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La segmentation d'images par coupe de graphe permet d'obtenir très rapidement, par minimisation globale d'une fonction de coût appropriée, une partition binaire objet/fond d'une image 2D. Quand la forme de l'objet est connue et que les contours de l'objet sont mal définis, le processus de segmentation peut être efficacement guidé par un a priori. Dans cet article, nous proposons une approche de segmentation par coupe de graphe, s'appuyant sur un a priori de forme obtenu par analyse en composantes principales. Nous introduisons dans la fonctionnelle d'énergie un terme supplémentaire prenant en compte cet a priori. Notre approche a été testée et évaluée quantitativement sur une application difficile d'imagerie médicale, la segmentation du ventricule droit en IRM cardiaque, pour laquelle nous disposons d'une base d'images importante et de la vérité terrain (segmentation manuelle). Les résultats obtenus sont encourageants et plus précis que ceux obtenus par l'approche classique de coupe de graphe utilisant uniquement les informations des niveaux de gris.
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Introduction

En vision par ordinateur, de nombreux problèmes peuvent se mettre sous la forme de la minimisation d'une fonctionnelle d'énergie : la segmentation, la restauration, le recalage, etc. En segmentation d'images, les méthodes variationnelles bien connues sont par exemple les contours actifs [START_REF] Kass | Snakes : Active contour models[END_REF][START_REF] Cohen | Finite element methods for active contour models and balloons for 2D and 3D images[END_REF] et les approches par courbes de niveaux [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF][START_REF] Osher | Geometric Level Set Methods in Imaging, Vision and Graphics[END_REF]. Dans ce domaine, ces fonctionnelles d'énergie intègrent en général un terme d'attache aux données incorporant des informations sur les contours de l'image (par exemple basées sur le gradient de l'image) et un terme de régularisation permettant de maîtriser l'aspect du contour. Cependant, l'optimisation peut poser problème lorsque la fonctionnelle d'énergie est non-convexe et présente des minima locaux. D'autre part, notons que dans ces approches, l'image est considérée comme un domaine continu et la nécessaire discrétisation de l'espace et du temps peut poser des problèmes de stabilité. Offrant des solutions aux problèmes cités précédemment, les méthodes fondées sur les coupes de graphe ont suscité un fort intérêt depuis l'article fondateur de Boykov et Jolly [START_REF]Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images[END_REF]. En s'appuyant sur des algorithmes issus de la communauté combinatoire, elles permettent d'optimiser des fonctions de coût de manière globale, et ainsi d'éviter les minima locaux. D'autre part, en considérant l'image comme un graphe, la stabilité numérique est assurée. La segmentation d'images par coupe de graphe tel que présentée dans [START_REF]Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images[END_REF] autorise également de manière très souple une interaction avec l'utilisateur et permet d'obtenir une convergence rapide en 2D. Elle a donné lieu à de nombreux développements théoriques [START_REF] Kolmogorov | What metrics can be approximated by geo-cuts, or global optimization of length area and flux[END_REF] et applicatifs [START_REF] Boykov | Interactive organ segmentation using graph cuts[END_REF][START_REF] Pundlik | Iris segmentation in non-ideal images using graph cuts[END_REF][START_REF] Aslan | A novel 3D segmentation of vertebral bones from volumetric CT images using graph cuts[END_REF][START_REF] Garcia-Lorenzo | Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts[END_REF]. Dans les applications où la forme à segmenter est connue a priori (par exemple un organe en imagerie médicale), le processus de segmentation peut être guidé par un modèle de forme ou des contraintes sur celle-ci. Pour des images ayant un contraste faible ou un taux de bruit élevé, une telle contrainte permet d'améliorer la précision de la segmentation. Dans le cadre des modèles déformables par exemple, l'intégration de contraintes de forme a été largement étudiée [START_REF] Cootes | Active shape models -their training and application[END_REF][START_REF] Rousson | Shape priors for level set representations[END_REF][START_REF] Cremers | A review of statistical approaches to level set segmentation : Integrating color, texture, motion and shape[END_REF], avec des modèles basés sur une analyse en composantes principales [START_REF] Tsai | A shapebased approach to the segmentation of medical imagery using level sets[END_REF] ou sur des atlas [START_REF] Zhuang | Robust registration between cardiac MRI images and atlas for segmentation propagation[END_REF]. L'avantage de la méthode des coupes de graphes est sa capacité à donner efficacement une solution optimale pour l'utilisation conjointe de différentes informations sur l'image. A ce jour, les travaux de segmentation par coupe de graphe en prenant en compte des formes a priori sont encore peu nombreux dans la littérature. Deux problèmes se posent en effet : la modélisation de la forme de l'objet à segmenter et son intégration dans l'algorithme de coupe de graphe. Dans cet article, nous proposons une méthode de segmentation basée sur les coupes de graphe binaires avec un a priori de forme, se déroulant en deux étapes : d'une part la construction d'une forme-modèle, et la segmentation par coupe de graphe utilisant ce modèle. Plus précisément, nous supposons que nous disposons d'un ensemble de formes représentatives de l'objet à segmenter, d'où peuvent être extraits un modèle moyen ainsi que des variabilités autour de ce modèle moyen par une analyse en composantes principales (ACP). Cette analyse permet de synthétiser un certain nombre de formes-modèles. Pour une image à segmenter, la forme-modèle la plus proche au sens d'un certain critère est sélectionnée. Un terme d'énergie prenant en compte ce modèle de forme est introduit dans la formulation de l'énergie du graphe. Nos contributions portent donc sur l'établissement du modèle ainsi que sur le terme énergétique l'intégrant au graphe. Dans la suite de cet article, nous présentons, dans la Section 2, le principe de la segmentation binaire par coupe de graphe ainsi qu'un bref état de l'art relatant les possibilités d'incorporation d'un a priori de forme dans ce cadre. Notre méthode de segmentation basée sur un modèle de forme obtenu par une ACP est exposée dans la Section 3. Nous proposons une validation de notre approche en l'appliquant à la segmentation d'images médicales dans la Section 4. Les conclusions et perspectives de ces travaux sont décrits dans la Section 5. 

R p (ω) = -ln P r(I p |ω) (1) 
où P r(I p |ω) est la probabilité que le pixel p appartienne à la classe ω, généralement obtenue par un histogramme sur les niveaux de gris de l'objet et du fond. Les n-links sont pondérés par un terme de régularisation, ou énergie contour, conçu pour assurer la cohérence spatiale dans un voisinage de pixels. Ce terme noté B p,q et est classiquement défini par :

B p,q ∝ exp - (I p -I q ) 2 2σ 2 . 1 dist(p, q) (2) 
où I p et I q sont les niveaux de gris des pixels p et q, dist(p, q) la distance euclidienne entre p et q et σ une constante, généralement liée au bruit d'acquisition. Dans une région uniforme, I p et I q sont similaires et on a alors |I p -I q | < σ. Ceci implique une forte valeur pour B p,q , décourageant toute coupe du graphe dans ce voisinage. Réciproquement, dans une zone de contours, I p et I q sont différents et |I p -I q | > σ, B p,q a ainsi une valeur faible.

L'énergie totale d'une coupe C dans le graphe est alors définie par :

E(C) = p∈V R p (ω p ) + λ p,q∈N B p,q .δ(ω p = ω q ) (3)
où δ(ω p = ω q ) vaut 0 si p et q ont la même étiquette, 1 sinon.

La segmentation consiste finalement à rechercher la coupe d'énergie E(C) minimum, ce qui est équivalent à rechercher le flot maximum de la source au puit, un problème soluble en un temps polynomial selon le théorème de Ford et Fulkerson [START_REF] Ford | Flows in networks[END_REF]. Dans le cas où l'image est un graphe, l'algorithme le plus efficace est basé sur les chemins augmentants (augmenting paths). Il est décrit dans [START_REF] Boykov | An experimental comparison of min-cut/maxflow algorithms for energy minimization in vision[END_REF].

Ajout d'un a priori de forme : état de l'art

Afin de guider le processus de segmentation, des contraintes ou des modèles concernant l'objet à segmenter peuvent être introduits, au travers d'un terme supplémentaire dans la formulation de l'énergie de l'Eq. 3. La manière d'incorporer ces informations a priori dépend des informations disponibles : soit les contraintes sont faibles et sont de simples hypothèses sur la forme générale de l'objet (convexe par exemple), soit les contraintes sont fortes et concernent une forme précise à retrouver dans l'image.

Contraintes faibles. Dans la littérature, les contraintes sur des formes grossières sont spécifiées au travers des n-links, modifiant l'étiquetage dans le voisinage des pixels selon l'hypothèse effectuée. Dans [START_REF] Das | Semiautomatic segmentation with compact shape prior[END_REF], les valeurs de l'énergie frontière B p,q sont modifiées en interdisant certaines positions relatives de p et q, favorisant ainsi les formes compactes. La même méthodologie est utilisée dans [START_REF] Veksler | Star shape prior for graph-cut image segmentation[END_REF] pour des formes plus générales que des formes convexes, définies en imposant que, si C est le centre de la forme et p un point dans la forme, tout point q situé sur la droite (C, p) après p soit également dans la forme. Notons que cette méthode présente un effet intéressant contrant le biais de rétrécissement généralement observé dans la segmentation par coupe de graphe, mais pose des problèmes importants de discrétisation. Imposer que le résultat de la segmentation soit convexe peut également être fait au travers d'un terme d'énergie supplémentaire de la forme 1 -cos(α) où α est l'angle entre (p, q) et (p, C) où C est le centre de l'objet, désigné par un clic de l'utilisateur [START_REF] Funka-Lea | Automatic heart isolation for CT coronary visualization using graph-cuts[END_REF]. On voit ainsi comment des angles importants sont pénalisés par de fortes valeurs de l'énergie, encourageant ainsi les coupes grossièrement convexes dans le graphe (Figure 2).

Contraintes fortes. Lorsqu'un modèle de l'objet à segmenter est disponible, il est en général imposé à la segmentation au travers des t-links, ce qui inclut, dans la formula- Lorsqu'il est préalable à la segmentation, le processus repose sur une intervention de l'utilisateur [START_REF] Freedman | Interactive graph cut based segmentation with shape priors[END_REF][START_REF] Song | Adaptive graph cuts with tissue priors for brain MRI segmentation[END_REF] 3 Segmentation avec a priori de forme basé sur l'ACP

Construction du modèle de forme

Synthèse des formes modèles. A partir d'un ensemble de formes représentatives de l'objet, une ACP permet d'ob-tenir les axes de variation des formes et la forme moyenne [START_REF] Tsai | A shapebased approach to the segmentation of medical imagery using level sets[END_REF]. Considérons un ensemble de N images binaires des formes (1 : objet ; 0 : fond), préalablement alignées par un recalage affine sur une image de référence. Pour chaque image binaire est calculée une carte des distances signées au contour de l'objet. Cette carte de distance est formalisée dans un vecteur Γ i pour tout i dans [1, N ]. La forme moyenne est définie par Φ = 1

N N i=1 Γ i . Chaque carte des distances est centrée selon Γ i = Γ i -Φ avec i ∈ [1, N ].
Pour capturer les variabilités des formes de l'objet, nous définissons la matrice S = Γ 1 . . . Γ N . La matrice de covariance définie par SS T peut alors être décomposée en N valeurs propres ρ i et vecteurs propres Φ i . Les vecteurs propres définissent les axes de variation (ou composantes principales). Retenir l'ensemble des vecteurs propres équivaut à conserver toute l'information initiale. En pratique, conserver un nombre N es ≤ N de vecteurs propres se révèle suffisant pour décrire une forme hors de l'ensemble initial. Celle-ci peut alors s'écrire comme une combinaison linéaire des vecteurs propres, ceux-ci étant pondérés par w i définissant l'intensité de la déformation selon l'axe Φ i . Afin de chercher la forme adéquate, la plupart des méthodes utilisent des algorithmes d'optimisation pour trouver les paramètres w i optimaux [START_REF] Tsai | A shapebased approach to the segmentation of medical imagery using level sets[END_REF]. Ici, nous proposons de construire un ensemble de formes créées selon différentes paramétrisations. A partir de chaque forme propre Φ i , les formes modèles sont définies par :

Φ k i = Φ + w k i Φ i (4) 
avec w k i = ±k √ ρ i . L'ensemble de formes complet φ est alors créé à l'aide de :

φ = Φ k i , i ∈ [1 ; N es ] (5) 
Afin de ne conserver que des déformations représentatives [START_REF] Tsai | A shapebased approach to the segmentation of medical imagery using level sets[END_REF], la valeur maximale de k est fixée à m = 3. k étant choisi entier, la taille de l'ensemble est alors de :

|φ| = 2mN es + 1 (6) 
L'ensemble de formes est créé. L'étape suivante consiste à choisir le meilleur modèle de forme en considérant l'image à segmenter.

Sélection du meilleur modèle de forme. La première étape consiste à recaler de manière rigide les formes de φ sur l'image à segmenter. Nous définissons ensuite un score permettant de mesurer l'adéquation entre une image à segmenter et une forme de φ. Dans ce but, nous utilisons une fonction probabiliste d'appartenance à l'objet P r(I p |O), obtenue à l'aide d'un histogramme de l'objet sur les formes d'apprentissage de l'ACP. Considérons deux zones de l'image B O et B B obtenues par seuillage sur ces probabilités et définies par : 

B O = {p ∈ V | P r(I p |O) ≥ t} (7) B B = {p ∈ V | P r(I p |O) < t} (8 
Cette forme ϕ * est utilisée comme a priori dans la construction du graphe, décrite dans la section suivante.

Construction du graphe

La fonctionnelle d'énergie du graphe est définie en ajoutant à la formulation de l'Eq. 3 un terme E s dépendant de l'a priori de forme :

E(C) = λ p,q∈N B p,q .δ(ω p = ω q ) (12) + γ p∈V R p (ω p ) + (1 -γ) p∈V E s (ω p )
avec λ et γ des pondérations. B p,q est le terme contour pondérant les n-links défini par l'Eq. 2 et R p le terme région défini par l'Eq. 1. Ce dernier terme dépend d'un modèle de niveaux de gris de l'objet. Un histogramme des niveaux de gris de l'objet P r * modélisé par une gaussienne est calculé à partir de l'image à segmenter, en utilisant l'a priori de forme ϕ recalé sur l'image. On a ainsi :

R p (O) = -ln P r * (I p |O) (13) R p (B) = -ln(1 -P r * (I p |O)) (14) 
Le terme E s incorpore l'a priori de forme construit précédemment. Une carte des distances aux contours de la forme ϕ est créée. A l'intérieur de ϕ, il est pratiquement certain que les pixels appartiennent à l'objet contrairement à ceux situés loin de lui. Afin de prendre en compte cette zone d'incertitude autour des contours, considérons ϕ α , la forme ϕ erodée par un disque de diamètre α (cf. Figure 3). α est un paramètre dépendant de l'application, définissant la zone de certitude de l'objet. On définit ainsi une probabilité d'appartenance à l'objet prenant en compte l'a priori P r S , maximale à l'intérieur de ϕ α et décroissante à l'extérieur selon une gaussienne d'écart type α :

P r S (p|O) = 1 si p ∈ ϕ α exp -dist(p,ϕ α ) 2 2α 2 si p / ∈ ϕ α (15)
Finalement, E s est défini par : 

E s (O) = -ln P r S (p|O) (16) E s (B) = -ln(1 -P r S (p|O)) (17) 

Segmentation

La méthode de segmentation proposée peut se résumer par les étapes suivantes : construction de formes modèles à partir d'une ACP, sélection du meilleur modèle de formes, définition du graphe prenant en compte l'a priori de forme. L'utilisation de l'algorithme de coupe minimale / flot maximal permet de trouver la partition optimale globale entre l'objet et le fond, en une seule passe [START_REF] Boykov | An experimental comparison of min-cut/maxflow algorithms for energy minimization in vision[END_REF]. Dans la section suivante, des résultats de segmentation obtenus sur des images réelles sont présentés.

Résultats expérimentaux

Notre méthode a été appliquée à la segmentation d'images IRM cardiaques (Imagerie par Résonance Magnétique). L'objectif, dans ces images, est de segmenter le ventricule droit (VD) (cf. Figure 4). La difficulté de cette tâche réside dans la grande variabilité inter et intra-patient de la forme du VD, les similitudes en terme de niveaux de gris entre le VD et les tissus voisins, les irrégularités et le faible contraste du contour [START_REF] Petitjean | A review of segmentation methods in short axis cardiac MR images[END_REF]. 3). Afin de calculer la coupe minimale du graphe créé, nous utilisons l'implémentation 1 de l'algorithme de coupe minimale/flot maximal de Boykov et Kolmogorov [START_REF] Boykov | An experimental comparison of min-cut/maxflow algorithms for energy minimization in vision[END_REF].
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Evaluation de la segmentation. La méthode de segmentation a été appliquée à 18 images provenant de patients différents et n'ayant pas été utilisées pour la création des modèles. Nous avons également appliqué à ces images l'algorithme de segmentation par coupe de graphe original, sans a priori de forme. Afin d'estimer de manière quantitative les résultats de segmentation obtenus, trois indices sont calculés, permettant de comparer deux contours A et B. Le coefficient de Dice D(A, B) mesure le recouvrement entre A et B et est défini par [START_REF] Lynch | Segmentation of the left ventricle of the heart in 3D+t MRI data using an optimised non-rigid temporal model[END_REF] : 

D(A, B) = 2|A ∩ B| |A| + |B| ( 
1. Disponible en ligne à http://pub.ist.ac.at/~vnk/software.html.

où |A| désigne le nombre de points du contour A. Notons que ces deux derniers indices sont donnés en mm, en tenant compte de la résolution spatiale de l'image.

Les résultats moyens sont résumés dans le Tableau 1 et des résultats typiques de segmentation sont illustrés à la figure 6. Sur cette dernière, on observe les échecs de la méthode sans a priori. L'utilisation de l'a priori de forme compense les variations de niveaux de gris à l'intérieur de l'objet et le faible contraste entre le ventricule droit et les tissus voisins. Notre méthode donne des résultats encourageants et comparables à l'état de l'art pour cette application [START_REF] Petitjean | A review of segmentation methods in short axis cardiac MR images[END_REF]. 

Conclusion et perspectives

Dans cet article, nous avons présenté une méthode basée sur les coupes de graphe avec incorporation d'un a priori de forme via les t-links. Le modèle de formes est construit à partir d'une ACP. La méthode proposée ne requiert aucune itération puisque le modèle de forme est directement intégré au graphe. Elle a été appliquée pour la segmentation du ventricule droit en IRM cardiaque. C'est une tâche difficile à cause de la forme particulièrement variable de cet organe, des irrégularités et du faible contraste par endroit sur ses contours. Des résultats obtenus ont permis de montrer l'apport de l'a priori de forme dans la segmentation. La méthode proposée fournit des résultats encourageants pour cette application. Les perspectives de ces travaux incluent (i) une extension de la validation de cette méthode sur d'autres types d'images, (ii) l'amélioration du modèle de formes, (iii) l'automatisation de l'algorithme de segmentation.

FIGURE 2 -

 2 FIGURE 2 -Exemples de contrainte faible imposée à la segmentation par coupe de graphe avec calcul de l'angle α, permettant au contour (rouge) d'évoluer vers une forme convexe (vert) (d'après [12])
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 1 ) où t est le seuil. Nous proposons le score suivant, calculé pour chaque forme modèle ϕ ∈ φ recalée sur l'image :S(I, ϕ) = p∈ϕ O ,p∈B O P r(I p |O)(9)+ p∈ϕ O ,p∈B B P r(I p |O))(10) où ϕ O = {p ∈ V | ϕ(p) = 1} représente la zone de l'objet. La forme modèle ϕ * correspondant au mieux à l'image est choisie comme étant celle de score maximal, sur l'ensemble des formes modèles possibles φ : ϕ * = arg max φ S(I, ϕ)

FIGURE 3 -

 3 FIGURE 3 -Construction de ϕ α
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 4 FIGURE 4 -Images du coeur obtenue par IRM. En superposition, le VD délimité en rouge (tracé manuel d'un expert).

FIGURE 5 -

 5 FIGURE 5 -Premier axe de variation donné par l'ACP Les paramètres ont été obtenus empiriquement, donnant le jeu suivant : σ = 25, λ = 1000, γ = 0.5 et α = 1 4 d (cf. figure3). Afin de calculer la coupe minimale du graphe créé, nous utilisons l'implémentation 1 de l'algorithme de coupe minimale/flot maximal de Boykov et Kolmogorov[START_REF] Boykov | An experimental comparison of min-cut/maxflow algorithms for energy minimization in vision[END_REF].

  18) D(A, B) vaut 1 en cas de correspondance parfaite entre les deux contours, et 0 si le recouvrement est nul. En complément, deux indices mesurant la distance moyenne et maximum (distance de Hausdorff [15]) entre les contours sont calculés, selon : d m (A, B)

d

  H (A, B) = max a∈A {min b∈B d(a, b)}

FIGURE 6 -

 6 FIGURE 6 -Résultats de segmentation par coupe de graphe (a) sans et (b) avec a priori de forme (contour vert) et segmentation manuelle (contour rouge). Cette figure sera mieux appréciée si elle est visualisée en couleurs. La figure 7 montre les différentes étapes de la méthode : la sélection du meilleur modèle de forme, la probabilité d'appartenance à l'objet en fonction de P r * , les poids des tlinks par rapport à l'objet γR p (B)+(1-γ)Es(B) ainsi que les résultats de segmentation obtenus automatiquement et avec la vérité terrain. Cette illustration permet d'apprécier la contribution de l'a priori de forme à cette segmentation.

FIGURE 7 -

 7 FIGURE 7 -Résultats issus des différentes étapes de la methode, chaque ligne correspondant à un exemple. (a) Modèle de forme choisi, (b) probabilité d'appartenance à l'objet P r * (plus le rouge est intense, plus la probabilité est forte), (c) pondérations des t-links par rapport à l'objet γR p (B) + (1 -γ)Es(B) (moins le rouge est intense, plus l'appartenance à l'objet est certaine), (d) résultat (contour vert) et segmentation manuelle (contour rouge). Cette figure sera mieux appréciée si elle est visualisée en couleurs.

  . Le modèle est défini dans ce cas par une carte des distances ou un atlas. Notons que ces modèles sont limités pour représenter judicieusement les variabilités de forme. Dans la méthode que nous proposons, nous utilisons une contrainte forte via les t-links. A partir d'un ensemble de formes de l'objet à segmenter, nous effectuons une ACP et construisons différentes formes modèles permettant de représenter les variabilités de l'objet. Pour une image à segmenter, le meilleur modèle de forme est sélectionné, au sens d'un certain critère, parmi les différentes formes modèles synthétisées. Nous détaillons par la suite la méthode proposée au travers de ses deux étapes : la construction du modèle de forme et son intégration dans l'énergie du graphe.

TABLE 1 -

 1 Résultats moyens et écarts types sans et avec a

	priori de forme		
		Avec a priori	Sans a priori
	Dice	0.86 ± 0.06	0.70 ± 0.23
	d		

m (mm) 1.54 ± 1.14 3.49 ± 4.18 d H (mm) 5.53 ± 4.49 10.54 ± 10.71