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Abstract 
 
 
 

Evidence of a genetic control of pain has led to efforts to exploit genotyping information from 

pain patients for the development of analgesics and for the selection of pharmacological 

approaches to pain. Translating the genetic bases of familial insensitivity to pain research 

has contributed to the discovery of crucial molecular pathways of pain and to the 

identification of new analgesic targets (e.g., sodium channels Nav1.7, neurotrophic tyrosine 

kinase receptors or  the nerve growth factor). 

Moreover, human genetic variants leading to enhanced or reduced function of molecular 
pathways 

 
are  employed  as  substitutes  for  lacking  modulator  molecules  usable  in  humans.  This  

allows  early studying of nociceptive or anti-nociceptive pathways in humans before drug 

development. Transla- tional  approaches  also  served  to  verify  the  human  importance  of  

experimentally  discovered  pain pathways, such as in GTP cyclohydrolase 1 and the 

potassium channel Kv9.1. Besides these uses of 

genetics as a research tool, an individualized pharmacological therapy based on the patient's 
geno- 

type  has  been  attempted.  For  the  actual  analgesics,  such  guidance  has  only  marginally  

become available. For upcoming analgesics targeting, for example, Nav1.7 or TRPA1, the 

genotype may pro- vide a selective cure for syndromes caused by increased-function 

mutations in the coding genes. The implementation  of  human  genetics  may  accelerate  

analgesic  drug  development  while  reducing  its cost  because  the  clinical  success  may  be  

partly  anticipated by  including  the  information  of func- tional genetic variants that mimic 

the action of future analgesics, showing that genotyping infor- 

 

mation from pain patients plays a role in the clinical pharmacology of pain. 
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Introduction 
 
 
 

A relation between a patient's genotype and pain phenotype has been suggested about 50 
years ago 

 
[1]. In that early report, genetics was used for basic research to show that the risk of 

migraine is hereditarily transmitted, emphasizing underlying molecular mechanisms. With 

increasing sophistica- tion of genetic research, genotyping has become an effective 

scientific tool to identify the particu- 

lar molecular causes underlying the susceptibility to pain, its intensity or clinical 

development to- ward either disappearance or chronification up to neuropathic pain. The 

risk or protective  mecha- nisms provide primary candidate targets of new pharmacological 

approaches to pain treatment. 

 
Besides  concluding  a  molecular  mechanism  of  pain  from  the  identification  of  its  genetic  

cause, translational approaches are being used to verify and quantitatively estimate the human 

importance 

of a molecular mechanism found in basic research. Functional genetic variants may serve 

as substi- tutes  for  unavailable  drugs  modulating  the  newly  discovered  molecular  

mechanism.  This  provides support  for  the  successful  development  of  pharmacological  

treatments  targeting  the  identified mechanism. 

 
While associating genotypes with phenotypes of pain patients has proved its scientific value 

in drug development, genotyping information is also expected to provide clinical guidance for 

the individual pharmacological approach to pain. However, this had so far only limited 

success [2] and a genotype based pain therapy has not yet emerged. Nevertheless, there is 

an imminent chance that this might improve  with  the  approval  of  analgesics  addressing  

new  targets  that  are  currently  in  the  clinical phases of development. 

 
Successful applications of genotyping pain patients are summarized in the following. The focus 
is on 
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a key role in analgesic drug development or use. This excludes several observations of 

genetic modu- lations  of  pain  or  analgesia  without  this  particular  application, which are  

extensively summarized elsewhere [3]. It further excludes candidate genes that from the 

analgesic’s pharmacology are likely 

to contribute to the pharmacogenetics of the particular analgesic but for which neither evidence 
nor 
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scientific  utility  has  been  proven,  which  has  been  previously  covered  [4].  

Pharmacogenetic  infor- mation obtained from pain patients has its main clinical 

pharmacological utility so far in drug de- velopment and in evidence based rather than 

merely possible modulations of drug therapy. 

 
Genotyping and phenotyping in the development process of analgesics 

 
 
 

Discovery of analgesic targets 
 

 
 

The carriers are not pain patients but the opposite, but the molecular causes of their 

particular phe- notype characterized by absent pain provide primary candidate targets of 

analgesics. Six very rare hereditary sensory and autonomic neuropathy (HSAN) syndromes 

have been described [5]. They dif- 

fer  by  their  genetic  causes,  consisting  of  several  loss-of-function  mutations  in  the  genes  
SPTLC1, 

 
WNK1, IKBKAP, NTRK1, NGFB and SCN9A, and by their association with neurological 
failures (Table 

 
1). The molecular targets of the last three of these symptoms, i.e., TRK1  (tyrosine kinase 

1), NGF (nerve growth factor) and Nav1.7, are being employed as targets of analgesic 

drugs under develop- ment. 

 

 

The nerve growth factor (NGF) is a small protein belonging to the class of neurotrophins and 

identi- fied originally as a survival factor for sensory and sympathetic neurons in the 

developing nervous system [6].  NGF binds  at the  p75 low affinity nerve growth  factor 

receptor and at the  transmem- brane tyrosine kinase receptor, the latter being associated with 

neurodegenerative disorders. NGF is not required for survival in adults but plays a crucial role 

in the generation of pain and hyperalgesia 

[6]. The expression of NGF is high in injured and inflamed tissues, and activation of the NGF 
recep- 

 
tor tyrosine kinase A on nociceptive neurons triggers and enhances nociceptive signalling by 
multi- 
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ple  mechanisms  [7]. Members  of a  Swedish  family carrying  a hereditary insensitivity to 

pain  were homozygous for a coding 661C>T SNP (R211W) in the NGFB gene, which 

affects a highly conserved region of the protein [8]. These findings have triggered the 

development of a new class of analge- 

sics including the monoclonal NGF-inhibiting antibody tanezumab which is an effective 
analgesic as 

 
shown for ostheoarthritic pain [9, 10]. 
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+ 

The tyrosine kinase, TRK, is the receptor for NGF. As mice lacking the gene encoding the 
NGF recep- 

 
tor tyrosine kinase (ntrk1) display similar phenotypic features as patients with congenital 
insensitiv- 

 
ity to pain with anhidrosis [11], mutations in the human NTRK1 gene have been studied as 

candi- date  causes. Three  mutations  (1726delC  with  a  premature  translational  stop,  

IVS15+3A>C  with  al- tered splicing, 1795 G>C with G571R amino acid substitution) in three 

unrelated subjects were iden- tified as the molecular basis of HSAN-IV [12]. Up-to-date, 37 

different variations of the NTRK1 gene 

in families affected by CIPA are known (for a comprehensive review see [13]). 
 

 
 

Among the at least 10 known subtypes of voltage-gated sodium channels responsible for 

action po- tential creation and propagation [14], Nav1.7, 1.8 and 1.9 are expressed almost 

exclusively at noci- ceptive neurons. The complete inability to sense  pain in otherwise 

healthy members of three con- sanguineous families from Pakistan was mapped as an 

autosomal recessive trait caused by a loss-of- 

function variant in the SCN9A gene [15]. This gene encodes the -subunit of the voltage-gated 

so- dium channel, Nav1.7. In the three families, three distinct homozygous SCN9A nonsense 

mutations 

(S459X, I767X and W897X) were identified. In whole-cell voltage clamp experiments in 
HEK293 cells 

 
expressing mutant Nav1.7, voltage-gated 

Na 

currents were not greater than the  background 
level. 

 
Additional very rare SCN9A variants have been added to the causes of this extreme 
phenotype [16]. 

 
Also rare, but not completely insensitive  to pain, are  carriers  of a  C1719R  Nav1.7 variant 

channel 
 
[17], i.e., a genotype conferring residual channel function and therefore leading to a less 

extreme pain phenotype. 

 
Verification of analgesic targets 
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Genetics plays a key role in identifying analgesic targets in laboratory animals  [18]. In a 

transla- tional  approach,  variants  in  identified  pain  associated  genes  can  be  employed  to  

test  whether  a molecular pathway identified in laboratory animals is relevant in humans. 

Moreover, human genetic variants leading to enhanced or reduced function of molecular 

pathways can be employed as substi- 
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tutes for lacking modulator molecules applicable to humans. This allows early studying of 

nocicep- tive or anti-nociceptive pathways in humans before drug development. 

 
A genetic association was used as a tool for a proof-of-concept in assessments where the 

mechanism had been already identified without a major human genetics approach (Table 

2). For example, the role  of  the  enzyme  guanosine  triphosphate  (GTP)  cyclohydrolase  1  

(GCH1)  activity  for  pain  was found  in  laboratory  animals  and  subsequently,  its  relevance  

for  human  pain  was  verified  using  a genetic  approach  [19].  GCH1  catalyzes  the  

conversion  of  GTP  to  dihydroneopterin  triphosphate, which  is  further  metabolized  to  

tetrahydrobiopterin  (BH4)  by  the  enzymes  6-pyruvoyltetrahydrop- 

terin synthase and sepiapterin reductase [20]. BH4  is an essential co-factor for the three 
isoforms of 

 
nitric oxide  synthase  catalyzing  the  synthesis of nitric oxide  and citrulline  from arginine,  

and for tyrosine-, tryptophan- and phenylalanine hydroxylases [21] that catalyze the 

production of biogenic amines (noradrenaline, dopamine, adrenaline), the production of 

serotonin, and the degradation of phenylalanine  to  tyrosine,  respectively.  Inhibiting  the  de  

novo  BH4   synthesis  in  rats  attenuated 

neuropathic and inflammatory pain whereas administering BH4  intrathecally exacerbated pain 
[19]. 

 
After peripheral inflammation, BH4  concentrations also increased in dorsal root ganglia due to 

en- hanced GCH1 enzyme activity [19]. 

 

 

Because rate limiting for BH4  synthesis, GCH1 is a key modulator of peripheral neuropathic 

and in- flammatory pain [19]. Human GCH1 genetic variants in non-coding and non-splicing 

regions of the GCH1 gene were found to decrease the risk or intensity of chronic pain. They 

have allelic frequencies 

of approximately 15 – 20% in Caucasians and decrease enzyme up-regulation and 
tetrahydrobiopter- 

 
in production at the molecular level. Specifically, a particular  GCH1 haplotype comprising 15 
GCH1 
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SNPs was associated with an improved outcome in patients with chronic neuropathic pain 

[19], and with reduced sensitivity to experimental pain [22, 23]. Moreover, in a cross-

sectional observational study,  carriers  of  this  GCH1  haplotype  were  found  to have  been  

shorter  on  specialized therapy  of chronic pain of various etiologies than non-carriers [24]. 

We interpreted this as a prophylactic role 

of  decreased GCH1 upregulation  delaying  the  need for  pain  therapy.  This  hypothesis  could 
subse- 
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quently be verified by showing that indeed the interval between cancer diagnosis and opioid 

therapy initiation was significantly longer in homozygous carriers of these GCH1 variants (78 

± 65.2 months) than  in  heterozygous  and  non-carriers  (<  40  months)  [25].  This  suggested  

a  future  possibility  of using partial GCH1 blockade or BH4  inhibition to prevent or delay 

cancer pain. 

 
Considering the shown molecular relevance of GCH1 for pain, negative findings such as 

lack of asso- ciation with pain following dental surgery [26]) or in chronic pancreatitis [27] 

do not necessarily substantially  jeopardize  GCH1  as  an  analgesic  target.  However,  a  

cardiovascular  association  of  a GCH1  variant with  similar molecular consequences  has  to 

be  considered during  drug  development. Specifically,  the  c.*243C>T  SNP  (dbSNP  rs841  

in  the  3’UTR)  was  associated  with  decreased  nitric oxide excretion in urine, mildly 

increased blood pressure and heart rate and dysfunction of the baro- receptor reflex in  

homozygous  carriers  [28].  Moreover, this  variant is  carried by  most  people  who also carry 

the variants associated with decreased or delayed pain [29]. This draws the attention at 

potential cardiovascular problems due to inhibition of BH4  production. 

 
The involvement of potassium channels in pain pathology has also benefitted from a 

genetic sup- port.  Specifically,  the  potassium  voltage-gated  channel,  delayed-rectifier,  

subfamily  S,  member  1 (KCNS1, Kv9.1) has been found in rodents to be a putative pain 

gene down-regulated following nerve 

injury by that facilitating the transition to chronic neuropathic pain [30]. These potassium 
channels 

 
are co-regulated in several pain models. Kv9.1 is expressed in naive rats at high levels in a 

subset of dorsal root ganglia neurons [30]. The association with pain was subsequently verified 

in humans. In 

151  lumbar  discectomy  patients,  the  KCNS1  coding  variant  rs734784  (Ile489Val)  and  the  

synony- mous variant rs13043825 were associated with greater pain and with a higher risk to 

fail 1-year pain improvement [30]. The functional association of the first variant was also 
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found in  199 amputees with phantom limb pain and in two further cohorts with neuropathic 

pain  [30]. These first results may suggest agonism at Kv9.1 as a possible pharmacological 

strategy to prevent the development of 

chronic pain. 
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Genotyping and phenotyping patients receiving analgesics 
 
 
 

With the popularity of genotyping and first successes in other fields such as cancer 

therapy, where the FDA has considered [31] advising UGT1A1 (uridine diphosphate  

glucuronosyltransferase) geno- typing for irinotecan treatment safety [32] and TPMT 

(thiopurin methyl transferase) [33]genotyping 

for 6-mercaptopurine treatment safety [33])[31], genotyping information has been expected [3, 
34- 

 
36] to also provide a major basis of personalized pain therapy. While in drug discovery the 

identifi- cation  of  the  analgesics’  pharmacodynamic  targets  plays  the  main  role,  in  

individualized  therapy both pharmacodynamics and pharmacokinetics of available 

analgesics may be subject to individual genetically caused modulations. 

 
Pharmacodynamics of analgesics 

 

 
 

Pharmacodynamic genetic modulations have been identified for the  few primary targets of 

current analgesics and their downstream signalling, i.e., for -opioid receptors [37] and 

Girk3.2 potassium channels [38], and for COX-2 [39]. 

 
The most often addressed -opioid receptor variant is OPRM1 118 A>G (rs1799971), leading 

to an amino acid exchange N40D. Molecular evidence suggests that it causes a decreased 

receptor signal- ling  in  the  pain-relevant  secondary  somatosensory  brain  area  (S2)  [40]  and  

was  also  reported  to decrease -opioid receptor expression throughout the human brain, [41], 

however, not in S2 [40]. From the altered receptor function  or density, a  decreased opioid 

potency can be  predicted.  From the  first  in-vitro  [42]  and  in-vivo  [43]  reports  of  its  

functionality,  frequent  reports  from  experi- mental  settings  controlling  for  many  confounders  

and  in  various  clinical  studies  [37]  found  such roles.  A  decreased  net  opioid  potency  was  

also  repeatedly  found  in  clinical  settings.  However,  a general association of the rs1799971 

variant with reduced opioid effects and increased opioid dos- 



15   

ing demands did not withhold a meta-analysis [44]. A practical prospective guidance for opioid 
dos- 

 
ing by this variant has not been obtained. Testing pain patients, who require extremely high 
opioid 
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doses, for the OPRM1 variant rs1799971 is supported by a case report about a patient 

carrying the OPRM1 118G  variant allele and needing  more  than  2 g daily morphine  for 

cancer  pain  relief  [45]. However, a systematic assessment has not yet been published. In 

addition, the protection from res- piratory depression conferred by homozygous presence of 

the OPRM1 rs1799971 variant [46] cannot 

be  used  to  neglect  the  supervision  of  patients  under  postoperative  opioid  analgesia  

although  it might provide reassurance to clinicians to administer high opioid doses to these 

patients. Therefore, the clinical utility of rs1799971 is unclear. A recently discovered OPRM1 

SNP, rs563649 C>T causing alternative splicing of opioid receptors with the appearance of 

6-transmembrane segment receptors 

[47] that produce increased cAMP concentrations after opioid binding [48], is possibly 

involved in hyperalgesic  opioid  effects.  This  might  open  an  opportunity  to  predict  this  

unwanted  therapy course; however, it is so far not more than a clinical extrapolation from 

an in-vitro observation of 

the SNP’s functional consequence. 
 

 
 

The  expression  of -opioid  receptors  seems  modulated  by  the  variant  V158M  catechol-O-

methyl transferase coded by the 472G>A polymorphism (rs4680) of the COMT gene [49, 

50]. It causes de- creased  enzyme  activity  leading  to  chronic  dopaminergic  

upregulation,  which  in  turn  causes enkephalinergic  down-regulation.  Finally,  this  results  

in  a  compensatory  upregulation  of -opioid 

receptors due to downregulation of endorphins, and patients carrying the V158M variant 

needed less morphine than non-carriers carrying this variant [51]. 

 
Downstream signalling of opioid receptors involves potassium channels. Among others (see 

above) the potassium inwardly-rectifying channel, subfamily J, member 6, (Kir3.2, GIRK2) is 

listed in the PainGenes  database  [52]  at  http://www.jbldesign.com/jmogil/enter.html,  a  

collection  of  nocicep- tive and pharmacological genetic association information obtained in 

http://www.jbldesign.com/jmogil/enter.html
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rodents, as modulating opioid effects. This G protein coupled channel is important for opioid 

receptor transmission and is involved 

in opioid effects on postsynaptic inhibition [53] and mediating a significant component of 
analge- 

sia [54, 55]. Two genetic variants in KCNJ6 (rs6517442 and rs2070995) have been shown to 

increase opioid requirements in Japanese patients after abdominal surgery [38]. The same 

tendency toward 



18   

 
 

higher opioid doses in carriers of rs2070995 was seen in chronic pain patients in outpatient 

care. In former heroin addicts average daily methadone substitution doses during the first 

therapy year were comparatively larger in carriers than in non-carriers of rs2070995 [56]. 

 
However, these findings (Table 3) have not entered broad clinical practice. Genetic 

guidance of the choice of analgesics is so far only marginally possible, such as for the 

selection of   -opioid agonists being more effective in women carrying certain variants in the 

melanocortin1 receptor gene confer- ring a red-hair-fair-skin phenotype [57]. Selective 

cyclooxygenase (COX) 2 inhibitors might not be chosen for treatment of inflammatory pain 

in carriers of  PTGS2 variants observed to be associated with decreased COX-2 

upregulation following injury [39], although this requires reproduction due to 

a contrasting finding [58]. 
 

 
 

Regarding the upcoming new analgesics (Table 3) involving many new targets [59], 

pharmacogene- tics of pain and analgesia may be employed as a guidance for the choice of 

the optimum analgesic. Pharmacogenetic information may therefore be of great value in 

choosing the optimum analgesics, along  non-genetic,  for  example  disease-specific,  

guidance  factors.  Upcoming  analgesics  targeting Nav1.7 sodium channels [60] or voltage-

gated transient receptor potential  channels  [61] could be 

used for the first time to cure pain syndromes caused by genetically caused exaggerated 
excitability 

 
of these targets selectively. That is, increased-function mutations of Nav1.7 cause the rare 

pheno- types of erythromelalgia [62, 63] consisting of episodic symmetrical red congestion, 

vasodilatation and burning pain in the feet and lower legs. A child with severe pain had a 

Nav1.7 I234T mutation 

that induces a shift of -18 mV in the voltage-dependence of activation, accelerated time-to-
peak, 

 
slowed deactivation and enhanced responses to slow ramp depolarizations,  with a -21 mV 

shift in the voltage-dependence of slow-inactivation [64]. Besides these very rare genotypes, 
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more frequent functional variants may modulate the pain phenotype of average carriers. The 

variant alleles SCN9A rs6746030 A  [65]  (frequency  in  Caucasians  17.6%  [66]) and  

rs41268673 T  [67]  (frequency  1.4%) 

were reported as  associated with  higher than average  pain  sensitivity. These genotypes  will 
likely 

 
respond to Nav1.7 inhibitors. 
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A point mutation in the TRPA1 gene, leading to an N855S amino acid exchange in the 4th  

transmem- brane segment of TRPA1 receptors that increased the inward current on 

activation at normal resting potentials by 5-fold [68], was associated with an autosomal-

dominant familial syndrome of episodes 

of debilitating upper body pain, triggered by fasting and physical stress. For carriers of those 

TRPA1 mutations, TRPA1 antagonists are an especially promising useful therapy. The TRP 

family comprises several non-selective cation channels  [69] expressed at nociceptors and 

excited by diverse stimuli (chemical, thermal, mechanical) and enabling or inhibiting the 

transmembrane transport of several ions. TRPA1 is excited by cold stimuli below 15°C [70] 

and pungent chemicals such as horseradish, mustard,  cinnamon  and  garlic  [61]  or  

cannabinoids  [71],  TRPM8  channels  are  stimulated  by  cold between 8 and 28°C  [72] and 

cooling compounds such as menthol  [73]. TRPV1 mediates pain in- duced  by  noxious  

heat  (>43°C),  capsaicin  or  protons.  TRPV3,  activated  at  temperatures  of  22  – 

40°C, is also expressed at sensory nerve endings [74]. Several new analgesics are being 
developed 

 
for  TRP channels,  and  future  discoveries  of  pain  syndromes  caused  by  increased-function  

variants may benefit from this upcoming selection of analgesics. 

 
Pharmacokinetics of analgesics 

 

 
 

Functional CYP2D6 variants alter the effects of codeine [75] and tramadol [76] via absent or 

exag- gerated production of their active metabolites. The latter have been presented in the 

worst cases as the  causes  of deaths  following  codeine  administrations  [77-80]. Single  cases 

of exaggerated fatal opioid effects after codeine administration were explained by the CYP2D6 

ultrafast metabolizer gen- otype (summarized in [81]), i.e., carrying three or more copies of 

the CYP2D6 gene leading to in- creased enzyme expression. For example, a 33-year old 

woman took 60 mg codeine prophylactically 

to avoid pain due to tooth extraction. Within 30 min she experienced euphoria, dizziness 
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and diffi- culties  in  recognizing  details  in  a  TV  program  [82].  Twelve  hours  after  a  last  

codeine  dose,  con- sciousness  of  a  62-year  old  patient  deteriorated and  he  became  

unresponsive  [83].  Both  patients 

were  identified  as  carriers  of  the  CYP2D6  ultra-rapid  metabolizer  types.  Codeine  is  a  weak  
opioid 
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analgesic  and  the  genotyping  effort  before  therapy  initiating  has  not  become  a  clinical  

priority, although rare cases of codeine toxicity might benefit but not all of the patients at risk 

[81]. 

 
Besides drug metabolism, drug distributional changes may cause altered opioid effects. For 

example, variants in  ABCB1, coding  for P-glycoprotein, increase  the brain  concentrations  of 

various  opioids 

via altering their outward transport across the blood brain barrier [84-87]. However, despite 

statisti- cally significant association, a clinical utility of these genotyping has not emerged (Table 

3). 

 
Addiction potential 

 

 
 

Among classical analgesics, opioids are associated with potential addiction and clinical 

pharmaco- logical expertise may be clinically queried to estimate the risk for drug dependence 

in pain patients. 

As the main target of opioid analgesics, the -opioid receptor has been primarily assessed 

for vari- ants that modulate the addiction to opioids. The OPRM1 118>G variant has been 

repeatedly reported 

to increase the risk, mostly based on its higher frequency in addicts than in non-addicted 
subjects 

 
[88-90] but lack of such association was similarly often found [42, 91, 92]. The OPRM1 

17C>T SNP showed also a tendency toward higher frequency in substance abusers [42, 

93], and OPRM1 haplo- types were further suggested to be associated with a modified 

addiction risk [88, 89, 91, 94]. How- ever, none of the OPRM1 genetic findings in the context 

of addiction has achieved a clinical utility. This applies to variants in other genes such as a 

modulation of methadone demands in former heroin addicts  by  dopamine  2  receptor  

(DRD2)  polymorphisms  [95,  96].  Furthermore,  a  protective  effect from  heroin  addiction  

was  found  for  European  Americans  carrying  a  HTR1B  (5-Hydroxytryptamine (serotonin)-
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1B  receptor)  haplotype  [97].  In  Hispanics,  an  association  of  the  minor  allele  of  the 

MC2R (melanocortin  receptor type  2) SNP rs2186944 and for an  MC2R haplotype  with  a 

protective effect from the development of heroin addiction was shown [98]. In addition to a 

modulation of the risk for addiction [99], which is a multigenetic trait not specific to opioid 

analgesics, further phar- macogenetic influences on opioid addiction are modulating their 

pharmacokinetics by drug metabo- 

lism or transport such as P-glycoprotein variants [86]. 
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Conclusions 
 
 
 

In the clinical setting, where genotyping information was viewed with high expectations, 

genetics have so far only reluctantly been included, which led to a general questioning of 

their utility [100]. Despite positive results such as CYP2D6 related codeine toxicity, PTGS2 

related COX-2 inhibitor inef- fectiveness,  or  OPRM1  variant  associated safety  of  high  

opioid  doses,  cross  sectional  assessments show that in average pain patients analgesic 

therapy shows only dim traces of a genetic influence 

[101].  Moreover,  most  of  the  here  presented  positive  findings  are  contrasted  by  negative  

reports about  the  same  variants. In  addition,  many  genetic variants, summarized 

elsewhere  [3,  34,  102], may influence analgesic therapy by modifying the disease rather 

than the pharmacology of the cure. However, with  the  future  availability of new analgesics 

addressing  new targets  [103], the  clinical utility of genotyping and phenotyping of pain 

patients may become equal with its scientific utility 

in the clinical pharmacological context up to providing specific cures for pain syndromes 

caused by particular enhanced-function mutations of targets that will be soon possible to be 

inhibited. 

 
From  a  clinical  pharmacological  point  of  view,  genotyping  and  phenotyping  of  pain  patients  

has proven its use so far mainly for drug discovery and development. Human genetics may 

serve both directions, i.e., identifying analgesic drug targets or, in the classical translational 

sense, verifying the human relevance of targets found in  basic research.  The intelligent 

implementation of human genetics  may  accelerate  analgesic  drug  development  while  

reducing  its  cost  because  the  clinical success may be partly anticipated by including the 

information of functional genetic variants that mimic  the  action  of  future  analgesics. 

Therefore, genotyping  and  phenotyping  pain  patients  have 

their main utility as a research tool for discovery or proof-of-concept of analgesics’ targets. 
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Table 1: Familial syndromes with absent pain and their genetic basis. 

 

 

Gene Gene product Syndrome Additional symptoms References 

SPTLC
1 

Serine palmitoyltransferase, long chain 
base 
subunit 1 

HSAN-I Sensory deficit in lower extremities, ulcerations 
of 
feet, sometimes sweating abnormalities 

[104-106] 

WNK1 WNK lysine deficient protein kinase 1 HSAN-II  [107, 108] 

IKBKA
P 

Inhibitor  of  kappa  light  polypeptide  
gene 
enhancer in B-cells, kinase complex- 

associated protein 

HSAN-III   (dysautonomia,   
Riley- 
Day syndrome) 

Sensory  and  variable  autonomic  dysfunction,  
poor 
temperature  and  motor  incoordination,  

reduced  or absent tears, absent corneal 
reflex, postural hypo- tension 

[109, 110] 

NTRK1 Neurotrophic tyrosine kinase, receptor, 
type 
1 

HSAN-IV  (congenital  
insensitivity 
to pain with anhidrosis) 

Anhidrosis, episodes of hyperthermia [12, 111] 

NGFB Nerve   growth   factor   (beta   
polypeptide) 

HSAN-V Partial anhidrosis [8] 

SCN9A Na(v)1.7   (alpha-subunit   of   the   
voltage- 
gated type IX sodium channel) 

Channelopathy  associated  
insen- 
sitivity to pain 

Anosmia [15, 112] 



  

Table 2: Genes that played an important role in analgesic drug discovery. 
 

 

Gene Gene product Functional Genetically Pharmacological  implica- Reference 
change# caused pheno- tions 

type 

NTRK
1 

Neurotrophic ty- 
rosine kinase 

receptor 1 

--- Absent pain Identification of TRK1 
as 
an analgesic target 

[113] 

NGF1 Nerve growth 
factor 

--- Absent pain Identification  of  NGF  
as 
an analgesic target 

[8] 

SCN9
A 

Nav1.7 sodium 
channel 

--- 
- 

Absent pain 
Reduced pain 

Identification  and  verifi- 
cation  of  Nav1.7  as  

an analgesic target 

[15, 112] 

+++ 
++ 

Increased pain [62, 63] 

GCH1 GTP cyclohydro- 
lase 1 

- Reduced   or   
de- 
layed pain 

Verification  of  GCH1  
as 
pain  relevant  and  a  
pos- sible analgesic 

target 

[19] 

KCNS
1 

Kv1.9 potassium 
channel 

- Increased  risk  
of 
pain chronifica- 
tion 

Verification  of  KCNS1  
as 
pain   relevant   and   
ago- nists  being  

possible  an- algesic 

[30] 

 
#  Genetically cased functional change: --- to +++: The degree of genetically caused changes 
in the 
net function of the gene product, achieved by either modulation of the expression or function of 
the 

protein, is gradually displayed from absent function, “---”, to highly increased function, “+++”. 



  

 
 

 
 

 
 

COMT Catchechol-O-methyl transferase rs4680  - 

MC1R Melanocortin-1 receptor rs1805007, rs1805008, – 

 

SCN9A Nav1.7 sodium channel * rs6746030 rs41268673 ++ Increased pain 

TRPA1 Transient receptor potential 
cation 

c.2564A>G ++ Increased pain 

 channel, subfamily A, member 1 
* 

   

 

 

 
Table 3: Genes and example variants that might provide comparatively important genotyping information to guide analgesic therapy. 

 

 
Gene Gene product * Variant Functional 

change#
 

Genetically  caused  
pheno- 
type 

Clinical
 pharmacologica
l 
implications 

Reference 

Classical analgesics 

OPRM1 -opioid receptor * rs1799971 - Decreased opioid effects Increased opioid dosages [84, 114] 

Increased therapeutic 
range of opioids 

Opioid safety [43, 46] 

Increased -opioid  recep- 
tor expression 

Reduced   opioid   

require- ments 

[51] 

 
rs1805009 and 
other 

Red hair fair skin Indication   for -opioids 
in women 

[57] 

KCNJ6 Kir3.2 potassium channel rs2070995 - Reduced   opioid   receptor 

signalling 

ABCB1 P-glycoprotein rs1045642 - Reduced brain clearance of 

opioid molecules 

CYP2D6 Cyptochrome P450 2D6 2 nonfunctional alleles --- Reduced   or   absent   

mor- phine  formation  

from  co- deine 

> 2 functional alleles +++ Exaggerated morphine 
formation from codeine 

PTGS2 Cyclooxygenase 2 * rs20417 - Decreased   COX-2   

expres- sion 

Increased  opioid  

require- ments 

Reduced opioid dosing 

requirements 

Contraindication   for   
co- deine 
 
 
 
 

Ineffectiveness   of   

selec- tive COX-2 
inhibitors 

[38, 56] 

 
[84] 

 
[82] 
 

 
 

[75, 77, 

80] 

[39] 

Future analgesics (currently under clinical development 
[103]) 

 

 

Therapy selection of 
Nav1.7 inhibitors 

Therapy selection of 
TRPA1 inhibitors 

 

 

[62, 63] 

 
[68] 

 

#  Genetically cased functional change: --- to +++: The degree of genetically caused changes in the net function of the gene product, achieved by either 
modu- lation   of   the   expression   or   function   of   the   protein,   is   gradually   displayed   from   absent   function,   “---”,   to   highly   increased   

function,   “+++”. 
*: Analgesic drug target 


