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EIGENMODES OF THE DAMPED WAVE EQUATION AND SMALL

HYPERBOLIC SUBSETS

GABRIEL RIVIÈRE

WITH AN APPENDIX BY STÉPHANE NONNENMACHER AND GABRIEL RIVIÈRE

Abstract. We study stationary solutions of the damped wave equation on a compact and
smooth Riemannian manifold without boundary. In the high frequency limit, we prove that a

sequence of β-damped stationary solutions cannot be completely concentrated in small neigh-
borhoods of a small fixed hyperbolic subset made of β-damped trajectories of the geodesic flow.

The article also includes an appendix (by S. Nonnenmacher and the author) where we estab-
lish the existence of an inverse logarithmic strip without eigenvalues below the real axis, under
a pressure condition on the set of undamped trajectories.

1. Introduction

LetM be a smooth, connected, compact Riemannian manifold of dimension d ≥ 2 and without
boundary. We will be interested in the high frequency analysis of the damped wave equation,

(1)
(
∂2t −∆+ 2a(x)∂t

)
v(x, t) = 0,

where ∆ is the Laplace-Beltrami operator on M and a ∈ C∞(M,R) is the damping function. The
case of damping corresponds actually to a ≥ 0 but our results will be valid for any real valued
function a. Our main concern in this article is to study asymptotic properties of solutions of the
form

v(t, x) = e−ıtτuτ (x),

where τ belongs to C and uτ (x) is a non trivial element in L2(M). Such a mode is a solution
of (1) if one has

(2) (−∆− τ2 − 2ıτa)uτ = 0.

From the spectral analysis of (1), there exist countably many (τn) solving this nonselfadjoint
eigenvalue problem. One can also verify that their imaginary parts remain in a bounded strip
parallel to the real axis and they satisfy limn→+∞ Re τn = ±∞ [30, 19, 23]. We also recall that
(τ, uτ ) solves the eigenvalue problem (2) if and only if (−τ, uτ ) solves it [23]. Our main concern
in the following will be to describe some asymptotic properties of sequences (τn, un)n solving (2)
with

Re τn → +∞ and Im τn → β,

where β ∈ R. Very general results on the asymptotic distribution of the τn and its links with the
properties of (1) have been obtained by various authors. For instance, in a very general context,
Lebeau related the geometry of the undamped geodesics, the spectral asymptotics of the τn and
the energy decay of the damped wave equation [22]. Related results were also proved in several
geometric contexts where the family of undamped geodesics was in some sense not too big: closed
elliptic geodesic [19], closed hyperbolic geodesic [11, 9], subsets satisfying a condition of negative
pressure [28, 29, 23]. Concerning the distribution of the τn, Sjöstrand gave a precise asymptotic
description of the τn on a general compact manifold [30]. We also refer the reader to [18] in the
case of Zoll manifolds and to [2] in the case of negatively curved manifolds.

This work has been partially supported by the grant ANR-09-JCJC-0099-01 of the Agence Nationale de la
Recherche.
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2 GABRIEL RIVIÈRE

1.1. Semiclassical reduction. We will mention more precisely some of these results related to
ours but before that we would like to proceed to a semiclassical reformulation of our problem as it
was performed in [30]. Thanks to the different symmetries of our problem, we can restrict ourselves
to the limit Re τ → +∞. We will look at eigenfrequencies τ of order ~−1 (where 0 < ~ ≪ 1 will
be the semiclassical parameter of our problem) and we will set

τ =

√
2z

~
, where z(~) =

1

2
+O(~).

In the following, we will often omit the dependence of z(~) = z in ~ in order to simplify the
notations. Thanks to this change of asymptotic parameters, studying the high frequency modes
of the problem (2) corresponds to look at sequences (z(~) = 1

2 + O(~))0<~≪1 and (ψ~)0<~≪1 in

L2(M) satisfying1

(3) (P(~, z)− z(~))ψ~ = 0, where P(~, z) := −~
2∆

2
− ı~

√
2z(~)a(x).

Recall that, for every t in R, the quantum propagator associated to P(~, z) is given by

(4) U t
~
:= exp

(
− ıtP(~, z)

~

)
.

It was proved by Markus-Matsaev and Sjöstrand that the “horizontal” distribution of the
eigenvalues of P(~, z) satisfies a Weyl law in the semiclassical limit ~ → 0 – see Theorem 5.2
in [30] for the precise statement. Translated in this semiclassical setting, our goal is to describe
asymptotic properties of a sequence of normalized eigenmodes (ψ~)~→0+ satisfying (3) with

z(~) =
1

2
+O(~) and

Im z(~)

~
= β + o(1),

as ~ → 0. A way to study these eigenmodes is to look at the following distributions on T ∗M [8, 33]:

(5) ∀b ∈ C∞
o (T ∗M), µψ~

(b) := 〈ψ~,Op~(b)ψ~〉L2(M),

where Op~(b) is a ~-pseudodifferential operator (see section 5 for a brief reminder). Under our
assumptions, one can prove that, as ~ tends to 0, µψ~

converges (up to an extraction) to a
probability measure µ on the unit cotangent bundle S∗M = {(x, ξ) ∈ T ∗M : ‖ξ‖x = 1}. Moreover,
this probability measure satisfies the following invariance relation:

(6) ∀b ∈ C0(S∗M), µ(b) = µ
(
b ◦ gte−2βt−2

∫

t
0
a◦gsds

)
,

where gt is the geodesic flow on S∗M . Such a probability measure is called a semiclassical measure
of the sequence (ψ~)~→0+ [8, 33] and one can verify that the support of such a measure is invariant
under the geodesic flow. Following [22, 30, 5], one can introduce the following dynamical quantities:

A+ = lim
T→+∞

1

T
sup

ρ∈S∗M
−
∫ T

0

a ◦ gs(ρ)ds,

and

A− = lim
T→+∞

1

T
inf

ρ∈S∗M
−
∫ T

0

a ◦ gs(ρ)ds.

Then, β ∈ [A−, A+]. As in the selfadjoint case, one can try to understand properties of these
semiclassical measures – see [5] for some general results. For instance, if {γ} is a periodic orbit on
which the Birkhoff average of −a,

lim
T→+∞

− 1

T

∫ T

0

a ◦ gs(ρ)ds, ρ ∈ {γ},

is not equal to β, then one has µ({γ}) = 0. However, if the Birkhoff average along γ is equal to
β, this can be no longer true. When specified in the case of hyperbolic periodic orbits, our main
result will give informations on this kind of issues.

1For simplicity of exposition, we only deal with operators of this form. However, our approach could in principle
be adapted to treat the case of more general families of nonselfadjoint operators like the ones considered in [30], §1.
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1.2. Results in the selfadjoint case. Before stating our result, we would like to recall related
results in the selfadjoint case a ≡ 0 – see also [32], section 5 for a more detailed account on the
results we will mention. In this case, it means that we look at eigenfunctions of the Laplacian on
M in the large eigenvalue limit.

In [15], Colin de Verdière and Parisse have exhibited geometric situations where one can find a
sequence of eigenmodes (ψ~)~>0 whose semiclassical measure is an invariant probability measure
carried by an hyperbolic periodic orbit γ. Yet, they show that if such a concentration occurs, it
must at happen at a slow rate. Precisely, they prove that if U is a fixed small neighborhood of
their geodesic γ, then there exists a positive constant C such that∫

M\U

|ψ~(x)|2dvolM (x) ≥ C

| log ~| , as ~ → 0.

This result has been generalized2 to more general Hamiltonian flows involving a hyperbolic closed
geodesic by Burq-Zworski [10] and Christianson [11]. In [31], Toth and Zelditch also consider a
related question and they look at the concentration of eigenmodes in shrinking tubes in S∗M of
size ~ν around a closed hyperbolic geodesic (where 0 < ν < 1

2 ) – see also paragraph 5.1 of [32].
Roughly speaking, they prove that, in their specific geometric situation (completely integrable
flow), not all the mass of the eigenmodes can be localized on such shrinking tubes. In this article,
we will consider similar questions for more general hyperbolic subsets and for stationary modes of
the damped wave equation.

Finally, under a global assumption on the geodesic flow (namely it should be Anosov), Anan-
tharaman proved that semiclassical measures associated to eigenmodes of ∆ cannot be completely
carried by closed orbit of the geodesic flow (which are hyperbolic in this case) [1]. In our main
statement, we will not make any global assumption on the dynamical properties of the geodesic
flow and it would be interesting to understand how Anantharaman’s statement could be extended
to the damped wave equation – see [26] for results in this sense.

1.3. Statement of the main result. We now turn back to eigenmodes of the damped wave
equation. We underline that, to the knowledge of the author, even if there is an important
literature concerning eigenfunctions of the Laplacian on M , much less seems to be known on the
asymptotic description of eigenmodes for the damped wave equation. Our results concerning these
questions will be here of two types:

• we extend the study of concentration in shrinking tubes of size ~ν to more general hyper-
bolic subsets satisfying a condition of negative topological pressure;

• we consider the situation where a is a general smooth and real valued function on M (and
not only the case a ≡ 0).

As it will be involved in the statement of our main result, we recall now what is the topological
pressure. Let Λ be a compact and hyperbolic subset of S∗M invariant under the geodesic flow gt.
For any ǫ > 0 and T > 0, we say that the subset F in Λ is (ǫ, T )-separated if, for any ρ and ρ′ in
F ,

∀0 ≤ t ≤ T, d(gtρ, gtρ′) ≤ ǫ =⇒ ρ = ρ′.

Then, we can define the topological pressure of the subset Λ with respect to 1
2 log J

u where Ju is
the unstable Jacobian – see paragraph 2.1 below. It is defined as [25]

Ptop

(
Λ, gt,

1

2
log Ju

)
:= lim

ǫ→0
lim sup
T→+∞

1

T
log sup

F




∑

ρ∈F

exp

(
1

2

∫ T

0

log Ju ◦ gs(ρ)ds
)
 ,

where the supremum is taken over all (ǫ, T )-separated subsets F . In this definition, we have two
phenomena. On the one hand, the Birkhoff average of 1

2 log J
u leads to exponentially small terms

when T → ∞; on the other hand, depending on the complexity of the dynamics on Λ, the cardinal
of F could grow exponentially when T → ∞. Thus, saying that the topological pressure is negative
means that the contribution of the first quantity is more important. If Λ is a (or a collection of)
closed hyperbolic geodesics, then Ptop

(
Λ, gt, 12 log J

u
)
is negative.

2As pointed out at the end of the appendix, our proof also allows to recover (and to generalize) this result.
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We say that a function is (Λ, ~, ν)- localized if it is a smooth cutoff function in a ~ν -neighborhood
of Λ – see § 3.1.1 for a precise definition. We can now state our main result.

Theorem 1.1. Suppose Λ is a compact, invariant, hyperbolic subset satisfying

Ptop

(
Λ, gt,

1

2
log Ju

)
< 0,

and such that

(7) sup
ρ∈Λ

−
∫ T

0

a ◦ gs(ρ)ds ≤ βT +O(1) when T → +∞ .

Fix 0 < ν < 1
2 and a (Λ, ~, ν)-localized function ΘΛ,~,ν .

Then, there exists a constant cΛ,a,ν < 1 such that, for any sequence (ψ~)~→0+ of eigenmodes
satisfying (3) with

z(~) =
1

2
+O(~) and

Im z(~)

~
≥ β + o

(
| log ~|−1

)
, as ~ → 0+,

one has
lim sup

~→0
〈Op

~
(ΘΛ,~,ν)ψ~, ψ~〉 ≤ cΛ,a,ν < 1.

We underline that we allow the imaginary parts of z(~) to go a little bit below the horizontal
axis {Im z = ~β}. Precisely, we authorize an error of order o(~| log ~|−1), that will be crucial
for the results proven in the appendix. A more comfortable statement is given by the following
corollary which can be deduced from Theorem 1.1:

Corollary 1.2. Suppose Λ is a compact, (gt)t-invariant hyperbolic satisfying

Ptop

(
Λ, gt,

1

2
log Ju

)
< 0.

Suppose also that there exists a positive constant C such that

∀T > 0, ∀ρ ∈ Λ, −C + βT ≤ −
∫ T

0

a ◦ gs(ρ)ds ≤ βT + C.

Fix 0 < ν < 1
2 and a (Λ, ~, ν)-localized function ΘΛ,~,ν .

Then, there exists a constant cΛ,a,ν < 1 such that, for any sequence (ψ~)~→0+ of eigenmodes
satisfying (3) with z(~) = 1

2 +O(~) as ~ → 0+, one has

lim sup
~→0

〈Op~ (ΘΛ,~,ν)ψ~, ψ~〉 ≤ CΛ,a,ν < 1.

Proof. Let us briefly explain how Corollary 1.2 can be obtained from Theorem 1.1. One can
proceed by contradiction and suppose that there exists a sequence (~l ց 0)l∈N and a sequence
(ψ~l

)l of normalized eigenmodes satisfying (3) with z(~l) =
1
2 +O(~l) and

lim
l→+∞

〈
Op~l

(ΘΛ,~l,ν)ψ~l
, ψ~l

〉
= 1.

This implies that, for any semiclassical measure µ associated to this sequence, one must have

µ(Λ) = 1. In particular, thanks to relation (6), this implies that Im z(~l)
~l

tends to β as l tends to

infinity. Thanks to Theorem 1.1, one also obtains that Im z(~l′)
~l′

≤ β for an infinite subsequence

of integers l′. On the other hand, our assumption also implies that

(8) lim
l′→+∞

〈
Op~l′

(
Θ̃Λ,~l′ ,ν

)
ψ~l′

, ψ~l′

〉
= 1,

where Θ̃Λ,~l′ ,ν(x, ξ) = ΘΛ,~l′ ,ν(x,−ξ). The function Θ̃Λ,~l′ ,ν satisfies the assumption of Theo-

rem 1.1 with the set Λ replaced by Λ′ := {(x, ξ) : (x,−ξ) ∈ Λ}. Moreover, the sequence (ψ~l′
)l′

solves (3) if we replace a by −a and z(~l′) by z(~l′). In particular, since Im z(~l′ )
~l′

≥ −β and since

Λ′ satisfies the assumption of Theorem 1.1 w.r.t. the pair (−a,−β), we can apply the Theorem
to this new sequence: the conclusion of the Theorem contradicts the limit (8).

�
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In the selfadjoint case a ≡ 0, this corollary slightly improves Toth-Zelditch’s result as we only
impose the hyperbolic subsets to satisfy a condition of negative topological pressure. A default
of our approach is yet that the upper bound cΛ,a,ν is not very explicit compared to the constant
appearing in [32] – section 5. Our interest in proving this result was also to show that this property
remains true in the nonselfadjoint case where a is non constant. As was already mentioned, nothing
forbids a priori that eigenmodes with damping parameter β concentrate on a β-damped closed
geodesic3: corollary 1.2 prevents fast concentration on such orbits if they are hyperbolic.

If the geodesic flow is ergodic for the Liouville measure on S∗M (manifolds of negative curva-
ture are the main example), Sjöstrand showed that most of the imaginary parts converge to the
spatial average of −a [30]. Thus, in this case, our result says that if there is a hyperbolic closed
geodesic with such a Birkhoff average, then eigenmodes cannot concentrate on it too fast. As was
already pointed out, it would be interesting to understand what can be said under the additional
assumption that the geodesic flow is Anosov on S∗M (e.g. if M is of negative curvature). For in-
stance, can one prove in the Anosov case that semiclassical measures cannot be completely carried
by a β-damped closed orbit?

Finally, we would like to say a few words about the proof. Our argument relies crucially on
hyperbolic dispersive estimates as they were obtained by Anantharaman and Nonnenmacher in
the Anosov case [1, 4] and by Nonnenmacher and Zworski in the context of chaotic scattering [24].
More precisely, we will use a generalization of these properties in a nonselfadjoint setting similar
to the results obtained by Schenck in [28].

These hyperbolic estimates give an upper bound for the growth of “quantum cylinders” asso-
ciated to ψ~ and localized near the hyperbolic set Λ. These cylinders are a kind of analogues in
a quantum setting of the Bowen balls used in the theory of dynamical systems [21, 25]. Under
our dynamical assumption on Λ, one can show that the mass of “quantum cylinders” near the set
Λ is exponentially small for cylinders of length K| log ~| (with K > 0 very large but independent
of ~) – paragraph 3.2.2. Then, the main difficulty is that it is hard to connect these estimates
for long cylinders to estimates which are valid for shorter cylinders to which we could apply the
semiclassical approximation, e.g. of length less than the Ehrenfest time κ0| log ~| [6] (with κ0 > 0
small independent of ~). It turns out that if we restrict ourselves to cylinders that remain in a ~ν-
neighborhood of Λ, the mass on the quantum cylinders (far from this neighborhood) is positive and
it satisfies a “subadditive structure” – paragraph 3.2.3. A similar property was already observed
and used by Anantharaman in a selfadjoint context [1]. In our case, it implies that if the mass
on the cylinders of length K| log ~| far from the ~ν-neighborhood is positive, then this property
remains true for cylinders of shorter length κ0| log ~|. This observation is crucial in our proof and
it allows to get the conclusion using standard semiclassical rules– paragraph 3.2.4

Organization of the article. In section 2, we introduce the dynamical setting of the article. We
also build an open cover of S∗M that will be used to define quantum cylinders in the subsequent
section. Then, in section 3, we give the proof of Theorem 1.1 and postpone the proof of several
semiclassical results to section 4. In section 5, we give a short toolbox on pseudodifferential
calculus on a manifold.

Finally, in an appendix in collaboration with Stéphane Nonnenmacher, we explain how these
methods can be used to derive inverse logarithmic spectral gaps for the damped wave equation –
see [11, 9, 14] for related results.

2. Dynamical setting

The Hamiltonian function associated to the geodesic flow on S∗M will be denoted p0(x, ξ) =
‖ξ‖2

x

2 in the following of this article. Under proper assumptions (see remark 2.3), we underline that
our proof should also work for more general Hamiltonian flows as in [24, 30]; yet, for simplicity of
exposition, we restrict ourselves to the case of geodesic flows.

3In the selfadjoint case (a ≡ 0, β = 0), Colin de Verdière & Parisse’s example satisfies such a property.
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2.1. Hyperbolic sets. From this point, we make the assumption that the set Λ is a compact,
invariant and hyperbolic subset of S∗M . The hyperbolicity hypothesis means that one has the
following decomposition [21]

∀ρ ∈ Λ, TρS
∗M = RXp0(ρ)⊕ Eu(ρ)⊕ Es(ρ),

where RXp0(ρ) is the direction of the Hamiltonian vector field, Eu(ρ) is the unstable space and
Es(ρ) is the stable space. In particular, there exist a constant C > 0 and 0 < λ < 1 such that for
every t ≥ 0, one has

∀vu ∈ Eu(ρ), ‖dρg−tvu‖ ≤ Cλt‖vu‖ and ∀vs ∈ Es(ρ), ‖dρgtvs‖ ≤ Cλt‖vs‖.
Due to the specific structure of our Hamiltonian, the above properties remain true for any energy
layer4 associated to E > 0

EE := p−1
0 ({E}) = {(x, ξ) ∈ T ∗M : p0(x, ξ) = E} .

Define now the unstable Jacobian at point ρ ∈ S∗M and time t ≥ 0

Jut (ρ) :=
∣∣∣det

(
dgtρg

−t
|Eu(gtρ)

)∣∣∣ ,

where the unstable spaces at ρ and gtρ are equipped with the induced Riemannian metric. It
defines a Hölder continuous function on S∗M [21] (that can be extended to any energy layer
EE). We underline that this quantity tends to 0 with an exponential rate as t tends to infinity.
Moreover, it satisfies the following multiplicative property

Jut+t′(ρ) = Jut (g
t′ρ)Jut′(ρ).

In the following, we will use the notation Ju(ρ) = Ju1 (ρ) on S
∗M .

2.2. Topological pressure. In the statement of Theorem 1.1, we made an assumption on the
topological pressure of the subset Λ. Let us explain what informations are provided by this
hypothesis following the observations of paragraph 5.2 in [24] – see also [25], chapter 4 for general
definitions of topological pressure.

Fix a small δ > 0. Then, for every E ∈ [ 1−δ2 , 1+δ2 ], the set

ΛE =

{
(x, ξ) ∈ EE :

(
x,

ξ√
2E

)
∈ Λ

}

is hyperbolic. We fix a finite open cover V = (Va)a∈A of

(9) Λδ :=
⋃

1−δ
2 ≤E≤ 1+δ

2

ΛE

of diameter less than some small ǫ > 0 and such that, for every a in A, one has

Va ⊂ Eδ := p−1
0

(
(1/2− δ, 1/2 + δ)

)
.

For every integer n0, the refined cover V(n0) is the collection of the open sets

Vα =

n0−1⋂

j=0

g−jVαj , where α = (α0, α1, . . . , αn0−1) ∈ An0 .

Equivalently, Vα contains the points ρ, the trajectory of which sits in Vα0 at time 0, in Vα1 at time
1, etc, and in Vαn−1 at time n− 1.

The fact that Ptop(Λ, g
t, 12 log J

u) < 0 implies the existence of a positive constant P0 such that
for δ small enough, for any cover of small enough diameter (say ǫ ≤ ǫ0) and for any n0 ∈ N large
enough (depending on ǫ), one can extract a subcover W(n0) ⊂ V(n0) of Λδ such that

(10)
∑

Vα∈W(n0)

sup
ρ∈Vα∩Λδ

{
exp

(
1

2

∫ n0

0

log Ju ◦ gt(ρ)dt
)}

≤ e−2n0P0

4For more general Hamiltonian, it would remain true in a small vicinity of the energy layer due to the stability
of the hyperbolic structure [21].
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(we may assume that any Vα ∈ W(n0) intersects Λδ). Thanks to assumption (7) on Λ, we can also
verify that for n0 large enough, one also has

(11)
∑

Vα∈W(n0)

sup
ρ∈Vα∩Λδ

{
exp

(∫ n0

0

(
1

2
log Ju − a

)
◦ gt(ρ)dt

)}
≤ en0(β−P0).

Remark 2.1. In our proof, we will fix an open cover of small diameter ǫ ≤ ǫ0 in order to get a
subcover W(n0) satisfying (11). Such a choice can be made for every ǫ ≤ ǫ0. Moreover, we choose
such an epsilon in order to have ǫ ≤ ǫ̃0/2, where ǫ̃0 is the constant appearing in lemma 2.2. We

also take ǫ small enough to have the factor 1 +O(ǫ) in estimate (22) smaller than e
P0
2 .

Once V is chosen with the above requirements, we also select n0 and W(n0) such that (11) holds.
All these parameters will remain fixed for the rest of the proof.

We will call W the family of words α = (α0, α1, . . . , αn0−1) corresponding to the elements
Vα ∈ W(n0). We also complete the cover, by selecting an open set V∞ such that V∞ ∩Λδ = ∅, and
such that

V∞ ∪
(
⋃

α∈W

Vα

)
= Eδ.

Finally, we denote W =W ∪ {∞}.
2.3. A lemma from dynamical systems. Before entering the details of our proof, we mention
the following lemma which is taken from the appendix of [7] (lemma A.2):

Lemma 2.2. Let Λ be a hyperbolic set in S∗M satisfying assumption (7). There exists ǫ̃0 > 0
(depending on M , δ and a(x)) such that, for any E ∈ [ 12 − δ, 12 + δ], for any p > 0 and any ρ2 ∈ Eδ
satisfying

∃ρ1 ∈ Λδ such that ∀0 ≤ k ≤ p− 1, dT∗M (gkρ1, g
kρ2) ≤ ǫ̃0,

one has

−
∫ p

0

a ◦ gs(ρ2)ds ≤ βp+O(1),

where the constant involved in O(1) is independent of ρ2 and p.

In particular, this lemma will allow us to extend the inequality (7) to a small (dynamical)
neighborhood of Λδ. The proof of this lemma was given in [7] where the authors treated the case
of a single energy layer (δ = 0). Yet, their proof can be adapted to get a uniform ǫ̃0 on the energy
interval Eδ. We verify below that their argument can be extended to a small neighborhood of
S∗M .

Proof. The proof of this lemma relies on two observations:

• if the trajectory of ρ2 remains close to the one of ρ1 ∈ Λδ in the future, then ρ2 must have
an “exponentially small unstable component”;

• the Birkhoff averages −
∫ p
0
a ◦ gsds on Λδ are uniformly bounded by βp+O(1).

We closely follow the presentation of [7] and refer the reader to it for more details. We start
by giving a precise meaning to the first observation. For that purpose, we write the following
decomposition of the tangent space, for any ρ = (x, ξ) ∈ Λδ,

TρEδ = E0(ρ)⊕ Es(ρ)⊕ Eu(ρ),

where E0(ρ) is the vector space generated by Xp0(ρ) and the energy direction ρ(t) = (x, tξ) and

Eu/s are still the unstable/stable directions. For v in TρEδ, we denote v = v0 + vs + vu the
decomposition adapted to these subspaces. For ǫ′ > 0 small enough and any ρ ∈ Λδ, one can
construct a smooth chart5 φρ : TρEδ(ǫ′) → Eδ satisfying

φρ
[
(E0(ρ) + Es(ρ))(ǫ′)

]
⊂W cs(ρ), and φρ

[
(E0(ρ) + Eu(ρ))(ǫ′)

]
⊂W cu(ρ),

5Here, H(ǫ′) means that we consider a ball of radius ǫ′ around 0 in the subspace H.
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with

W cs/cu(x, ξ) =
⋃

t∈R

⋃

1−δ
2 ≤E≤ 1+δ

2

W s/u

(
gt
(
x,

√
2E

ξ

‖ξ‖

))
,

where W s/u(ρ′) denote the stable/unstable manifold at point ρ′. Moroeover, one can choose
φρ such that d0φρ is given by the identity. The construction is a straightforward adaptation of
property A.1 in [7] to a small neighborhood of S∗M .

For ǫ′ > 0 small enough, introduce now

Fρ = φ−1
g1ρ ◦ g1 ◦ φρ : TρEδ(ǫ′) → Tg1ρEδ,

which is tangent to dρg
1 at the origin. Define also

D(ǫ′, p) := {v ∈ TρEδ : ∀0 ≤ k ≤ p− 1, ‖Fgkρ ◦ . . . Fρv‖gkρ ≤ ǫ′}.
Let v = v0 + vs + vu be an element in D(ǫ′, p). One can mimick again the proof of [7] (precisely
the proof of inequality A.5 in this reference) and verify that there exist uniform constants C > 0
and 0 < λ < 1 such that

(12) ∀0 ≤ k ≤ p− 1, ‖Fgkρ ◦ . . . Fρ(v0 + vs + vu)− Fgkρ ◦ . . . Fρ(v0 + vs)‖gkρ ≤ Cǫ′λp−1−k.

This upper bound is obtained thanks to the hyperbolicity assumption (combined to a Taylor for-
mula near the origin). This result expresses the first property mentionned at the beginning of our
proof. Precisely, it shows that a point which remains close to ρ1 ∈ Λδ during a time p has an
exponentially small unstable component (in our system of charts).

We will now use this family of charts to prove lemma 2.2. First, we observe that there exists a
constant C > 0 such that

∀ρ1, ρ2 ∈ Eδ,
∣∣∣∣
∫ 1

0

a ◦ gs(ρ1)ds−
∫ 1

0

a ◦ gs(ρ2)ds
∣∣∣∣ ≤ Cd(ρ1, ρ2).

Fix now ρ1 = (x1, ξ1) in Λδ and ρ2 in Eδ satisfying

∀0 ≤ k ≤ p− 1, dT∗M (gkρ1, g
kρ2) ≤ ǫ̃0,

where ǫ̃0 is some small positive parameter. In particular, we choose it small enough to have
v = φ−1

ρ1 (ρ2) belongs to TρEδ(ǫ′/2) for every ρ1 ∈ Λδ and any ρ2 ∈ Eδ satisfying d(ρ1, ρ2) ≤ ǫ̃0.
Define then w = v0 + vs and introduce ρ3 = φρ1 (w). Thanks to our construction, one has
ρ3 ∈ W s(gτ ρ̃1) for some |τ | ≤ C0ǫ

′ and some ρ̃1 = (x1, E
′ξ1) ∈ ΛE′ with |E′| ≤ C0ǫ

′. Thanks
to the fact that a does not depend on ξ and that ρ̃1 belongs to ΛE′ , the assumption (7) directly
implies that

−
∫ p

0

a ◦ gs(ρ̃1)ds ≤ βp+O(1),

where the constant involved in the remainder is uniform for |E′| ≤ C0ǫ
′. To extend the assump-

tion (7) to every energy layer ΛE′ , we have crucially used the fact that a is independent of ξ, and
the homogeneity of the geodesic flow — see remark 2.3 below for generalizations of this fact.

We will now compare the average along the trajectory of ρ2 with the average along the trajectory
of ρ̃1. Thanks to the upper bound (12) and to the construction of ρ3, one has that, for any
0 ≤ k ≤ p− 1,

d(gkρ3, g
kρ2) ≤ C1ǫ

′λp−1−k and d(gk+τ ρ̃1, g
kρ3) ≤ C′

1ǫ
′(λ′)k,

for some uniform C′
1 > 0 and 0 < λ′ < 1. We now use these properties to bound −

∫ p
0 a◦ gs(ρ2)ds.

We write

−
∫ p

0

a ◦ gs(ρ2)ds ≤ −
∫ p

0

a ◦ gs(ρ̃1)ds+
∣∣∣∣
∫ p

0

a ◦ gs(ρ̃1)ds−
∫ p

0

a ◦ gs+τ (ρ̃1)ds
∣∣∣∣

+

p−1∑

k=0

(∣∣∣∣
∫ 1

0

a ◦ gs+k+τ (ρ̃1)ds−
∫ 1

0

a ◦ gs+k(ρ3)ds
∣∣∣∣+
∣∣∣∣
∫ 1

0

a ◦ gs+k(ρ3)ds−
∫ 1

0

a ◦ gs+k(ρ2)ds
∣∣∣∣
)
.
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Using the different properties mentioned above, one gets

−
∫ p

0

a ◦ gs(ρ2)ds ≤ βp+O(1) + 2C0ǫ
′‖a‖∞ +

CC′
1ǫ

′

1− λ′
+
CC1ǫ

′

1− λ
,

which is the expected conclusion. �

Remark 2.3. At this point, we would like to mention something on the generalization of Theo-
rem 1.1 to more general nonselfadjoint operators as in [30]. In order to adapt the previous lemma
(which will be crucial in our proof) for more general Hamiltonian flows, one has to make the
assumption that the Birkhoff averages of the corresponding damping function are bounded by
βp+O(1) for every trajectory in a small neighborhood Λδ of the hyperbolic subset Λ. Here this
property was satisfied due to the specific structure of the “damping function” a and of the geodesic
flow.

3. Proof of the main Theorem

We fix β a spectral parameter. Let (ψ~)0<~≤~0 be a sequence of normalized vector in L2(M)
such that

P(~, z)ψ~ = z(~)ψ~,

where z(~) satisfies

(13) ∀0 < ~ ≤ ~0, z(~) =
1

2
+O(~) and Im z(~) ≥ β~+ o

(
~| log ~|−1

)
.

Remark 3.1. Such a family may be defined by a discrete sequence ~n → 0 as n tends to infinity.
Yet, in order to avoid heavy notations and to fit semiclassical notations [16, 33], we will use the
standard convention ~ → 0 to denote the limit.

3.1. Concentration properties and discretization of the energy layer. In this paragraph,
we describe the setting we will use to prove Theorem 1.1. We introduce Λ a compact, hyperbolic
and invariant subset of S∗M satisfying the assumption (7). As in paragraph 2.2, we fix a small
neighborhood of size δ > 0 around S∗M (thanks to our assumption on Re z(~), the eigenmodes
are microlocalized on S∗M when ~ tends to 0).

We make the assumption that Ptop
(
Λ, gt, 12 log J

u
)
< 0 and we will use the open covers intro-

duced in §2.2.

3.1.1. Cutoff functions near Λ. We fix 0 < ν < 1/2 a positive parameter and we introduce a cutoff
function 0 ≤ ΘΛ,~,ν ≤ 1 around the set Λ. This function belongs to C∞

c (T ∗M) and satifies the
following assumptions:

• ΘΛ,~,ν(x, ξ) = 0 for ‖ξ‖2 /∈ [1/4, 2];
• ΘΛ,~,ν(x, ξ) = ΘΛ,~,ν(x, ξ/‖ξ‖) for ‖ξ‖2 ∈ [1/2, 3/2];
• for every ρ in S∗M satisfying d(ρ,Λ) ≤ ~ν/2, ΘΛ,~,ν(ρ) = 1;
• for every ρ in S∗M satisfying d(ρ,Λ) ≥ 2~ν, ΘΛ,~,ν(ρ) = 0;
• the growth of the derivatives of ΘΛ,~,ν is controlled by powers of ~−ν and so the functions
are amenable to ~-pseudodifferential calculus [16, 33] (see also appendix 5 for a brief
reminder);

We say that such a function is (Λ, ~, ν)-localized. Our goal is to prove that

(14) lim inf
~→0

〈Op~ (1−ΘΛ,~,ν)ψ~, ψ~〉 ≥ cΛ,a,ν > 0,

for some positive constant cΛ,a,ν that depends only on Λ, a and ν (and, in particular, not on the
sequence (ψ~)~→0).
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3.1.2. Smooth discretization of the energy layer. We now introduce a smooth partition of unity
associated to our open cover (Vα)α∈W , namely a family of smooth functions Pα ∈ C∞

c (Vα, [0, 1])
which satisfy ∑

α∈W

Pα(ρ) = 1 near Eδ/2.

This smooth partition can be quantized into a family of pseudodifferential operators (πα ∈
Ψ−∞,0(M))α∈W such that for each α ∈W , Pα is the principal symbol of πα, and

WF~(πα) ⊂ Vα, π∗
α = πα and

∑

α

πα = Id microlocally near Eδ/2,

We also introduce the following “refined” operators:

∀γ = (γ0, γ1, . . . , γn−1) ∈ W
n
, Πγ := Un0

~
πγn−1Un0

~
. . . πγ1Un0

~
πγ0 , Π̃γ := ΠγU−nn0

~
.

This new family of operators satisfies

(15)
∑

|γ|=n

Πγ = Unn0

~
microlocally near Eδ/2 ,

equivalently ∑

|γ|=n

Π̃γ = Id microlocally near Eδ/2 ,

uniformly for times 0 ≤ n ≤ C| log ~|, for any fixed C > 0.

We notice that for n = |γ| finite, each operator Π̃γ admits for principal symbol

(16) P̃γ := Pγn−1 ◦ g−n0 . . . Pγ1 ◦ g(1−n)n0Pγ0 ◦ g−nn0 ,

which is supported in the “backward refined set”6

Ṽγ := gn0Vγn−1 ∩ g2n0Vγn−2 ∩ · · · ∩ gnn0Vγ0 .

In subsection 4.2 we will see that this connection between Π̃γ and P̃γ extends to times n ≤ κ0| log ~|,
for κ0 > 0 small enough.

We already have two families of n-cylinders: the full set of n-cylinders

W
n
=
{
(γ0, γ1, . . . , γn−1) : ∀0 ≤ j ≤ n− 1, γj ∈ W

}
,

covering the whole energy slab Eδ, and the set of n-cylinders

Wn =
{
(γ0, γ1, . . . , γn−1) : ∀0 ≤ j ≤ n− 1, γj ∈ W

}
,

corresponding to trajectories remaining ǫ-close to Λδ during a time nn0.
We will distinguish a subfamily of n-cylinders, corresponding to points very close to Λ. Namely,

we define Λn ⊂W
n
to be the set of n-cylinders satisfying

supp
(
ΘΛ,~,ν × P̃γ

)
6= ∅.

3.1.3. Preliminary lemmas. We will now make two simple (but crucial) observations that will be
at the heart of our proof.

Lemma 3.2. There exists κ0 > 0 small enough (depending on ν, δ, Λ and V∞) such that, for ~

small enough, for any point ρ ∈ supp
(
ΘΛ,~,ν × P̃γ

)
and any |t| ≤ κ0| log ~|, one has

d(gt(ρ),Λδ) ≤ ~
ν/2.

In particular, Λn ⊂Wn.

6Ṽγ contains the points ρ which were sitting in V
γn−1 at time −n0, in V

γn−2 at time −2n0,..., in V
γ0 at time

−nn0. The word γ thus describes the backward trajectory of ρ.
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The proof of this lemma derives from the following observation. Any point in ρ ∈ supp
(
ΘΛ,~,ν×

P̃γ
)
is at distance ≤ 2~ν from Λδ. Due to the hyperbolicity assumption, the distance from Λδ can

grow at most exponentially with time: there is a uniform 0 < λ < 1 such that

(17) d(gt(ρ),Λδ) ≤ C~ν λ|t| , ∀t ∈ R .

This is an important property as it will allow us to apply hyperbolic dispersive estimates to
cylinders in Λn – see paragraph 3.2.2. If we had chosen a larger “tube” around Λ, our argument
would a priori not work as we will need to work with logarithmic times in ~ – see paragraph 3.2.3.
We will also need the following feature of cylinders in Λn.

Lemma 3.3. There exists κ0 > 0 small enough (depending on ν, δ, Λ and V∞) such that, for ~

small enough, any n ≤ [κ0| log ~|], any γ ∈ Λn and any ρ ∈ supp(P̃γ), one has

−
∫ nn0−1

0

a ◦ gs−nn0(ρ)ds ≤ (nn0 − 1)β +O(1).

Proof. The proof relies on lemma 2.2. Choose ρ ∈ supp(P̃γ). By definition of Λn, there exists

ργ ∈ supp(ΘΛ,~,ν× P̃γ). The diameter of the open cover has been selected to be smaller than ǫ̃0/2,
where ǫ̃0 is the parameter of lemma 2.2. Hence, since g−k(ρ) and g−k(ργ) belong to the same open
sets Vak for all times k = 1, . . . , nn0, we have

∀1 ≤ k ≤ n0n, d
(
g−k(ρ), g−k (ργ)

)
≤ ǫ̃0

2
.

Since ργ is at distance≤ 2~ν from Λδ, we can choose a point ρ̃γ ∈ Λδ such that d(ργ , ρ̃γ) ≤ 2~ν. For

κ0 small enough, one gets d(g−t(ργ), g
−t(ρ̃γ)) ≤ C~ν/2 for all 0 ≤ t ≤ κ0| log ~| – see property (17).

As a consequence, for ~ small enough,

∀1 ≤ k ≤ nn0, d
(
g−k(ρ), g−k (ρ̃γ)

)
≤ ǫ̃0.

Using lemma 2.2, we deduce that

(18) −
∫ nn0−1

0

a ◦ gs−nn0(ρ)ds ≤ β(nn0 − 1) +O(1).

As in the previous lemma, if we want to work with logarithmic times in ~, we need to have a tube
of size ~ν around Λ in order to obtain a remainder uniform w.r.t. ~.

�

We underline that, in both lemmas, our choice of κ0 > 0 depends onM , on Λ and on our choice
of open cover, of n0 and of ν.

3.2. Proof of Theorem 1.1. We are now in the position to give the proof of our main result.
Our strategy is to prove a positive lower bound for the norm

∥∥∥
∑

γ∈Λc
n

Π̃γψ~

∥∥∥,

where Λcn is the complementary of Λn in W
n
and n is a “short logarithmic time”. It will roughly

say that a positive part of the mass of ψ~ is far from Λ.
We will first use a hyperbolic dispersive estimate [1, 24, 28] in order to obtain a lower bound

for a similar quantity corresponding to cylinders of length kn – see paragraph 3.2.2, with k ≫ 1
fixed (kn is a “large logarithmic time”). Then, by a subadditive argument (paragraph 3.2.3), we
will derive the desired lower bound for cylinders of length n. Finally, we show in paragraph 3.2.4
how to derive Theorem 1.1 from this lower bound.
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3.2.1. Different scales of times. First, we select open covers V and W(n0) as in paragraph 2.2, in
particular the diameter of V is small enough to get the requirements of remark 2.1.

We will then fix some κ0 > 0 small enough, so that the bound of lemma 3.2 applies, and also
such that the quantum evolution of observables supported in the energy slab Eδ is under control
for times |t| ≤ κ0n0| log ~| (see subsection 4.1 on this matter). We then introduce a “short”
logarithmic time

(19) n(~) := [κ0| log ~|] .

In particular, the arguments of lemma 3.3 and of paragraphs 3.2.3 and 3.2.4 will be valid for
0 ≤ n ≤ n(~). The choice of κ0 depends on the open cover V , on the damping function a, on n0,
on δ (the size of the energy slab we work on) and on the exponent ν used to define Θ~,Λ,ν.

We fix k ≥ 2 a large positive integer, satisfying kκ0 >
d

n0P0
– see paragraph 3.2.2. We will then

define a second (“large”) logarithmic time kn(~).
We will omit the dependence n(~) = n in ~ to avoid heavy notations.

Remark 3.4. We underline that the different parameters we have introduced so far (namely n0, δ,
κ0, k, P0 and the open cover) are chosen in a way that depends only on Λ, a and ν. They will not
depend on our choice of sequence ψ~.

3.2.2. Using hyperbolic dispersive estimates. The first step of our proof is to use the property (15)
(still valid for “large” logarithmic times) and the fact that ψ~ is an eigenmode of U~, in order to
write

(20)
∑

Γ∈W
kn

〈ΠΓψ~, ψ~〉 = exp

(
− ıknn0z(~)

~

)
+O(~∞).

Here we have implicitly used the fact that the eigenstate ψ~ is microlocalized on the energy layer

E1/2 = S∗M . Then, we split the above sum using the decomposition of W
kn

as

W
kn

= Λkn ⊔
(
Λkn
)c
,

where Λkn = {Γ0Γ1 . . .Γk−1 : ∀0 ≤ j ≤ k− 1, Γj ∈ Λn} and
(
Λkn
)c

is the complementary of Λkn in

W
kn
. We find then

(21)
∑

Γ∈Λk
n

〈ΠΓψ~, ψ~〉+
∑

Γ∈(Λk
n)

c

〈ΠΓψ~, ψ~〉 = exp

(
− ıknn0z(~)

~

)
+O(~∞).

We will now use a hyperbolic dispersion estimate to bound the sum over Λkn which is a subset
of Wnk – see lemma 3.2. We are almost in the situation of [24, §7.2], except that our generator
P(~, z) is nonselfadjoint. Still, like in [28], we can use the strategy of [24, Sec.4] by taking into
account the nonselfadjoint contribution in the WKB Ansatz. The output is that, for every k ≥ 2,
there exist constants Ck > 0 and ~k > 0 (depending on k, on a, on the choice of the partition
and on Λ) such that, for any ~ ≤ ~k and any cylinder Γ = α0 · · ·αnk−1 ∈ Wnk, the following
hyperbolic dispersive estimate holds:
(22)

∥∥Πα0···αnk−1

∥∥
L2→L2 ≤ Ck ~

−d
2 (1+O(ǫ))knn0

nk−1∏

j=0

sup
ρ∈Vαj

∩Λδ

exp
(∫ n0

0

(
1/2 logJu− a) ◦ gt(ρ) dt

)
,

where the constant involved in O(ǫ) depends only on the manifold and on a. Recall ǫ is an upper
bound on the diameter of the partition V . Summing over all cylinders Γ ∈ Wnk and using the
assumption (11), we obtain, for ~ small enough,

(23)
∑

Γ∈Wnk

∥∥ΠΓψ~

∥∥ ≤ Ck(1 +O(ǫ))knn0 eknn0(β−P0) ~
− d

2 +O(~∞) ,
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which is the adaptation of the last upper upper bound in [24, Sec.7] to our nonselfadjoint setting.
Lemma 3.2 shows that Λn ⊂Wn, so the above sum can be restricted to Λkn:

(24)
∑

Γ∈Λk
n

∥∥ΠΓψ~

∥∥ ≤ Ck(1 +O(ǫ))knn0 eknn0(β−P0) ~
− d

2 +O(~∞) ,

Remark 3.5. Let us say a few words on the proof of the crucial hyperbolic dispersive estimate (22).
First, we observe that any normalized state v~ microlocalized near the energy layer can be locally
decomposed into Lagrangian states. Precisely, in a local chart fl : Vl ⊂ M → B(0, ǫ) ⊂ Rd, one
can represent (modulo OL2(~∞)) v~ as an integral of the form

(2π~)−
d
2

∫

B(0,2)

ṽ~,l(η)e
ı〈y,η〉

~ dη,

where, for each “momentum” η ∈ B(0, 2), the function ṽ~,l(η) is smooth and compactly supported
in the variable y ∈ B(0, ǫ) — see for instance [24, §7]. Translating back to the manifold, it

gives us a representation of v~ as a superposition of Lagrangian states. The prefactor ~−
d
2 in this

decomposition is responsible for the appearance of ~−
d
2 in the upper bound (22). Thus, in order to

prove our estimate, it “remains” to find uniform upper bounds for the norms of Πα0···αnk−1
(a~e

ıS
~ ),

where
(
a~e

ıS
~

)

~→0
is a sequence of Lagrangian states microlocalized near S∗M (given by the

Fourier decomposition described above).
This uniform upper bounds can be obtained thanks to a careful WKB procedure. The difficulty

comes from the fact that we have to deal with quantum evolution up to order knn0 ≍ K| log ~|
with K > 0 arbitrarly large. In particular, it could be delicate to represent the evolved state in
a simple formula, because the involved Lagrangian leaves will spread over the manifold under the
evolution. Here, the operator Πα0···αnk−1

does not only evolve the state up to large logarithmic
times but it also cuts the phase space into small pieces, thanks to the cutoff operators παj that
we have inserted every time n0 of the evolution. Due to this localization, it turns out that one
can obtain a “simpler” description (through the WKB procedure) of the Lagrangian state evolved
by Πα0···αnk−1

. This can be done up to large logarithmic times provided we choose a good family
of Lagrangian states. This property was first observed in [1] and then used in several other
situations [4, 24, 28].

There is a natural choice of Lagrangian states which is associated to the vertical bundle of
the energy layer. These particular states were used by Anantharaman and Nonnenmacher in a
selfadjoint setting [1, 4] and also by Schenck in [28] in the context of the damped wave equation.
In these references, these Lagrangian states remain under control up to large logarithmic times,
due to the global structure of the geodesic flow (it was supposed to be Anosov). Indeed, the
Anosov hypothesis implied that the associated Lagrangian submanifolds become uniformly close
to the unstable foliation and that they do not develop caustics under the evolution (thanks to the
absence of conjugate points) — see [28, §4] for details.

Even if we consider the same equation, our situation differs from the one considered by Schenck
in [28], because we do not make any global assumption on the geodesic flow: we only assume it to
be hyperbolic on Λ. Hence, we cannot a priori use the same decomposition, because our dynamical
assumptions do not forbid the existence of conjugate points or caustics. Instead, we may consider
the more flexible Fourier decomposition introduced by Nonnenmacher and Zworski in [24]. The
Lagrangian leaves involved in this decomposition are transversal to the stable manifolds, and
therefore remain under control up to large logarithmic times — see [24, §5.1 and 7.1] for details.

Thus, we use the Fourier decomposition of [24] and we follow carefully their proof in order to
prove the hyperbolic estimate (22). The main difference with this reference is that we have to
take into account the damping function in the WKB procedure (like in [28]). This implies that
the term in the upper bound is in our setting of the form

nk−1∏

j=0

sup
ρ∈Vαj

∩Λδ

exp
(∫ n0

0

(
1/2 logJu − a) ◦ gt(ρ) dt

)
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and not
∏nk−1
j=0 supρ∈Vαj

∩Λδ exp
( ∫ n0

0

(
1/2 logJu) ◦ gt(ρ) dt

)
as in [24, §7].

Following this strategy, we obtain hyperbolic dispersion estimates for cylinders that always
remain in a small vicinity of the invariant hyperbolic set7 Λ, meaning the cylinders in W kn.

Remark 3.6. The constant Ck and ~k involved in the hyperbolic dispersive estimate above can be
chosen independently of the sequence ψ~.

As was mentionned in remark 2.1, the diameter ǫ of our initial cover was chosen small enough

to have the factor (1 +O(ǫ)) ≤ e
P0
2 .

As mentioned in §3.2.1, we choose kκ0 >
d

n0P0
, so that the factor ~−

d
2 e−knn0

P0
2 = o(1). Using

the assumption (13) on z(~) and the fact that the time knn0 = O(| log ~|), we derive
∥∥∥
∑

Γ∈Λk
n

ΠΓψ~

∥∥∥ ≤
∑

Γ∈Λk
n

‖ΠΓψ~‖ = o
(
eknn0

Im z(~)
~

)
when ~ → 0 .

Comparing this with the estimate (21), we get the following lower bound when ~ → 0:

(25)
∥∥∥
∑

Γ∈(Λk
n)

c

ΠΓψ~

∥∥∥ ≥ eknn0
Im z(~)

~

(
1 + o(1)

)
.

This lower bound concerns the large logarithmic time knn0, for which the operators ΠΓ or Π̃Γ

cannot be analyzed in terms of pseudodifferential calculus.

3.2.3. Subadditivity property. We will now show that the left hand side of (25) satisfies a kind of
“subadditive” property8 for logarithmic times — see Eq. (28). For that purpose, we decompose
(Λkn)

c into

(Λkn)
c =

k−1⊔

j=0

{
Γ = Γ0 . . .Γj . . .Γk−1 : ∀i < j, Γi ∈ W

n
; Γj ∈ Λcn; ∀i > j, Γi ∈ Λn

}
,

and accordingly
(26)
∑

Γ∈(Λk
n)

c

ΠΓ =

k−1∑

j=0

( ∑

Γj+1,...,Γk−1∈Λn

ΠΓk−1 · · · · · ·ΠΓj+1

)( ∑

Γj∈Λc
n

ΠΓj

)( ∑

Γ0,...,Γj−1∈W
n

ΠΓj−1 · · · · · ·ΠΓ0

)
.

Using this equality and property (15), we are lead to

(27)
∥∥∥
∑

Γ∈(Λk
n)

c

ΠΓ ψ~

∥∥∥ ≤
k−1∑

j=0

∥∥∥
∑

γ∈Λn

Πγ

∥∥∥
k−j−1 ∥∥∥

∑

γ∈Λc
n

Πγψ~

∥∥∥ ejnn0
Im(z(~))

~ +O(~∞) .

We will show in section 4 (more precisely in Eq. (34)) that there exists a constant c > 0, such that
for ~ small enough one has ∥∥∥

∑

γ∈Λn

Πγ

∥∥∥ ≤ c enn0β .

This bound uses the fact that we uniformly control the averaged damping on cylinders of Λn, see
lemma 3.3; in particular it uses the assumption (7).

Remark 3.7. In our argument below, we will crucially use the fact that the previous bound is
cenn0β and not cen(n0β+ǫ̃) (even an arbitrary small ǫ̃ > 0 is not a priori be sufficient for our proof).
For that purpose, it was important to restrict ourselves to cylinders of trajectories that remain
very close to the set Λ. If we have used all cylinders in Wn (instead of Λn), we would have get a
bound of order cen(n0β+ǫ̃) which would have not been sufficient for the end of our proof.

7In [24], the hyperbolic estimates were valid for cylinders in a small vicinity of the trapped set – see section 7
of this reference.

8A similar property already appeared in the selfadjoint case treated in [1, §2.2].



EIGENMODES OF THE DAMPED WAVE EQUATION AND SMALL HYPERBOLIC SUBSETS 15

Then, the assumption (13) on z(~) shows that the above right hand side is smaller than

c enn0
Im z

~ (1 + o(1)), therefore (27) becomes

(28)
∥∥∥
∑

Γ∈(Λk
n)

c

ΠΓψ~

∥∥∥ ≤ ck k(1 + o(1)) e(k−1)nn0
Im z

~

∥∥∥
∑

γ∈Λc
n

Πγψ~

∥∥∥+O(~∞) .

Combining this inequality with the lower bound (25), one obtains

(29)
∥∥∥
∑

γ∈Λc
n

Πγψ~

∥∥∥ ≥ (ckk)−1enn0
Im z

~ (1 + o(1)) +O(~∞).

This lower bound is our desired lower bound for a “short” logarithmic time.

Remark 3.8. We underline again that the constants c and k do not depend on the sequence (ψ~),
but only on δ, P0, n0, the choice of open cover and κ0. Thus, it depends only on Λ, a and ν and
it will be this constant (ckk)−1 that will play the role of cΛ,a,ν in (14).

3.2.4. Using semiclassical calculus. Since ψ~ is an eigenstate of U~, the inequality (29) can be
rewritten as ∥∥ ∑

γ∈Λc
n

Π̃γψ~

∥∥
L2(M)

≥ (ckk)−1(1 + o(1)) +O(~∞).

Using the observations of paragraph 4.2, and the fact that κ0 has been chosen small enough, for
n = [κ0| log ~|] the operator

Π̃Λc
n
:=

∑

γ∈Λc
n

Π̃γ

is approximately the quantization of the symbol P̃Λc
n
:=
∑

γ∈Λc
n
P̃γ , which belongs to the symbol

class S−∞,0
ν′ (T ∗M) for some ν′ ∈ (0, 1/2). Using also the composition rule in Ψ−∞,0

ν′ (M), we get
the bound 〈

Op~(P̃
2
Λc

n
)ψ~, ψ~

〉
≥ (ckk)−2(1 + o(1)) +O(~ν0),

for some ν0 > 0. By construction, the function P̃Λc
n
takes values in [0, 1]. Because the quantization

Op
~
is approximately positive for symbols in this class — see paragraph 5.2 — one finds that

〈
Op

~
(P̃Λc

n
)ψ~, ψ~

〉
≥ (ckk)−2(1 + o(1)) +O(~ν0).

Remark 3.9. The value of ν0 > 0 can be different from the one appearing above: we have just
kept the largest remainder term.

We now split the above left hand side into two parts, using the cutoff function Θ~,Λ,ν. It remains
to estimate

(A) :=
〈
Op~

(
P̃Λc

n
(1−Θ~,Λ,ν)

)
ψ~, ψ~

〉
,

and

(B) :=
〈
Op

~

(
P̃Λc

n
Θ~,Λ,ν

)
ψ~, ψ~

〉
.

Using again the fact that Op~ is almost positive, and that P̃Λc
n
≤ 1, one obtains the bound

(A) ≤
〈
Op~(1−Θ~,Λ,ν)ψ~, ψ~

〉
+O(~ν0).

On the other hand, the definition of Λcn implies that (B) = 0. This leads to

lim inf
~→0

〈
Op~(1−ΘΛ,~,ν)ψ~, ψ~

〉
≥ (ckk)−2,

which concludes the proof of Theorem 1.1. The lower bound depends only on Λ, a and ν — see
remark 3.8.

4. Long products of pseudodifferential operators

In this section, we describe some properties of long products of pseudodifferential operators
evolved under the quantum propagator. For that purpose, we recall first a few facts on the Egorov
property for nonselfadjoint operators and then we apply them to our problem.
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4.1. Egorov property for long times. In this paragraph, we recall an Egorov property for
times of order κ0| log ~|, where κ0 is a small enough constant that we will not try to optimize.
Consider q1 and q2 two symbols belonging to S0,0(T ∗M) (for the sake of simplicity, we also assume
that these symbols depend smoothly on ~ ∈ (0, 1]). In this article, we will use the symbols qi equal

to
√
2z(~)a, −

√
2z̄(~)a or 0 — see paragraph 4.2 below.

4.1.1. The case of fixed times. We consider a smooth function b on T ∗M which is compactly
supported in a neighborhood of S∗M , say supp(b) ⊂ {(x, ξ) : ‖ξ‖2 ∈ [1/2, 3/2]} and which belongs
to S−∞,0(T ∗M). The following operator is a pseudodifferential operator, for every t ∈ R,

B(t, b) =

(
e
− ıt

~

(

− ~
2∆
2 −ı~Op

~
(q1)

)
)∗

Op~(b)e
− ıt

~

(

− ~
2∆
2 −ı~Op

~
(q2)

)

.

We briefly recall how such a fact can be proved by a direct adaptation of the arguments used in
the selfadjoint case [16, 33, 6, 27]. Take q = q1 + q2, and introduce, for t, s ∈ R, the symbol

Bt(s) := b ◦ gt−s exp
(
−
∫ t−s

0

q ◦ gτdτ
)
.

To alleviate our notations, we call

Us
~
(qi) := e

− ıs
~

(

− ~
2∆
2 −ı~Op

~
(qi)

)

, i = 1, 2 ,

so that the operator B(t, b) = (U t
~
(q1))

∗
Op

~
(b)U t

~
(q2). Fixing t, we then introduce the auxiliary

operators

R(~, s) = (Us
~
(q1))

∗ Op
~
(Bt(s))Us~(q2).

Like in the classical proof of the Egorov Theorem (i.e. in the selfadjoint case), one can compute
the derivative of R(~, s):

d

ds
(R(~, s)) = (Us

~
(q1))

∗

(
ı

~

[
−~2∆

2
,Op

~
(Bt(s))

]
−Op

~
(q1)

∗ Op
~
(Bt(s)) −Op

~
(Bt(s))Op

~
(q2)

)
Us
~
(q2)

−(Us
~
(q1))

∗
(
Op

~
({p0, Bt(s)})−Op

~
(Bt(s)(q1 + q2))

)
Us
~
(q2).

We integrate this equality between 0 and t [6]:

(
U t
~
(q1)

)∗
Op~(b)U t~(q2) = Op~

(
b ◦ gte−

∫

t
0
q◦gτdτ

)
+

∫ t

0

(Us
~
(q1))

∗R̃(~, s)Us
~
(q2)ds,

where R̃(~, s) is a pseudodifferential operator in Ψ−∞,−1(M) thanks to pseudodifferential rules.
Proceeding by induction and using pseudodifferential calculus perfomed locally on each chart [16,
33] (respectively Chapter 7 and 4) and the fact that Us

~
(q2) is a bounded operator (with a norm

depending9 on q2 and s), one in fact finds that (U t
~
(q1))

∗
Op

~
(b)U t

~
(q2) is a pseudodifferential

operator in Ψ−∞,0(M),

(30)
(
U t
~
(q1)

)∗
Op~(b)U t~(q2) = Op~(b̃(t)) +O(~∞),

where b̃(t) ∼∑j≥0 ~
jbj(t),

b0(t) = Bt(0) = b ◦ gt exp
(
−
∫ t

0

(q1 + q2) ◦ gτdτ
)
,

and all the higher order terms (bj(t))j≥1 in the asymptotic expansion depend on b, t, q1, q2 and the
choice of coordinates on the manifold. Moreover, for a fixed t ∈ R, one can verify that every term

bj(t) is supported in g−tsupp(b). Each bj(t) can be written as cj(t) exp
(
−
∫ t
0
(q1 + q2) ◦ gτdτ

)
,

where cj(t) ∈ S−∞,0(T ∗M). The Calderón-Vaillancourt Theorem [33, Chap.5] tells us that there
exist constants Cb,t and C

′
b,t (depending on b, q1, q2, t and M) such that

∥∥∥
(
U t
~
(q1)

)∗
Op~(b)U t~(q2)

∥∥∥
L2(M)→L2(M)

≤ Cb,t‖b0(t)‖∞,

9It is in fact bounded by a constant of order e|s|‖q2‖∞ .
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and also

(31)
∥∥∥
(
U t~(q1)

)∗
Op~(b)U t~(q2)−Op~(b0(t))

∥∥∥
L2(M)→L2(M)

≤ C′
b,t~.

4.1.2. The case of logarithmic times. All the above discussion was done for a fixed t ∈ R. In
this article, we needed to apply Egorov property for long range of times of order κ0| log ~| [6, 4].
This can be achieved as all the arguments above can be adapted if we use more general classes of
symbols, i.e. S−∞,0

ν (T ∗M) where ν < 1/2 is a fixed constant10.
In particular, one can show that, for b ∈ S−∞,0(T ∗M) supported near S∗M as above and κ1

small enough (depending on the support of b, on ν, on q1 and on q2), the operator B(t, b) is

a pseudodifferential operator in Ψ−∞,0
ν (M) for all |t| ≤ κ1| log ~|. Precisely, its symbol has an

asymptotic expansion of the same form as in the case of fixed times, except that for every j ≥ 0

the symbol cj(t) belongs to S
−∞,kj
ν (T ∗M) for every |t| ≤ κ1| log ~|, where j − kj is an increasing

sequence of real numbers converging to infinity as j → +∞.
We also mention that all the seminorms of the symbols cj(t) can be bounded uniformly for

|t| ≤ κ1| log ~|. Finally, using pseudodifferential calculus (performed locally on every chart), one
can verify that the following uniform estimates hold:

Proposition 4.1. There exist constants κ1 > 0 and ν0 > 0 (depending only on q1, q2, ν and M)
such that for every smooth function b compactly supported in {(x, ξ) : ‖ξ‖2 ∈ [1/2, 3/2]}, there
exists a constant Cb > 0 such that for every |t| ≤ κ1| log ~|, one has

∥∥∥
(
U t
~
(q1)

)∗
Op

~
(b)U t

~
(q2)

∥∥∥
L2(M)→L2(M)

≤ Cb‖b0(t)‖∞,

and ∥∥∥
(
U t
~
(q1)

)∗
Op

~
(b)U t

~
(q2)−Op

~
(b0(t))

∥∥∥
L2(M)→L2(M)

≤ Cb~
ν0 .

Remark 4.2. We will mostly use evolutions involving the propagator U t
~
of (4). Then, the expres-

sion (U t
~
)∗ Op

~
(b)U t

~
has the form of (30), with q1 = q2 =

√
2z(~)a. As a result, in this case the

principal symbol is b0(t) = b ◦ gt e−2
∫

t
0
a◦gτ dτ .

Another operator will be used: (U t
~
)−1 Op~(b)U t~ also has the form (30), now with q1 = −

√
2z̄a,

q2 =
√
2z(~)a. In this case, the principal symbol b0(t) = b ◦ gt.

4.2. Sums of long products of pseudodifferential operators. In this paragraph, we make a
few observations on “long” product of pseudodifferential operators (with ≍ | log ~| factors), that
we used at different stages of our proof – e.g. in paragraphs 3.2.3 and 3.2.4.

The open cover and the time n0 of paragraph 2.2 (and their corresponding quantum partition
near Eδ) are fixed in this paragraph.

We would like to use the above results to show that, for κ0 > 0 small enough, for 0 ≤ p ≤
κ0| log ~| and for any subset Xp ⊂W

p
of p-cylinders, the operator

Π̃Xp :=
∑

γ∈Xp

Π̃γ

is a pseudodifferential operator, with a principal symbol in a “good” symbol class. Using the
composition rule for pseudodifferential operators in Ψ−∞,0

ν (M) and proposition 4.1, there exist

ν0 > 0 and κ0 > 0 such that, for every 0 ≤ p ≤ κ0| log ~| and for every γ ∈W
p
,

∥∥∥Π̃γ −Op~(P̃γ)
∥∥∥
L2(M)

= O(~ν0),

where the remainder can be bounded uniformly for every 0 ≤ p ≤ κ0| log ~| and for every cylinder

γ ∈W
p
.

Remark 4.3. The constants ν0 and κ0 appearing here are a priori smaller than the one from
proposition 4.1.

10In order to avoid too many indices, we take the same ν as in the definition of ΘΛ,~,ν .
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This observation leads us to the bound

(32)
∥∥Π̃Xp −Op~(P̃Xp)

∥∥
L2(M)

= O(Kp
~
ν0), P̃Xp :=

∑

γ∈Xp

P̃γ

where K = |W |. Hence, for κ0 small enough, the remainder is of the form O(~ν
′
0) for some positive

ν′0 > 0. We underline that the constant in the remainder is uniform w.r.to 0 ≤ p ≤ κ0| log ~| and
Xp ⊂W

p
.

We can also verify that there exists κ0 > 0 small enough and ν < ν′ < 1/2 such that the

function P̃Xp belongs to the symbol class S−∞,0
ν′ (T ∗M), and such that the seminorms (defining

this class) can be bounded uniformly w.r.to 0 ≤ p ≤ κ0| log ~| and Xp ⊂ W
p
. In particular, one

can apply semiclassical calculus to this operator. For instance, the Calderón-Vailancourt Theorem
tells us that

(33)
∥∥Op~(Π̃Xp)

∥∥
L2→L2 = O(1),

where the constant in the remainder is uniform w.r.to 0 ≤ p ≤ κ0| log ~| and Xp ⊂W
p
.

Remark 4.4. When proving the subadditive property, we also needed to bound from above the
norm of

QXp := e−
ıpn0~∆

2

∑

γ∈X

Πγ , for a subset Xp ⊂ Λp .

Using the notations of §4.1, this operator can be written

QXp = U~(0)
−pn0 Π̃Xp U~(

√
2za)pn0

Hence, using (32) and the Egorov type estimate of Proposition 4.1, one obtains, for κ0 small
enough, ∥∥∥QXp −Op

~

(
P̃Xp ◦ gpn0 e−

∫ pn0
0 a◦gsds

)∥∥∥
L2(M)

= O(~ν
′
0 ),

for some ν′0 > 0. The symbol

P̃Xp ◦ gpn0 e−
∫ pn0
0 a◦gsds = e−

∫ pn0
0 a◦gsds

∑

γ∈Xp

Pγp−1 ◦ g(p−1)n0 . . . Pγ1 ◦ gn0Pγ0

belongs to a class S−∞,0
ν′ (T ∗M). In particular, since Xp ⊂ Λp, one can combine lemma 3.3

with the Calderón-Vaillancourt Theorem in order to derive that, for κ0 small enough and for any
0 ≤ p ≤ κ0| log ~|, one has the norm estimate

(34) ‖QXp‖L2 = O(epn0β),

where the implied constant is uniform in p, Xp ⊂ Λp and depends on a, on the choice of the open
cover and on n0.

Remark 4.5. Even if we did not mention it at every stage of the proof, the remainders due to the
semiclassical approximation depend on the choice of the open cover and on n0 that were introduced
in paragraph 2.2.

5. Pseudodifferential calculus on a manifold

In this last section, we review some basic facts on semiclassical analysis that can be found for
instance in [16, 33].

5.1. General facts. Recall that we define on R2d the following class of symbols:

Sm,k(R2d) :=
{
(b~(x, ξ))~∈(0,1] ∈ C∞(R2d) : |∂αx ∂βξ b~| ≤ Cα,β~

−k〈ξ〉m−|β|
}
.

Let M be a smooth Riemannian d-manifold without boundary. Consider a smooth atlas (fl, Vl)
of M , where each fl is a smooth diffeomorphism from Vl ⊂ M to a bounded open set Wl ⊂ Rd.
To each fl correspond a pull back f∗

l : C∞(Wl) → C∞(Vl) and a canonical map f̃l from T ∗Vl to
T ∗Wl:

f̃l : (x, ξ) 7→
(
fl(x), (Dfl(x)

−1)T ξ
)
.
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Consider now a smooth locally finite partition of identity (φl) adapted to the previous atlas (fl, Vl).
That means

∑
l φl = 1 and φl ∈ C∞(Vl). Then, any observable b in C∞(T ∗M) can be decomposed

as follows: b =
∑
l bl, where bl = bφl. Each bl belongs to C

∞(T ∗Vl) and can be pushed to a function

b̃l = (f̃−1
l )∗bl ∈ C∞(T ∗Wl). As in [16, 33], define the class of symbols of order m and index k

(35) Sm,k(T ∗M) :=
{
(b~(x, ξ))~∈(0,1] ∈ C∞(T ∗M) : |∂αx ∂βξ b~| ≤ Cα,β~

−k〈ξ〉m−|β|
}
.

Then, for b ∈ Sm,k(T ∗M) and for each l, one can associate to the symbol b̃l ∈ Sm,k(R2d) the
standard Weyl quantization

Opw~ (b̃l)u(x) :=
1

(2π~)d

∫

R2d

e
ı
~
〈x−y,ξ〉b̃l

(
x+ y

2
, ξ; ~

)
u(y)dydξ,

where u ∈ S(Rd), the Schwartz class. Consider now a smooth cutoff ψl ∈ C∞
c (Vl) such that ψl = 1

close to the support of φl. A quantization of b ∈ Sm,k(T ∗M) is then defined in the following way
(see chapter 14 in [33]):

(36) Op~(b)(u) :=
∑

l

ψl ×
(
f∗
l Opw~ (b̃l)(f

−1
l )∗

)
(ψl × u) ,

where u ∈ C∞(M). This quantization procedure Op~ sends (modulo O(~∞)) Sm,k(T ∗M) onto
the space of pseudodifferential operators of order m and of index k, denoted Ψm,k(M) [16, 33].
It can be shown that the dependence in the cutoffs φl and ψl only appears at order 1 in ~ (The-
orem 18.1.17 in [20] or Theorem 9.10 in [33]) and the principal symbol map σ0 : Ψm,k(M) →
Sm−1,k/Sm−1,k−1(T ∗M) is then intrinsically defined. Most of the rules (for example the com-
position of operators, the Egorov and Calderón-Vaillancourt Theorems) that hold on R2d still
hold in the case of Ψm,k(M). Because our study concerns the behavior of quantum evolution for
logarithmic times in ~, a larger class of symbols should be introduced as in [16, 33], for 0 ≤ ν < 1/2,

(37) Sm,kν (T ∗M) :=
{
(b~)~∈(0,1] ∈ C∞(T ∗M) : |∂αx ∂βξ b~| ≤ Cα,β~

−k−ν|α+β|〈ξ〉m−|β|
}
.

Results of [16, 33] can be applied to this new class of symbols. For example, a symbol of S0,0
ν (T ∗M)

gives a bounded operator on L2(M) (with norm uniformly bounded with respect to ~).

5.2. Positive quantization. Even if the Weyl procedure is a natural choice to quantize an ob-
servable b on R2d, it is sometimes preferrable to use a quantization procedure Op

~
that satisfies

the property : Op~(b) ≥ 0 if b ≥ 0. This can be achieved thanks to the anti-Wick procedure

OpAW
~

, see [17]. For b in S0,0
ν (R2d), that coincides with a function on Rd outside a compact subset

of T ∗Rd = R2d, one has

(38) ‖Opw~ (b)−OpAW~ (b)‖L2 ≤ C
∑

|α|≤D

~
|α|+1

2 ‖∂αdb‖,

where C and D are some positive constants that depend only on the dimension d. To get a
positive procedure of quantization on a manifold, one can replace the Weyl quantization by the
anti-Wick one in definition (36). This new choice of quantization is well defined for every element in

S0,0
ν (T ∗M) of the form c0(x)+c(x, ξ) where c0 belongs to S0,0

ν (T ∗M) and c belongs to C∞
o (T ∗M)∩

S0,0
ν (T ∗M).

Appendix A. Inverse logarithmic “spectral gap” under a pressure condition
By Stéphane Nonnenmacher and Gabriel Rivière

In this appendix, we consider the problem (2) in the case where the damping function a(x) ≥ 0
does not identically vanish. We also make the assumption that the set of undamped trajectories

N =
{
ρ ∈ S∗M : a ◦ gt(ρ) = 0, t ∈ R

}
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is not empty. In this case, it is generally not known whether there exists a strip of fixed width below
the real axis without eigenvalues of (2). Lebeau showed [22] the existence of an exponentially thin
strip, meaning that there exists C > 0 such that all eigenvalues τ 6= 0 satisfy

Im τ ≤ − 1

C
e−C|τ | .

Lebeau also constructed a geometric situation where this upper bound is sharp. Yet, it is natural
to ask whether additional assumptions on the manifold M and on the set N allow to improve this
upper bound. In this appendix, we apply the techniques developed above to prove the following
criterium for an inverse logarithmic gap.

Theorem A.1. Assume the set of undamped trajectories N is a hyperbolic set, and satisfies the
pressure condition

(39) Ptop

(
N , gt,

1

2
log Ju

)
< 0.

Then, there exists a constant C > 0 such that for the following resolvent estimate holds:
(40)

‖(−∆− 2iaτ − τ2)−1‖ ≤ C(log(Re τ))2

Re τ
, uniformly for τ ∈

{
Re τ ≥ C, | Im τ | ≤ C−1

log(Re τ)

}
.

As a consequence, there is a C̃ > 0 such that any eigenvalue τn 6= 0 of the problem (2) satisfies

(41) Im τn ≤ − C̃

log(1 + |τn|)
.

This inverse logarithmic spectral gap was recently obtained in [14, Thm. 5.5] using a different
approach, and under the slightly stronger assumption that π(N )∩ supp(a) = ∅ where π : S∗M →
M is the canonical projection on M (in our setting, N is allowed to intersect supp a ∩ a−1(0)).

However, the resolvent estimate obtaind in [14, Thm. 5.5] is of order log(Re τ)
Re τ , which is sharper

(by a logarithmic factor) than the one we obtain above. We believe that this loss of a logarithmic

factor is due to our method of proof, and that the upper bound log(Re τ)
Re τ should hold under our

conditions as well.
A similar result had been proved by Christianson in [11], under the assumption that N consists

in a single hyperbolic closed geodesic, and extended in [13] to the case of a (single) semihyperbolic
closed geodesic11 satisfying a nonresonance assumption. In [26] the same spectral gap was proved
under the assumption that the geodesic flow on M is Anosov [21]. The above Theorem thus
generalizes the results of [11, 26], and it cannot be improved without additional assumptions —
see the example announced in [9].

In order to get a larger gap, one can try to make global assumptions on the geodesic flow on
M , for instance assume it is of Anosov type. It was conjectured in [23] that if the geodesic flow
is Anosov and N satisfies the condition (39), then there should be a finite spectral gap, namely
all eigenvalues τ 6= 0 of the problem (2) should satisfy Im τ ≤ −γ for some γ > 0. We refer the
reader to [29, 23] for partials results in favor of this conjecture.

The references [22, 12] show how to connect resolvent estimates with the decay of the energy

E(v(t))
def
=

1

2

(
‖∇v(t)‖2 + ‖∂tv(t)‖2

)

of a wave v(x, t) satisfying (1). With our dynamical conditions one obtains a stretched exponential
decay (see [14, Cor. 5.2]):

Corollary A.2. Assume the same geometric conditions as in Thm A.1. For any s > 0 there
exists Cs > 0, such that for any initial data (v(0), ∂tv(0)) ∈ Hs+1(M)×Hs(M), the energy of the
wave v(t) solving (1) with those data satisfies

∀t ≥ 0, E(v(t)) ≤ Cs e
−t1/2/Cs

(
‖v(0)‖2Hs+1 + ‖∂tv(0)‖2Hs

)
.

11A semihyperbolic closed geodesic admits at least one positive Lyapunov exponent.
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Remark A.3. The undamped set N can be “lifted” to nearby energy shells, and we will often
consider N δ defined as in (9). Due to the homogeneity of the geodesic flow, the condition (39) is
satisfied on all nonzero energy shells when it is on S∗M = p−1

0 (1/2).

We now give the proof of Theorem A.1.

Proof. Using the semiclassical notations of the introduction, we need to establish the existence of
constants δ0 > 0, and C > 0 such that, for ~ > 0 small enough,
(42)

∀z ∈
[
1

2
− δ0,

1

2
+ δ0

]
+ ı

[
−C−1 ~

| log ~| , C
−1 ~

| log ~|

]
,
∥∥(P(~, z)− z)−1

∥∥
L(L2(M))

≤ C| log ~|2
~

.

Translating back to the original setting of (2), this resolvent estimate implies (40).
In order to prove (42), we proceed by contradiction. Namely, we assume that there exist a se-

quence of parameters (~l ց 0)l∈N, of spectral parameters z(~l) ∈ C and of normalized quasimodes
ψ~l

∈ L2(M), so that, when l tends to infinity,

P(z(~l), ~l)ψ~l
= z(~l)ψ~l

+ o(~l| log ~l|−2),

z(~l) =
1

2
+ o(1),

Im z(~l)

~l
= o(| log ~l|−1) .

(43)

To alleviate the notations we will omit the parameter l and just use ~, z, ψ~. A notable difference
with the proof of Theorem 1.1 is that we need to deal with quasimodes, instead of eigenmodes
(considering only eigenmodes would allow to prove the inverse logarithmic gap (41), but not the
resolvent estimate (40)).

The assumptions (43) imply the following estimates, that we will frequently use in our proof.
For any K > 0, the following estimates hold uniformly for times |t| ≤ K| log ~|

U t~eitz/~ψ~

def
= e−

ıt
~
(P(~,z)−z)ψ~ = ψ~ + o(|t|| log ~|−2), and(44)

e
t Im z

~ = 1 + o(|t|| log ~|−1).(45)

Hence, even for |t| ≍ | log ~| both remainders are o~→0(1).
Applying the quasimode equation and (44), we obtain, for every fixed t > 0,

−~
−1 Im z = −~

−1 Im〈ψ~,P(~, z)ψ~〉+ o(| log ~|−1)

= 〈ψ~, a ψ~〉+O(~) + o(| log ~|−1)

= e−2t Im z
~ 〈ψ~, (U t~)∗ aU t~ψ~〉+ ot(| log ~|−1) .

Applying the Egorov estimate (30), in particular the case described in remark 4.2, and averaging
over t ∈ [−T, T ], we get

−~
−1 Im z =

〈
ψ~,Op~

( 1

2T

∫ T

−T

a ◦ gte−2t Im z
~

−2
∫ t
0
a◦gsdsdt

)
ψ~

〉
+ oT (| log ~|−1).

Using the fact that the quantization procedure is almost positive – see §5.2 – and the identity
(45), one gets the bound

−~
−1 Im z ≥ (1 + oT (1))e

−2T‖a‖∞
〈
ψ~,Op~

( 1

2T

∫ T

−T

a ◦ gtdt
)
ψ~

〉
+ oT (| log ~|−1).

We now use the cutoff function P∞ ∈ C∞
c (V∞, [0, 1]) introduced in §3.1.2: notice that its support

is at positive distance from N δ. Using again that Op~ is approximately positive, one finds that

−~
−1 Im z ≥ (1 + oT (1))e

−2T‖a‖∞
〈
ψ~,Op

~

(
P∞ × 1

2T

∫ T

−T

a ◦ gtdt
)
ψ~

〉
+ oT (| log ~|−1).

Since P∞ is supported away from the undamped set N δ, there exists T > 0 and a0 > 0 (indepen-
dent of ~) such that

inf
ρ∈suppP∞

1

2T

∫ T

−T

a ◦ gt(ρ)dt ≥ a0,
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which implies

−~
−1 Im z ≥ (1 + oT (1))a0 e

−2T‖a‖∞ 〈ψ~,Op
~
(P∞)ψ~〉+ oT (| log ~|−1).

In particular, from our assumption on Im z(~) we get

(46) 〈ψ~,Op
~
(P∞)ψ~〉 = o(| log ~|−1) .

To obtain a contradiction we will prove an inverse logarithmic lower bound for the above left
hand-side. This can be achieved by adapting the argument of Theorem 1.1.

We will use the notations introduced in §3.1.2. Instead of considering the subset of cylinders
Λn ⊂Wn in the argument of §3.2, we will use the full family Wn, and obtain an upper bound for

∥∥ ∑

γ∈(Wn)c

Π̃γψ~

∥∥,

where (Wn)c is the complementary ofWn inW
n
. Recall that n = [κ0| log ~|] is a short logarithmic

time, for which we may apply Egorov’s Theorem and the pseudodifferential calculus.

Remark A.4. In §3 the restriction to cylinders in Λn had allowed to show that the Birkhoff averages
−
∫ nn0

0 a ◦ gs(ρ)ds were bounded above by βnn0 + O(1), a property which was crucially used in

§3.2.3. We are now interested in the case β = 0, and the upper bound −
∫ nn0

0
a ◦ gs(ρ)ds ≤ 0

obviously holds for every point ρ ∈ T ∗M since a is nonnegative.

Using the hyperbolic dispersive estimate (23) and taking the sum over Wn, we can prove the
inequality (25) for our quasimode ψ~. Using (45) and the fact that the time knn0 = O(| log ~|),
we get ∥∥∥

∑

Γ∈(Wnk)c

ΠΓ ψ~

∥∥∥ ≥ 1 + o(1) ,

Implementing the same subadditivity argument as in §3.2.3, we find

1 + o(1) ≤
∥∥∥

∑

Γ∈(Wnk)c

ΠΓ ψ~

∥∥∥ ≤ ck (1 + o(1))

k−1∑

j=0

∥∥∥
∑

γ∈(Wn)c

ΠγUjn~ ψ~

∥∥∥.

Thanks to the upper bound (33) and the subunitarity bound ‖Un
~
‖ ≤ 1, we verify that

∥∥∥
∑

γ∈(Wn)c Πγ

∥∥∥ =

O(1). We now use the identities (44,45) one more time and we obtain

1 + o(1) ≤ ck k (1 + o(1))
∥∥∥

∑

γ∈(Wn)c

Πγ ψ~

∥∥∥+ o(1).

Like in §3.2.4 and using again (44,45), this inequality can be rewritten as

(ck k)−1
(
1 + o(1)

)
≤
∥∥∥

∑

γ∈(Wn)c

Π̃γ ψ~

∥∥∥ ,

and then analyzed through the pseudodifferential calculus like in the proof of Theorem 1.1. We
obtain12

(47) (ckk)−2(1 + o(1)) ≤
〈
Op~

( ∑

γ∈(Wn)c

P̃γ

)
ψ~, ψ~

〉
+O(~ν0).

The set (Wn)c consists in the cylinders in W
n
with at least one index γj = ∞, so it can be split

into

(Wn)c =

n⊔

p=1

{Γ = γ∞ γ : γ ∈W
p−1

, γ ∈Wn−p} .

12Like in paragraph 3.2.4, the parameter ν0 > 0 will change from line to line, meaning that we keep the worst
remainder term.
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Accordingly,

∑

γ∈(Wn)c

P̃γ =

n∑

p=1

(( ∑

γ∈Wn−p

P̃γ
)
P∞ ◦ g−(n−p+1)n0

( ∑

γ∈W
p−1

P̃γ ◦ g−(n−p+1)n0
))
.

Since the family (Pα)α∈W forms a resolution of identity near Eδ/2, we have for any t ∈ R

∑

γ∈Wn−p

P̃γ ◦ gt ≤ 1,
∑

γ∈W
p−1

P̃γ ◦ gt = 1, near Eδ/2 .

The approximate positivity of Op~ implies

〈
Op

~

( ∑

γ∈(Wn)c

P̃γ
)
ψ~, ψ~

〉
≤

n∑

p=1

〈
Op

~
(P∞ ◦ g(p−n−1)n0)ψ~, ψ~

〉
+O(~ν0 ),

so from (47) we get

(ckk)−2(1 + o(1)) ≤
n∑

p=1

〈
Op~

(
P∞ ◦ g−pn0

)
ψ~, ψ~

〉
+O(~ν0).

We now again combine the fact that ψ~ is an quasimode (via equation (44)) with the Egorov
theorem, and obtain

(ckk)−2(1 + o(1)) ≤
n∑

p=1

〈
Op~

(
P∞ e−2pn0

Im z
~

−2
∫ pn0
0 a◦gsds

)
ψ~, ψ~

〉
+O(~ν0 ) + o(n2| log ~|−2).

A last application of the fact that a ≥ 0, Im z = o(~| log ~|−1), n = O(| log ~|) and that Op~ is
almost positive implies that

(ckk)−2(1 + o(1)) ≤ n (1 + o(1)) 〈Op~(P∞)ψ~, ψ~〉+O(~ν0) + o(1).

Hence, for n = [κ0| log ~|] we end up with

(ckk)−2

κ0| log ~|
(1 + o(1)) ≤ 〈Op~(P∞)ψ~, ψ~〉.

This lower bound establishes the contradiction with Eq. (46), and shows that our assumption (43)
cannot be verified. This proves the resolvent estimate (42), and our theorem. �

Remark A.5. Provided that we consider a sequence of o(~| log ~|−2) quasimodes, the above loga-
rithmic lower bound on 〈ψ~,Op

~
(P∞) ψ~〉 holds as well in the selfadjoint case for a smooth cutoff

function 1 − P∞ around an hyperbolic subset Λ satisfying Ptop(Λ, g
t, log Ju/2) < 0. In fact, its

proof only used the fact that Im z = o(~| log ~|−1) and a ≥ 0. In this case, this lower bound
generalizes the concentration results obtained in [15, 31, 10, 11] for hyperbolic closed geodesics
(yet, the required precision of our quasimode is stronger than the one used in [11]; besides, our
result does not encompass the case of a semihyperbolic orbit treated in [13]).
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