
HAL Id: hal-00673149
https://hal.science/hal-00673149

Submitted on 22 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Floating polygon soup
Thomas Colleu, Luce Morin, Stéphane Pateux, Claude Labit

To cite this version:
Thomas Colleu, Luce Morin, Stéphane Pateux, Claude Labit. Floating polygon soup. 17th Inter-
national Conference on Digital Signal Processing (DSP), 2011, Special Session on Multiview and 3D
Video Coding, Jul 2011, Corfu, Greece. pp.1 - 8, �10.1109/ICDSP.2011.6005017�. �hal-00673149�

https://hal.science/hal-00673149
https://hal.archives-ouvertes.fr


FLOATING POLYGON SOUP

T. Colleu 1, L. Morin 1, S. Pateux 2, C. Labit 3

1 IETR/INSA Rennes. 20, avenue des Buttes de Coesmes, 35708 Rennes, France

2 Orange Labs. 4, rue du Clos Courtel, 35512 Cesson Sevigne, France

3 INRIA-Rennes Bretagne Atlantique. Campus de Beaulieu, 35042 Rennes, France.

ABSTRACT

This paper presents a new representation called floating
polygon soup for applications like 3DTV and FTV (Free
Viewpoint Television). This representation is based on
3D polygons and takes as input MVD data. It extends
the previously proposed polygon soup representation [1]
which is appropriate for both compression, transmission
and rendering stages. The floating polygon soup con-
serves these advantages while also taking into account
misalignments at the view synthesis stage due to mod-
eling errors. The idea for reducing these misalignments
is to morph the 3D geometry depending on the current
viewpoint. Results show that artifacts in virtual views
are reduced and objective quality is increased.

Index Terms— Multiview video plus depth, vir-
tual view synthesis, 3D morphing, polygon soup.

1. INTRODUCTION

The year 2010 has seen the popularity of 3D video ex-
ploding, starting with the success of 3D movie ’Avatar’ in
cinemas in December 2009 and with electronic companies
announcements of their 3D-ready televisions arriving at
home. Here, the functionality that justifies the term ’3D’
is stereoscopy, where there is only one more image com-
pared with traditional 2D video. But it is sufficient to
show the potential of 3D video to improve the description
of a scene and the feeling of depth for the users. Active
research is now focused on multi-view video in order
to increase the number of images of the same scene at
the same time [2, 3, 4]. Multi-view video brings mainly
two functionalities to the users. The first functionality is
free viewpoint navigation: similarly to the famous ”bul-
let time effect” in the movie ’The matrix’, the viewer
can change the point-of-view within a restricted area in
the scene, thus having a navigation functionality. The

T. Colleu performed the work while at Orange Labs. This
work is supported by the RUBI3 and PERSEE project

second functionality is auto-stereoscopy: the viewer en-
joys stereoscopic visualization without the use of special
glasses. Multi-view auto-stereoscopy brings more free-
dom in terms of viewing position and number of users.
These two functionalities raise new applications like FTV
(Free viewpoint TV) and 3DTV.

The chosen representation plays a central role in a
multi-view video system. Indeed, it influences the data
load to be transmitted, the compression method to be
used, as well as the computational complexity during
the view synthesis stage and the final video quality at
the display stage.

In this paper, we present an original representation
for multiview videos that we call floating polygon soup.
This representation takes as input multi-view video plus
depth (MVD) data. It extends the previously proposed
polygon soup representation [1] which is appropriate
for both compression, transmission and synthesis stages.
The floating polygon soup conserves these advantages
while also taking into account artifacts at the synthesis
stage.

Section 2 gives a state-of-art about depth image-
based representations and related view-synthesis issues.
In section 3, an overview of the previously proposed poly-
gon soup representation is given. The floating polygon
soup representation is described in section 4. Section
5 presents quality evaluation of intermediate view syn-
thesis obtained with the proposed representation and
discusses the issues raised by our representation.

2. STATE OF ART

Depth image-based representations. Existing rep-
resentations for multi-view video often contain some ge-
ometric information about the scene in addition to color
information, such as depth image-based representations.
A depth map is an image that associates one depth value
(i.e. the distance to the camera) to each pixel. It enables



to synthesize intermediate views using a perspective pro-
jection method. A depth-based representation can be
composed of a single viewpoint (a.k.a 2D+Z [5]) or multi-
ple viewpoints (Multiview Video plus Depth MVD [6, 7]).
Moreover, in order to deal with the compromise between
data load due to multiple viewpoints and image quality,
the Layered Depth Video (LDV) selects a certain view
as reference and extract, from the other views, only the
information which is not contained in the reference view,
i.e. the occluded areas [8].

Depth maps compression. Depth maps are gray
level images, so they can be compressed with an efficient
video codec such as H.264. However, depth maps de-
scribe the surface of a scene and have different properties
compared to an image describing the texture. There-
fore, synthesizing intermediate views using compressed
depth maps creates visually disturbing artifacts, espe-
cially around depth discontinuities (objects boundaries)
as studied in [9]. With this in mind, several approaches
have been proposed to compress depth maps while pre-
serving depth discontinuities [10, 11, 12].

Depth based view synthesis. Synthesizing inter-
mediate views using depth maps is generally performed
using a point-based method: each pixel is independently
reconstructed in 3D and then re-projected into the de-
sired intermediate view. As a result, many small holes
appear in the intermediate view and must be filled with
post-processing techniques [7]. An alternative is to trans-
form the depth maps into a 3D surface using geometric
primitives such as triangles [6] or quadrilaterals [13] and
to disconnect these primitives at depth discontinuities so
that the background and foreground are not connected.
This solution eliminates the post-processing stage but
requires a graphic processor.

During intermediate view synthesis, multiple images
are warped or projected into the novel view. A com-
bination strategy is needed to obtain one texture from
multiple candidates [14]. View-dependent combination
of the multi-images into the novel view provides better
photo-realism and helps to reproduce non-Lambertian
reflectance effects [15, 16]. In addition, special process-
ing of the occlusion boundaries is used to reduce so-called
ghosting artifacts in the novel views [7, 17].

Modeling errors. However, due to modeling er-
rors, images are not warped or projected to the expected
position into the novel view, creating local texture mis-
alignments. These misalignments appear in the form of
texture deformation if only one image is used, or splitting
and blur if multiple images are combined.

Existing solutions correct texture misalignments
through matching and warping techniques. Floating
textures [17] have been proposed for correcting these
misalignments during view synthesis. The idea is to

compute motion flow between synthesized textures com-
ing from multiple views (matching step) and then use
the estimated flow to warp them onto each other so
that to reduce texture misalignments (warping step). A
similar method was proposed by Takai et al. [18]. In
this method, the computation of texture coordinates is
reduced to only vertex positions instead of computed
motion flow over the whole images. This is computed as
a pre-processing step together with a mesh optimization
process. Furihata et al. [19] proposed another solution
to compute texture correction in a pre-processing step.
They compute intensity residual error of each view pro-
jected into another one (differencing step rather than
matching). Then during view synthesis, the residual
error is fed back into the virtual view and processed
according to the virtual position (addition step rather
than warping). The main difference with the previous
methods is that texture misalignment is computed in
terms of intensity error instead of motion field which is
computationally less expensive but may be less efficient
for correcting misalignments.

Finally, in the temporal domain, there are also meth-
ods that match and morph the geometry across time in
order to reproduce objects motions. Vedula et al. [20]
introduced the 3D scene flow with a volumetric represen-
tation. The 3D scene flow gives the motion of each voxel
of the representation between two frames of the video.
It is computed using 2D motion flow and 3D data. The
aim is to reproduce the motion of the scene, but it can
also be thought as a problem of texture misalignments
between two images of different time instant, similarly
to texture misalignments between two views.

The purpose of this paper is to correct texture
misalignments due to modeling errors. The proposed
method, called floating polygon soup consists in morph-
ing 3D geometry depending on the current viewpoint.
Morphing the geometry enables to keep the same tex-
ture coordinates for each 3D point, on the contrary to
warping 2D textures. The representation that we used
to evaluate this method is the polygon soup [1]. The
next section gives an overview of this representation.

3. POLYGON SOUP REPRESENTATION

3.1. Overview

We propose to construct, from the input MVD data, a
representation called polygon soup (figures 1 and 2).

3D polygons. First of all, the rendering primitives
are 3D polygons. Polygonal primitives have several ad-
vantages: they increase compactness by adapting their
size to the surface, they model the continuity of the sur-
face, and graphics processors are optimized to render
them. Moreover, all the 3D polygons are not necessarily



����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

View V5 Depth map Z5

View V3

Depth map Z3

Depth map Z1

View V1

3D polygon soup

Fig. 1. Polygon soup. Each 3D polygon is defined by
a 2D polygon (quad), and by the depth information at
each corner of the quad.

Fig. 2. Example of a polygon soup, seen from an arbi-
trary viewpoint (without texture).

connected to each others and can overlap, forming a kind
of mixture of polygons which is often called a polygon
soup. Here, the disconnection feature is very important.
First, it ensures that foreground and background objects
are not connected, thus preserving depth discontinuities.
Second, it allows to easily remove redundant or unreliable
polygons, thus increasing the compactness. The overlap-
ping feature is also a key point. Since multi-texture and
multi-geometry are available from the input data, over-
lapping polygons (i.e. coming from different views) can
be selected or merged depending on the desired view-
point, thus ensuring view-dependent quality of virtual
views. In a word, disconnection and overlapping allow
to play with the compactness and image quality trade-
off by removing unnecessary polygons and overlapping
necessary ones. Figure 2 shows an example of such 3D
polygons that can overlap and be disconnected.

Stored in 2D. The representation forms a 3D poly-
gon soup at the view synthesis stage. However, for com-
pactness and compression efficiency, the polygons are

stored in 2D with depth values at each corners. These
2D polygons are extracted from the depth maps using
a quadtree decomposition method. These 2D polygons
are also called ’quads’. Figure 3 shows an example of 2D
quads extracted from MVD data and for 3 views.

(a) Left view (b) Central view (c) Right view

Fig. 3. Example of polygon soup stored in 2D. Top line:
final set of selected quads in each view. Bottom line:
associated color information.

The decomposition of the depth maps into quadtree
allows to retrieve the (x, y) positions of the quads, thus
a compression method exploiting this structure can be
employed. Each leaf of the tree corresponds to a quad.
Using this structure, it is easy to remove redundant poly-
gons by pruning the corresponding leaf in the tree. More-
over, the decomposition can be adapted to the geometry
of the scene such that large quads approximate flat sur-
faces and small quads preserve geometric details and dis-
continuities.

Textured by the images. The texture of the poly-
gons is given by the original images: the block of pixels
in the image corresponding to a quad is mapped onto the
3D polygon using texture mapping techniques supported
by graphics hardware. Since, multiple images are avail-
able, it is possible to texture the polygons with multiple
textures depending on the view-point. This results in
a multi-textured appearance of the polygon that better
reproduces specular effects of real-world scenes. In addi-
tion, this kind of multi-view videos can be efficiently com-
pressed using the standardized H.264/MVC compression
method. Finally, transmitting the original views ensures
maximum image quality at original view-points.

3.2. Processing steps

Using such a polygon soup involves several processing
steps for constructing this representation, compressing
it, and synthesizing virtual views. These different steps
are listed:

• Construction: Depth estimation; Quadtree de-
composition; Redundancies reduction.



• Compression: QuadTree-based compression or
block-based compression

• View-synthesis: Polygon warping; Texture map-
ping; Post-processing; Quadtree decomposition (if
block-based compression)

3.3. Properties

The proposed polygon soup can be analyzed in terms of
general properties:

• Construction complexity: Most of the complexity
is transfered to the construction of the representa-
tion in order to achieve compactness, and to de-
crease view synthesis complexity.

• Compactness: Compactness is achieved by keeping
the number of polygons low and reducing inter-
view redundancies.

• Compression compatibility: A new quadtree-based
compression method has been introduced in [1] for
the polygon soup. However, block-based compres-
sion is also possible providing that the quadtree
decomposition step is transferred at the user side
of the system.

• View synthesis complexity: Virtual views are syn-
thesized using graphics hardware and polygonal
primitives. Polygons avoid the apparition of sam-
pling artifacts compared with depth-based view
synthesis, thus the view synthesis complexity is
lower. Moreover, since unreliable polygons are
removed during the construction of the represen-
tation, the polygon soup reduces the so-called
ghosting artifacts and thus no additional process
are required to avoid them. Additional process like
hole filling and filtering are still required for high
image quality.

• Navigation range and image quality: Original
views are preserved ensuring maximum quality at
original viewpoints. Navigation in between original
views is done by view-synthesis using the polygon
soup as the geometry of the scene. However, be-
cause of modeling errors, texture misalignments
appear in the synthesized views and reduce the
final image quality. Therefore, the next section
presents a new method to reduce these texture
misalignments.

4. FLOATING POLYGON SOUP

This section presents a method to reduce modeling errors
that create artifacts in the synthesized images. Starting
from n views and associated polygon soup, the idea is

to deform each polygon depending on the current view-
point. We call this: Floating polygon soup.

The proposed method is divided into two steps:
matching and morphing. The matching step consists in
matching 3D geometries pairwise while using an image
registration constraint. This matching step can be seen
as a preprocess before the synthesis of arbitrary viewing
positions. Then, the morphing step consists in inter-
polating the geometries between their matched corre-
spondences according to the current viewing position. It
thus realizes view-dependent geometry. View-dependent
texture is also performed, as all views are projected into
the current viewing position and blended to allow for
smooth combination.

Figure 4 summarizes the floating geometry method
for virtual view synthesis.

Synthesized view

Multi-geometry

3D matching with

image registration

constraint

View-dependent

synthesis

Virtual view

Viewing position

3D morphing

Multi-view

+

Fig. 4. Overview of the floating geometry method for
virtual view synthesis.

We use the following notations:

• a view point Vi is defined as a pair (Gi, Ii), where
Gi defines geometry (depth map, 3D model,..) and
Ii is the acquired color image also used as a texture
image.

• πi() and π−1

Gi
() denote projection on view Vi and

backprojection from view Vi using Gi.

• I
j
i (resp. G

j
i ) denotes the image (resp. geometry)

from view Vi projected in view Vj .

• WI1→I2
is the motion flow between I1 and I2.

4.1. 3D matching with image registration con-

straint

We consider n original views Vi = (Gi, Ii)i=1,n, where ge-
ometry is assumed already estimated for each acquired
image, for instance as a 3D model or a depth map. The
matching step consists in defining a point to point corre-
spondence between any pair of geometries (Gi, Gj) based
on image registration between Ii and Ij .

The process is illustrated on Figure 5. View Vi is
first projected into view point Vj using geometry Gi to

produce projected image I
j
i :

I
j
i = πj(π−1

Gi
(Ii)) (1)

As explained earlier, image I
j
i is not aligned with Ij .

We thus estimate the flow field W
I

j

i
→Ij

compensating



for image misalignment in Vj . It is then used to warp I
j
i ,

and the resulting image is back-projected in 3D using
geometry Gj to obtain the floated geometry G

j
i . That is

:

G
j
i = π−1

Gj
(W

I
j

i
→Ij

◦ I
j
i ) (2)

G
j
i is consistent with Gj , i.e. it provides same ge-

ometry information, but each point in G
j
i is associated

with a point in Gi thanks to this definition. Moreover,
the projection of Vi into Vj using G

j
i is aligned with Ij ,

i.e. it performs same image registration as applying op-
tical flow on I

j
i . Thus when synthesizing view Vj , 3D

vertex Pi with texture pi is floated to 3D vertex P
j
i and

then projected into Vj on point pj . As Pi and P
j
i have

been matched in order to represent the same physical 3D
point, texture blending using texture points pi and pj will
not generate misalignments in the synthesized view Vj .

Fig. 5. Computation of a matching vertex. Pi is pro-
jected in Vj giving p

j
i which is matched with correspond-

ing pixel pj . Finally, pj is back-projected to the approx-

imate geometry resulting in the 3D point P
j
i .

4.2. View-dependent 3D morphing.

Once matched geometry G
j
i has been computed for all

pairs of views in a pre-processing step, then the geome-
try can be floated for any virtual view during the view
synthesis stage. The key point here is to ensure texture
alignment by keeping the geometries consistent with each
other. An intermediate geometry Gv

i that depends on the
position of the virtual view is thus computed. To do so,
let Vl and Vr be the two original viewpoints closest to
the virtual view Vv (called ”left” and ”right” views for
simplicity). Let Vi be the current view to be projected
into Vv. The floating geometry for each vertex in Vi has
already been computed for left view Vl and right view Vr,
namely Gl

i and Gr
i . Then the computation of Gv

i consists
in interpolating the geometry between Gl

i and Gr
i , vertex

by vertex:

Gv
i = ωlG

l
i + ωrGr

i (3)

where ω is a weight associated to the position of the
current viewpoint. It can be defined using interpolation
method between two original cameras (SLERP) [21] or
by angular weighting scheme [16, 15]. A smooth defor-
mation of the geometry is obtained as the virtual view
moves from one original view to another. Figure 6 illus-
trates this view synthesis step using the same example
as in the previous figure. The view being projected is Vi

and the left and right views around the virtual view are
Vl = Vi and Vr = Vj . The 3D vertex Pi is floated onto

an intermediate position P v
i = ωiPi + ωjP

j
i . Finally, P v

i

is projected into the virtual view, giving the pixel pv
i .

Fig. 6. Virtual view synthesis with floating geometry.
Vertex Pi is floated to an intermediate position P v

i be-

tween Pi and P
j
i , then it is projected to the virtual view

giving pixel pv
i .

This process is repeated for each view and associated
geometry as illustrated in figure 7 where Gi and Gj are
floated to Gv

i and Gv
j respectively. As a result, floated ge-

ometries are consistent with each other: they only differ
by a change of vertices (remeshing) and texture misalign-
ments are reduced both when synthesizing original views
and virtual views.

5. EXPERIMENTS

In our previous work [1], the polygon soup has been
compared to MVC-H264 (intra-mode) for coding depth
information, showing that rate/distorsion performances
are competitive on tested data. In this section we eval-
uate the performances of the floating method with re-
gard to the quality of the synthesized images. Two tests
have been done on views V1, V3 and V5 of Breakdancers
and Ballet sequences1. The first test operates on the

1Thanks to the Interactive Visual Media Group of Microsoft
Research for providing the data sets



Fig. 7. Virtual view synthesis with floating geometry.
Gi and Gj are floated to Gv

i and Gv
j respectively. As

a result, the geometries are consistent with each other,
and texture misalignments are reduced.

full polygon soup (i.e. before the redundancy reduction
step), and the second test is performed on the reduced
polygon soup. The quality of the synthesized view was
evaluated with and without application of the floating
polygon soup method. For objective evaluation purpose,
the novel view is located on original camera viewpoint
V2 and V4 such that an error metric is used for compar-
ison. The Peak-Signal-To-Noise PSNR metric distortion
is used here (log function of inverse MSE). Motion esti-
mation was performed using Urvoy et al. [22] algorithm.
This motion estimator uses variable size block matching
with some regularization.

Figure 8 shows typical misalignments artifacts ob-
served when using the full polygon soup without floating
geometry. As expected, blurring and splitting artifacts
appear due to texture misalignments. In (a), a blur ar-
tifact is shown: the boundary of the hand is blurred. In
(c), a splitting artifact is shown: the white line is split
in two instead of being one. After applying the floating
method, we can observe that these artifacts are reduced.
The hand appears sharper and the white line corrected.

The second experiment consists in applying the float-
ing method on the reduced polygon soup. It can thus
be performed after transmission, at the user side of the
system. Figure 9 shows the evaluation results. Subfig-
ures (a),(b) and (c) give respectively the synthesized view
without floating geometry, the original view, and the syn-
thesized view with floating geometry. Subfigures (d), (e)
give the images of difference between synthesized views
and the original ones. The darker a pixel, the higher the
error. Artifacts due to texture misalignments can be ob-
served in the view synthesized without floating geometry
(subfigures (a) and (d)): we can see in (d) that errors are
visible mainly at texture edges. Results of the floating
geometry approach can be seen in (c) and (e). We can
see that texture misalignments around edges have been
reduced. In (c), the deformation of the face (right cheek
of the character) has been corrected.

Tables 1 and 2 give the PSNR values obtained for

Breakdancers no floating

geometry

floating ge-

ometry

gain

virtual view

V2

35.29 dB 36.51 dB +1.22 dB

virtual view

V4

34.65 dB 36.24 dB +1.59 dB

Table 1. Comparison of PSNR values without and with
floating geometry using three views and reduced polygon
soup.

Ballet no floating

geometry

floating ge-

ometry

gain

virtual view

V2

33.71 dB 35.00 dB +1.29 dB

virtual view

V4

35.27 dB 36.80 dB +1.53 dB

Table 2. Comparison of PSNR values without and with
floating geometry using three views and reduced polygon
soup.

virtual views V2 and V4 and sequences Breakdancers and
Ballet. For Breakdancers, the PSNR measure has in-
creased by 1.22 dB (from 35.29 dB to 36.51 dB) for vir-
tual view V2, and by 1.59 dB (from 34.65 dB to 36.24 dB)
for virtual view V4. Similarly, for Ballet sequence, the
PSNR measure has increased by 1.29 dB (from 33.71 dB
to 35.00 dB) for virtual view V2, and by 1.53 dB (from
35.27 dB to 36.80 dB) for virtual view V4.

One can notice that the earing of the character in
the original view is not reproduced in the synthesized
views. This is a non-Lambertian reflective effect that is
not visible in either of the views used for the synthesis.
Therefore, floating geometry cannot compensate such an
effect.

The matching step of the floating method could be
computed either at the acquisition side of the system or
at the user side. In the first scenario, the additional infor-
mation involved by the matching should be transmitted
and therefore increasing the data load. In the second
scenario (i.e. at the user side), the synthesis complexity
is increased instead of the data load.

6. CONCLUSION

This paper has presented a representation for multiview
videos. It extends the polygon soup representation previ-
ously proposed by reducing texture misalignment due to
modeling errors. The method is called floating polygon
soup. It consists in floating the geometry depending on



(a) Blur artifact (b) Result (c) Splitting artifact (d) Result

Fig. 8. Examples of artifacts observed with the full polygon soup: Blur (a) and splitting (c). Results after applying
floating polygon soup (b) and (d).

(a) Before (35.29 dB) (b) I2 Original view (c) After (36.51 dB)

(d) Difference (a-b) (e) Difference (c-b)

Fig. 9. Comparison of a synthesized virtual view without and with floating geometry.

the current viewing position such that texture misalign-
ments are reduced. To do so, two steps are computed:
matching and morphing. As a result misalignments are
reduced and objective quality is increased. The main
limitation of this method comes from its dependency on
the quality of motion estimation (e.g. when high mis-
alignments are present in the image).

In the future, a method for coding the additional
floating geometry information will be studied, and an
acceleration of the method will be tested using graphics
hardware capabilities. Moreover, the floating geometry

can be extended to the temporal domain and used for
temporal prediction and coding.

7. REFERENCES

[1] T. Colleu, S. Pateux, L. Morin, and C. Labit, “A
polygon soup representation for multiview coding,”
Journal of Visual Communication and Image rep-
resentation (JVCI). Special Issue on multi-camera
imaging., 2009.



[2] O. Schreer, P. Kauff, and T. Sikora, 3D Videocom-
munication: Algorithms, concepts and real-time sys-
tems in human centred communication, Book, John
Wiley & Sons, 2005.

[3] Marcus A. Magnor, Video-Based Rendering, AK
Peters Ltd, 2005.

[4] Minh N. Do, Chang-Su Kim, Karsten Müller,
Masayuki Tanimoto, and Anthony Vetro, “Multi-
camera imaging, coding and innovative display:
techniques and systems,” Journal of Visual Com-
munication and Image Representation, vol. 21, no.
5-6, pp. 375 – 376, 2010, Special issue on Multi-
camera Imaging, Coding and Innovative Display.

[5] C. Fehn, P. Kauff, M. Op de Beeck, F. Ernst,
W. IJsselsteijn, M. Pollefeys, L. Van Gool, E. Ofek,
and I. Sexton, “An evolutionary and optimised ap-
proach on 3D-TV,” in In Proceedings of Interna-
tional Broadcast Conference, Amsterdam, Nether-
lands, 2002, pp. 357–365.

[6] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder,
and R. Szeliski, “High-quality video view interpo-
lation using a layered representation,” ACM Trans.
Graph., vol. 23, no. 3, pp. 600–608, 2004.

[7] A. Smolic, K. Muller, K. Dix, P. Merkle, P. Kauff,
and T. Wiegand, “Intermediate view interpolation
based on multiview video plus depth for advanced
3D video systems,” in ICIP, 2008, pp. 2448–2451.

[8] K. Müller, A. Smolic, K. Dix, P. Kauff, and T. Wie-
gand, “Reliability-based generation and view syn-
thesis in layered depth video,” in MMSP, 2008, pp.
34–39.

[9] P. Merkle, A. Smolic, K. Muller, and T. Wiegand,
“Multi-view video plus depth representation and
coding,” ICIP, vol. 1, pp. 201–204, 2007.

[10] P. Merkle, Y. Morvan, A. Smolic, D. Farin,
K. Muller, P.H.N. de With, and T. Wiegand, “The
effect of depth compression on multiview rendering
quality,” in 3DTV Conference, 2008.

[11] M. Maitre and M.Do, “Shape-adaptive wavelet en-
coding of depth maps,” in Picture Coding Sympo-
sium, Chicago, US, 2009.

[12] S. Yea and A. Vetro, “Multi-layered coding of depth
for virtual view synthesis,” in Picture Coding Sym-
posium, Chicago, US, 2009.

[13] J. Evers-Senne, J. Woetzel, and R. Koch, “Mod-
elling and rendering of complex scenes with a multi-
camera rig,” in Conference on Visual Media Pro-
duction (CVMP), 2004.

[14] A. Bornik, K. Karner, J. Bauer, F. Leberl, and
H. Mayer, “High-quality texture reconstruction from
multiple views,” The journal of visualization and
computer animation, vol. 12, no. 5, pp. 263–276,
2001.

[15] Paul E. Debevec, Camillo J. Taylor, and Jitendra
Malik, “Modeling and rendering architecture from
photographs: a hybrid geometry- and image-based
approach,” in SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and
interactive techniques, New York, NY, USA, 1996,
pp. 11–20, ACM.

[16] C. Buehler, M. Bosse, L. McMillan, S.J. Gortler,
and M.F. Cohen, “Unstructured lumigraph render-
ing,” in SIGGRAPH 2001, Computer Graphics Pro-
ceedings, 2001, pp. 425–432.

[17] M. Eisemann, B. De Decker, A. Sellent, M. Magnor,
E. de Aguiar, N. Ahmed, P. Bekaert, and H. Sei-
del, “Floating textures,” Computer Graphics Forum
(Proc. Eurographics EG’08), vol. 27, no. 2, 4 2008.

[18] T. Takai, A. Hilton, and T. Matsuyama, “Har-
monised texture mapping,” in 3DPVT, Paris,
France, May 2010.

[19] Hisayoshi Furihata, Tomohiro Yendo,
Mehrdad Panahpour Tehrani, Toshiaki Fujii,
and Masayuki Tanimoto, “Novel view synthesis
with residual error feedback for ftv,” in Stereoscopic
Displays and Applications XXI, Andrew J. Woods,
Nicolas S. Holliman, and Neil A. Dodgson, Eds.,
San Jose, California, USA, 2010, vol. 7524, SPIE.

[20] Sundar Vedula, Simon Baker, and Takeo Kanade,
“Image-based spatio-temporal modeling and view
interpolation of dynamic events,” ACM Trans.
Graph., vol. 24, no. 2, pp. 240–261, 2005.

[21] Ken Shoemake, “Animating rotation with quater-
nion curves,” in Proceedings of the 12th annual con-
ference on Computer graphics and interactive tech-
niques, New York, NY, USA, 1985, SIGGRAPH ’85,
pp. 245–254, ACM.

[22] Matthieu Urvoy, Nathalie Cammas, Stéphane Pa-
teux, Olivier Déforges, Marie Babel, and Muriel
Pressigout, “Motion tubes for the representation
of images sequences,” in Proceedings of ICME’09
IEEE International Conference on Multimedia and
Expo, Cancun Mexico, 07 2009, pp. 1–4.


