-plane deformations.

The former cannot be fixed. Compensating for the latter would require

performing NRR between tagged and cine ED frames. Upon visual

inspection, such artifacts have proved, however, to be very limited for

the cohort and have been neglected. Moreover, accurately dealing with

them is not a critical issue, since myocardium segmentation is only

meant to enhance the visualization of dense parameter maps and does

not influence quantification.
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Using the fa metrics, we have then compared the per-
formances of the f-information, exclusive f-information,
generalized ECC and generalized NMI similarity crite-
ria. The conclusion is that these various criteria yield
similar results, but exclusive f-information converges
significantly faster than f-information (Fig. 5) while
requiring a lower computational effort than ECCf and
NMIf. The convergence speed up factor10 w.r.t. to If var-
ies between 3 and 8. The exclusive f-information crite-
rion has, therefore, been finally retained.

A typical example of frame-to-frame motion recovery
from simulated SPAMM data is shown in Fig. 6. The re-
sults, synthesized in Table 5, demonstrate that the
proposed approach allows to estimate reliable frame-
to-frame displacements, with sub-pixel average accuracy
and maximal error less than 3 pixels. The same conclu-
sion holds for large magnitude displacements such as
systolic motions. Moreover, performance for systolic
frames does not depend on the MR-tagging technology.
In any case, tags are matched accurately, as illustrated in
Fig. 7.

5.3. Non-pathological data

Numerous experiments have been performed on
non-pathological data. Fig. 8 shows typical displace-
ment fields recovered from SA sequences at basal,
mid and apical levels during systole for a normal heart.
When dealing with natural images, assessing the accu-
racy of the proposed method for motion recovery is
difficult due to the lack of reliable ground truth.
Instead, we have attempted to objectively assess its
performance for quantifying myocardial function. To
this end, the literature on myocardial strain measure-
ment has been reviewed, yielding reference values and
confidence intervals for the various deformation
parameters described in Section 4.1 (Petitjean et al.,
2003b).

Quantification has proven to corroborate well-estab-
lished qualitative results on heart anatomy. Regarding
0th-order attributes, the radial contraction increases
on lateral and inferior walls (Fig. 10), reaching 4.5 mm
in the apex (Fig. 9). In addition, the septum still con-
tracts while free walls start dilating. This behavior seems
to be linked to the RV motion. Rotation sense differs at
the apex and the base (Fig. 11). Measurements on LA
images (Fig. 12) show that longitudinal contraction
mostly takes place at the base and that radial contrac-
tion is localized on the LV free walls. An initial transla-
tion of the apex towards the base is also observed. This

translation has been previously reported in (Moore
et al., 2000) with an amplitude of 	2 mm. Whatever
the attribute, automated systolic measurements have
been found to lie within reference confidence intervals
(Petitjean et al., 2003b).

Moreover, quantifying deformations dynamically al-
lows to highlight phenoma which have not been previ-
ously described in the literature and require more
investigation. Averaging population-specific measure-
ments of radial contraction for each segment over all
levels, and for each level over all segments, respectively,
clearly underlines the propagation of deformation: con-
traction undergoes a clockwise motion from anterior to
septal wall (Fig. 13); it propagates longitudinally from
base to apex in the septum and, in a less obvious man-
ner, from apex to base in each of the remaining segments
(Fig. 14). One can notice that electrical activation be-
haves similarly.

Regarding 1st-order parameters, radial strain is po-
sitive, indicating wall thickening, until early diastole
for all segments. At ES, radial strain is negative for
anterior and lateral walls, and zero or positive for sep-
tal and inferior walls, showing that diastolic thinning
has started for anterior and lateral walls. As previ-
ously noticed in (Moore et al., 2000), radial strain
exhibits, however, a high inter-subject variability
which may question the clinical usability of this
parameter. Circumferential strain increases on apical
antero-lateral and basal inferior walls (Fig. 15). Max-
imal eigenvalues line up with radial strain values,
underlining the fact that maximum stretch occurs in
the radial direction.
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Fig. 5. Evolution of f-information �If (dashed line, right scale) vs.

exclusive f-information Zf (plain line, left scale) along iterations for the

information metrics fa (a = 1.2) during hierarchical NRR between

synthetic SPAMM data. Three resolution levels have been used. In

order to highlight convergence speed up, a fixed number of iterations

has been imposed at each level. The leaps correspond to transitions

towards finer resolutions.

10 Convergence speed is measured in terms of number of iterations,

or, equivalently, in terms of CPU time, given that the additional cost

for computing the derivative ouIf ðI
u
2; I

u
2Þ involved in ouZf ðI1; I

u
2Þ is

marginal compared to the cost for evaluating ouIf ðI1; I
u
2Þ once Parzen

estimates for Iu2 have been computed.
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5.4. Pathological cases

The proposed approach has also been applied to
pathological cases including acute ischemia and DCM.

For the ischemic case, observing directly the recov-
ered displacement fields shows that motion is reduced
to its tangential component in the anterior wall
(Fig. 16). This is confirmed by radial contraction mea-
surements, which greatly decrease in this area (Fig.
17). This hypokinetic zone has been diagnosed to be
the infarcted region.

Studying the DCM case involves measurements at
various levels. Comparing segmental measurements over
the cardiac cycle to values for the healthy heart reveals
that radial contraction is reduced in the septal and infe-
rior segments, reaching only 1.8 mm, whereas torsion is
enhanced and prolonged (Fig. 9). Both strains are lower
than normal, on the whole myocardium for radial
strain, and on the mid and apical infero-lateral walls
for circumferential strain.

6. Discussion

The proposed variational framework for NRR using
generalized information measures is generic and readily
suited for multimodal image registration. It extends pre-
vious results obtained in the particular case of MI,
namely the work of Hermosillo et al. (2001) who derived
the expression of the MI flow for non-parametric trans-
forms, and the early approach of Viola and Wells (1997)
who obtained a similar result for linear parametric trans-
forms using an ergodic approximation of MI. Compared
to the latter, our approach yields an exact expression of
the MI flow for linear parametric transforms, and high-
lights its relationship with the non-parametric case.

Within the Shannon framework, we have also derived
new results relative to previously proposed information
measures such as the ECC, the popular NMI and the
exclusive information. Our contributions concern the
derivation of their flows over arbitrary transform
spaces, and the proof that they belong to a separate class
of information measures. These results pave the way for
new applicative developments such as assessing the per-
formance of the poorly known ECC criterion or using
NMI over non-parametric transform spaces.

Extension outside the Shannon framework provides a
complete theoretical framework for optimizing already
proposed non-Shannon information measures such as
Ia (Pluim, 2000) or Renyi (He et al., 2003) information,
and opens an avenue for investigating the suitability of
novel information measures to specific application

Fig. 6. Evaluation of the accuracy of Ia-information-based NRR (a = 1.2) on a pair of consecutive (t = 1) simulated SPAMM images (SA view, mid

level). The ground truth uatlast and the recovered motion u�t are shown on the bottom line, together with the error map eðxÞ :¼ kuatlast ðxÞ � u�t ðxÞkL2 (in

pixel units).

Table 5

Statistics of the local error eðxÞ :¼ kuatlast ðxÞ � u�t ðxÞkL2 between ground

truth uatlast (t = 1) and estimated displacement u�t using Ia-information-

based NRR (a = 1.2) for various tagging protocols

Tagging sequence Mean ± SD Range

SPAMM 0.12 ± 0.21 0–2.29

CSPAMM 0.16 ± 0.30 0–2.72

DANTE 0.14 ± 0.22 0–2.19
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contexts. Another important contribution concerns the
generalization of normalized information measures to
non-Shannon metrics f 6¼ fKL, and the derivation of
their flows over arbitrary transform spaces. In particu-
lar, we have underlined the relevance of exclusive

f-information which allows for faster convergence than
f-information, and retains the robustness properties of
generalized NMI while yielding a simpler flow.

Similarity criteria based on generalized informa-
tion measures can obviously be combined with any

Fig. 7. NRR of (a) SA and (b) LA tagged MR data using exclusive f-information. The fa information metrics (a = 1.2) has been used. A synthetic

grid warped by u* has been overlaid to enhance tag motion recovery.

5% 16% 26% 37% 47% 58%

B

M

A

Fig. 8. Myocardial displacements estimated from SA data for a healthy heart at basal (B), mid (M) and apical (A) levels using exclusive

f-information-based NRR. The fa-information metrics (a = 1.2) has been used. Time scale is expressed as % of the cardiac cycle.
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regularization model. For instance, using viscous fluid
regularization (Christensen et al., 1996b) yields a vari-
ational model suited to large displacements which
generalizes the approach based on MI proposed by
D�Agostino et al. (2003).

Concerning the mathematical properties of the
model, the well-posedness of the MI flow has been
established by Faugeras and Hermosillo (2001) for

non-parametric transforms. A close look on the proof
suggests that this result could be easily extended to gen-
eralized information measures thanks to the convexity
property of integral information metrics and the duality
relationship between integral and non-integral
f-informations.

In some applications, the use of local statistics allows
to deal more efficiently with non-stationary intensity
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Fig. 9. (Top rows) Radial (in mm/s) and (bottom rows) rotation (in degrees/s) velocities of LV segments during a cardiac cycle for the mean of
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Fig. 10. Local and segmental radial contraction maps from SA data for a healthy heart at basal (B), mid (M) and apical (A) levels. Positive (resp.

negative) values indicate inward (resp. outward) motion. Time scale is expressed as % of the cardiac cycle. Motion data, shown in Fig. 8, have been

masked outside the LV.

Fig. 11. Local and segmental torsion maps from SA data for a healthy heart at basal (B), mid (M) and apical (A) levels. Positive (resp. negative)

values indicate clockwise (resp. counterclockwise) motion. Time scale is expressed as % of the cardiac cycle. Motion data, shown in Fig. 8, have been

masked outside the LV.

Fig. 12. (a) Radial and (b) longitudinal contraction maps from LA data for a healthy heart. Positive (resp. negative) values indicate (a) inward (resp.

outward) motion, and (b) motion towards the apex (resp. base). Time scale is expressed as % of the cardiac cycle.
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distributions. In particular, non-parametric local Parzen
estimates have been proposed by Hermosillo (2002) and
inserted into the variational optimization of MI for non-
parametric transforms. This approach is easily extended
to generalized information measures over arbitrary
transform spaces. The interested reader is referred to
(Petitjean et al., 2002).

Currently, the main methodological limitation relies
in the lack of a theoretical basis for selecting a suitable
information metrics. Consequently, one has to resort
to systematic empirical testing.

On the applicative side, the proposed approach al-
lows to recover reliable myocardial displacement esti-
mates with pixel average accuracy over the whole
cardiac cycle, at any slice level and under arbitrary
incidence. Remarkably, measurements are available
both on the LV and the RV. The derived deformation
parameters are in accordance with the reference values
reported in the medical literature (Petitjean et al.,
2003b).
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The choice of a modeling context for displacement is
conditioned by the goal of the motion recovery
step. For quantification purpose solely, both non-
parametric and parametric motion spaces are admissible,
yielding optimization schemeswith similar complexities.11

Parametric models offer the advantage of being more
compact and of allowing an analytical computation
of the deformation parameters, with an expected
impact on measurement accuracy. As far as we are
concerned, myocardial motion modeling, in order to
built realistic, very compact, parametric displacements
models adapted to the cardiac kinematics, is the
ultimate goal (Petitjean et al., 2004). Hence, we have
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Fig. 17. Local (a) radial contraction and (b) rotation maps from SA data for an ischemic patient at mid level. Time scale is expressed as % of the

cardiac cycle. The associated motion data (see Fig. 16) have been masked outside the LV.

8% 16% 23% 31% 46% 53%

Fig. 16. Myocardial displacement estimated from SA data for an ischemic patient at mid level. Time scale is expressed as % of the cardiac cycle.

11 Except if a stochastic optimization strategy is used in the

parametric case as in (Viola and Wells, 1997).
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retained a non-parametric displacement model in order
to preserve the statistical richness of the motion
estimates, instead of filtering them by a parametric rep-
resentation. Nonetheless, assessing quantification per-
formance using a B-spline representation would be
desirable for comparison purpose with the approach
of (Chandrashekara et al., 2002).

7. Conclusion

We have presented a novel and efficient method
for quantifying myocardial deformations from tagged
and cine MR data. This method relies on a novel
and generic variational NRR framework using gener-
alized information measures. It is fully unsupervised,
thus reproducible, and versatile with respect to the
MR tagging technology. It delivers, with pixel aver-
age accuracy, measurements over the whole myocar-
dium and the whole cardiac cycle, at any slice level
and under arbitrary incidence. Its computational per-
formances are attractive: systolic measurements at 3
levels are obtained in 60 s, and a complete dynamic
quantification at 3 SA and 3 LA levels in about
30 min on a PIII platform. Significant improvements
are expected from the use of faster gradient descent
techniques, code optmization and advent of more
powerful processors. For healthy data, measurements
have been shown to provide dynamic quantitative in-
sights on the kinematics of heart contraction. For
pathological data, preliminary experiments for acute
ischemia and DCM have underlined that specific
motion parameters deviate from the healthy case.
Current developments include: (i) extensive study of
the dilated/hypertrophic cardiomyopathies; (ii) inte-
gration of SA and LA tagged MR data to derive
3D motion estimates, (iii) joint study of contrac-
tion/perfusion and contraction/activation via multi-
modal NRR, which the current technique is readily
suited for.

Appendix A. Computation of the gradient flow for integral

f-informations

In what follows, we derive the expression of the first
variation of an integral f-information functional SðuÞ
over a non-parametric transform space T of sufficiently
regular mappings over D.

Let u + eh be a variation of a displacement
field u 2 T, for some e > 0 and some mapping
h 2 T. From Eq. (9), the Gâteaux derivative of
the perturbed functional Sðuþ ehÞ is computed
as follows:
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Similarly, approximating pI
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where EI1ð
Þ denotes expectation w.r.t. the random var-
iable I1, and L

uji1
2 ð
Þ :¼ Lu

2ði1; 
Þ for any given intensity va-
lue i1 2 X. The symbol % is reused for denoting 1-D
convolution over X. One easily shows that
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2
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, so that identity (14) holds.

Combining (A.1) and (A.2) yields finally
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