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Five-axis machining allows continuous adjustment of cutter orientation along
a tool pass. Unfortunately, the flexibility has not been fully exploited due
to the separate consideration of tool path generation and cutter orientation
in current machining methods. This paper presents an integrated method
(IM) for tool path generation, which is tightly integrated with the orientation
strategy, to minimise tool path length under the constraint of smooth
cutter orientation. Distinctively, cutter orientation along a tool pass is
optimised by balancing considerations of maximum material removal and
smoothness of cutter movement. Further, the intervals between successive
tool passes are maximised according to the optimised orientation. In the
paper, the IM is combined with the quadric method, a recently developed
cutter orientation strategy, for iso-parametric machining with a flat-end
cutter. However, the method could be applied to other orientation strategies
with different machining mechanisms and cutter types. Simulated examples
illustrate that the IM is more efficient in machining than established methods.
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1. Introduction

Five-axis machining has been increasingly used in the manufacture of sculptured surfaces.
Compared to 3-axis machining, it provides two extra degrees of freedom, which allow
continuous adjustment of cutter orientation along tool passes. Consequently, a significant
improvement in machining efficiency and surface finish can be achieved (Choi and Jerard
1998). Unfortunately, these benefits have not been fully realised due mainly to limited
geometric research on surface manufacturing (Yoon et al. 2002). One key issue in tool path
generation is how to optimise the two orientation angles along tool passes for maximising
the machining efficiency.

Much research effort has been concentrated on optimising cutter orientation at one
cutter contact (CC) point to locally maximise material removal (Fan and Ball 2008).
However, the local solutions are not guaranteed to vary smoothly along each tool pass.
Accordingly, there can be abrupt changes in cutter movement. Such abrupt changes may
generate self-intersections and twists on the surfaces swept by the cutter, which lead to
poor surface finish and low machining accuracy. Also, the abrupt changes induce rapid
increases of cutting force, which might even damage the machined surface, cutter and
machine tool. Thus, both material removal and cutter movement need to be considered
in determining cutter orientation along the tool passes and, ideally, the cutter orientation
and tool path generation should be integrated. Unfortunately, they are approached as
two separate tasks in current machining methods.

As a contribution to improving machining efficiency, this paper develops an integrated
method (IM) for tool path generation, which is tightly integrated with an orientation
strategy. In the IM, cutter orientation is optimised by balancing considerations of
maximum material removal and smoothness of cutter movement. Further, each successive
tool pass is positioned as far as permissible from the preceding one. Then numerical
simulations, comparing the IM with existing methods, show a significant reduction in
the number of tool passes.

1.1. Basic assumptions and concepts

To avoid ambiguity in the discussion throughout the paper, some basic assumptions and
concepts of cutter orientation and tool path generation are introduced in this subsection.

The scope of the research is limited to a geometric study of surface machining under
the following assumptions:

• Design surface S(u, v) is a sculptured surface defined on a unit square (0 ≤ u, v ≤ 1)
with curvature continuity (G2) (Farin 2002). This encompasses all (non-degenerate)
cubic and higher order B-spline/NURBS surfaces, but any compound surface (Choi
and Jerard 1998) with lower order continuity or irregular topology has to be machined
patch-by-patch.

• Cutter is a flat-end cutter and its spindle speed is much higher than the feed rate.
Thus, material can be considered to be removed by the sweeping motion of a cylindrical
surface, the cutter surface C.

• Cutter size has been selected appropriately (Jensen et al. 2002).
• Potential collisions on the side of C have been avoided by restricting the cutter

orientation, but possible interference on the bottom of C needs to be checked.
• Step-forward distance is sufficiently small and tool passes Pi, i = 1, . . . , n, along which

C moves on S, are parametric curves of S. Thus, iso-parametric machining (Choi and
Jerard 1998) is studied and, without loss of generality, Pi has constant v-value denoted
by vi.
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• Allowable deviation of the machined surface M from S, referred to as machining
tolerance ε, is positive and consistent with that in the finishing stage (Rao and Sarma
2000).

Cutter orientation is used to specify how C is placed relative to S at their contact point,
the cutter contact (CC ) point. As depicted in figure 1, the orientation is described in a
local machining coordinate system (LMCS, XM-YM-ZM), where the ZM-axis is along the
surface normal N and the XM-axis is in the cutting direction. The cutter is first rotated
a lead angle α around the YM-axis, and then a screw angle β around the ZM-axis. In
general, 0 ≤ α ≤ π/2, −π/2 < β < π/2, but may be further restricted by collision
avoidance.

S

C

XM

YM

ZM

Pi

Pi−1

β

α

N

CC point

Figure 1. Cutter orientation in 5-axis machining

Cutter orientation can be assessed locally by the machined strip width w, which is
defined as follows: Let an error surface E denote the offset of S by a distance ε. Then
an area on E bounded by the intersection curves with C is a machined region G. The
maximum span of G along the YM-axis is the width w. For machining efficiency at the
CC point, an optimal orientation is desired to maximise w and give no gouging.

As C moves along Pi, it sweeps out a cutter swept surface Wi. A sequence of Wi

removes material to generate the machined surface M. To ensure the machining deviation,
the distance from M to S, is smaller than ε, M must lie between S and E. Define
an area on E bounded by the intersection curves with Wi as the machined strip Ii.
Then the strip Ii can also be considered as an envelope of the machined region G. The
strip Ii, region G and width w are intuitively defined in Euclidean space. However, in
iso-parametric machining, it is convenient to define them in the parametric space of S.
Thus, the machining can be considered as a process of overlapping a sequence of machined
strips in the parametric space as illustrated in figure 2.

To improve the machining efficiency in iso-parametric machining, the length of tool
path or, equivalently, the number of tool passes needs to be reduced. Accordingly, research
is directed to maximising the widths of individual strips Ii and the step-over distances
between successive strips Ii−1 and Ii, whilst ensuring there are only smooth changes in
the cutter orientation and no gaps between the strips.
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Pi−1

Ii

Ii−1

G

Figure 2. Overlapping machined strips in parametric space of design surface

1.2. Previous work

There has been much research effort to optimise the cutter orientation at a CC point in
5-axis sculptured surface machining. The published algorithms can be classified broadly
into local and global methods (Fan and Ball 2008). In the local methods (Vickers and
Quan 1989, Bedi et al. 1997, Rao and Sarma 2000, Jensen et al. 2002, Yoon et al.
2002), only normal curvatures of C (or Wi) and S are considered to orient C. The
main disadvantage of the local methods is that there could still be rear gouging, and
consequently a secondary iterative gouge-check and correction algorithm has to be
implemented (Gray et al. 2005). The global methods overcome the disadvantage by
using an area of S beneath C to determine the orientation (Warkentin et al. 2000,
Gray et al. 2003, 2005, Hosseinkhani et al. 2007, Fan and Ball 2008). In particular, the
quadric method (QM) (Fan and Ball 2008) exploits fully the orientation angles (α, β)
with respect to the machined strip width w. Further, the width evaluation is involved in
the method, and its approximation error is conservative and acceptably small. Thus, it
is adopted to orient the cutter along tool passes in this study.

Cutter orientation only aims to maximise the material removal at one CC point
in a specified cutting direction. The distribution and ordering of CC points over the
entire design surface is studied in tool path generation. In general, a tool path can be
topologically classified as a raster or a spiral pattern (Choi and Jerard 1998). The spiral
tool path keeps the cutter continuously removing material but is more restricted in its
applicability. For machining a general sculptured surface, the raster pattern is always
adopted and the tool path can be further categorised as an iso-parametric, iso-planar or
iso-scallop method of construction (Chiou and Lee 2002). The iso-scallop method has a
shorter tool path than the others (Chiou and Lee 2002, Li and Feng 2004, Tournier and
Duc 2005), but may have more broken tool passes and fail to converge in the numerical
computation (Rao et al. 2000, Tournier and Duc 2005). Therefore, the iso-parametric
and iso-planar methods are most widely and almost exclusively used in industry.

Tool path generation methods and cutter orientation strategies are currently
approached as two separate tasks. In order to maximise the step-over distance, the
cutter orientation at each CC point is optimised locally without considering its
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variation between neighbouring points (Choi and Jerard 1998, Jensen et al. 2002, Li and
Feng 2004). Accordingly, there could be some abrupt changes in orientation along a tool
pass. Jun et al. (2003) developed a method to avoid the abrupt changes by searching
alternative orientations in the machining configuration space and minimising the
variation in cutter orientation. Wang and Tang (2007) further improved the method by
limiting the rate of change of orientation angles in a given range. However, the second
derivatives of the orientation angles have not been controlled and the impact on the
step-over distance when limiting the angles has not been considered in either method.

The idea of integrated tool path generation was first presented by Rao et al. (2000). In
their method, cutter orientation is selected based on its contribution to the complete tool
pass. However, the width evaluation from the intersections of normal vectors with the
cutter gives no consideration to the error introduced by the surface discretisation, nor
the computational expense if dense vectors are adopted (Choi and Jerard 1998). Further,
the variation of the screw angle between two adjacent CC points is minimised but not
smoothed along the tool pass.

Based on the previous work, this paper proposes an integrated method (IM) for tool
path generation, which aims to minimise the number of tool passes in surface machining
under the constraint of smooth cutter orientation. The rest of the paper is organised as
follows: The machined strip is represented in parametric space in Section 2. Then, the
screw angle along a tool pass is expressed in B-spline form and optimised by balancing
considerations of the width and the smoothness of cutter movement in Section 3. Further,
the next tool pass is positioned as far as permissible from the previous one in Section 4.
Finally, the proposed method is illustrated with numerical examples in Section 5, followed
by the research conclusions in Section 6.

2. Machined strip along a tool pass

To optimise the cutter orientation along a tool pass and control the overlap between two
adjacent machined strips in iso-parametric machining, it is convenient to represent the
strips and their widths in the parametric space of the design surface S.

2.1. Parametric representation of machined strip

As shown in figure 3, let D1 and D2 denote the two width points, which determine
the machined strip width at a CC point. They are the intersections between the
error surface E and the bottom circle of the cutter C, and can be evaluated by the
quadric method (QM) in Euclidean space (Fan and Ball 2008). Suppose that the surface
parameters, corresponding to D1 and D2, are respectively (u1, v1) and (u2, v2). Then,
D1 lies on the straight line passing through S(u1, v1) in the normal direction N(u1, v1).
Thus

S(u1, v1) + h1N(u1, v1) = D1, (1)

where h1 is the distance between S(u1, v1) and D1. Ideally, h1 should be equal to the
machining tolerance ε. However, in the QM, D1 is evaluated by replacing the error surface
E with a translated quadric, which means h1 is always smaller than ε. Consequently,
equation (1) consists of three nonlinear component equations in three unknowns u1, v1,
h1, and has generally to be solved by a numerical method, such as the Newton-Raphson
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XM

YM

ZM

CC point

N(u0, v0)

N(u1, v1)
N(u2, v2)

D1

D2

Figure 3. Parametric representation of width points

method. An initial estimate of S(u1,0, v1,0) is evaluated from that of the previous width
point, and an initial estimate of h1,0 is set as ε.

Let u1,q, v1,q, h1,q be the qth approximation of a root of (1) and ∆u, ∆v, ∆h the
respective errors. Then

S(u1,q + ∆u, v1,q + ∆v) + (h1,q + ∆h)N(u1,q + ∆u, v1,q + ∆v) = D1. (2)

Expanding (2) in a Taylor series, taking the first order approximation and rearranging,
yields

a1,q∆u+ b1,q∆v + c1,q∆h = d1,q, (3)

where

a1,q = Su(u1,q, v1,q) + h1,qNu(u1,q, v1,q), b1,q = Sv(u1,q, v1,q) + h1,qNv(u1,q, v1,q),

c1,q = N(u1,q, v1,q), d1,q = D1 − S(u1,q, v1,q)− h1,qN(u1,q, v1,q).

By solving the linear equation (3), ∆u, ∆v and ∆h are obtained, and the next
approximation is determined by

u1,q+1 = u1,q + ∆u, v1,q+1 = v1,q + ∆v, h1,q+1 = h1,q + ∆h. (4)

The iterative procedure for finding the root of (1) is terminated if

|d1,q| < e1 or |S(u1,q+1, v1,q+1)− S(u1,q, v1,q)| < e2, (5)

where e1, e2 > 0 are the predefined accuracies of the point evaluation. Hence, the
parameters (u1, v1) of the width point D1 are obtained. Similarly, (u2, v2) of D2 can
be evaluated.

As the cutter C moves along the tool pass, the machined strip is bounded by two sets
of width points. Accordingly, the strip can be expressed in the parametric space of the
design surface S.

2.2. Parametric representation of width

Suppose that the cutter C moves along a tool pass Pi with a constant v, and the
parameters of the two width points are (u1, v1) and (u2, v2) at a CC point. Then
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w = |v1− v2| is referred to as the parametric representation of the machined strip width
at this location. The formulation takes no account of any difference in the values of u1

and u2, but this can have little practical effect in parametric machining unless v1 and
v2 are changing a lot between successive CC points on the tool pass. Further, it should
be pointed out that the values of u1 and u2 are taken into account in Section 4.1, when
ensuring successive machined strips overlap. The machining is therefore guaranteed to
cover the whole surface although there could be a slight compromise of the machining
efficiency.

In the quadric method (QM) for 5-axis sculptured surface machining (Fan and Ball
2008), the design surface S is approximated locally by two quadrics. An upper quadric
lying above S is used to orient the cutter and a lower quadric below S is used to evaluate
the machined strip width.

To maximise the width, for a given screw angle β, the lead angle α is optimised by
placing the cutter C as close as possible to the upper quadric. Since the bottom plane
of C intersects the upper quadric in a conic, the optimal α can be obtained based on
the intersections of the bottom circle of C and the conic. there are in general four
roots. Note that the circle and the conic share a common tangent direction at the CC
point which accounts for two of the roots and the remaining two determine whether α
should be increased to avoid gouging or decreased for cutting more material. The optimal
solution for α is where the remaining two roots are equal and is referred to as two contact
machining.

The machined strip width is determined by considering the distance of the surface
below the bottom circle of the cutter C. It is guaranteed in two contact machining that
all the distances are positive and the critical points are where the distances are equal to
the machining tolerance ε. There are at most four such points, which can be found by
translating the lower quadric in the normal direction by a distance ε and intersecting
with the bottom circle of C.

In the most straightforward case there are four distinct intersection points, dividing the
circle into four segments which are alternately within and outside machining tolerance.
Then the segment containing the CC point is used to determine the machined strip
width. As β varies, it is possible for the two segments machined within tolerance to
merge, with the transition occurring where they just touch at a double intersection
point. Consequently, the machined region can be classified broadly into three types: one
single region, two connected regions or two disjoint regions.

The width function is determined numerically from the region or connected regions
containing the CC point and its features, established by experimentation with thousands
of quadrics and a range of machining tolerances, are as follows:

• Width w may increase or decrease significantly when two disjoint regions merge into
one or one region splits into two. So it is discontinuous in this case. If there is only a
single region, then w is continuous.

• In the discontinuous case, there are two local maxima within the range of β,
corresponding to one region. Generally, they are at the two discontinuities.

• In the continuous case, there is one local maximum.

Figure 4 shows examples of discontinuous and continuous width functions, taken
respectively from the inverse mouse and mouse surface machinings which were used
previously to illustrate the quadric method (QM) for cutter orientation (Fan and Ball
2008).
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One single
region (β = 0◦)

w

(a) (b)

Figure 4. Width w as a function of screw angle β in (a) inverse mouse and (b) mouse surface
machinings at (0.5, 0.75)

Suppose that the cutter moves along a tool pass containing m + 1 CC points. At the
jth CC point where j = 0, 1, 2, . . . ,m, if the width is discontinuous, then the two local
maxima are at βh1(j) and βh0(j), where βh1(j) > βh0(j). If it is continuous, then the
local maximum is at βh(j). In the next section, the angle β will be optimised along the
tool pass with consideration to the balance between the width and the smoothness of
cutter movement.

3. Smoothing screw angle

The smoothness of the cutter movement is critical in 5-axis machining, and it is generally
characterised by the rate of change of particular variables, such as the speed of the CC
point (Lo 1999), the direction vector of the cutter axis (Li and Jerard 1994, Jun et al.
2003), and the angles of machine rotary axes (Affouard et al. 2004, Munlin et al. 2004).
The speed of the CC point is determined mainly by the setting of the feed rate. The
vector of the cutter axis and angles of the rotary axes are dependent on the lead angle α
and the screw angle β. Since the width w is a monotonic decreasing function of α (Jun
et al. 2003, Fan 2006) and a much more complex function of β as described in Section 2.2,
this paper concentrates on maximising w with a smooth β along a tool pass. The method
developed in the section is general, and could be applied to the smoothing of the angle
α or other optimisation criteria.

The basic idea for smoothing the angle β is to fit the local maxima with a cubic
B-spline, which is the lowest possible degree for second derivative continuity (Piegl and
Tiller 1997). To ensure there are no abrupt changes in the cutter movement, the first
and second derivatives are kept within specified bounds. It should be noted that special
care is needed for calculating the inverse kinematics of 5-axis milling machines, due to
singularities in the coordinate vector transformation. Consequently, a small deviation is
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given to any tool orientation close to the singular positions to avoid abrupt changes in
the machine rotary axes (Affouard et al. 2004, Munlin et al. 2004, Sørby 2007).

There are three cases to consider, dependent on whether the width is a discontinuous,
continuous or hybrid function of the angle β as it varies along the tool pass.

3.1. Discontinuous case

Consider the case when the width w is discontinuous in terms of the angle β at each CC
point along the tool pass. First, βh1(j), j = 0, 1, 2, . . . ,m are fitted by the optimal screw
angle βH1 described in cubic B-spline form as

βH1(t) =
K∑
k=0

Nk,3(t)Hk, 0 ≤ t ≤ 1, (6)

where K + 1 is the number of control values {Hk} with K > 2, and the {Nk,3(t)} are
the cubic B-spline basis functions defined on the unclamped, uniform knot vector (Piegl
and Tiller 1997)

T = { −3
K−2 ,

−2
K−2 ,

−1
K−2 , 0,

1
K−2 ,

2
K−2 , . . . ,

K−4
K−2 ,

K−3
K−2︸ ︷︷ ︸

K−3 internal knots

, 1, K−1
K−2 ,

K
K−2 ,

K+1
K−2}.

It should be emphasised that the screw angle is a scalar function defined by a sequence
{Hk} of one-dimensional scalars whereas, in most B-spline applications, spatial curves
are defined by a sequence of three-dimensional vectors. The cubic B-spline basis functions
are identical in both cases.

The B-spline parameter t is defined to vary linearly with the accumulated chord
length s. Suppose s = sj and t = tj at the jth CC point. Then tj =

sj
sm

, j = 0, 1, 2 . . . ,m.

In addition, since
ds

dt
is constant and tm = 1,

ds

dt
= sm, 0 ≤ t ≤ 1.

Then, in fitting the screw angle along the tool pass, the objective function is set as

minimise z =
m∑
j=0

(
βh1(j)−

K∑
k=0

Nk,3(tj)Hk

)
. (7)

To keep βH1(t) on the side of βh1(j) that corresponds to the one single region, there are
constraints

βh1(j)−
K∑
k=0

Nk,3(tj)Hk ≥ 0, j = 0, 1, 2, . . . ,m. (8)

To ensure smoothness of the fitting, it is necessary to control the rates of change of the
screw angle along the tool pass. The first and second derivatives of βH1 with respect to
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s, vH1(t) and aH1(t), are related to the parametric derivatives of the B-spline as follows:

vH1(t) =
dβH1(t)
ds

=
dβH1(t)
dt

dt

ds
=

1
sm

K∑
k=0

N ′k,3(t)Hk, (9)

aH1(t) =
d2βH1(t)
ds2

=
d2βH1(t)
dt2

( dt
ds

)2
=

1
s2
m

K∑
k=0

N ′′k,3(t)Hk, (10)

where N ′k,3(t) and N ′′k,3(t) are respectively the first and second derivatives of Nk,3(t) with
respect to t.

The principal method of control is to keep vH1(t) within a specified range [−V, V ]. It
follows from (9) that

sm|vH1(tj)| =
∣∣∣ K∑
k=0

N ′k,3(tj)Hk

∣∣∣ ≤ smV, j = 0, 1, 2, . . . ,m. (11)

The above constraints not only control vH1(t) but also help to keep aH1(t) in check.
However, further constraints are needed to counter the possibility of relatively high values
of |aH1(t)| at the ends of the spline. One control option is to specify zero first derivatives
at the ends with vH1(0) = vH1(1) = 0. Another option is to implement natural splines
with aH1(0) = aH1(1) = 0. A less restrictive option, adopted here, is to bound the values
of aH1(0) and aH1(1):

s2
m|aH1(tj)| =

∣∣∣ K∑
k=0

N ′′k,3(tj)Hk

∣∣∣ ≤ 4(K − 2)smV, j = 0,m. (12)

It is proved in the Appendix A (with D = smV ,
dβ(t)
dt

= smvH1(t) and
d2β(t)
dt2

=

s2
maH1(t)) that for each of the control options

s2
m max |aH1(t)| ≤ 4(K − 2)smV. (13)

Consequently, to keep aH1(t) within a specified range [−A, A], K is assigned as the largest
integer satisfying

K ≤ smA

4V
+ 2. (14)

Then, it follows from (7), (8), (11) and (12) that the problem of optimising the screw
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angle can be expressed as a constrained linear minimisation of the form:

minimise z =
m∑
j=0

(
βh1(j)−

K∑
k=0

Nk,3(tj)Hk

)
,

subject to
K∑
k=0

Nk,3(tj)Hk ≤ βh1(j), j = 0, 1, 2, . . . ,m,

K∑
k=0

N ′k,3(tj)Hk ≤ smV, j = 0, 1, 2, . . . ,m,

−
K∑
k=0

N ′k,3(tj)Hk ≤ smV, j = 0, 1, 2, . . . ,m,

K∑
k=0

N ′′k,3(tj)Hk ≤ 4(K − 2)smV, j = 0,m,

−
K∑
k=0

N ′′k,3(tj)Hk ≤ 4(K − 2)smV, j = 0,m.

(15)

The problem (15) can be further reformulated into the standard form of linear
programming (Dantzig 1963), and then solved by the simplex method, which is
efficient in solving linear problems with hundreds (even thousands) of variables and
constraints (Vanderbei 2001). Hence, βH1(t) is obtained. Similarly, replacing βh1(j) by
βh0(j) and Hk by −Hk in (15) gives βH0(t), the optimal screw angle fitting to βh0(j),
j = 0, 1, 2, . . . ,m.

For example, consider the optimisation of the screw angles along the tool pass v = 0.75

in the inverse mouse surface machining. Suppose vH1(t) =
dβH1(t)
ds

and vH0(t) =
dβH0(t)
ds

are to be kept within the range [−1◦/mm, 1◦/mm] and aH1(t) =
dβ2

H1(t)
ds2

and aH0(t) =

dβ2
H0(t)
ds2

within the range [−0.3◦/mm2, 0.3◦/mm2]. Given sm is approximately 125.4 mm,

then it follows from (14) that K = 11 should be adopted for the fitting. Figure 5 shows
the optimal screw angles βH1(t) and βH0(t), and confirms that the respective first and
second derivatives are within the specified ranges. Whichever is used for the machining,
there is no risk of abrupt changes in the cutter movement.

To construct the machining data at each CC point along the tool pass, the screw
angle β is evaluated from the B-spline approximation and the corresponding lead angle α
is determined by the integrated orientation strategy of the quadric method (QM) (Fan
and Ball 2008). As outlined in Section 2.2, the QM optimises α by placing the cutter C as
close as possible to the upper quadric approximation of the design surface S. Inevitably,
the data smoothing reduces the width of the machined strip, but the QM minimises that
reduction whilst guaranteeing there is no local interference.
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(a)

(b)

(c)

60◦

30◦

0◦

−30◦

−60◦

0 1

βh1(j)

βH1(t)

βh0(j)

βH0(t)

0 1

0 1

1◦/mm

−1◦/mm

0.3◦/mm2

−0.3◦/mm2

vH0(t)

vH1(t)

aH1(t)

aH0(t)

t

Figure 5. Optimisation along tool pass with K = 11 showing (a) optimal screw angles (b) first
and (c) second derivatives

3.2. Continuous case

Next, consider the case when the width is continuous in terms of the screw angle at each
CC point along the tool pass. Two angle functions βH0(t) andβH1(t) are constructed in
cubic B-spline form, which best fit βh(j), j = 0, 1, 2, . . . ,m, with limited first and second
derivatives along the tool pass such that βH0(tj) ≤ βh(j) ≤ βH1(tj), j = 0, 1, 2, . . . ,m.
More generally, any cubic spline of the form βHλ(t) = (1−λ)βH0(t) +λβH1(t), 0 ≤ λ ≤ 1,
has first and second derivatives within the specified bounds. Unlike the discontinuous
case, the sign of (βHλ(t) − βh(t)) is not critical. Consequently, choosing λ such that
m∑
j=0

(βHλ(t) − βh(t)) = 0 or λ = 0.5 would give reasonable, unbiassed fits but, for total

compatibility with the discontinuous case, the choice is restricted to λ = 0 or λ = 1.

3.3. Hybrid case

Finally, consider the hybrid case when the width is discontinuous in terms of the screw
angle at some CC points and continuous at others. If the width is discontinuous at the
jth CC point, then its local maxima are at βh1(j) and βh0(j), where βh1(j) > βh0(j). If
the width is continuous, then its local maxima are considered at βh1(j) and βh0(j) with
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βh1(j) = βh0(j). Consequently, two angle functions βH1(t) and βH0(t) are constructed in
B-spline form, which best fit βh1(j) and βh0(j), j = 0, 1, 2, . . . ,m, as before.

The hybrid case essentially unifies the analysis and provides a general solution with
two candidates, βH0(t) and βH1(t), for defining the screw angle. The choice for an
individual machined pass could be determined by comparing minwH0(t) and minwH1(t)
and adopting the one with the greater width. However, the overall surface quality is
likely to be better by adopting a fixed preference for either βH0(t) or βH1(t) over the
whole surface, since the spacing of the Pi’s will be more regular and the screw angle
functions along successive Pi’s will be more compatible.

4. Machining whole surface

A method is proposed in this section to construct the machined strip Ii adjacent to a
previously constructed Ii−1, with an adaptation to construct the first strip I1. A discrete
parametric definition is adopted for the profile of a machined strip and an iterative
algorithm is proposed to maximise the step-over from vi−1 to vi, whilst ensuring there are
no gaps between Ii and Ii−1. The method is applicable to any construction of machined
strips where the screw angle and lead angle functions are uniquely defined for all CC
points along a tool pass, for all values of v, 0 ≤ v ≤ 1. Functions of particular interest in
this paper are β = 0, β = βH0(t) or β = βH1(t) with optimal α; or β = 0 with constant α.

4.1. Overlap between two machined strips

The overlap between Ii and Ii−1 is independent of the directions in which they are
machined. So, to simplify the description and computational details, it is assumed that
the tool passes have increasing u-values.

Suppose that at the jth CC point along the tool pass Pi, the parametric left and
right width points are respectively at (ai,j , bi,j) and (ci,j , di,j) as shown in figure 6.
Then the machined strip Ii is bounded by two sets of points (ai,j , bi,j) and (ci,j , di,j),
j = 0, 1, 2, . . . ,m(i), where m(i) + 1 is the number of CC points along Pi. The overlap
distance ∆vi,j between Ii and Ii−1 at (ci,j , di,j) can be evaluated as

∆vi,j =
ci,j − ai−1,r

ai−1,r+1 − ai−1,r
(bi−1,r+1 − bi−1,r) + bi−1,r − di,j , (16)

where r is determined by ai−1,r ≤ ci,j < ai−1,r+1. If ∆vi,j ≥ 0, then Ii and Ii−1 overlap
at (ci,j , di,j) by a distance equal to ∆vi,j . Otherwise, there is a gap equal to −∆vi,j .

Consequently, when constructing Ii, a necessary condition is that ∆vi,j ≥ 0, j =
0, 1, 2, . . . ,m(i), i.e., there should be no gaps between Ii and Ii−1.

4.2. Determining step-over

The primary objective in the construction of a machined strip Ii is to determine the
parametric constant v = vi > vi−1 for the next tool pass Pi. It is assumed that
bi−1 = min{bi−1,j} < 1, otherwise there would be no need to construct another tool
pass. It is also assumed that the screw angle and lead angle functions are uniquely
defined at all CC points along a tool pass, for all values of v, 0 ≤ v ≤ 1.
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Pi−1

Pi

vi−1

vi

Ii−1

Ii

(ai−1,r+1, bi−1,r+1)

(ci,j , di,j)

(ai−1,r, bi−1,r)

(ai,j , bi,j)

∆vi,j

u

v 6

-

Figure 6. Overlap between two machined strips

If the machined strip along v = 1 overlaps Ii−1 without any gaps, then vi = 1 is
adopted as an acceptable solution. Otherwise, the aim is to maximise the step-over from
vi−1 to vi, within a tolerance ep. Let δ(vi) denote the minimum overlap of the machined
strip along v = vi with Ii−1, 1 ≥ vi ≥ vi−1. Then bi−1 < 1, δ(bi−1) > 0 and δ(1) < 0.
Consequently, by successive bisection of the interval [bi−1, 1], it is possible to find an
interval [vi, v∗i ] where δ(vi) ≥ 0, δ(v∗i ) < 0 and 0 < v∗i − vi ≤ ep. Of course, there are
generally more computationally efficient ways of finding vi.

For example, an iterative algorithm is proposed to find vi which aims to minimise
the overlap with Ii−1 rather than maximise the step-over. Let min{wi−1} denote the
minimum width of Ii−1, then the v-value of Pi is initialised at

vi,0 = vi−1 + min{wi−1}. (17)

At the qth iteration, suppose that the minimum overlap distance between the two strips
is δvi,q = min{∆vi,j}. If 0 ≤ δvi,q ≤ ep, then the iteration is terminated. Otherwise, the
v-value of Pi at the (q + 1)th iteration is determined by

vi,q+1 = vi,q + δvi,q − ep/2. (18)

For total computational robustness, it is advisable to incorporate within the software
solution a binary search to find vi, which can be triggered whenever there is slow
convergence.

The above algorithm must be adapted for the first machined strip I1, where there is
not a previously constructed strip. In this case a dummy machined strip is constructed
along v = 0. Let min{w0} denote the minimum width of the whole strip and b0 denote
the minimum width of that part with v ≥ 0. Then, in the iterative process to find vi,
equations (16) and (17) are adapted to

∆v1,j = −d1,j , (16a)

v1,0 = −b0 + min{w0}. (17a)

Consequently, the first machined strip will overlap v = 0 such that the minimum overlap
is within tolerance.
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5. Inverse mouse surface machining

The proposed integrated method (IM) was implemented using Visual C++ R© and
OpenGL R© on a personal computer with an Inter R© Core

TM
2 Duo 2.33GHz Processor

and 2.00GB of RAM under Windows R© XP Professional SP2 operating system. The
implementation comprises four modules for lead angle optimisation, screw angle
optimisation, width evaluation and step-over determination. The cutter is a flat-end
cutter with radius R = 4 mm, machining tolerance ε = 0.01 mm, allowable overlap
distance ep = 2e−4, and accuracies of point evaluation e1 = e2 = 1e−5 mm. It took 6.32
minutes to generate 16 tool passes to cover the entire inverse mouse surface as shown in
figure 7(a).

The tool path has been checked by Toolpath Verification in PowerMILL R© 9.0, a
world leading CAM software package, and there are no gouges/collisions reported. The
machining was also simulated using ViewMILL in PowerMILL and figure 7(b) illustrates
the shiny rendered image. It should be noted that ViewMILL employs a dynamic
flute model, rather than a cylindrical surface, to define the geometry of the cutter
and produces photorealistic images which correspond almost perfectly to the results
of physical machinings (Liu et al. 2005). Comparing figures 7(a) and 7(b), it can be seen
that they have very similar strip patterns although the ViewMILL shows up some minor
surface irregularities, well within the machining tolerance, just as one would get in the
physical machining.

Table 1 gives the v-values of the corresponding tool passes, and figure 8(a) illustrates
the machined strips in parametric space. Suppose that the surface is physically machined
with a feed rate of 250 mm/min, then the total machining time is approximately
8.26 minutes.

(a) (b)

Figure 7. Inverse mouse surface machining showing (a) machined strips and (b) simulation result

Table 1. v-values of tool passes

No. 1 2 3 4 5 6 7 8

v 0.0110 0.0411 0.0881 0.1417 0.2068 0.2741 0.3482 0.4293

No. 9 10 11 12 13 14 15 16

v 0.5104 0.5872 0.6659 0.7425 0.8206 0.8935 0.9551 0.9862
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Table 2 compares of the IM with some alternative machining strategies introduced
in Section 1.2 for machining the inverse mouse surface, and figure 8 illustrates the
corresponding machined strips in parametric space. In some published 5-axis machining
methods (Gray et al. 2003, 2005, Hosseinkhani et al. 2007), the screw angle β is kept at 0◦

and the lead angle α is optimised by placing the cutter as close as possible to the design
surface. The computational time for this method to generate 24 tool passes to cover the

Table 2. Comparison of alternative machining methods in inverse mouse surface machining

Number of passes Computational time(min) Machining time(min)

Integrated method 16 6.32 8.26
β = 0◦ with optimal α 24 2.41 12.40
β = 0◦, α = 10◦ 50 3.55 25.80

(a)

(b) (c)

Figure 8. Comparison of machined strips in parametric space showing (a) Integrated method (16
passes), (b) β = 0◦ with optimal α (24 passes), and (c) β = 0◦, α = 10◦ (50 passes)
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entire surface is 2.41 minutes, and the machining time is 12.40 minutes. Alternatively, if
the surface is machined by the conventional 5-axis method with α = 10◦ and β = 0◦ (Choi
and Jerard 1998), it will take 3.55 minutes to generate 50 tool passes and 25.80 minutes
to physically machine the surface.

The example illustrates the potential efficiency savings of the IM compared to the
other strategies, with reductions in the machining times of 33% and 68% respectively.
The simple practical explanation for the improvement is that the two orientation angles
of the cutter are fully exploited in the IM, so that the cutter surface is optimally close to
the design surface, subject only to the constraint of having a smooth cutter movement.
Further, comparing the machined strips in figure 8, it can be seen that those in 8(a)
are as regular as those in 8(c) and more regular than those in 8(b), which suggest the
machined surface quality is as good with the IM as with the other strategies.

The one disadvantage of the IM is the extra computational time, with the bulk of that
time (about 0.2 min/pass) spent on searching for the optimal screw angle. Certainly,
there is a scope for improving the search algorithm but the extra cost of computation is
already small compared to the valuable savings in 5-axis machining time. Indeed, in all
cases, the extra computational time is outweighed by the reduction in machining time
without any consideration to their relative value.

6. Conclusions

In this paper, the integrated method (IM) has been developed for tool path generation
in 5-axis machining. Distinctive from existing methods, both the machined strip width
and the smoothness of cutter movement are considered in determining cutter orientation
along a tool pass. Further, the next tool pass is positioned as far as permissible from the
previous one. It follows that the two cutter orientation angles are fully exploited along
the tool passes and the step-over distances are maximised under the constraint of smooth
cutter movements. Consequently, the IM is more efficient and the numerical simulations
in Section 5 have shown that there can be a significant reduction in the number of tool
passes required by the IM compared to other methods.

In the paper, the IM has been combined with the quadric method (QM) in
iso-parametric machining with a flat-end cutter. However, the IM can be extended
easily to machining with a fillet-end cutter, according to the geometric equivalency
between the flat-end and fillet-end cutters (Yoon 2003, Fan and Ball 2008). Also, it
is applicable to other orientation strategies with different machining mechanisms, based
on the width evaluation in physical space (Marciniak 1991). Finally, by formulating the
possible constraints from collision avoidance into a linear form, an efficient, smooth and
safe tool path can be obtained.
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Appendix A.

Suppose that β(t), 0 ≤ t ≤ 1 is a uniform cubic B-spline comprising (K − 2) segments,

K > 2, where max
∣∣∣∣dβ(t)
dt

∣∣∣∣ ≤ D.

If (i)
dβ(0)
dt

,
dβ(1)
dt

= 0,

(ii)
d2β(0)
dt2

,
d2β(1)
dt2

= 0,

or (iii)
∣∣∣d2β(0)
dt2

∣∣∣, ∣∣∣d2β(1)
dt2

∣∣∣ ≤ 4(K − 2)D,

then max
∣∣∣d2β(t)
dt2

∣∣∣ ≤ 4(K − 2)D.

Proof :
d2β(t)
dt2

is a uniform linear B-spline comprising (K − 2) segments, varying

linearly from
d2β( l

K−2)
dt2

to
d2β( l+1

K−2)
dt2

, l
K−2 ≤ t ≤ l+1

K−2 , l = 0, 1, · · · ,K − 3. It follows

that the maximum value of
∣∣∣d2β(t)
dt2

∣∣∣ must occur at one of the segment ends.

First suppose that the maximum of
∣∣∣d2β(t)
dt2

∣∣∣ occurs at t = 0. Then result follows

immediately in cases (ii) and (iii). In case (i)

d2β(t)
dt2

=
(
1− (K − 2)t

)d2β(0)
dt2

+ (K − 2)t
d2β( 1

K−2)
dt2

, 0 ≤ t ≤ 1
K−2 ,

where

−
∣∣∣d2β(0)
dt2

∣∣∣ ≤ d2β( 1
K−2)
dt2

≤
∣∣∣d2β(0)
dt2

∣∣∣.
Integrating with

dβ(0)
dt

= 0 gives

dβ(t)
dt

=
(
t− 1

2(K − 2)t2
)d2β(0)

dt2
+ 1

2(K − 2)t2
d2β( 1

K−2)
dt2

, 0 ≤ t ≤ 1
K−2 .

Minimum range of
dβ(t)
dt

over
[
0, 1

K−2

]
occurs when

d2β( 1
K−2)
dt2

= −d
2β(0)
dt2

. Then

dβ(t)
dt

=
(
t− (K − 2)t2

)d2β(0)
dt2

, 0 ≤ t ≤ 1
K−2 ,

and
dβ(t)
dt

ranges from 0 to
1

4(K − 2)
d2β(t)
dt2

.

Since max
∣∣∣dβ(t)
dt

∣∣∣ ≤ D, if follows that

max
∣∣∣d2β(t)
dt2

∣∣∣ = max
∣∣∣d2β(0)
dt2

∣∣∣ ≤ 4(K − 2)D.
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The proof is similar at t = 1.

Now suppose that the maximum of
∣∣∣d2β(t)
dt2

∣∣∣ occurs at t = l
K−2 , 1 ≤ l ≤ K − 3. Then

−
∣∣∣d2β( l

K−2)
dt2

∣∣∣ ≤ d2β( l−1
K−2)
dt2

,
d2β( l+1

K−2)
dt2

≤
∣∣∣d2β( l

K−2)
dt2

∣∣∣.
The minimum range of

dβ(t)
dt

over
[
l−1
K−2 ,

l+1
K−2

]
occurs when

d2β( l−1
K−2)
dt2

=
d2β( l+1

K−2)
dt2

= −
d2β( l

K−2)
dt2

.

Then
dβ(t)
dt

ranges from

dβ( l
K−2)
dt

− 1
4(K − 2)

d2β( l
K−2)
dt2

to
dβ( l

K−2)
dt

+
1

4(K − 2)
d2β( l

K−2)
dt2

.

Since
dβ(t)
dt

ranges at most from −D to D, it follow that

max
∣∣∣d2β(t)
dt2

∣∣∣ = max
∣∣∣d2β( l

K−2)
dt2

∣∣∣ ≤ 4(K − 2)D.
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