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RESUMEN. La correcta cuantificación de los procesos 
hidrológicos requiere una descripción precisa de la 
infiltración del suelo a través de la zona no saturada. 
Modelos físicos como la ecuación  Richards, basados en la 
aplicación de los principios de flujo en medio poroso y 
conservación de masa, pueden proporcionar soluciones 
exactas en medios ideales. Sin embargo, su aplicación a 
suelos naturales en condiciones dinámicas resulta a menudo 
costosa y en ocasiones problemática. Se han propuesto 
muchos métodos simplificados de cálculo de la infiltración, 
desde los empíricos cuya aplicación es limitada, hasta los de 
base física y más generales. Éstos últimos, por su 
generalidad y relativa rapidez y robustez de cálculo, a 
menudo representan una alternativa efectiva  para el cálculo 
de la infiltración en modelos hidrológicos integrados 
complejos. La mayoría de estos métodos simplificados 
consideran infiltración en suelos profundos sin la presencia 
de un nivel freático somero. Esta presencia puede tener un 
importante efecto limitante sobre la infiltración en el suelo 
de gran consecuencia no sólo en la zona no saturada sino 
sobre los procesos superficiales de la escorrentía y el 
transporte de contaminantes en superficie hacia cauces y 
sistemas lacustres. En este trabajo se estudia la extensión de 
la ecuación de Green-Ampt para la infiltración de agua en 
presencia de un nivel freático somero estable bajo 
condiciones de lluvia natural, y su efecto sobre la 
redistribución de humedad en el suelo y la generación de 
exceso de lluvia (volumen de escorrentía superficial). Para 
ello, se propone la solución de forma temporalmente 
explícita de la ecuación integral implícita de Salvucci y 
Entekhabi (1995) para suelos encharcados, y su 
combinación con los conceptos de tiempo de 
encharcamiento del suelo y balance de agua durante un 
hietograma de lluvia natural. El modelo se contrasta 
favorablemente con la solución numérica de Richards para 
un rango representativo de suelos. Se resalta además la 
importancia que la descripción formal de las curvas 
características del suelo, y en especial del punto de 
burbujeo, tiene sobre las predicciones realizadas. 
 
ABSTRACT.  Salvucci and Enthekabi (1995) proposed an 
approximate, time-implicit integral solution to the 
infiltration case for ponded soils bounded by a water table 
(i.e. under a hydrostatic equilibrium bottom boundary 
condition). In this work, we further developed this solution 
to make it numerically explicit in time and to account for 
unsteady rainfall conditions.. The new infiltration 
component was validated against a numerical solution of 
Richards’equation. In general, the presence of a shallow 

water table was found to be more important for fine soils 
than coarse soils. Soils that exhibit a marked air entry 
(bubbling pressure) on their soil water characteristic curve 
introduce also a distinct behavior for very shallow water 
table depths. 
 
 
1.- Introduction 
 
Although Richards (1931) partial differential equation 
(RE) represents a fundamental equation to describe water 
infiltration and redistribution in soils, it does not have a 
general analytical solution and therefore must be solved 
numerically in many practical applications. The numerical 
solution of the equation can be computationally intensive 
and in some cases (coarse soils and highly dynamic 
boundary conditions) lead to mass-balance and instability 
errors (Celia et al., 1990; Paniconi and Putti, 1994; Miller 
et al., 1998; Vogel et al., 2001; Seibert 2003). Simpler, 
approximate physically based approaches have often been 
used for modeling soil infiltration (Jury and Horton, 2004; 
Singh and Woolhiser, 2002; Haan et al., 1993; Smith et 
al., 1993). In particular, the method of Green and Ampt 
(1911), modified for unsteady rain events (Mein and 
Larson, 1973; Chu, 1978), has been widely used in 
hydrologic modeling. Despite Green–Ampt’s apparent 
limitations (assumptions of rectangular saturated piston 
flow and homogeneous isotropic soil with uniform initial 
content), the method produces good results in comparison 
with other approximate and numerical methods if it is 
effectively parameterized (Skaggs et al., 1969). In 
addition, Green–Ampt has the advantage that its 
parameters can be estimated directly based on physical 
measurements, or indirectly from soil textural 
classification (Rawls et al., 1982, 1983). Based on these 
advantages, Bouwer (1969) presented a case for the 
usefulness of the method when considering the trade-offs 
against the use of Richards numerical solution. 
The Green-Ampt model has been extended beyond its 
initial assumptions to make it more applicable to real 
infiltration cases. In particular, the presence of a shallow 
water table can significantly influence the initial soil water 
content distribution from the Green-Ampt homogenous 
assumptions, and limit infiltration. As noted by Chu 
(1997), many authors (Childs, 1960; Duke, 1972; Holmes 
and Colville, 1970) have proposed an equilibrium 
hydrostatic condition to describe the soil water 
distribution above a shallow water table (Fig. 1).  
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Fig.  1. Infiltration and reditribution hypothesis for soils 
with shallow water table in hydrostatic equilibrium/ 
Hipótesis de infiltración y distribución de humedad  

This represents a linear relationship between the soil depth 
(z, [L]) and the soil matric potential (h, [L]), so that the soil 
water content of the soil (θ) is described by the soil water 
characteristic θ=θ(h) (Jury, 1991) as, 
h = L − z⇒θ = θ (L − z)

          

(1) 

where L [L] is the shallow water table depth (distance from 
the surface).  
Using hydrostatic equilibrium assumptions and Bouwer’s 
(1969) implicit Green-Ampt formula for infiltration into 
non-uniform soil, Chu (1997) proposed an incremental 
infiltration calculation procedure for ponded soils with a 
shallow water table as,  

t = θs −θ(L − z)

q0

z

∫ dz
           

(2) 

with t [T] the time, θs [L
3L-3] the saturation water content, θ 

[L3L-3] the soil water content (non uniform, function of the 
depth), q [L3T-1] the infiltration rate at surface, z [L] the 
depth of the wetting front, L [L] the depth of the water 
table.  The cumulative infiltration at wetting front depth z 
can be obtained by integrating the profile to the depth of the 
wetting front (Neuman, 1976), 

F = θs0

z

∫ −θ (L − z)dz
              

(3) 

and the infiltration rate is obtained by integration of the 
hydraulic conductivity function K(h), 

q = Ks + 1
z

K
0

L−z

∫ (h)dh
       

(4) 

Chu (1997) proposed assuming hydrostatic equilibrium 
during an infinitesimal time step dt= ti-ti-1. Using Eq. 1-3 the 
time can then be calculated explicitly at given increments of 
z, 

ti = ti−1 + dt = ti−1 + Fi − Fi−1

0.5(qi + qi−1)       

(5) 

An initial value for F1 and q1 is obtained by assuming 
standard Green-Ampt conditions from the surface to the 
first dz, (piston flow), the value of moisture content at the 
surface (θi) and suction at the wetting front (Sav) calculated 
as (Bouwer, 1964),  

Sav = 1
Ks

K(h)dh
0

L

∫
        

(6) 

The model was tested successfully against experimental 
data from Vachaud et al., (1974), although the 
experimental data and simulated results were not allowed 
sufficient time to test the model response when the 
wetting front arrives to the water table depth. 
Salvucci and Entekhabi (1995) proposed an elegant 
approximate solution for infiltration under ponded and 
water table conditions for the Brooks and Corey (1964) 
representation of soil hydraulic properties (see Appendix). 
The solution uses Philip’s (1957) approximation of 
Richards equation and provides the additional benefit of 
describing the soil water profile dynamics during the 
infiltration event and also de behaviour of the wetting 
front as it approaches the water table for long infiltration 
events. The solution estimates the slope of the wetting 
front during the infiltration process (α in Fig. 1)  as a 
function of the wetting front position in time. The 
algorithm was tested succesfully against Richards 
numerical solution for three distinct soils,  and against the 
experimental soil moisture profile data. However, the 
method relies on the particular Brooks and Corey 
description of soil water characteristics, considers only 
ponded conditions during the event, and like the original 
Green-Ampt equation and Chu (1997) method, the 
solution is implicit. This represents a limitation for 
coupling with common hydrological models with time-
driven calculations of the water mass balance and fluxes 
during prescribed time steps.  
The objective of this paper is to extend the practical 
applicability of the Green-Ampt based solution to non-
ponding, unsteady rainfall infiltration in soils bounded 
with a shallow water table. This will be accomplished by 
proposing a generic (independent of the soil characteristic 
description) time-explicit solution procedure that 
considers the dynamics of the saturated wetting front as it 
approaches the water table, and handles non-ponded 
conditions during an unsteady rainfall event. New integral 
formulas for calculation of the singular times needed for 
the time-explicit solution for non-ponded soils are 
presented with the calculation procedure. The simplified 
method is tested against RE solution for accuracy of 
surface infiltration and water content predictions, and 
against previously published experimental data using a 
variety of soil water characteristics.  
 
2.- Proposed explicit algorithm 
2.1. Infiltration component 
In general the infiltration rate in a soil bounded by a 
shallow water table with no ponding at the beginning of 
the event will present a profile similar to that depicted in 
Fig. 2a. For an explicit, time-based solution, two singular 
times need to be identified during the infiltration 
calculations: a) the time to reach ponding (tp); and b) the 
time to column saturation (tw) when the wetting front 
reaches the saturated (capillary fringe) region above the 
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water table at depth zw (Fig. 1).  

 
Fig. 2. Conceptual description of infiltration and water 
distribution for a soil bounded by a shallow water table and 
non-ponded initial conditions and rainfall rate (i).  

The effective depth of saturation zw depends on the position 
of water table depth (L) and the soil saturated capillary 
tension head or bubbling pressure (hb), zw=L−hb (Fig. 1). 
Note that hb is usually set at 0 for soil characteristics other 
than Brooks and Corey functions (i.e. zw=L). At tw the soil 
column saturates and the infiltration rate abruptly drops to 
match the saturated hydraulic conductivity (Fig. 2a).  
The time tw also depends on the slope of the hydraulic 
conductivity function (Salvucci and Entekhabi, 1995). Thus, 
the infiltration rate (f) in the soil bounded by a shallow 
water table under a constant rainfall rate (i [LT -1]) and non-
ponded initial conditions is described by (Fig. 2a), 

  

f = i ;0 < t ≤ t
p

f = f p ;tp < t < tw

f = Ks ;t ≥ tw
   

(7) 

Following Mein and Larson (1973), tp is the time when the 
rainfall rate (i) equals the soil infiltration capacity (fp = i) 
(Fig. 2a), and corresponds to the time when the moisture 
content in the surface equals saturation (Fig. 2c). By 
definition the time to ponding tp is the intersect of the two 
curves in Fig. 2a, and the equivalent wetting front depth at 
the ponding time (zp), 

zp = 1

i − Ks

K
0

L−zp∫ (h)dh    (8) 

Since the equation (8) is implicit in zp, it can be solved in 
terms of time by defining the function Gp: : → and its 
derivative dGp/dz,  

  

Gp(zp) = zp − 1

i − Ks

K
0

L−zp

∫ (h)dh

dGp(zp)

dz
= 1+

Ks

i − Ks

K(L − zp)

Ks   

(9) 

so that the root zp of Gp =0 is the wetting front depth at time 
to ponding tp. This minimization problem can be solved for 

example using a bracketed Newton-Raphson algorithm 
(Abramowitz and Stegun, 1972) that needs the expression 
of the function and its derivative to solve the problem by 
iteration for zp ∈[0,zw]. Denoting k as the Newton-
Raphson iteration level we obtain, 

  

z
p
k+1 = z

p
k −

Gp(zp
k )

dGp(zp
k )

dz

with z
p
k+1 − z

p
k < ε

(10) 

with ε the error tolerance for the Newton-Raphson 
algorithm, set to 10-8 here. Based on Fig. 2b, the 
cumulative infiltration at t=tp (z=zp) is Fp= i·tp , and using 
eq. (3) for cumulative infiltration we finally obtain tp as, 

  
tp = 1

i
θszp + θ

L

L−zp

∫ (h)dh





 

  

(11) 

Next, when the two lines intercept at tp the potential 
cumulative infiltration curve yields Fp= 0 at time t-tp 
(dashed line in Fig. 2b) and a shift time (to) (abscissa 
translation) must be applied to Fp so that the function 
computed at tp equals Fp= i·tp (Mein and Larson,1973). 
The time to is calculated explicitly by setting the condition 
z=zp on the infiltration eq. (2), 

  
t
0

=
θs −θ (L − z)

f (z)0

zp

∫ dz
   

(12) 

Finally, the time to reach column saturation (tw) while 
accounting for non-ponded initial condition is calculated 
by evaluating the integral eq. (2) at z=zw=L-hb (Fig. 1) and 
correcting for tp and to, 

  
tw = tp − t

0
+

θs −θ (L − z)

f (z)0

zw

∫
   

      

(13) 
From eq. (3) the cumulative infiltration at tw is calculated 
as,  

  
Fw = θszw − θ

hb

L

∫ (h)dh
    

(14) 

Liu et al. (2011) also considered a non-dimensional time 
equivalent to tw (Xc) to correct the piston flow 
approximation of Green-Ampt when the wetting front is 
close to the water table. However, in Liu et al. (2011) Xc is 
estimated through an empirical equation based on the 
comparison between Green-Ampt’s standard uniform 
initial moisture equation and RE solution. 
2.3 Infiltration capacity algorithm after surface ponding 
To simplify the explicit solution of Salvucci and 
Entekhabi (1995) infiltration capacity equation under 
shallow water table conditions, we propose to set the slope 
of the wetting front to zero, i.e. a horizontal front (α=0) at 
depth zF (Fig.1). As pointed by Salvucci and Entekhabi 
(1995), this effectively collapses their solution to make it 
similar to Eq. (2), used by Bouwer (1969) in his 
discussion on the applicability of Green-Ampt. When 
considering initial non-ponding conditions, the implicit 
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infiltration capacity equation becomes, 

  

t = tp − t
0

+
θs −θ (L − z)

Ks + 1
z

K
0

L−z

∫ (h)dh
0

zF

∫ ;tp < t < tw (15) 

Note that the deeper the wetting front moves into the soil 
profile, the larger α (steeper front slope) could be, 
depending of the soil type (more for fine soils). However, as 
the front nears the shallow water table, the available pore 
space is small, thus limiting the mass error in the 
calculations (Salvucci and Entekhabi, 1995). The validity of 
this assumption will be tested in the next section. 
In order to solve equation (15) numerically explicit in time 
(i.e., z=z(t)), we will define the function G:  x→ and 
its derivative dG/dz, so that the root z∈[zi-1, zw] for G=0 is 
the wetting front depth for a given time t,

 

G(z,t) = t − tp + t
0

−
θs −θ (L − z)

Ks + 1
z

K
0

L−z

∫ (h)dh
0

z

∫ dz

dG(z,t)
dz

= −
θ

s
−θ(L − z)

K
s
+ 1

z
K

0

L−z

∫ (h)dh

zk+1 = zk − G(zk ,t)
dG(zk ,t)

dz

with zk+1 − zk < ε

 

(16) 

At each time step, the proposed algorithm calculates the 
depth of the wetting front, zFi=zi (Fig 1), which allows for 
the evaluation of the cumulative infiltration (eq. 3), and the 
infiltration rate (eq. 2). Note that the bracketing step in the 
Newton-Raphson algorithm is required because the function 
G is ill-behaved outside its physical range (zp<z<zw). 
Therefore, care should be taken to solve the equations 
within their prescribed boundaries. Although the proposed 
equations can be simplified by considering integrable soil 
hydraulic functions like Brooks and Corey (Salvucci and 
Entekhabi, 1995) or Gardner (1958), the generality of the 
method is preserved if numerical integration is used instead. 
In this study, we used 20-order Gauss-Quadrature 
Integration (Abramowitz and Stegun, 1972). The high order 
of the quadrature was needed to obtain accurate integral 
values due to the high non-linear and non-monotonic nature 
of the integrands of G and its derivative. 
2.3. Unsteady rain infiltration without initial ponding for 
soils with a shallow water table 
The runoff generated by infiltration excess (Hortonian 
overland flow) as well as the saturation excess overland 
flow (due to the presence of the shallow water table) are 
then calculated at each time step by the surface water 
balance (neglecting evaporation during the event) (Chu, 
1978),  
 ∆P = ∆F + ∆s+ ∆RO     (17) 
where ∆P, ∆F, ∆s, and ∆RO [L] are the increments of 
cumulative precipitation (P), infiltration (F), surface storage 
(0<s<smax) and excess rainfall (runoff volume, RO) for every 
time step. The surface storage term, when present (smax>0), 
will act as a reservoir that needs to be filled (s=smax) before 
runoff is produced (Chu, 1978; Skaggs and Khaleel, 1982). 
For unsteady storms described by a hyetograph with 
different rainfall intensities constant within each rainfall 
period j, i.e. i=ij for tj<t<tj+1, if surface storage becomes s=0 
then tp and t0 will need to be recalculated for every new 

rainfall period. For rainfall periods other than the first one, 
i.e. tj with j>1, the time to ponding will need to be 
adjusted to account for rainfall and excess rainfall 
happening before the current rainfall period (Chu, 1978) 
as,  

tp = 1

i j

θszp + θ
L

L−zp∫ (h)dh( ) − P(t j ) + RO(t j )






+ t j  

(18) 

Similarly, tw has to be re-calculated each time tp, and to are 
calculated. For the particular case when ponding is present 
from the beginning of the rain event, we have tp= t0=0. An 
illustrative unsteady calculation example is provided in 
the following section. 
 
3- Numerical testing 
 
The simplified algorithm was tested against RE solution 
on 3 soils (clay, silty loam, and sandy loam) representing 
a wide range of characteristics. The soils are described by 
the Brooks and Corey soil water characteristic and 
hydraulic conductivity curves (Table 1).  

Table 1. Water Table Depth (L), Brooks and Corey parameters for the 
different soils and Nash and Sutcliffe coefficient of efficiency (Ceff) 
between the simplified model and Richards’ finite differences results 
(CHEMFLO-2000).  
Soil L 

(m) 
θr 

 
θs

 

 
Ks 

(m·s-1) 
hb 

(m) 
λ 
 

η 
 

Ceff 

Richards 
Silty Loam 1.5 0 0.35 3.40x10-6 0.450 1.20 4.67 0.994  
Clay 1.5 0 0.45 3.40x10-7 0.900 0.44 7.54 0.999 
Sandy Loam 1.5 0 0.25 3.40x10-5 0.250 3.30 3.61 0.995 
† hb, λ, η are the Brooks and Corey parameters 

The 3 soils contain a water table at 1.50m depth (Salvucci 
and Entekhabi, 1995).  As numerical solution of RE we 
used the finite difference mass-conservative Celiat et al, 
1990) CHEMFLO-2000 model (Nofziger and Wu, 2003). 
The soil initial condition corresponds to a linear matric 
potential distribution in hydrostatic equilibrium with a 
water table at the bottom of the soil (eq. 1). The boundary 
conditions were fixed matric potential on the bottom of 
the soil (h(z=L)=0) to represent the shallow water table, 
and on the surface a mixed type boundary condition with 
the flux density equal to the specified rainfall rate and the 
critical matric potential to represent the rainfall. The 
rainfall rates were selected based on the soil texture using 
a normalized ratio of i/Ks=6 for the fine soils (clay and 
silty loam), and i/Ks=2 for the other two coarser soils. This 
allowed for the development of distinct tp and tw values for 
testing. 

Figure 3 presents the relative infiltration rate (f/Ks) 
comparison between RE (symbols) and the proposed 
algorithm (lines). The behavior in time is very close to the 
RE for all soils tested, with coefficients of efficiency (Nsh 
and Sutcliffe, 1970) (0.96>Ceff >0.9997, highest for clay). 
Salvucci and Entekhabi (1995) reported errors around 5% 
for the same clay soil for ponded conditions. This 
indicates that in spite of the simplification introduced here 
(α=0, horizontal wetting front), the integral solution (eq. 
13) was able to predict infiltration rate well. 
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Fig. 3. Comparison of simplified model results (lines) 
against RE solution (symbols) for soils in Table 1 under 
non-ponding initial, conditions in the presence of shallow 
water table.  

It is also interesting to notice the accurate time to ponding 
estimates obtained across the soils and normalized rainfall 
rates tested against RE solution. This limited testing 
indicates that the non-uniform integral equations (9-11) 
could effectively limit the tp estimation issues found 
sometimes with the standard Green-Ampt formulation Barry 
et al., 1996). 

 
Fig. 4. Cumulative infiltration (F) and wetting front depth 
(zF) calculated for soils in Table 1. 

The cumulative infiltration of the different soils and the 
wetting front depth results calculated with eq. (19-20) for 
the cases in Table 1 are depicted in Fig. 4.  

As with the infiltration rate curves, the values of the 
wetting front depth display a singularity (plateau) at tw 
when reaching column saturation. Notice that this 
corresponds to a depth of zF = zw= L−hb (Fig. 1) and thus it 
is not the same as the water table depth (L=1.01 m for the 
fine sand and 1.50m for the rest).  

 
Fig. 5. Comparison of soil water content distribution 
predictions between RE solution (solid lines) and the 
simplified model (dashed lines) during infiltration under 
non-ponded initial conditions for soils in Table 1.  

The ability of the simplified approach to predict the zF 
allows also for the description of the soil water content 
redistribution during the infiltration event. Figure 5 
quantifies the error in water content predictions by the 
simplified algorithm (dashed lines) against RE solution 
(solid lines) for the same non-ponding numerical testing 
cases. In general, the simplified model identifies well the 
depth of the wetting front mid point. In addition the 
horizontal wetting front (α=0) simplification produces 
accurate description of the wetting front position at early 
times for all soils, but degrades for later times near 
column saturation, except for the sandy soil that naturally 
exhibits near horizontal wetting front distribution. As 
discussed before, since the pore space is small near 
column saturation, the errors introduced by slopes 
different than 0 remain small. This can also be seen in the 
overall mass balance error, i.e. the cumulative infiltration 
at the end of the simulation (Fig. 4a), where errors are 
between 3 and 8%. These errors are deemed acceptable 
since they represent the summation of approximation 
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errors (soil moisture distribution, infiltration rate) during the 
simulation. 
 
4.- Conclusions 
Analysis of shallow water table effects on soil infiltration 
and runoff is constrained by limitations in current modeling 
approaches. Simplified but realistic specialized algorithms 
coupled with existing hydrological models can help to 
assess the importance of ubiquitous shallow water table 
areas in the landscape. Previous work proposed Green-
Ampt implicit integral formulae for infiltration into ponded 
soils by assuming initial soil hydrostatic equilibrium with 
the shallow water table. We tested a simplification of the 
existing method (assuming a horizontal front during the 
infiltration calculation) and developed a numerically 
explicit algorithm suitable for coupling with existing 
hydrological models. The proposed algorithm is generic 
because it handles any form of soil hydraulic functions and 
can be applied to ponded, non-ponded and unsteady rainfall 
conditions to calculate infiltration, excess rainfall (runoff) 
and soil water redistribution during the event.  
The algorithm was tested against RE and the infiltration 
results showed good agreement with the reference 
numerical solution and data (Ceff from 0.91 to 0.99), with a 
good description of the soil water distribution during 
rainfall events with non-ponding initial conditions. The 
good predictions obtained indicate that the simplification 
introduced when considering a horizontal slope is 
acceptable for most practical applications.  Limitations of 
the algorithm derive from its assumptions, in particular 
from the suitability of the homogeneous profile and 
horizontal wetting front for particular soils. Additional 
experimental testing of the model against measured data in 
natural conditions (especially with events long enough to 
saturate the soil by the bottom boundary) would also serve 
to ascertain the validity of the hydrostatic equilibrium 
assumptions and the proposed calculation of the singular 
points during the infiltration event.  
Because the algorithm is fast, accurate and robust for the 
wide range of conditions tested, it is deemed suitable for 
coupling with existing hydrological models in order to 
evaluate the effect of a shallow water table areas on other 
landscape processes.  
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