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COMPARISON OF NETWORK-BASED MODELS FOR RUBBER

ANTOINE GLORIA, PATRICK LE TALLEC, AND MARINA VIDRASCU

Abstract. Since the pioneering work by Treloar, many models based on polymer chain
statistics have been proposed to describe rubber elasticity. Recently, Alicandro, Cicalese,
and the first author have rigorously derived a continuum theory of rubber elasticity from
a discrete model by variational convergence. The aim of this paper is twofold. First we
further physically motivate this model, and complete the analysis by numerical simula-
tions. Second, in order to compare this model to the literature, we present in a common
language two other representative types of models, specify their underlying assumptions,
check their mathematical properties, and compare them to Treloar’s experiments.

1. Introduction

Two theories at different scales allow us to describe rubber-like materials. The first and
more classical one is the continuum mechanics framework, ideal rubbers being prototypical
of hyperelastic materials in finite deformation. At the other end of the spectrum, we find
statistical mechanics approaches for polymer chains. In the continuum theory of rubber
elasticity, constitutive laws are phenomenological in essence, see for instance the survey
article [5] (even if somewhat guided by the mathematical analysis, see [9]). In statistical
mechanics, the free energy of a polymer chain can be derived from first principles, as in [12].
It is therefore tempting to relate the adhoc energy densities encountered at the continuum
level with the physically motivated (free) energy of polymer chains. The difficulty of such
a program is to pass from the free energy of one polymer chain to the free energy of a
network of cross-linked polymer chains.

A constitutive assumption is usually made to pass from the polymer chain to the polymer
network. The easiest and first assumption is due to Treloar in [28] and consists in imposing
that the network deforms locally in an affine manner. Hence all the polymer chains
are deformed according to the macroscopic strain gradient. This is the so-called affine
assumption (or in another context the Cauchy-Born rule). Another type of assumption
consists in postulating a geometric response of a representative volume element of polymer
chains (somewhat unrelated to the actual polymer network). The eight-chain model by
Arruda and Boyce in [4] is of this type. Amazingly, such models can be in good agreement
with real experiments, even with a few free parameters.

Yet, the “most natural” assumption in a static setting is based on the minimization princi-
ple: the network “should” spontaneously relax its (free) energy given the imposed bound-
ary conditions and external loads. In particular the deformation of the polymer chains
inside the sample is given by the state which minimizes the overall energy of the network.
In contrast to the other two types of models, such a constitutive assumption makes it
impossible to directly obtain analytical formulas for the effective constitutive relations.
This is clearly a handicap for practical purposes — see however [10] for a possible strategy
to circumvent this difficulty. In [8], Böl and Reese have proposed in this context a finite
element modeling of rubber based on polymer chain statistics. As proved in [1, 3, 2], the
approach by Böl and Reese is consistent with continuum mechanics at the limit when the
size of the mesh goes to zero. There is a conceptual gap in this passage to the limit, which
gives rise to what we call the variational model. This does not appear in [8].

Date: February 23, 2012.

1



2 ANTOINE GLORIA, PATRICK LE TALLEC, AND MARINA VIDRASCU

The aim of the present work is to describe the different models mentioned above, and
properly define the variational model. In particular, we make precise their underlying
assumptions, compare them, and possibly identify the regimes where they may coincide.
The paper is organized as follows. In Section 2 we describe the Treloar, the Arruda-Boyce,
and the Böl-Reese models, whereas the variational model is motivated and precisely defined
in Section 3. We then address the main mechanical and mathematical properties of the
models in Section 4. For the Treloar and the Arruda-Boyce models, analytical formulas
can be obtained in terms of the principal invariants of the Cauchy-Green strain tensor.
For the variational model, one has to appeal to numerical simulations. The numerical
solution method and some convergence issues are analyzed in Section 5. The last section
is dedicated to a quantitative comparison of the different models on Treloar’s data, starting
with the same characteristic parameters at the polymer-chain level.

Throughout the text we use the following notation:

• {e1, e2, e3} denotes the canonical basis of R3;
• M

3 is the set of 3× 3 real matrices (strain gradients in R
3), and M

3
+ is the subset

of those matrices with positive determinants;
• For all ξ ∈ M

3, I1(ξ), I2(ξ), and I3(ξ) denote the first, second, and third principal
invariants of ξT ξ, respectively, that is:

I1(ξ) := tr(ξT ξ), I2(ξ) := tr(cof(ξT ξ)), I3(ξ) = (det ξ)2;

• SO(3) is the set of rotations of R3;
• S2 is the unit sphere in R

3;
• D is an open bounded domain with a Lipschitz boundary;
• For all 1 < p < +∞, Lp(D), W 1,p(D), and W 1,p

0 (D) denote the Lebesgue space
of p-integrable functions on D, the Sobolev space of p-integrable functions on D
whose distributional gradients are also p-integrable in D, and the Sobolev space of
such functions which additionally vanish on the boundary ∂D of D, respectively.

2. Review of some discrete models for rubber

Before introducing the discrete models, we first quickly review the polymer chain free
energies usually used as a fundamental brick in the polymer chain models.

2.1. Polymer chain free energy. Given a polymer chain made of N rigid segments of
length l at absolute temperature β = 1

kBT , with a chain density n, the free energy (of

entropic origin) for a chain of length rc can be modeled by

W̃c(rc, N) =
n

β
N

(

rc
Nl

θ
( rc
Nl

)

+ log
θ
(

rc
Nl

)

sinh θ
(

rc
Nl

)

)

− c

β
, (1)

where c is a constant and θ the inverse of the Langevin function L : α 7→ cothα− 1
α . The

energy (1) has been derived by Kuhn and Grün in [21] using a non-Gaussian assumption:
each segment of the chain obeys a non-Gaussian random walk. We refer to [12] for details.
In particular, the energy is infinite as soon as rc > Nl, the total length of the chain.
For discrete to continuum derivations, θ is usually replaced by the first terms of its series
expansion:

θ(r) = 3r +
9

5
r3 +

297

175
r5 +

1539

875
r7 +

672

359
r9 +O(r11), (2)

although this simplification is not essential for our discussion (e.g. Padé approximations

behave better close to the finite extensibility limit). A series expansion of W̃c then reads:

W̃c(rc, N) =
n

β
N

[

3

2

( rc
Nl

)2
+

9

20

( rc
Nl

)4
+

9

350

( rc
Nl

)6
+

81

7000

( rc
Nl

)8

+
243

673750

( rc
Nl

)10
]

+O

(

( rc
Nl

)12
)

.
(3)
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The behavior of the polynomial approximation at infinity satisfies the classical coercivity
assumption on hyperelastic materials at infinity. Replacing the inverse of the Langevin
function by the first terms of a series expansion is a rather good modeling at high tem-
perature (see [23]). A remarkable property of such an energy is W̃c(0) = 0 and W̃c(1) > 0.
In particular the prefered configuration of a polymer chain satisfies rc = 0.

When N is fixed, we simply write W̃c(rc) instead of W̃c(rc, N).

2.2. Treloar type models. The variant of the Treloar model we consider here is the
following. As in [28], we assume that the polymer network deforms in an affine manner.
We also assume that the network is isotropic and we give ourselves a distribution function
ν(N) of the polymer chains made of N segments in the network. We then associate general
energies with the polymer chains, such as the one recalled in the previous subsection. To
make precise the reference configuration of the chains, we use a distribution function
ρ(L,N) which gives the probability that a chain made of N segments has length L in the
reference configuration. This yields for all ξ ∈ M

3,

W̃T(ξ) =

∫

R+

∫

R+

∫

S2

W̃c(L|ξ · e(X)|, N)dσ(X)dρ(L,N)dν(N),

where S2 is the unit sphere centered at the origin O, e(X) is the vector OX for X ∈ S2,
and σ is the uniform measure on S2.

In what follows, for simplicity, we assume there is only one type of chains in the network
(that is, all the chains have a fixed number N of segments), and we assume that the

length of the polymer chains in the reference configuration is
√
Nl, which corresponds to

the average distance of a random walker from the origin after N steps of length l, see [12].
The Treloar energy density then turns into

W̃T(ξ) =

∫

S2

W̃c(
√
Nl|ξ · e(X)|)dσ(X). (4)

When W̃c is replaced by its Taylor expansion (3) in (4), we denote by W̃ 5
T the associated

the Treloar model (that is a Taylor expansion of W̃T). As one can check on (4), W̃ 5
T

is minimal for ξ = 0. Actually one has not taken repulsion of chains into account in
the model. To include volumetric effects in the description, one may add the so-called
Helmholtz volumetric energy

WHelm(ξ) = K(det(ξ)2 − 1− 2 log(det(ξ))), (5)

yielding

W 5
T(ξ) = W̃ 5

T(ξ) +WHelm(ξ),

which is the final form we will consider. This could be generalized to any order p of the
Taylor expansion.

2.3. Arruda-Boyce type models. In their original paper [4], Arruda and Boyce have
proposed a model which relates the energy of the material in terms of its deformation
gradient through the free energy of polymer chains. This model is called the eight-chain
model. It basically amounts to taking as a representative volume element for the polymer
network the set of eight chains linking the center of a cube to its eight corners. For a
deformation gradient ξ ∈ M

3
+, the cube is supposed to align itself according to the principal

directions of the deformation (eigenvectors of ξT ξ), and to deform itself according to the
principal stretches (square root of the eigenvalues of ξT ξ). The energy density of the
material is then proportional to the energy of the chains in the deformed cube. Note that
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λ2
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Figure 1. Arruda-Boyce model: undeformed and deformed representative element

each of the eight chains is deformed by the ratio

√

I1(ξ)
3 , where I1(ξ) = tr(ξT ξ) is the first

principal invariant. For isochoric deformations, the energy density is thus given by

W̃AB(ξ) =
n

β
N





√

I1(ξ)

3

√
Nl

Nl
θ(

√

I1(ξ)

3

√
Nl

Nl
) + log





θ(

√

I1(ξ)
3

√
Nl
Nl )

sinh θ(

√

I1(ξ)
3

√
Nl
Nl )









=
n

β
N





√

I1(ξ)

3N
θ(

√

I1(ξ)

3N
) + log





θ(

√

I1(ξ)
3N )

sinh θ(

√

I1(ξ)
3N )







 . (6)

where typically n
β = 0.27 and N = 26.5 to fit Treloar’s experiments. As for the Treloar

model, when W̃c is replaced by its Taylor expansion up to order p (see (3) for p = 5), this

gives rise to a Taylor expansion of (6) that we denote by W̃ p
AB.

In order to consider non isochoric deformations, one should add the Helmholtz volumetric
energy as for the Treloar type energies. We thus set

W p
AB(ξ) = W̃ p

AB(ξ) +WHelm(ξ). (7)

This variant of the Arruda-Boyce model is not the most commonly encountered. One
usually uses reduced invariants:

W̄ p
AB(ξ) = W̃ p

AB((det ξ)
−1/3ξ) +WHelm(ξ), (8)

which amounts to assuming that the energy density can be additively split into an isochoric
part and a volumetric part. The advantage of such a decomposition is that the identity
is once more the unique natural state of the energy density. Recalling however how the
model has been built, it may seem more natural to take into account changes of volume
in the representative volume element itself, as it is done in (7). Yet, due to the value of
K in (5) (which measures the strength of the volumetric energy), which may be typically
104 times larger than n

β ∼ 0.1, the difference is not substantial in practice.

2.4. Böl-Reese model. The model developed by Böl and Reese in [8] is a hybrid model
at the macroscopic scale. In particular, the energy of a macroscopic sample D is associated
with a tetrahedral mesh of D: it is the combination of a volumetric energy on each element
T of the mesh (typically the Helmholtz energy) and an energy associated with the edges
of the mesh, which model “bundles” of polymer chains. The energy of one edge is given
by a constant times the energy W̃c(r) in (3), where r = L

L0
, L0 is the length of the edge in

the reference configuration, and L, the length of the edge in the deformed configuration.
The other parameters in W̃c are then to be fitted.
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This model is hybrid since it does not enter the classical framework of continuum mechan-
ics: the macroscopic energy is split into a continuous volumetric energy, and a discrete
energy associated with edges of a mesh. As shown in [7], numerical experiments are in
good agreement with other classical models and experimental data. Yet this does not
provide a pure continuous description of rubber elasticity. As proved in [3], the model
“converges” to a continuous model as the meshsize goes to zero. However, the limiting
model highly depends on the geometry of the mesh in terms of isotropy properties for
instance. This issue was not addressed in [7, 8].

The model we propose in the following section coincides with the limit of the Böl-Reese
model as the meshsize goes to zero for a suitable mesh. It will therefore not be surprising
that the two models yield similar results. Nevertheless, our modeling assumptions are
different: we do not need to introduce bundles of polymer chains, and only rely on a
statistical mechanics approach.

3. Variational model: Motivation and rigorous results

3.1. Description and motivation. We consider a macroscopic sample of natural rubber
D, whose boundary is linearly deformed through the map x 7→ ξ · x, ξ ∈ M

3
+. The sample

is made of a network of cross-linked polymer chains. The cross-links are assumed to be
permanent. In this first (rough) model, we neglect entanglements, that is, we neglect
topological constraints (this will be made clear in the definition of the network). Each
polymer chain is itself made of a given number of monomers: for a chain the energy of
a configuration is obtained through the probability density of a random walk (see for
instance [21], [28]). We assume that each monomer is surrounded by a fixed volume (from
which other monomers are excluded), and that the network of chains is packed and almost
incompressible. This assumption adds a volumetric term to the energy which depends
on the configuration of the network. This volumetric term accounts for the interaction
between the chains (which does not appear in the energy of one single chain). Note that the
relevant scale associated with this contribution is much smaller than the one corresponding
to the contribution associated with the random walk variable.

In the description of the rubber model we consider, we denote by u the positions of the
cross-links, and by s = {si} the positions of the monomers of the chain i. The Hamiltonian
of the system can be split into two parts:

H(u, s) = Hvol(u, s) +
∑

i

Hi(u, si).

The first part Hvol(u, s) is the volumetric energy of the network, which models the inter-
actions between the chains, whereas the second part Hi(u, si) is the energy of each chain
as if it were isolated (and for which u prescribes the end-to-end vector, and si describes
the positions of the monomers constituting the chain).

At finite temperature β = 1
kBT , the Gibbs distribution yields the following formula for the

free energy of a given deformed network:

F (ξ,D) = − 1

β
lnZ

= − 1

β
ln

[

∫

U

∫

∏
Si(u)

exp

(

−βHvol(u, s)−
∑

i

βHi(u, si)

)

du
∏

i

dsi

]

,

where Z is the partition function, U is the set of admissible positions of the cross-links
(satisfying the constraint on the boundary), and Si(u) denotes the set of admissible po-
sitions of the monomers composing the chain i whose head and tail are prescribed by
u.
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This free energy is far from being explicit. However, it is possible to further simplify the
problem and still capture some interesting features. We present a heuristic argument which
leads to the decoupling of the si variables. We first assume that Hvol(u, s) = Hvol(u) only
depends on u and not on s, which amounts to replacing the excluded volume constraint
around monomers by an excluded volume constraint between cross-links. Note that this
is a rather strong assumption whose effect is to make chains interact via their cross-links
only: this decouples the variables si from one another. We may then rewrite the free
energy as follows:

F (ξ,D) = − 1

β
ln

[
∫

U
exp

(

− βHvol(u)

+β
∑

i

1

β
ln
[

∫

Si(u)
exp

(

− βHi(u, si)
)

dsi

]

)

du

]

.

Assuming that the volumetric term is dominant and very stiff away from isochoric deforma-
tions u, one may restrict the integration over deformations u ∈ U which “almost preserve
the local volume”. We denote by Uiso this subset of U , and rewrite the assumption in the
form

∫

U
exp

(

− βHvol(u) + β
∑

i

1

β
ln
[

∫

Si(u)
exp

(

− βHi(u, si)
)

dsi

]

)

du

≃
∫

Uiso

exp

(

− βHvol(u) + β
∑

i

1

β
ln
[

∫

Si(u)
exp

(

− βHi(u, si)
)

dsi

]

)

du. (9)

We expect the effective Hamiltonian

Hξ(u, β) := Hvol(u)−
∑

i

1

β
ln
[

∫

Si(u)
exp

(

− βHi(u, si)
)

dsi

]

to be coercive on Uiso in the sense that there exist a minimizer ū(ξ, β) ∈ Uiso and a
symmetric positive definite matrix K(ξ, β) (whose size coincides with the number N of
cross-links in D) such that for all u ∈ Uiso, we have

Hξ(u, β) −Hξ(ū(ξ, β), β) ≥ 1

2
(u− ū(ξ, β)) ·K(ξ, β)(u − ū(ξ, β)). (10)

Let us discuss this assumption. Although this inequality may seem to require the convexity
of H with respect to u, it does not. In particular, if one thinks in terms of nonlinear
elasticity, replace u by a deformation field in D, and H by an integral functional of the
form

∫

D W (∇u(x))dx, then ū(ξ, β) would simply be x 7→ ξ ·x, and (10) would hold locally
as a consequence of:

• quasiconvexity,
• isotropy,
• strong ellipticity (that is, strict rank-one convexity, and not the stronger property
of convexity)

of W . This is related to the non-negativity of the second variation of W in the class of
functions which vanish on the boundary of D.
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Using assumption (9) we rewrite F (ξ, β) as

F (ξ,D) ≈ − 1

β
ln

[

∫

Uiso

exp
(

− βHξ(u, β)
)

du

]

= − 1

β
ln

[

exp
(

− βHξ(ū(ξ, β), β)
)

×
∫

Uiso

exp
(

− β
(

Hξ(u, β) −Hξ(ū(ξ, β), β)
)

)

du

]

= Hξ(ū(ξ, β), β) −
1

β
ln

[

∫

Uiso

exp
(

− β
(

Hξ(u, β)−Hξ(ū(ξ, β), β)
)

)

du

]

.

In order to show that Hξ(ū(ξ, β), β) is a good approximation of F (ξ,D) we appeal to
assumption (10):

|F (ξ,D) −Hξ(ū(ξ, β), β)|

≤
∣

∣

∣

∣

∣

1

β
ln

[

∫

Uiso

exp
(

− β
(

Hξ(u, β) −Hξ(ū(ξ, β), β)
)

)

du

]∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

β
ln

[

∫

Uiso

exp
(

− β

2
(u− ū(ξ, β)) ·K(ξ, β)(u − ū(ξ, β))

)

du

]∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

β
ln

[

∫

RN

exp
(

− β

2
u ·K(ξ, β)u

)

du

]∣

∣

∣

∣

∣

.

Assuming further that there exists k(ξ, β) > 0 (independent of N) such that K(ξ, β) ≥
k(ξ, β)Id in the sense of symmetric matrices, the above inequality turns into

|F (ξ,D) −Hξ(ū(ξ, β), β)| ≤
N

2β
ln
(

βk(ξ, β)
)

.

Since the number N of cross-links is proportional to |D|, and provided k(ξ, β) remains of
order one, this yields

∣

∣

∣

∣

F (ξ,D)

|D| − infu∈Uiso
Hξ(u, β)

|D|

∣

∣

∣

∣

.
1

β
ln(β) = o(1), (11)

for β ≫ 1 (that is for small to moderate temperatures). Let us be more precise: a small
to moderate temperature is a temperature for which

1

β

∣

∣

∣

∣

∂k(ξ, β)

∂ξ

∣

∣

∣

∣

≪ 1

|D|

∣

∣

∣

∣

∂Hvol(ū)

∂ū

∂ū(ξ, β)

∂ξ

∣

∣

∣

∣

.

Indeed this inequality is not restrictive sinceHvol is supposed to be stiff, and it implies (11).

We have therefore given a heuristic argument for the free energy identification

F (ξ,D)

|D| ≃ infu∈Uiso
Hξ(u, β)

|D| . (12)

Without anticipating too much, it is worth mentioning that the key assumption (10) does
not only yield (12), but also implies that the homogenized material is strongly elliptic (see
[14]). Conversely, the strong ellipticity of the model (which we observe numerically) is a
strong sign in favor of assumption (10).

This heuristic argument justifies to treat polymer-chains at finite temperature (the sum of
the free energies of the polymer chains at temperature T appear inside the infimum), and
the cross-links at zero temperature (we take the infimum instead of the Gibbs distribution).
In terms of orders of magnitude, recall that polymer chains are typically 100nm long
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whereas the macroscopic sample is of the order of the cm, which yields a factor 105.
Hence, provided D is a macroscopic sample, (12) will be close to the “thermodynamic
limit”

WV(ξ) := lim
|D|→∞

F (ξ,D)

|D| , (13)

where D properly invades R3 (see for instance [27]). For such a limit to exist, the network
of polymer chains should have some ergodic property: either the network has some peri-
odic structure (yet we are not dealing with crystals), or the network should yield spatial
decorrelations (in a statistical or stochastic framework) — although other less physically
relevant properties could also be considered stricto sensu.

Such a limiting process has been studied in [1, 2]. There, the limit (13) is proved to
exist provided the stochastic network satisfies some structural and statistical properties.
In addition, the link between boundary value problems associated with the network and
boundary value problems with the energy density WV is also made rigorous, thus general-
izing the validity of the thermodynamic limit when boundary conditions and forcing terms
(loads) are taken into account. We recall the relevant results in the following subsection.

3.2. Homogenization of stochastic discrete systems. In order to present the results
of [2] on the homogenization of stochastic discrete systems, we need to define the notion
of stochastic network, and make precise the associated energy functional.

Definition 1. We say that a stochastic point process L in R
3 (that is a sequence of random

points in R
3) is admissible if:

• (regularity) There exist r ≥ r > 0 such that almost surely:
– any two points of L cannot be closer than r,
– any ball of radius r contains at least one point of L;

• (stationarity) L and x+ L have the same statistics for all x ∈ R
3;

• (ergodicity) L is ergodic.

We further assume that the Delaunay tessellation T of R3 into tetrahedra associated with
L (that is, the vertices of T are given by L) is almost surely unique (see [11]).

For rigorous definitions of admissible stochastic lattices and their Delaunay tessellations,
we refer the reader to [2], and to the references therein. Let us also introduce a rescaling
of L and T . For all ε > 0, we set Lε := εL, which satisfies Definition 1 with εr and εr in
place of r and r, and with Tε := εT in place of T .

Given a tessellation Tε of R3, one may define the space S(Tε) of continuous and piecewise
affine deformations uε on Tε. Such deformations uε are such that their gradient ∇uε is
piecewise contant on Tε. In particular, for every element Tε (tetrahedron) of the tessellation
Tε, det∇uε|Tε

measures the ratio of volume between uε(Tε) and Tε.

We are now in position to associate an energy with any deformation field uε ∈ S(Tε), on
an open bounded domain D of R3. We consider two contributions: an energy associated
with the changes of length of the edges of the tessellation, and an energy associated with
the changes of volume of the elements of the tessellation. More precisely, denoting by E
the set of edges of T , we define the energy of uε ∈ S(Tε) on D by

Fε(uε,D) = ε3
∑

e∈E,e⊂D/ε

Wnn

(

|e1 − e2|,
|uε(εe1)− uε(εe2)|

ε|e1 − e2|
)

+
∑

T∈T ,T⊂D/ε

|εT |Wvol(det∇uε|εT ), (14)

where e = (e1, e2) (e1 and e2 are the two vertices of the edge e), Wnn : R+ × R
+ → R

+ is
the energy of the deformed edges, and Wvol : R → R

+ is the volumetric energy. We make
the following assumptions on Wnn and Wvol:
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Hypothesis 1. There exist p > 1 and positive constants c, C such that for all r ≤ γ ≤ r,
λ ≥ 0, and ξ ∈ M

3,

cλp − 1/c ≤ Wnn(γ, λ) ≤ C(λp + 1), (15)

Wvol(det ξ) ≤ C(|ξ|p + 1). (16)

We then have the following convergence result (see [2, Theorem 5]).

Theorem 1. For all ε > 0, let Lε and Tε be the rescaled stochastic point process and
associated Delaunay tessellation of Definition 1. For every open bounded subset D of R3,
we consider the energy Fε(uε,D) defined by (14) for uε ∈ S(Tε), and extended by +∞ on
W 1,p(D) \ S(Tε), for p > 1, Wnn, and Wvol as in Hypothesis 1.
Then the functional Fε(·,D) Γ(Lp(D))-converges on W 1,p(D) as ε → 0 to the functional
FV (·,D) defined by

FV(u,D) =

∫

D
WV(∇u(x)) dx, (17)

where WV : Md → R
+ is quasiconvex, satisfies a standard growth condition of order p:

there exists C > 0 such that for all ξ ∈ M
d,

1

C
|ξ|p − 1 ≤ WV (ξ) ≤ C(1 + |ξ|p),

and it is given by the asymptotic homogenization formula

WV(ξ) = lim
R→∞

1

R3
inf{F1(u,QR), u ∈ S(T ), u(x) = ξ · x if dist(x, ∂QR) ≤ 2r}, (18)

with QR = (−R/2, R/2)3, almost surely.
In addition, if L is isotropic in the sense that for all rotations R ∈ SO(3), L and R(L)
have the same statistics, then WV is an isotropic energy density.

Remark 1. Note that we can take spheres in place of cubes in the asymptotic formula (18),
which we actually do in numerical approximations.

Let us comment on Theorem 1. First, (18) is a mathematical version of (13), that shows
the existence of the thermodynamic limit. It does not only provide the existence of WV,
but also gives some additional properties, such as quasiconvexity and isotropy. Second,
from this Γ-convergence result (and its generalization to the case when Dirichlet boundary
conditions are considered, see [2]), we deduce that given a boundary value problem on D
and a minimizer uε of the discrete energy at scale ε > 0, uε converges in Lp(D) as ε → 0
to a minimizer u ∈ W 1,p(D) of the continuous energy with energy density WV, the same
boundary conditions, and external loads. This fully justifies the passage to the limit as
ε → 0 in the static setting: not only the energy does converge, but also the minimizers.

In the following subsection, we show how to apply Theorem 1 to the discrete model
introduced in Subsection 3.1, in order to define the variational model and its energy
density WV.

3.3. Discrete variational model. In order to make use of the rigorous results recalled
above, we need to put (12) in the form of (14). To this aim, we further assume that the
network is a tessellation of D into tetrahedra whose edges are the polymer chains, so that
we can write (12) in the form

F (ξ,D) ≈ inf
u∈U

{Fε0(uε0 ,D)} ,

for some ε0 > 0, some function set U related to ξ ∈ M
3, and with Fε0 as in (14). The

parameter ε0 is the intrinsic lengthscale of the polymer network, which is the length of a
monomer, also denoted by l. An edge e of the tessellation at scale ε0 is then supposed to
be made of

Ne ≃
( |e|

l

)2

=

( |e|
ε0

)2
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segments (or monomers). Hence, if the edge e has length L after deformation, its free
energy is given by

W̃c(L,Ne) =
n

β
Ne





L

Nel
θ

(

L

Nel

)

+ log
θ
(

L
Nel

)

sinh θ
(

L
Nel

)





=
n

β

( |e|
ε0

)2




Lε0
|e|2 θ

(

Lε0
|e|2

)

+ log
θ
(

Lε0
|e|2
)

sinh θ
(

Lε0
|e|2
)



 .

This formula allows us to properly define Wnn. First we rescale the network so that it is
of order ε = 1. The rescaled network will be taken as a reference and denoted by T . The
associated parameters in Definition 1 are r = 1 (each chain has at least one monomer),
and r . 10 (a chain has, say, at most 100 monomers, so that its averaged length is of
order 10). Let now e = (e1, e2) be an edge of T , and for ε > 0, let uε ∈ S(Tε), where Tε
is the ε-rescaled version of T . Then, setting λ := |uε(εe1)−uε(εe2)|

ε|e1−e2| the edge dilatation, the

rescaled energy of the rescaled edge εe deformed by uε is given by

Wnn(|e|, λ) =
n

βε30
|e|2





λ|e|
|e|2 θ

(

λ|e|
|e|2

)

+ log
θ
(

λ|e|
|e|2
)

sinh θ
(

λ|e|
|e|2
)





=
n

βε30
|e|2





λ

|e|θ
(

λ

|e|

)

+ log
θ
(

λ
|e|

)

sinh θ
(

λ
|e|

)



 , (19)

corresponding to the unscaled values of the energy of the polymer chains when T is ε0-
rescaled. For the volumetric energy, we take Wvol(det ξ) = WHelm(ξ), where WHelm is
defined in (5).

It remains to check that Wnn and Wvol satisfy Hypothesis 1. In fact, the estimate from
above is satisfied by Wnn provided we consider any order of the Taylor expansion of
the inverse of the Langevin function (for instance (3), in which case p = 10). For the
volumetric term, there is a technical difficulty: the Helmholtz energy density (5) does not
satisfy Hypothesis 1 since WHelm(ξ) blows up as det ξ → 0 (as it is desirable in nonlinear
elasticity). Although the discrete homogenization theorem is expected to hold in this case
as well, the current state-of-art does not allow to directly extend the result to this case.
In order to circumvent this difficulty, we have proceeded in two steps in [2]. First we have
regularized the behavior of WHelm for det ξ ≤ η for η small so that the new volumetric
energy density W η

vol satisfies Hypothesis 1. We have then appealed to Theorem 1, which
yields the existence of a homogenized energy density W p

V,η (with obvious notation for the

order 2p of the Taylor expansion (3)). In a second step, we have let the regularization
parameter η go to zero, and showed that W p

V,η converges to some energy density W p
V (in

the sense that the associated energy functionals Γ-converge) which satisfies in addition of
frame-invariance, quasiconvexity, and weak lower-semicontinuity of the integral functional,
the desired behavior

WV(ξ) → +∞, if det ξ → 0.

We refer the reader to [2, Theorem 11] for details. In the rest of this paper, the variational
energy density WV is defined as the energy density obtained by the double limit procedure
of [2, Theorem 11] :

W p
V(ξ) = lim

η→0
lim

R→∞
1

R3
inf{F1(u,BR), u ∈ S(T ), u(x) = ξ · x if dist(x, ∂BR) ≤ 2r},

with BR = {Rx : |x| ≤ 1}, F1 given by (14), Wnn given by the p-order expansion of (19),
and Wvol by the η regularization of WHelm.
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Remark 2. As pointed out to us by François Lequeux, the assumption that the polymer
network forms a tetrahedral tessellation of R3 is very strong. In particular it leads to a
much too high connectivity of polymer chains. Therefore, the model is expected to overes-
timate the rigidity of the polymer network. In addition, as noticed by Michael Rubinstein,
the density of monomers in the model is not correct: we have imposed local incompress-
ibility whereas our model is not at the packing limit. Both issues are very important from
a physical point of view and will be addressed in detail in a future paper [17].

4. General properties

4.1. Mechanical properties. We now prove that the energy densities WT, WAB and WV

of the Treloar, Arruda-Boyce, and variational models all satisfy the following mechanical
properties:

• hyperelasticity,
• frame-invariance,
• isotropy,
• blow up of the energy when det ξ → 0+,
• strong ellipticity.

Hyperelasticity is obvious since the models only depend on the pointwise value of the
strain gradient. Frame-invariance is a consequence of the dependence upon ξT ξ for the
three models (or upon distances at the discrete level).

Isotropy is postulated in (AB) since the representative element aligns itself with the prin-
cipal directions of ξ. It is a consequence of the integration over all the directions for (T).
For (V), one has to assume in addition that the stochastic network is isotropic in the mean
(the expectation of the stochastic network is isotropic), which implies the isotropy of the
energy density, as proved in [3, Theorem 6].

The behavior of the energy when det ξ → 0+ is a direct consequence of the definition of
WHelm for (T) and (AB), whereas for (V) it is a consequence of the double limit procedure.

Strong ellipticity of the energy density implies two important properties: the material is
stable (that is, homogeneous deformations are strict local minimizers), and this property
allows one to prove short-time existence results for the system of elastodynamics. We recall
that an energy density W : M3 → R is elliptic if and only if for all ξ ∈ M

3 and all a, b ∈ R
3,

the function R → R, t 7→ W (ξ + ta ⊗ b) is convex. We say that W is strongly elliptic if
t 7→ W (ξ + ta ⊗ b) is in addition α-elliptic for some α > 0 (that is provided W is twice-
differentiable: for all ξ ∈ M

3, there exists α > 0 such that a⊗ b ·D2W (ξ)a⊗ b ≥ α|a⊗ b|2
for all a, b ∈ R

3).

Lemma 1. The functions W̃T and W̃AB are strongly elliptic on M
3
+.

Proof. We split the proof into two steps.

Step 1. Convexity of W̃c(·, N).

We first claim that for all N > 0, the function r 7→ W̃c(r,N) defined in (1) is convex,
increasing, and α-elliptic with constant α = 6n

βNl2
on R

+.

The argument goes as follows. Since the Langevin function La : t 7→ coth t− 1
t is concave

and decreasing on R
+, its inverse θ is convex and increasing. In addition, the function

t 7→ sinh t

t

is convex and increasing on R
+. Hence,

r 7→ sinh θ(r)

θ(r)
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is convex and increasing on R
+ as well. Likewise, since

t 7→ − log t

is convex and increasing on R
+
∗ = (0,+∞),

r 7→ log

(

θ(r)

sinh θ(r)

)

is convex and increasing on R
+. The same argument holds for

r 7→ rθ(r).

In addition, its second derivative, given by

r 7→ rθ′′(r) + 2θ′(r),

is bounded by below by 2θ′(r) ≥ 6 on R
+ in view of the convexity of θ and using the

series expansion (2) of θ. Taking into account the coefficients in (1) proves the claim.

Step 2. Strong ellipticity of W̃AB and W̃T on M
3
+.

We first treat W̃AB. From Step 1 and (6), we infer that W̃AB is convex on M
3 since

ξ 7→
√

I3(ξ) is convex as the Frobenius norm on M
3. For all i, j ∈ {1, 2, 3}, we have

ei ⊗ ej ·D2
ξξW̃AB(ξ)ei ⊗ ej

= W̃ ′
c(
√

I1(ξ))ei ⊗ ej ·D2
ξξ

√

I1(ξ)ei ⊗ ej + W̃ ′′
c (
√

I1(ξ))Dξ

√

I1(ξ)⊗Dξ

√

I1(ξ).

Since

ei ⊗ ej ·D2
ξξ

√

I1(ξ)ei ⊗ ej =
I1(ξ)− ξ2ij

I1(ξ)3/2

is positive for all i, j ∈ {1, 2, 3} for det ξ 6= 0, since W̃ ′
c(
√

I1(ξ)) > 0 for ξ 6= 0, and

since W̃ ′′
c (
√

I1(ξ))Dξ

√
I1(ξ) ⊗ Dξ

√
I1(ξ) is an elliptic tensor (although not strongly) for

all ξ ∈ M
3, the energy density W̃AB is strongly elliptic on M

3
+.

We now turn to WT and proceed similarly. For all e ∈ S2 the function ξ 7→ |ξe| is convex
by the triangle inequality. Hence, ξ 7→ W̃c(|ξe|) is a convex function as well, so that
(4) implies that WT is convex on M

3 as a convex combination of convex functions (for e
describing S2). We now prove the strong ellipticity on M

3
+. We have:

∫

S2

ei ⊗ ej ·D2
ξξ(|ξe(X)|)ei ⊗ ejdσ(X) =

∫

S2

|ξe(X)|2 − (ei · ξe(X))2

|ξe|3/2 dσ(X)

which is positive provided ξ 6= 0. As above, this implies the strong ellipticity (of W̃T) on
M

3
+.

In particular, WT and WAB are strongly elliptic as the sum of a strongly elliptic function
on M

3
+ (W̃AB and W̃T, respectively) and of an elliptic function (the Helmholtz energy

density, which is polyconvex and hence elliptic). The strong ellipticity of WV is a much
more delicate question, since strong ellipticity can be lost by homogenization in nonlinear
elasticity (see in particular the very inspiring contribution of Geymonat, Müller, and
Triantafyllidis in [13]). Provided some technical assumptions (which are supported by

numerical simulations) and using the specific structure of W̃c, the first author has shown
in [14] that WV is strongly elliptic on M

3
+.

The following lemma shows that WT and WAB are coercive energy densities:

Lemma 2. For all p ≥ 1, the energy densities ξ 7→ W p
AB(ξ) and ξ 7→ W p

T(ξ) are the sum
of a convex function of ξ and of a convex function of det ξ. In addition, they satisfy the
following coercivity property: there exists cp > 0 such that for all ξ ∈ M

3

min{W p
AB(ξ),W

p
T(ξ)} + 1 ≥ cp(|ξ|2p + |det ξ|2). (20)
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Proof. The structure of WAB and WT with respect to convexity is a consequence of the
convexity of W̃AB and W̃T and of the convexity of the function t 7→ t2 − 1 − 2 ln t on R

+
∗

(for the Helmholtz energy density defined in (5)).

The coercivity estimate (20) follows from the Helmholtz energy density, noting that

t2 − 1− 2 ln t ≥ max

{

0,
t2

2
− 2

}

,

and from the fact that the Taylor expansion (3) of W̃c only has non-negative coefficients
for all p ≥ 1. In particular,

W̃ p
AB(ξ) ≥ CAB(N, p)

√

I1(ξ)
2p

= C(N, p)|F |2p,

where CAB(N, p) is a positive constant depending only on N and p, and |·| is the Frobenius
norm on M

3. For the Treloar model, we slightly anticipate on Section 6, and appeal to
(24), that is WT(ξ) ≥ WAB(ξ) for all ξ ∈ M

3.

We conclude this subsection by the determination of the natural states of WT, WAB,
and WV (that is, the absolute minimizers of these energy densities on M

3
+). In the case

when reduced invariants are used, as for the original Arruda-Boyce model WAB defined in
(8), the absolute minimizer is the identity. When standard invariants are used, as in the
variants of Arruda-Boyce and Treloar WAB and WT considered here, the identity is not
the natural state since there is a competition between the energy of the polymer chains
(which is minimized at 0) and the Helmholtz energy (which is minimized at identity). This
gives rise to:

Lemma 3. The energy densities WAB and WT admit the same unique natural state on
M

3
+, which is a dilatation αId with 0 < α < 1.

Proof. This is a consequence of convexity. The functions WAB and WT are continuous on
M

3
+ and infinite at infinity and when det ξ → 0+, so that they attain their minimum. Let

α3 denote the determinant of a minimizer. By frame-invariance it is enough to consider
diagonal matrices of the form ξλ1,λ2,α := diag(λ1, λ2, α

3/(λ1λ2)). The function (λ1, λ2) 7→
W̃AB(ξλ1,λ2,α) is strictly convex on R

2 as the composition of an increasing strictly convex
function with a strictly convex function. Hence it admits a unique minimum (λ∗

1, λ
∗
2). By

symmetry, λ∗
1 = λ∗

2, and therefore λ∗
1 = λ∗

2 = α, and the natural state of determinant α3 is
the dilatation αId. It remains to note that the function t 7→ WAB(tId) is strictly convex,
so that there is only one dilatation of minimal energy, and therefore only one natural
state. The same arguments hold for WT, and the natural states coincide since WT and
WAB coincide on dilatations.

A weaker result holds for WV, based on [24, Theorem A]:

Lemma 4. [3, Theorem 8] If WV is isotropic (which follows from the isotropy of the
stochastic lattice), it admits a natural state on M

3
+ which is a dilatation.

Note that uniqueness of the natural state is not ensured by this lemma (its proof only
relies on argument which are compatible with the existence of several natural states, see
[24, Section 3] e.g.).

Remark 3. All the results of this paragraph hold as well for W p
AB, W

p
T, and W p

V for all

p ≥ 1 since the Taylor expansion (3) of W̃c is strictly convex at any order.
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4.2. Boundary value problems. The main interest of constitutive laws is their appli-
cation to mechanical problems, or more mathematically to the associated boundary value
problems. This section is devoted to the study of the well-posedness of boundary value
problems in terms of minimization. Within this context, we only have to check classical
coercivity and lower-semicontinuity properties ([6],[9]).

In particular we have the following (standard) existence result for the minimization prob-
lems associated with Treloar, Arruda-Boyce, and variational models:

Theorem 2. Let p ≥ 2, Γ0 be a measurable subset of ∂D of positive measure, and let φ0 :
Γ0 → R

3 be a measurable function such that Φ = {v ∈ W 1,2p(D), v = φ0 on Γ0, det∇v ∈
L2(D), det∇v > 0 a. e. on D} is not empty. Let f ∈ Lρ(D) and g ∈ Lσ(∂D \Γ0) be such
that the linear form

L : v ∈ W 1,p(D) 7→ L(v) :=

∫

D
f(x) · v(x)dx +

∫

∂D\Γ0

g(x) · v(x)da(x)

is continuous (da denotes the surface measure), let

F (v) :=

∫

D
W p(∇v(x))dx − L(v),

where W p is either W p
T, W p

AB, or W p
V, and assume that infv∈Φ F (v) < ∞. Then there

exists at least one function u ∈ Φ such that

F (u) = inf
v∈Φ

F (v).

Proof. We first treat the case of W p
T and W p

AB using polyconvexity, and then turn to W p
V

using results of [3].

Step 1. Proof for W p
T and W p

AB.
This is a direct application of Ball’s seminal results of [6]. Since 2p ≥ 3, for all v ∈
W 1,2p(D), det∇v ∈ L1(D), and the set Φ̃ := {v ∈ W 1,2p(D), det∇v ∈ L2(D)} is weakly-
closed (see for instance [9, Section 7.6]). By Lemma 2, F is coercive on Φ and lower-

semicontinuous for the weak-convergence in Φ̃ (see [9, Section 7.7]). Let un ∈ Φ be a

minimizing sequence of F on Φ. Up to extraction, un weakly converges to some u ∈ Φ̃,
and

F (u) ≤ inf
v∈Φ

F (v).

It remains to prove that u ∈ Φ, which is a consequence of the property

lim
det ξ→0

W p(ξ) = +∞,

and of the compactness of the trace operator, see for instance in [9, Section 7.7] for both
arguments.

Step 2. Proof for W p
V.

The structure of the proof is the same as above, noting that the lower-semicontinuity of F
for the weak convergence in W 1,p(D) is a direct consequence of Γ-convergence. We refer
the reader to [3, Theorem 11] for details.

5. Numerical approximation of the variational model

5.1. The numerical solution method. Our aim is to approximate ξ 7→ WV(ξ) with the
help of (a variant of) formula (18):

WV(ξ) = lim
R→∞

1

|B(R)| inf{F1(u,BR), u ∈ S(T ), u(x) = ξ · x if dist(x, ∂BR) ≤ 2r}, (21)

with Wnn given by (19), Wvol = WHelm, and where B(R) is the ball of radius R > 0
centered at the origin. Note that for the numerical approximation procedure we directly
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consider Wvol = WHelm, and do not use further regularization as in [2, Theorem 11] — this
owes to the fact that this is the case of interest although we are not able to directly deal
withWvol = WHelm in the analysis yet. For the numerical approximation procedure one has
to pick a large — though finite — R ≫ 1, and minimize F1(·, BR) on the set of continuous
and piecewise constant functions on T ∩BR whose values on the boundary coincide with
the affine deformation x 7→ ξ · x. To this aim, one needs to know T ∩ BR. Yet, T is a
Delaunay tessellation associated with a point process in the whole space R3. We therefore
need to approximate the point process itself on the domain BR. The point process we
consider on R

3 is the thermodynamic limit of the random parking measure associated
with unit balls (that we will refer to as the “parking lattice”), which is rigorously defined
as the limit of point processes on finite domains in [25]. As shown in [20], the parking
lattice is stationary, ergodic, isotropic, almost surely general (the associated Delaunay
tessellation is unique), and satisfies the hardcore and non-empty space conditions required
by Theorem 1. Hence, formula (21) makes sense. The approximation of the parking lattice
on finite domains BR is as follows. For all R > 0, we make a uniform mesh of the sphere
SR of radius R (with triangles of side ∼ 1) and consider a hardcore Poisson point process
(with minimal distance 1) in BR−1 up to the packing limit (that is, until one cannot add
any other point: due to the hardcore constraint, there is an easy upper bound on the
number of points which can be accepted). In particular, for such a point process, any two
points are at least at distance 1, and any ball of radius 1 has at least one point. We denote
by TR a Delaunay tessellation associated with the mesh of SR and the points in BR−1. As
proved in [20], although TR does not coincide with T ∩BR, we still have

lim
R→∞

1

|B(R)| inf{F1(u,BR), u ∈ S(TR), u(x) = ξ · x if dist(x, ∂BR) ≤ 2r} = WV(ξ). (22)

This is the final variant of (18) we consider, and which has the advantage to be practically
computable.

The numerical approximation of (22) is made in two steps:

• We first generate the deterministic set of points on ∂BR and a realization of the
stochastic set of points in BR−1. The latter is generated iteratively. Points are
randomly picked in BR−1. The first point is accepted. When another point is
picked, either it is at distance less than 1 from a point which has already been
accepted and it is discarded, or it is at distance at least 1 from all the other points
and it is accepted. The algorithm stops when BR−1 is packed, that is, when no
additional point can be accepted. Given the deterministic set of points on ∂BR

and the realization of the random set of points in BR−1 we then construct an
associated Delaunay tessellation of BR.

• In a second step, we solve the minimization problem associated with (22) for R
finite and the Delaunay tessellation of BR (well-defined as the minimization of a
smooth coercive function on a finite-dimensional space) by a Newton algorithm,
as it is classical in nonlinear elasticity (see for instance [22], and [29]) provided the
addition of the energy of the edges (which are “non-standard” one-dimensional
elements). Continuation methods are also used to ensure the convergence of the
Newton algorithm.

In practice, we also consider several independent realizations of the stochastic set of point
and make an empirical average of the approximations of WV obtained. This enhances the
convergence with respect to the randomness. For the analysis of numerical methods to
approximate homogenized coefficients for random discrete systems, we refer the reader to
the linear case dealt with in [16], based on [18, 19].
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NR 130 1600 6000 16000 33000 59500

KR 2160 270 80 34 18 10

Table 1. Number of edges and associated number of realizations in the
numerical computations.

Note that with respect to standard three-dimensional finite element methods, the solution
of the minimization problem associated with (22) for R finite and the Delaunay tessella-
tion of BR requires to consider one-dimensional elements in addition to three-dimensional
elements. These one-dimensional elements are represented by the edges of the tessellation.

At the end of the minimization algorithm, the homogenized energy WV is approximated
by the spatial average on BR of the energy density of the minimizer which has been
numerically obtained, and the Piola-Kirchhoff stress tensor is given by the spatial average
on BR of the associated local Piola-Kirchhoff stress tensor (provided the minimizer is
isolated, and the local Hessian strongly elliptic, see [15, Section 4.2] for related arguments
in the continuous case).

A study of the convergence of the numerical approximation of WV(ξ) in terms of R and
the number of realizations is proposed in the following paragraph for some typical values
of ξ (both in small and large strains).

5.2. Convergence properties. In this subsection, we address some convergence proper-
ties related to the numerical approximation ofWV. The numerical analysis of the numerical
approximation procedure is made particularly difficult because

• the unknown is a vector and not a scalar,
• the system is nonlinear and nonconvex,
• the randomness is complex (the decorrelation properties of the random parking
lattice are not easy to quantify).

As seen in [18, 19, 16] on a simpler linear scalar case, the error splits into two parts: a
random error and a systematic error. The random error is of variance type and measures
the fact that the computed quantities are random variables themselves. This error can
be made as small as desired by using a sufficiently large number KR of realizations. It
is proved to decay at the central limit theorem scaling in terms of KR times the number
NR of chains (in this scalar case, chains are viewed as conductances) in BR in, that is
(KRNR)

−1/2. The systematic error is related to the boundary conditions: we impose
linear Dirichlet boundary conditions, which perturbs the energy — no matter the number
of realizations. This error also vanishes at the limit NR → ∞. Its scaling is expected to
be of the order R−1 since this is a surface effect — although there is no rigorous proof of
this fact.

We have conducted two series of tests with two different strain gradients A1 and A2, the
first in moderate deformation (∼ 25%), and the second in large deformation (∼ 300%):

A1 =





1.1 0 0
0 1.2 0
0 0 25/33



 , A2 =





2 0 0
0 3 0
0 0 1/6



 .

Both deformations are isochoric: detA1 = detA2 = 1.

We focus on the first Piola-Kirchhoff stress tensor ∂WV(ξ)
∂ξ . We expect the stress tensors

Π1(NR,KR) = [Π1(NR,KR)]ij and Π2(NR,KR) = [Π2(NR,KR)]ij , associated with A1

and A2 respectiveley, to be diagonal. We therefore focus on the principal stresses. Each
effective stress tensor is obtained as the empirical average over KR realizations of a sto-
chastic network in BR (with approximately NR edges). These numbers are gathered in
Table 1.
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Figure 2. Variance of the
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stress tensor for A1 (range
[2, 5] × [−3.4,−1.8])

2 2.5 3 3.5 4 4.5 5
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

 

 

log10 NR

1 2
lo
g
1
0
(v
ar

[Π
2
])

Figure 3. Variance of the
diagonal terms of the Piola
stress tensor for A2 (range
[2, 5] × [−3,−1])

Id 0.4398 0.4775 0.3131
R1 0.4401 0.4790 0.3119
R2 0.4416 0.4772 0.3121
R3 0.4405 0.4786 0.3119

Table 2. Diagonal entries
for the rotations of A1

Id 0.8201 1.193 0.3246
R1 0.8209 1.197 0.3257
R2 0.8233 1.192 0.3256
R3 0.8215 1.192 0.3259

Table 3. Diagonal entries
for the rotations of A2

The (square root of the) variance of one realization is plotted for the three diagonal terms
in function of NR on Figure 2 for A1 and Figure 3 for A2, in log-log scale. The straight
lines are linear fittings. Their slopes are approximately −1/2 (between −.45 and −.5), as
expected.

To conclude, we show on Figures 4–6 and 7–9 the convergences of the diagonal terms of
the Piola stress tensor (with the variance) in function of NR, for A1 and A2, respectively.
As can be seen, the systematic error error may largely dominate the random error (see in
particular Figure 9). From now on, we shall consider that the approximation has converged
for NR ∼ 100000 and KR ∼ 10.

5.3. Isotropy of WV. The isotropy of the model is directly related to the isotropy of the
network. To check the isotropy, we consider the two strain gradients A1 and A2 that we
transform by the following three rotations:

R1 =





0 0 1
1 0 0
0 1 0



 ,R2 =





0 1 0
0 0 1
1 0 0



 ,R3 =





0 0 1√
2/2 −

√
2/2 0√

2/2
√
2/2 0



 .

If WV is isotropic, then the Piola stress tensor should transform as

Π(Rξ) = RΠ(ξ).

For A1 and A2, and each of the three rotations, the diagonal entries of TRiΠ(RiAj) are
reported on in Tables 2 and 3. The difference with Π(Aj) is a measure of the anisotropy.
As can be seen, the difference on the diagonal terms is of order 0.1%, which shows the
network can be considered isotropic, and that the energy density WV is indeed isotropic.
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5.4. Dependence on the second invariant. It is rather well admitted that the energy
density of rubber materials slightly depends on the second invariant I2 of the Cauchy-
Green strain tensor. By definition, the Arruda-Boyce model only depends on the first and
third invariants. As would show a elementary series expansion, the Treloar model actually
depends on the second invariant — although the coefficient in front of I2 is actually rather
small compared to the coefficient for I1. This is also the case for the variational model as
we shall show now. Without anticipating too much, note that Treloar’s experiments do
not allow to check the dependence with respect to I2.

We write the energy as a function of the invariants I1, I2, and I3, so that

WV (ξ) = ω(I1, I2, I3)

for some function ω : R
3
+ → R+. This implies for a deformation of the form ξ =

diag(ξ1, ξ2, ξ3) that the Piola stress tensor is diagonal, and that its entries are given for all
i ∈ {1, 2, 3} by

Π(ξ)ii = 2ξi
∂ω

∂I1
(I1, I2, I3) + 2ξi(I1 − ξ2i )

∂ω

∂I2
(I1, I2, I3) +

2I3
ξi

∂ω

∂I3
(I1, I2, I3).

Let us fix some i1 > 0 and i3 = 1, and set α(I2) = 2 ∂ω
∂I1

(i1, I2, i3), β(I2) = 2 ∂ω
∂I2

(i1, I2, i3),

and γ(I2) = 2 ∂ω
∂I3

(i1, I2, i3). Then, for all ξ = diag(ξ1, ξ2, ξ3) such that I1 = i1 and I3 = i3,
the Piola stress tensor is given by

Π(ξ) = α(I2)ξ + β(I2)diag(ξ1(i1 − ξ21), ξ2(i1 − ξ22), ξ3(i1 − ξ23)) + γ(I2)diag(ξ
−1
1 , ξ−1

2 , ξ−1
3 ).
(23)

In particular, W does not depend on I2 if α and γ are constant functions, and if in addition
β ≡ 0.

We have conducted numerical tests with i1 = 9 and i3 = 1 for the following three defor-
mation gradients ξ:

ξ1 = diag(1, 2.8058837, 0.35639401),

ξ2 = diag(1.7320508, 2.4380156, 0.2368116),

ξ3 = diag(2, 3.461088, 0.1444632).

These deformation gradients ξ1, ξ2, ξ3 satisfy I2 = 9, 18.333333, 48.25, respectively. For
each deformation gradient, we have computed α, β, and γ by solving a 3×3 linear system.
Caution should be taken since the systematic and random error in the computations may
be of the order of the coefficients β and γ. We have therefore made explicit a confidence
interval, which corresponds to the variance of the coefficients for several realizations (of the
polymer network). Tables 4 and 5 report on the values of α, β, and γ and of their variances
for each deformation gradient (with 100 realizations), for the Treloar and the variational
model, respectively. Note that the results on the Treloar model are obtained numerically
using the same meshes as for the variational model and within the affine assumption, so
that there is also statistical variability due to the randomness of the meshes.

The dependence of the Treloar model upon the second invariant is clear for ξ1, ξ2 and ξ3
since the random error on β is of order of 10%. For the variational model, the order of
magnitude of β and its sign seem reasonable. Yet, the error is of the order of 50% for the
cases ξ1 and ξ2. For the case ξ3, the error is only of the order of 10%, which clearly shows
that the variational model also slightly depends on the second invariant.

5.5. Validity of the affine assumption. The affine assumption states that the deforma-
tion of the sample BR which minimizes the energy for the Dirichlet boundary conditions
x 7→ ξ · x is close enough to the linear deformation x 7→ ξ · x in BR so that it can be
replaced by the the linear deformation for the computation of WV(ξ) through (22), and
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α ∆α β ∆β γ ∆γ
ξ1 0.3151 ± 0.0015 - 0.00342 ± 0.00022 0.00012 ± 0.00017
ξ2 0.3144 ± 0.0020 - 0.00334 ± 0.00041 0.000043 ± 0.00012
ξ3 0.3290 ± 0.0015 - 0.00372 ± 0.00028 0.000040 ± 0.000037

Table 4. Set of parameters for the Treloar model

α ∆α β ∆β γ ∆γ
ξ1 0.2898 ± 0.00075 - 0.00040 ± 0.00017 0.02177 ± 0.00032
ξ2 0.2888 ± 0.0015 - 0.00057 ± 0.00034 0.01833 ± 0.00021
ξ3 0.3063 ± 0.00040 - 0.00131 ± 0.00013 0.042400 ± 0.00058

Table 5. Set of parameters for the variational model

of Π(ξ) (the associated Piola stress tensor). In what follows, we denote by Π̃(ξ) the Piola
stress tensor computed with the linear deformation (that is, within the affine assumption).

Our numerical experiments show there are two distinct regimes: at moderate deformation,
the affine assumption seems to be justified, whereas at large deformation, nonlinear effects
play an important role. The threshold above which nonlinear effects are important depends
on two parameters:

• the relative strength K of the volumetric term WHelm (the higher, the closer to
the affine assumption),

• the connectivity of the network (the higher, the more rigid).

To illustrate this, we have gathered in Figure 10 numerical simulations in uniaxial traction
within the affine assumption (the Treloar model), and for the variational model with
three different constants for the Helmholtz energy: K = 5, 50, 500. More precisely, the
deformation gradient ξ is of the form

ξ = diag(λ, λ−1/2, λ−1/2)

for some λ ≥ 1, and we have plotted the so-called the so-called engineering stress given by

Suniaxial =
σ11 − σ22

λ
.

As announced, the constant K controls the threshold of non-affinity. On Figure 11, we
have plotted the numerical simulations for Treloar’s data in extension for two different
networks: the original network obtained from the parking lattice (connectivity around 20),
and a modification of this network where edges have been randomly deleted to obtain a
connectivity around 4. Both the affine and variational models are represented for K = 50,
and support the fact that connectivity controls the threshold of non-affinity as well.

Let us conclude this discussion by looking more closely at this nonlinear effect. We turn
to the two matrices A1 and A2 considered in Section 5. For NR = 59500, KR = 10, and
K = 100, the first Piola stress tensors are denoted by Π̃ for the Treloar model, and by Π
for the variational model. They are given by for A1 by

Π1(NR,KR) = diag(0.430, 0.478, 0.313),

Π̃1(NR,KR) = diag(0.443, 0.484, 0.306),

and for A2 by

Π2(NR,KR) = diag(0.820, 1.19,0.324),

Π̃2(NR,KR) = diag(0.824, 1.25,0.0681).

For A1, the difference on the diagonal terms is quite small, 0.7%, 1%, and 2%, respectively.
This is completely negligible in comparison to the convergence error in NR. Yet, for A2,
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Figure 10. Uniaxial traction — affine assumption (dashed line), varia-
tional model for K = 500, 50, 5 and connectivity 20 (from top to bottom)
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Figure 11. Uniaxial traction — affine assumption (dashed line), varia-
tional model for K = 50 and connectivities 20 and 4 (from top to bottom)
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the difference on the diagonal terms can be quite important and cannot be neglected:
0.4%, 5%, and 79%, respectively.

In this subsection we have put in evidence the interplay between non-affinity, the connec-
tivity of the network, and the volumetric term in the energy. Physics should in principle
guide us for the connectivity of the network and the volumetric term (recall Remark 2).
Note that this interplay is beyond the scope of both the Treloar model (since this is a
nonlinear effect due to the non-affinity) and the Arruda-Boyce model (since the network
is reduced there to eight chains — there is no connectivity at all).

5.6. The Rivlin effect. In the experiment literature, models are usually compared using
the so-called Mooney plot, which is sensitive to relative errors. For uniaxial experiments,
whose deformation imposed at the boundary is typically given by the linear map

ξ = diag(λ, λ−1/2, λ−1/2)

for λ > 0, the Mooney plot consists in dividing the engineering stress

Suniaxial =
σ11 − σ22

λ

by the universal geometrical factor 2(λ − 1/λ2), plotted against 1/λ. In particular, a
material exhibits the so-called Rivlin effect if the curve of the Mooney stress

1

λ
7→ σ11(λ)− σ22(λ)

2(λ2 − 1/λ)

is strictly concave around λ = 1. Rubber materials generically exhibit such a Rivlin effect,
see for instance Figure 9 in [26].

It is therefore of interest to check whether this is the case as well for the discrete variational
model for rubber introduced in this article (note that the Arruda-Boyce model cannot
exhibit a Rivlin effect).

Numerical tests show that the concavity of this curve is driven by the average number of
monomers N per polymer chain. For small number of monomers (typically N = 25), there
is no Rivlin effect, and the curve is flat around λ = 1. For larger number of monomers
(typically N = 250), there is a significant Rivlin effect, and the curve is strictly concave
around λ = 1. This dependence uponN is due to the form of the inverse Langevin function,
which somehow forbids relaxation for small N . Figure 13 illustrates the numerical Rivlin
effect for N = 250 and A = 5 in logarithmic scale for 1/λ, whereas Figure 12 illustrates
the (almost) absence of Rivlin effect for N = 25 and A = 5. Note that the closer to λ = 1
the less reliable the points (since the denominator is singular at λ = 1). Yet, for λ = 1 one
may approximate the Mooney stress by using a Taylor expansion of both the numerator
and the denominator (this requires the knowledge of the second derivative of the energy,
which is an output of the numerical method used to approximate the variational model).
The point at λ = 1 is therefore reliable, and the curve is clearly strictly concave around
λ = 1 for N = 250, as expected of rubber materials.

6. Comparison of the three models

6.1. General relations for the energy. The energy densities satisfy the following gen-
eral relations

WV(ξ)
WAB(ξ)

}

≤ WT(ξ). (24)

The first inequality holds because the linear deformation is a test function for the mini-
mization problem defining WV whereas the second inequality is a consequence of Jensen’s
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Figure 12. Mooney plot 1/λ 7→ σ11−σ22

2(λ2−1/λ)
in the case of small chains

(N=25). The curve is locally flat, indicating that there is no Rivlin effect.

Figure 13. Mooney plot 1/λ 7→ σ11−σ22

2(λ2−1/λ) in the case of long chains

(N=250). The curve is locally concave, indicating that there is a distinct
Rivlin effect in the variational model
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inequality:

W̃ p
T(ξ) =

1

4π

∫ π

0

∫ 2π

0
W p

c (λ
2
1 cos

2 φ+ λ2
2 sin

2 φ cos2 θ + λ2
3 sin

2 φ sin2 θ) sinφdθdφ

=
1

4π

∫ 1

−1

∫ 2π

0
W p

c (λ
2
1s

2 + λ2
2(1− s2) cos2 θ + λ2

3(1− s2) sin2 θ)dθds

≥ W p
c

(

1

4π

∫ 1

−1

∫ 2π

0
(λ2

1s
2 + λ2

2(1− s2) cos2 θ + λ2
3(1− s2) sin2 θ)dθds

)

= W p
c

(

λ2
1 + λ2

2 + λ2
3

3

)

= W̃ p
AB(ξ),

where W p
c is such that for N fixed, W p

c (r2/(Nl2)) = W̃c(r,N) for all r ≥ 0.

Although these general relations only hold for the energy density, this suggests that the
Arruda-Boyce and variational models are softer than the Treloar model. We thus expect
principal stresses to be higher for the Treloar model. This is actually what we observe in
the following subsection.

6.2. Comparison to Treloar’s experiments. In this subsection we compare the three
models to Treloar’s experiments. The plots 14, 15, and 16 display the engineering stresses
(or nominal stresses) associated with the mechanical experiments in uniaxial traction,
biaxial traction, and in planar tension, respectively. Let us quickly recall the definitions of
the engineering stress for these three types of sollicitation. Uniaxial traction corresponds
to a deformation gradient ξ of the form

ξ = diag(λ, λ−1/2, λ−1/2)

for some λ ≥ 1. The quantity λ−1 is called the engineering strain. The associated Cauchy
stress tensor σ is diagonal, and the associated engineering stress is given by

λ− 1 7→ Suniaxial =
σ11 − σ22

λ
.

For biaxial traction the deformation gradient ξ is of the form

ξ = diag(λ−2, λ, λ)

for some λ ≥ 1. The quantity λ−2 − 1 is called the engineering strain. The associated
Cauchy stress tensor σ is diagonal, and the associated engineering stress is given by

λ−2 − 1 7→ Sbiaxial =
σ11 − σ22

λ−2
.

Finally, the planar tension experiment corresponds to a deformation gradient ξ of the form

ξ = diag(1, λ, λ−1)

for some λ ≥ 1. The quantity λ−1 is called the engineering strain. The associated Cauchy
stress tensor σ is diagonal, and the associated engineering stress is given by

λ− 1 7→ Splanar =
σ22 − σ11

λ
.

For the Arruda-Boyce model, we have used standard coefficients to fit Treloar’s data,
namely N = 26.5 and n

β = 0.27. For the numerical simulation of the variational model,

the stochastic network has been generated by the random parking lattice. We have not
tried to optimize the parameters further, and have taken N = 26.5 and n

β = 0.27 as well,

and set K = 5 (ultimately, this last parameter will have to be optimized together with
the connectivity of the network, see Section 7).
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Figure 14. Uniaxial traction — Treloar’s experiments

6.3. Comparison of the Cauchy stress tensors for general deformations. Al-
though the comparison to Treloar’s experiments seem to reveal that the Arruda-Boyce
and the variational models are very close to each other, a closer look at the results shows
there are significant differences. In particular, we have only compared the engineering
stress, and not the full Cauchy stress tensor (which is unavailable in Treloar’s experi-
ments). Let us go back to the case of uniaxial extension. For moderate deformation, the
three models yield similar engineering stress. The same conclusion holds for the Cauchy
stress tensor. We first consider the following strain gradient

A = diag(1.8945, 0.7265286, 0.7265286),

the three Cauchy stress tensors are given by:

ΣT = diag(1.03, 0.147, 0.147),

ΣV = diag(1.00, 0.154, 0.154),

ΣAB = diag(1.01, 0.148, 0.148).



26 ANTOINE GLORIA, PATRICK LE TALLEC, AND MARINA VIDRASCU

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3
−250

−200

−150

−100

−50

0

 

 

data
AB
T
V

Engineering strain λ−2 − 1

E
n
gi
n
ee
ri
n
g
st
re
ss

f
ra

cσ
1
1
−

σ
2
2
λ
−
2

Figure 15. Biaxial tension — Treloar’s experiments

As can already be seen, the counterpart to decrease the uniaxial stress is to increase the
transversal stresses. This tendency seems to be more pronounced for the variational model.
This is even clearer in larger deformation. For the strain gradient

A = diag(6.5052, 0.3920755, 0.3920755)

the three Cauchy stress tensors are given by:

ΣT = diag(21.5, 0.0523, 0.0525),

ΣV = diag(18.9, 0.146, 0.146),

ΣAB = diag(18.6, 0.0675, 0.0675).

In order to decrease the uniaxial stress the variational model increases a lot the normal
stresses, whereas the Arruda-Boyce model is much less sensitive to this effect.

Using the two matrices A1, and A2, we have for the three Cauchy stress tensors:
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Figure 16. Planar tension— Treloar’s experiments

Σ1
T = diag(0.48, 0.58, 0.23)

Σ1
V = diag(0.48, 0.57, 0.24)

Σ1
AB = diag(0.33, 0.40, 0.16)

Σ2
T = diag(1.6, 3.8, 0.011)

Σ2
V = diag(1.6, 3.6, 0.054)

Σ2
AB = diag(1.2, 2.7, 0.0084).

In these cases, the Cauchy stress tensors are very different, and the Arruda-Boyce model
relaxes much more the stress.

Note that the conclusions strongly depend on the strength K of the volumetric energy
density and on the connectivity of the network regarding the variational model.

7. Perspectives

In this article we have presented three discrete models for rubber: the Treloar model, the
Arruda-Boyce model, and a variational model based on the statistical physics of reticulated
polymer chains. In particular we have seen that the three models yield nice mathematical
and mechanical properties, and compared them to Treloar’s experiments. The comparison
of the variational model to Treloar’s experiments is promising, and there is room for
improvement of the model using more physical input (essentially more information on the
polymer-chain network). The following program should be addressed to go further:

• generate more realistic networks in terms of connectivity and molecular mass (we
expect a better relaxation at moderate strain and still an increase of the stiffness
at large strain);
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• find explicit formulas for the constitutive law WV by solving an inverse problem
in order to turn the model into an attractive alternative to the engineering com-
munity;

• compare the simulations to physical experiments at the scale of the polymer-chain
network (this would challenge the validity of the discrete model itself).

These three issues will be addressed in future works.
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