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Abstract
In this paper, we define and study a class of monoids ordered by a

two sided version of Nambooripad order. These monoids, quasi-inverse
in some sense, are equipped with a variation of McAlister and Reilly
premorphisms. The resulting category is shown to be a super-category
of the category of monoids equipped with morphisms.

An expansion construction, à la Birget and Rhodes, that lifts every
monoid morphism to a quasi-inverse monoid premorphism, is provided.
This shows that, in some sense, the classical notion of language recog-
nizability by monoid can be generalized to a richer notion of language
quasi-recognizability by quasi-inverse monoid.

While former studies of inverse monoids in the context of language
theory rather led to negative results as the class of definable languages
by means of inverse monoids collapses, the new framework proposed
here reopens the way towards the integration of the mathematical rich-
ness of inverse monoid theory in algebraic studies of formal language
theory.

Nota : this research report is unpublished and will probably remain as
such. Ongoing developments, within language theory, of the notion of quasi-
recognizability tell us that definitions proposed in this report are yet not as
potentially stable as one could expect.

1 Introduction
Monoids (or semigroups) theory plays a central rôle in formal language the-
ory. Via the notion of algebraic recognizability and, especially, the associated
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notion of syntactic monoid, a considerable amount of decision results have
been obtained.

In view of the mathematical richness of inverse semigroups theory, many
attempts have thus been conducted to incorporate that richness within for-
mal language theory. However, aside the inherent mathematical interests of
these studies, most of these approaches have been unsatisfactory in terms
of expressive power. Languages of words recognizable by inverse monoids
turned out to be rather poor [10] and recognizable subsets of free inverse
monoids, i.e. languages of birooted trees, also turned out to be consider-
ably limited [14] compared to the notion of regular tree languages. A recent
study [6] of recognizable languages of tiles - one-dimensional unidirectional
birooted trees - even shows that these subsets are essentially characterized
by means of special covers of periodic bi-infinite words.

In all cases, such a weak expressiveness can be explained by the fact that
morphisms, in that they preserve products, convey far too much structure.
The class of associated automata, necessarily inversible in some sense, is thus
limited. We thereby seek to identify a relaxation of the notion of morphism
itself.

For languages of tiles, equivalently subsets of McAlister inverse monoid [9],
we already proposed [5] a notion of quasi-recognizability: recognizability by
means of premorphisms instead of morphisms. Defined on ordered monoids,
premorphisms are monotonic mappings that are only required to be sub-
multiplicative w.r.t. the monoid product [11], i.e. ϕ(xy) ≤ ϕ(x)ϕ(y) instead
of ϕ(xy) = ϕ(x)ϕ(y). The resulting quasi-recognizable subsets are then
shown [5] to capture essentially the expressive power of Monadic Second
Order Logic (MSO) definability : a typical yardstick of expressive power.

However, the notion quasi-recognizability briefly sketched above is in-
complete for it does not imply MSO definability. Indeed, one need to restrict
both the class of (ordered) monoids and the class of premorphisms so that
the resulting inverse images are definable in MSO. Setting up an adequate
notion of quasi-recognizability becomes thus a rather delicate task seeking
for the right balance between gaining in expressiveness by relaxing classical
hypothesis, and preserving MSO definability by imposing some restriction.

Our goal in this paper is to make such a proposal and study the abstract
properties of these adequate ordered monoids and premorphisms. The asso-
ciated methods, ideas and results that induce a generalization of the classical
notion of recognizability is potentially applicable in many other context than
the one previously studied. We aim thus at providing here mathematical
foundations, within ordered semigroup and inverse semigroup theory, of this
potentially new bridge between semigroup theory in algebra and formal lan-
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guage theory in computer science.

Outline

The first stage of our work amounts to define the class of admissible monoids
upon which quasi-recognizability is well-behaved. It occurs that these monoids
are tightly related with the idea that

We give two equivalent axiomatic definition of it.

The first axiomatic definition deals with monoids equipped with two
unary projection x 7→ xL and x 7→ xR that maps every element to (some no-
tion of) canonical left and right local units assumed to be commuting idem-
potents. A number of axioms defining the properties of these projections
are then given that eventually capture the class of Lawson’s U -semiadequate
monoids [7]. In that approach, U is defined to be the image of S via both
projections.

An additional axiom is provided to restrict to these monoids were the
induced two-sided natural order is stable with respect to the product.

Following this point of view, the resulting class of monoids can be seen
as a class of quasi-inverse monoids in the sense that, even in the absence
of inverses themselves, xL essentially behaves like x−1x and xR essentially
behaves like xx−1. Such a metaphor considerably helps developing intuition
on the way these canonical local units behave.

As such, the class of quasi-inverse monoids generalizes the class of in-
verse, regular, ample or adequate monoids as well as even larger classes such
as (two sided) restriction monoids [4, 1]. In fact, such a study of classes of
monoids (or semigroups) that essentially behave like inverse monoid with-
out the inverses themselves already started with Fountains’ notion of ample
and adequate monoids [2, 3]. Our proposal, which justification comes from
a language theoretical point of view, is just another one. It inherits from
the many studies and proposal already conducted since Fountains’ pioneered
work.

The second axiomatic definition is based on partially ordered monoid.
More precisely, we consider these monoids which subunits, elements smaller
than the unit, are commuting idempotents and where the order relation is
the two-sided Nambooripad natural order [12] induced by these subunits.
Requiring moreover that the left (and the right) stabilizer of every element
contain a least subunits, we eventually capture the class of Lawson’s U -
semiadequate monoids [7], where U is the set of subunits.
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In the case the order is stable, commutation of idempotent subunits can
be dropped (as it is enforced by stability hypothesis) and this leads to a
characterization of stable U -semiadequate monoids.

In both general or stable case, the fact we are dealing with monoids
instead of semigroups also make a somehow subtle difference with Lawson’s
definition [7]. Indeed, it is striking that in a U -semiadequate monoid M
ordered by the natural order, set U equals the set of subunits ofM , i.e. those
elements that are smaller than or equal to 1. It follows that our quasi-inverse
monoids, already known as U -semi adequate monoids, can just be called
semiadequate ordered monoids or, following the new naming convention of
the York school founded by Fountains, weakly adequate ordered monoids.

Various examples of quasi-inverse monoids are provided in order to illus-
trate these definitions. Of course, a major source of examples comes from
taking submonoids of inverse monoids and closing them under left projection
mapping x 7→ xL = x−1x and right projection mapping x 7→ xR = xx−1.
These are stable inverse monoids.

Another example, rather unexpected, is the relation monoid P(Q × Q)
where an order, coarser than inclusion order, turns it into a non stable
quasi-inverse monoid with partial bijections defining all subunits.

The second stage of our proposal amounts to define the adequate premor-
phism that behaves nicely on quasi-inverse monoids. The main concern is
that, aiming at defining languages by means of premorphism inverse images,
we need to ensure these inverse images remains simple.

Does there exist any non trivial admissible monoids and premorphisms?
An expansion, in the sense of Birget and Rhodes [13], is provided. It uni-
formly maps every monoid M (resp. morphism ϕ) to a non trivial admissi-
ble quasi-inverse monoid Q(M) (resp. non trivial admissible premorphism
Q(ϕ)). This last result constitute the corner stone of our proposal.

More related works

Although U -semiadequate are defined in [7] it appears that there and in
following studies, the emphasis is put on U -semiadequate semigroups that
moreover satisfies the congruence property, i.e. U -semiadequate semigroups
where both L̃ and R̃ are congruences.

In our study, we are rather concerned with stable quasi-inverse monoids,
i.e. U -semiadequate monoids where the induced (two-sided) natural order is
stable under product. It follows that we do not need the congruence prop-
erty. Moreover, our main construction Q(M) leads to quasi-inverse monoids
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that do not satisfy that congruence property. It follows that, despite a tight
relationship, our work still diverges from previous studies.

Our expansion construction has many similarities with constructions à
la McAlister, studied and developed further for instance in Cornock PhD [1].
However, the product in an expansion just seems unrelated with the products
defined there. Despite its simplicity and robustness, despite the richness of
the underlying field, it seems (so far) that our construction is still original.
Anyhow, as Q(S) still looks like a sort of a double semi-direct product
between S and the two lattices Us(S) and Up(S) of left and right ideals
of S with intersection as product, a potential link with formerly defined
constructions need to be further investigated.

Notations

In the remainder of the text, given a monoid S with neutral written 1 and
(possibly) absorbant element written 0, we write ≤p for the prefix preorder
and ≤s for the suffix preorder, defined, for all x and y ∈ S by x ≤p y when
xz = y for some z ∈ S and x ≤s y when zx = y for some z ∈ S.

Observe that, under both prefix and suffix preorder, 1 is the least element
of S and 0 (if ever) is the greatest.

We also write x−1(y) = {z ∈ S : xz = y} and (y)x−1 = {z ∈ S : zx = y}.
This notation extend to sets as follows. For all x ∈ S and Y ⊆ S we write
x−1(Y ) = {z ∈ S : xz ∈ Y } and (Y )x−1 = {z ∈ S : zx ∈ Y }.

2 Quasi-inverse monoids
In this section, we define quasi-inverse monoid that can be seen as almost
inverse monoids where we only require, for all element x, the existence of a
left context xL behaving “like” x−1x and a right context xR behaving “like”
xx−1.

2.1 Axiomatic definition

We give here the axiomatic definition of quasi-inverse monoid and study
some of its immediate properties.

Definition. A quasi-inverse monoid is a monoid S equipped with two
mappings x 7→ xL and x 7→ xR, called the left and right context mappings,
such for all x and y ∈ S:
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(Q0) (xLyL)L = (xLyL)R = xLyL and (xRyR)L = (xRyR)R =
xRyR,

(Q1) xLxL = xL and xRxR = xR,
(Q2) xxL = x and xRx = x,
(Q3) (xy)LyL = (xy)L and xR(xy)R = (xy)R,
(Q4) xLyL = yLxL and xRyR = yRxR,

Lemma 1 In a quasi-inverse monoid S, we have 1L = 1R = 1.

Proof. By axiom (Q2) we have 1.1L = 1 hence 1L = 1 since 1 is neutral.
By symmetry we also have 1R = 1. 2

Lemma 2 Let S be a quasi-inverse monoid, let CL(S) = {xL ∈ S : x ∈ S}
and let CR(S) = {xR ∈ S : x ∈ S}. We have CL(S) = CR(S) from now on
written C(S).

Moreover, C(S) is a commutative submonoid of idempotents of S with,
for all x ∈ C(S), xL = xR = x, i.e. left and right context operators are
identities over context elements.

Proof. Assume S is a quasi-inverse monoid. By Lemma 1 we have 1R =
1L = 1. It follows that, by (Q0) taking y = 1, for all x ∈ CR(S) (resp.
x ∈ CL(S)) one has xR = xL = x hence x ∈ CL(S) (resp. x ∈ CR(S)).
Then closure of C(S) follows from (Q0) again. Idempotency is provided by
(Q1). Commutativity is provided by (Q4). 2

The importance of axiom (Q3) becomes clear in Lemma 14 below.

Lemma 3 Let S be a quasi-inverse monoid. If 0 ∈ S then 0R = 0L from
now on written ⊥ and, for all x ∈ C(S), ⊥x = x⊥ = ⊥.

Proof. Assume 0 ∈ S. By (Q3) for all y ∈ S, we have (0y)LyL = (0y)L

hence, for all y ∈ S, 0LyL = 0L. By symmetry, for all y ∈ S we also have
yR0R = 0R. Now by Lemma 2, taking y = 0L or y = 0R we deduce that
0R = 0L with the announced property within context element. 2

Remark. We observe first that S = {1, 0} with 0L = 0R = 0 is a quasi-
inverse monoid. We observe also that S = {1, 0,⊥} with 0L = 0R = ⊥ is
also a quasi-inverse monoid. This suggests that taking ⊥ = 0 or ⊥ 6= 0 leads
to two types of quasi-inverse monoids with zero. This remark is however not
developed further.
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Lemma 4 Let S be a quasi-inversive monoid S and let x and y ∈ S. If
x ≤s y (resp. x ≤p y) then yxL = y (resp. xRy = y).

If both x ≤s y and y ≤s x, i.e. x and y are L-equivalent, (resp. both
x ≤p y and y ≤p x, i.e. x and y are R-equivalent) then xL = yL (resp.
xR = yR).

Proof. Let x and y as above. By symmetry, we only prove the suffix case.
Assume x ≤s y henceforth y = xz. By (Q2) on y we have yxL = yyLxL,
hence by (Q3) yxL = yyL hence by (Q2) again, yxL = y.

If both x ≤s y and y ≤s x we have, by (Q3), both yLxL = yL and
xLyL = xL hence xL = yL since, by (Q4), context elements commute. 2

2.2 Trivial and non trivial Quasi-inverse monoids

One may ask if, when S is a quasi-inverse monoid, the left and right context
mappings are uniquely determined. The answer is no in general as shown
by the following definition.

Definition. Let S be an arbitrary monoid. Let S0 = S + 0 be the trivial
extension of monoid S with a new zero element and the mappings x 7→ xL

and x 7→ xR defined by 0L = 0R = 0 and, for all x ∈ S, xL = xR = 1.

Lemma 5 The trivial extension S0 of a monoid S is a quasi-inverse monoid.

Proof. Straightforward. 2

Before developing the notion of non trivial quasi-inverse monoid, we
must say that, as proved in Lemma 10, as soon as C(S) is known, then both
mappings x 7→ xL and x 7→ xR are uniquely determined.

The notion of trivial extension of a monoid and the fact that, in par-
ticular, inverse monoid are quasi-inverse monoid leads us to the following
definition.

Definition. A quasi-inverse monoid S is said non trivial when, for every
x ∈ S, if xL = 1 (resp. if xR = 1) then there is y ∈ S such that yx = 1
(resp. xy = 1), i.e. x has a left (resp. right) group inverse.

Remark. We observe that, in particular, in a non trivial monoid with
zero, one must have 0L = 0R = ⊥ < 1.

Theorem 6 An inverse monoid is a non trivial quasi-inverse monoid.
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Proof. Let S be an universe monoid. Recall that this means S is a monoid
such that for all x ∈ S there is a unique elements x−1 ∈ S, called the pseudo
inverse of x, such that xx−1x = x and x−1xx−1 = x−1.

In particular, observe that for all x ∈ S both x−1x and xx−1 are idem-
potent. Denoting by E(S) the set of idempotent of S, it is well-known that
E(S) is a commutative monoid. Even more, it can be shown [8] that idem-
potence commutation hypothesis is actually equivalent with the unicity of
pseudo inverses.

Let us show that S is quasi-inverse. In order to do so, for every x ∈ S,
let us take xL = x−1x and xR = xx−1. Since for all x and y ∈ S one has
(xy)−1 = y−1x−1 all axioms of quasi-inverse monoid are immediate.

For instance, for axiom (Q3), given x and y ∈ S, one has (xy)LyL =
y−1x−1xyy−1y hence by commutation (xy)LyL = y−1yy−1x−1xy hence be-
cause y−1yy−1 = y−1 (xy)LyL = (xy)L.

The fact it is non trivial then immediately follows from the definition
since, for all x, if xL = 1 then x−1x = 1 and thus x−1 is a left group inverse
of x and if xR = 1 then xx−1 = 1 and thus x−1 is a right group inverse of
x. 2

Remark. Observe that when S is an inverse monoid with left and right
context operators defined as above, for all x and y ∈ S, if xLy = y (resp.
xRy = y) then x ≤s y (resp. x ≤p y). In other words, an inverse monoid
also satisfies the converse of the property stated in Lemma 4. For quasi-
inverse monoids, even non trivial ones, this is no longer true as illustrated, in
particular, by quasi-inverse extensions Q(S) of arbitrary monoids S defined
in Section 5.

The following theorem shows how inverse monoids generate many quasi-
inverse monoids.
Theorem 7 Let S be an inverse monoid, let X ⊆ S be a subset of S and
let 〈X〉Q be the submonoid of S induced by X that is moreover closed under
both left and right projection mapping x 7→ xL = x−1x and x 7→ xR = xx−1.
Then 〈X〉Q is a quasi-inverse monoid.
Proof. The proof is essentially the same as the proof of Theorem 6. This
illustrates the fact that, indeed, inverses themselves are not needed in quasi-
inverse monoids. 2

2.3 U-semiadequate monoids

We relate here quasi-inverse monoids with U -semiadequate semigroups as
defined in [7].
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Definition. Let S be a semigroup and let U ⊆ E(S) be a subset of
idempotents of S. Extended Green relations L̃ and R̃ are defined from U ,
for all x and y ∈ S, by:

xL̃y if for all e ∈ U , xe = x⇔ ye = y,

xR̃y if for all e ∈ U , ex = x⇔ ey = y.

One can easily check that relation L̃ (resp. R̃) is a left (resp. right)
congruence relation that generalizes Green’s relation L (resp. R). Moreover,
for all x ∈ S and y ∈ U , if yL̃x (resp. yR̃x) then, since y is idempotent,
yy = y hence, by definition, xy = x (resp. yx = x).

Definition. A semigroup S is a U -semiabundant when for all x ∈ S there
is at least one x+ ∈ U such that x+R̃x and one x∗ ∈ U such that x∗L̃x.

A semigroup S is U -semiadequate when it is U -semiabundant and U is
a commutative submonoid of S.

Lemma 8 A quasi-inverse monoid S is a C(S)-semiadequate monoid.

Proof. Let S be a quasi-inverse monoid. Let x ∈ S.
Let y ∈ C(S). Since xxL = x, if xLy = xL then xy = xxLy = xxL = x.

Conversely, if xy = x then, by axiom (Q3), (xy)LyL = (xy)L with, by axiom
(Q0), yL = y, hence xLy = xL.

In other words, we have xL̃xL and, by symmetrical arguments, xR̃xR.
Assume now there is some y ∈ C(S) such that yL̃x. This means in

particular, since, by axiom (Q2), xxL = x, that yxL = y hence y ≤ xL.
But, as observed above, since y is idempotent, we have yy = y hence, by
definition of L̃, xy = x. 2

The following properties is proved in [7]:

Lemma 9 In a U -semiadequate semigroup each L̃-class (resp. R̃-class) has
a unique element of U .

Proof. Follows from the facts (see [7] Lemma1.3) that, in a U -semiadequate
semigroup Green relation L (resp. R) and extended Green L̃ (resp. R̃) are
equal over U and the fact that, over commuting idempotents, L and R
relations are just equality. 2

Lemma 10 A U -semiadequate monoid S is a quasi-inverse monoid taking,
for all x ∈ S, xL = x+, xR = x∗.
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Proof. Let S be a U -semiadequate monoid. For all x ∈ S, we put xL = x+

and xR = x∗.
Observe first, since 1 ∈ S, that 1∗ = 1+ = 1 henceforth 1 ∈ U . In-

deed, given 1∗ ∈ U we have 1∗1 = 1 hence 1∗ = 1 since 1 is neutral. By
symmetrical argument, we have 1+ = 1.

By hypothesis, U is a commutative subsemigroup (hence a submonoid)
of idempotents with, by Lemma 9, for all x ∈ U , x∗ = x+ = x, hence axioms
(Q0), (Q1) and (Q4) of quasi-inverse monoids are satisfied.

As we have already observed that axiom (Q2) is satisfied it remains
now to prove axiom (Q3). Let x and y ∈ S. Since yy+ = y we also have
(xy)y+ = (xy) hence (xy)+y+ = (xy)+ since (xy)+L̃xy. A symmetrical
argument shows that x∗(xy)∗ = (xy)∗. 2

Corollary 11 Quasi-inverse monoids and U -semiadequate monoids are equiv-
alent notions.

2.4 Examples of quasi-inverse monoids

Let Q be a set and let P(Q×Q) be the relation monoid with product defined,
for every X and Y ⊆ Q × Q by XY = {(p, q) ∈ Q × Q : ∃r ∈ Q, (p, r) ∈
X, (r, q) ∈ Y }. For every X ⊆ Q×Q, let also XL = {(q, q) ∈ Q×Q : ∃p ∈
Q, (p, q) ∈ X} and XR = {(p, p) ∈ Q×Q : ∃q ∈ Q, (p, q) ∈ X}.

Theorem 12 Monoid P(Q×Q) equipped with left and right projection de-
fined above is a quasi-inverse monoid.

Proof. Let U = {X ⊆ Q×Q : X ⊆ IQ} with IQ = {(q, q) ∈ Q×Q : q ∈ Q}
the identity relation. It shall be clear that U = {XL : X ⊆ Q×Q} = {XR :
X ⊆ Q × Q} and, for every X and Y ∈ U , XY = X ∩ Y . This proves
that axioms (Q0), (Q1) and (Q4) are satisfied. Axiom (Q2) is an immediate
consequence of definition. Last, axiom (Q3) follows from the fact that for
every relation X and Y ⊆ Q × Q, we obviously have (XY )L ⊆ YL and
(XY )R ⊆ XR. 2

Remark. Axiom (Q5) presented below that is equivalent to the fact the
natural order is stable is not satisfied by P(Q×Q) as shown by the following
example.

LetQ = {1, 2, 3}, letX = {(1, 1), (2, 2), (1, 3)}, let Y = {(1, 1), (2, 2), (3, 2)}
and let Z = {(1, 1), (2, 2)}. By construction XY = {(1, 1), (2, 2), (1, 2)},
XZY = {(1, 1), (2, 2)} = Z and (XZY )L = (XZY )R = Z. Now, since
Z(XY )Z = XY is follows that (XZY )LXY (XZY )R = XY 6= XZY .
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3 Naturally ordered quasi-inverse monoids
We give here the definition of the natural order in a quasi-inverse monoid
and review some properties of that order.

3.1 Natural order

We define here, over quasi-inverse monoids, the analogous of the natural
order in inverse monoid.

Definition. In a quasi-inverse monoid S, let ≤ be the natural relation
defined, for every x and y ∈ S by x ≤ y when x = xRyxL.

Lemma 13 The relation ≤ in a quasi-inverse monoid S is an order rela-
tion. When S is an inverse monoid, it coincides with Nambooripad natural
order in S.

Proof. Relation ≤ is obviously a preorder, i.e. reflexive and transitive. Let
us show it is anti-symmetric. Assume x ≤ y. By definition, x = xRyxL.
By left product with yR and right product with yL we have yRxyL =
yRxRyxLyL hence by context element commutation yRxyL = xR(yRyyL)xL

hence yRxyL = xRyxL. Assume now y ≤ x, this means y = yRxyL hence
x = y.

When S is inverse, we now that x = xRyxL, x = xRy, x = yxL, x =
ey for some e ∈ E(S) and x = yf for some f ∈ E(S) are all equivalent
properties, the last two being Nambooripad [12] natural orders definitions.
2

Remark. In general, it is not true that, in a quasi-inverse monoid, if
x ≤ y then for all z ∈ S, xz ≤ yz and zx ≤ zy, i.e. the natural order is
not necessarily stable under product. The missing axiom (Q5) is provided
in Section 4.1.

Lemma 14 Let S be a quasi-inverse monoid. The set C(S) of context el-
ements ordered by natural order is a meet semi-lattice with 1 as maximum
element, ⊥ = 0R = 0L as minimum element in the case 0 ∈ S, and for all
x and y ∈ C(S), x ∧ y = xy.

Proof. Let x ∈ C(S). By Lemma 2 one has xL = xR = x and, by (Q1),
xx = x hence x = xR1xL hence x ≤ 1.

Assume 0 ∈ S. By Lemma 3, let ⊥ = 0L = 0R. For all x ∈ C(S) we
have, again by Lemma 3, ⊥ = 0Rx0L hence ⊥ ≤ x.
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Let us prove C(S) is a meet semi-lattice with product as meet operator.
In order to do so, let x an y ∈ C(S). Observe first that, by commutation and
idempotence of context elements we do have xy ≤ x and xy ≤ y. Conversely,
let z ∈ C(S) such that (a) z ≤ x and (b) z ≤ y. By (a) we have zxy = zy
hence by (b) zxy = z hence, by commutation of contexts and idempotence
of z, z = zxyz hence z ≤ xy. Altogether, this means that x ∧ y is defined
with x ∧ y = xy. 2

Remark. In particular, for all x and y ∈ C(S), x ≤ y if and only if xy = x.

Lemma 15 When S is a quasi-inverse monoid the set C(S) of context ele-
ments of S equals the set U(S) = {x ∈ S : x ≤ 1} of subunits of S ordered
by the (quasi-inverse) natural order.

Proof. Lemma 14 above already tells us that C(S) ⊆ U(S). Let thus x ∈ S
such that x ≤ 1. By definition of the quais-inverse natural order this means
that x = xRxL hence, since C(S) is a submonoid of S (Lemma 2), x ∈ C(S).
2

Lemma 16 When S is a quasi-inverse monoid, for all x and y ∈ S, if
x ≤ y then xR ≤ (yxL)R ≤ yR and xL ≤ (xRy)L ≤ yL,

Proof. Let x and y ∈ S with S quasi-inverse.
Assume x ≤ y. By symmetry, we only need to prove xR ≤ (yxL)R ≤ yR.
Since x ≤ y this means that x = xRyxL hence yxL ≤s x hence, by

(Q3), xR(yxL)R = xR that is to say xR ≤ (yxL)R. But we also have
yR(yxL) = yxL hence yR ≤p yxL hence, by (Q3) again, (yxL)RyR = (yxL)R.
2

Remark. One may ask about the converse. Assuming both xL ≤ yL and
xR ≤ yR could we have x ≤ y for any x and y ∈ S ? By Lemma 4 this
would mean that whenever x and y ∈ S are H-equivalent, i.e. both R and
L-equivalent, then they are equal. This will not be true in general as already
illustrated by inverse monoids.

3.2 Natural order revisited

We show here that the natural order definition can be further simplified
as a two-sided variation of Nambooripad natural order [12] restricted to
idempotents of C(S).
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Lemma 17 When S is a quasi-inverse monoid, for every e and f ∈ C(S)
and x ∈ S, exf ≤ x.

Proof. Let S be a quasi-inverse monoid. Let e and f ∈ C(S) and x ∈ S.
Observe first that (exf)Re = (exf)R. In fact, we have e ≤p exf hence,
by property (Q3) of quasi-inverse monoid, (exf)R(e)R = (exf)R. But,
by Lemma 2 we have (e)R = e hence the claim. Symmetrically, we have
f(exf)L = (exf)L. Altogether, (exf)Rx(exf)L = (exf)Rexf(exf)R and
thus exf ≤ x. 2

It follows that:

Corollary 18 In a quasi-inverse monoid S, for all x and y ∈ S, x ≤ y
if and only if there exists two context elements e and f ∈ C(S) such that
x = eyf .

Remark. We can also define two other orders in a quasi-inverse monoid
by saying x ≤L y (resp. x ≤R y) when there exists some e ∈ C(S) such that
x = ye (resp. x = ey).

It occurs however that these orders are both weaker than the natural
order defined above, i.e. (≤L ∪ ≤R) ⊆≤ and the inclusion can be strict as
shown by Q(S) defined below in Section 5.

As already observed in [7] for U -semiadequate semigroups, we have:

Lemma 19 In a quasi-inverse monoid ≤= (≤L ◦≤R) = (≤R ◦≤L) where ◦
denotes relation composition.

Proof. We obviously have ≤⊆ (≤L ◦ ≤R) since whenever x = eyf then
x = zf with z = ey. Conversely, both ≤L⊆≤ and ≤R⊆≤ as particular
instance of ≤ definition, hence, by transitivity (≤L ◦≤R) ⊆≤. 2

4 Stable quasi-inverse monoid
Quasi-inverse monoids for which the natural is a stable order are charac-
terized by means of an additional axiom (Q5). We also provide another
complete axiomatization of stable quasi-inverse monoids when seen as or-
dered monoids.
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4.1 The missing axiom

We provide here the missing axiom for natural order on quasi-inverse monoid
to be stable by product.

Definition. A quasi-inverse monoid is called stable when for all x, y ∈ S,
the following property is satisfied:

(Q5) for all z ∈ C(S), (xzy)Rxy(xzy)L = xzy.

Lemma 20 A quasi-inverse monoid is stable (as a quasi-inverse monoid)
if and only if, ordered by the (quasi-inverse) natural order, it is a (stable)
ordered monoid.

Proof. Let S be a quasi-inverse monoid. Observe that axiom (Q5)
essentially says that for all x and y ∈ S, for all z ∈ C(S), xzy ≤ xy.

If S ordered by the natural order is a (stable) ordered monoid then axiom
(Q5) is obviously satisfied since z ≤ 1.

Conversely assume (Q5) holds in S. Let x, x′ ∈ S such that x ≤ x′ and
let y ∈ S.

Since x = xRx
′xL we have xy = xRx

′xLy. By Lemma 17 this implies
that xy ≤ x′xLy hence by axiom (Q5), xy ≤ x′y.

By symmetrical arguments, we can prove that yx ≤ yx′.
2

4.2 Well-behaved ordered monoid

The following definition is adapted from [6]. It occurs that when the natural
order of a quasi-inverse monoid is stable then it enjoys a rather simple
axiomatization.

Definition. A monoid S is a well-behaved ordered monoid when it is
equipped with an order relation ≤ such that:

(W0) for all x, y and z ∈ S, if x ≤ y then xz ≤ yz and zx ≤ zy,
i.e. the order relation ≤ is stable under product,

and given the set U(S) = {x ∈ S : x ≤ 1} of subunits of S:

(W1) for all x ∈ U(S), xx = 1, i.e. subunit elements are idempo-
tents,

(W2) for all x and y ∈ S, if x ≤ y then there is e and f ∈ U(S)
such that x = eyf , i.e. the order relation is a natural order,
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(W3) for all x ∈ S, both sets Lx = {e ∈ U(S) : xe = x} and
Rx = {e ∈ U(S) : ex = x} have least element,

Lemma 21 Let S be a stable quasi-inverse monoid with natural order ≤.
Monoid S ordered by ≤ is a well-behaved ordered monoid.

Proof. Axiom (W0) follows from axiom (Q5) and Lemma 20.
Axiom (W1). Assume there is some x ∈ S such that x ≤ 1. This means,

by definition of the natural order, that x = xLxR hence by Lemma 2, xL = x
(and xR = x) hence by axiom (Q1) x is idempotent.

Axiom (W2) follows from the definition of the natural order and the fact
that C(S) = U(S).

Axiom (W3). By symmetry, we only prove the left case. Let y ∈ U(S)
such that xy = x. We have to show that xL ≤ yR or, equivalently by
Lemma 14, that xLyL = xL. But, by (Q3) we have (xy)LyL = (xy)L with
(xy)L = xL since xy = x hence xLyL = xL. 2

Lemma 22 Let S be a well-behaved ordered monoid S with order ≤ and
subunits U(S). Defining, for all x ∈ S, xL =

∧
{y ∈ U(S) : xy = x} and

xR =
∧
{y ∈ U(S) : yx = x} turns S into a stable quasi-inverse monoid.

Proof. Axiom (Q4) follows from stability (W0) and idempotence of subunits
(W1).

Axioms (Q0) to (Q2) then immediately follows from axiom (W1) and
(W3).

Axiom (Q3) follows from (W”) and the observation that for all x and
y ∈ S and for all z ∈ U(S), if zx = x (resp. yz = y) then zxy = xy (resp.
xyz = xy).

Last, axioms (Q5) follows from Lemma20. 2

In other words, quasi-inverse monoid and well-ordered monoid are equiv-
alent algebraic structures.

4.3 Stable F ∗-property

We consider a stronger version of the F ∗-property (see [5]) where we as-
sume moreover that maximal elements of a F ∗-quasi-inverse monoids form
a submonoid.

Definition. An quasi-inverse monoid is said stably F ∗ when:

(1) any non zero element x ∈ S lies beneath a unique maximal element
x̂ ∈ S,
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(2) for all non zero x and y ∈ S, x̂ŷ 6= 0 and ̂̂xŷ = x̂ŷ, i.e. the set Ŝ of
maximal elements of S is a submonoid of S.

Remark. Observe that the trivial extension S0 of an arbitrary monoid S
is a stably F ∗-quasi-inverse monoid. In Section 5 we will prove that this is
true as well for the non trivial extension Q(S) of S.

Applied to inverse monoid, the stably F ∗-property induces a rather
strong additional property.

Lemma 23 Let S be an inverse monoid ordered by natural order. If S is
stably F ∗ then Ŝ is a group.

Proof. Let x ∈ Ŝ. We have x−1 ∈ Ŝ. Otherwise, since x−1 6= 0, by
F ∗ property, x−1 < x̂−1 and thus, as the natural order is stable by inverse
mapping, x < (x̂−1)−1 which contradicts the fact that x ∈ Ŝ.

We conclude then by stability assumption of Ŝ. Indeed, this means that
both xx−1 and x−1x ∈ Ŝ hence, since both x−1x ≤ 1 and xx−1 ≤ 1, by
F ∗-assumption, xx−1 = x¯1x = 1. 2

Remark. Though fairly simple, it seems that this fact was left unnoticed.
This illustrates again the well-known fact that semigroup theories and re-
lated monoid theories sometimes slightly differs and the study presented
here is concerned with monoids rather than semigroups.

5 A non trivial quasi-inverse extension
In this section, we define from arbitrary monoid S, sort of a monoid of
positive tiles Q(S) much in the same way the monoid TA of positive tiles [6]
over the alphabet A is been built upon A∗ with a canonical injection from
S to Q(S). It turns out that Q(S) is a non trivial quasi-inverse monoid.

5.1 Prefix and suffix upper sets

Let S be a monoid. Let Up(S) (resp. Us(S)) defined to be the set of upward
closed subsets of S preordered by ≤p (resp. ≤s).

More precisely, as S is a monoid hence with 1 ∈ S, Up(S) (resp. Us(S))
is the set U ⊆ S such that US = U (resp. SU = U).

For both x = p or x = s, elements of Ux(S) are from now on called
x-upper set. The set Ux(S) is turned into a monoid by taking ∩ as product.
One can check that, indeed, the intersection of two x-upper sets is indeed a
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upper set. The neutral (or maximal) element is then S itself the absorbant
is the empty set ∅.

Remark. In semigroup theory non empty elements of Up(S) (resp. Us(S))
are sometimes called right ideals (resp. left ideals) of S. As ideals in order
theory must satisfy some extra condition we prefer to stick to the notion of
upper sets.

Lemma 24 Let S be some monoid and let x ∈ S. One have:

(0) xS is a p-upper set (resp. Sx a s-upper set).

Moreover, for every p-upper set (resp. s-upper set) U ⊆ S:

(1) if x ∈ U then x−1(U) = S (resp. (U)x−1 = S),

(2) xU is a p-upper set (resp. Ux is a s-upper set),

(3) x−1(U) is a p-upper set (resp. (U)x−1 is a s-upper sets),

(4) xx−1(U) ⊆ U ⊆ x−1(xU) (resp. (U)x−1x ⊆ U ⊆ (Ux)x−1),

Proof. Straightforward. 2

5.2 The extension

Definition. Let S be a monoid. The quasi-inverse extension of S, written
Q(S) is defined to be

Q(S) = (Us(S)− ∅)× S × (Up(S)− ∅) + 0

with product defined by

(L1, x1, R1).(L2, x2, R2) = (L1 ∩ (L2)x−1
1 , x1x2, R2 ∩ x−1

2 (R1))

when both L1 ∩ (L2)x−1
1 6= ∅ and R2 ∩ x−1

2 (R1)) 6= es, and the product
equals 0 otherwise. This product is extended to 0 as expected 0 being the
absorbant elements.

Before proving in Theorem 27 that the monoid Q(S) is a quasi-invers
monoid, let us examine some properties of the idempotent elements of S.

Lemma 25 A non zero triple (L, x,R) ∈ Q(S) is idempotent if and only if
x ∈ S is idempotent, L ⊆ (L)x−1 and R ⊆ x−1(R).

In particular any element of the form (L, 1, R) ∈ Q(S) is idempotent.
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Proof. Let (L, x,R) be an idempotent of Q(S). By definition of the product
in Q(S) this means that xx = x hence x is idempotent in S, L∩ (L)x−1 = L
hence L ⊆ (L)x−1 and R ∩ x−1(R) = R hence R ⊆ x−1R.

Conversely, let (L, x,R) be a non zero element of Qq(S) with x idem-
potent, L ⊆ (L)x−1 and R ⊆ x−1(R). We have (L, x,R).(L, x,R) =
(L ∩ (L)x−1, xx,R ∩ x−1(R)). By idempotence, xx = x. The fact that
L = (L∩ (L)x−1 (resp. R = R ∩ x−1(R)) immediately follows from the fact
that L ⊆ (L)x−1 (resp. R ⊆ x−1(R)). 2

Lemma 26 The set C(Q(S)) of elements of the form (L, 1, R) in Q(S) is
a commutative monoid.

Proof. Let (L, 1, R) and (M, 1, N) be two elements in Q(S) with the desired
form.

Assume first the product (L, 1, R).(M, 1, N) is non zero. By definition of
the product, this means that (L, 1, R).(M, 1, N) = (L∩M, 1, R∩N) hence,
by symmetrical arguments, (L, 1, R).(M, 1, N) = (M, 1, N).(L, 1, R).

In the case (L, x,R).(M,y,N) = 0 similar arguments show that we also
have (M,y,N).(L, x,R) = 0 since either L ∩M = ∅ or R ∩N = ∅. 2

Theorem 27 When S be a monoid, Q(S) with left and right context map-
pings defined, for every non zero element (L, x,R) by:

(L, x,R)L = (Lx, 1, R) and (L, x,R)R = (L, 1, xR)

is a quasi-inverse monoid.
Moreover, the mapping i : S → Qq(S) defined i(x) = (S, x, S) is a one-

to-one morphism.

Proof. Let S and Q(S) defined as above.

Observe first that Lemma 24 ensures us that the left and right context
mappings defined as above are indeed well-defined, i.e. for all q = (L, x,R) ∈
Q(S), qL = (Lx, 1, R) ∈ Q(S) and qR = (L, 1, xR) ∈ Q(S).

Axiom (Q0) and (Q4) follow from Lemma 26 above.

Axiom (Q1) follows from Lemma 25

Let us prove axiom (Q2). Let q = (L, x,R). We need to prove that
qqL = q. By definition of the product qqL = (L ∩ (Lx)x−1, x.1, x−1(xR) ∩
1−1(R) hence the result since, by Lemma 24 we have L ⊆ (Lx)x−1 and
R ⊆ x−1(xR), and we obviously have x1 = x, and 1−1(R) = R.
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Let us prove property (Q3). Let q = (L, x,R) and p = (M,y,N) be
some non zero element of Q(S). Assume q ≤s p. We need to prove that
pLqL = pL.

Since q ≤S p, this means there is some r = (O, z, P ) such that p = rq,
equivalently (a) M = O ∩ (L)z−1, (b) y = zx, and (c) N = R ∩ x−1(P ).

Now, we have pqL = (M∩(Lx)y−1, y, R∩N). We want to prove it equals
(M,y,N).

Observe first that, by (a) and (b), M ⊆ (Lx)y−1 hence M ∩ (Lx)y−1 =
M . In fact, let u ∈ M . By (a), u ∈ (L)z−1 hence uz ∈ L hence uzx ∈ Lx.
But by (b) uzx = uy hence uy ∈ Lx hence u ∈ (Lx)y−1.

By (c), we have N ⊆ R hence R ∩N = N .
The proof of the last statement is straightforward since, by Lemma 24,

x−1S = S = Sx−1 for arbitrary x ∈ S hence, over images by i of elements
of S, the product in Q(S) just mimics the product in S. 2

The following theorem says that our construction above essentially ex-
tend to arbitrary monoid the construction of the monoid of positive tiles [6]
from the free monoid A∗.

5.3 Natural order in quasi-inverse extensions

Let us now review some additional properties of the natural order in Q(S).

Lemma 28 In Q(S), for every elements (L1, x1, R1) and (L2, x2, R2) we
have (L1, x1, R1) ≤ (L2, x2, R2) if and only if L1 ⊆ L2, x1 = x2 and R1 ⊆
R2.

Proof. Let u1 = (L1, x1, R1) and u2 = (L2, x2, R2).
We have u1 ≤ u2 when, by definition, u1 = (u1)Ru2(u1)L or, stated

explicitly: (L1, x1, R1) = (L1, 1, x1R1).(L2, x2, R2).(L1x1, 1, R1).
It follows that u1 ≤ u2 if and only if (1) x1 = x2 = x, (2) L1 = L1∩L2∩

(L1x)x−1, (3) R1 = R1 ∩R2 ∩ x−1(xR1).
However, by Lemma 24, we have L1 ⊆ (L1x)x−1 and R2 ⊆ x−1(xR2)

hence (2) can be rewritten L1 = L1 ∩ L2 or equivalently L1 ⊆ L2 and (3)
can be rewritten R1 = R1 ∩R2 henceforth R1 ⊆ R2. 2

Theorem 29 Quasi-inverse monoid Q(S) is a stable, i.e. for every u, v
and w ∈ Q(S), if u ≤ v then uw ≤ vw and wu ≤ wv.

Proof. Let u = (L1, x1, R1), v = (L2, x2, R2) and w = (M,y,N). Assume
u ≤ v. By Lemma 28 above, we have x1 = x2 from now on denoted by x,
L1 ⊆ L2 and R1 ⊆ R2.
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By definition of the product we have uw = (L1∩(M)x−1, xy,N∩y−1(R1)
and vw = (L2 ∩ (M2)x−1, xy,N ∩ y−1(R2). Hence uw ≤ vw by applying
Lemma 28 and stability of the inclusion order by intersection and residual.

Symmetrical arguments show that wu ≤ wv. 2

Remark. By applying Lemma 20 we could have proven instead that the
quasi-inverse extension Q(S) of S satisfies axiom (Q5)

Lemma 28 has more consequences that are listed below.

Lemma 30 The extension Q(S) of monoid S is a meet semi-lattice. It is
moreover (upward) bounded complete and (upward) directed complete.

Proof. By Lemma 28 we easily check that Q(S) satisfies the F ∗-property,
i.e. any non zero element (L, x,R) ∈ Q(S) lies beneath a unique maximal
element (S, x, S). The meet of two elements (L1, x1, R1) and (L2, x2, R2) is
then just defined as 0 when x1 6= x2 and (L1 ∩ L2, x1, R1 ∩R2) otherwise.

Let X ⊆ Q(S) a non empty either directed or bounded subset of Q(S).
We have to show that X admits a greatest lower bound

∨
X.

If X = {0} then
∨
X = 0 and we are done. Otherwise, in both directed

and bounded case, by Lemma 28, there is some s ∈ S such that every u ∈ X
is of the form (Lu, x,Ru). Il follows that

∨
X = (

⋃
u∈X Lu, s,

⋃
u∈X Ru). 2

Lemma 31 Monoid Q(Q) is a stably F ∗-quasi-inverse monoid.

Proof. By Lemma 28 maximal elements are all elements of the form (S, x, S)
with x ∈ S that forms a submonoid of Q(S). Moreover, again by Lemma 28
any non zero element, hence of the form (L, x,R) lies beneah the unique
maximal elements (S, x, S). 2

Last, the following Lemma tells how extended Green relations behave on
maximal elements of Q(S).

Lemma 32 In Q(S), restricted to maximal elements, relation L̃ equals L-
equivalence and relation R̃ equals R-equivalence.

Proof. Let u = (L1, x1, R1), v = (L2, x2, R3). Assume uR̃v. This means
that for all e = (L, 1, R) one has eu = u if and only if ev = v.

On the left, this implies that for all L ∈ Us(S), we have L1 ⊆ L if and
only if L2 ⊆ L. As this must be true for L = L1 or L = L2 this implies that
L1 = L2

On the right, this implies that for all R ∈ Up(S), we have R1 ⊆ x−1
1 (R)

if and only if R2 ⊆ x−1
2 (R).
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Assume now R1 = R2 = S.
Taking R = x2S this implies 1 ∈ x−1

1 (x2S) hence x2 ≤p x1. Taking
R = x1S this implies 1 ∈ x−1

2 (x1S) hence x1 ≤p x2. It follows that x1 and
x2 are R-equivalent and thus, so are u and v. 2

6 Quasi-inverse monoids and prehomomorphisms
In this section we show that our extension construction Q(S) induces an
expansion in the sense of Birget and Rhodes [13] of the category of trivial
quasi-inverse monoid with (well-behaved) prehomomorphisms into the cate-
gory of stable quasi-inverse monoids with well-behaved prehomomorphisms.

6.1 Prehomomorphisms

The following definition is adapted from McAlister and Reilly [11].

Definition. Let S and T be two ordered monoids with zeros. A mapping
ϕ : S → T is a prehomomorphism when ϕ(0) = 0, ϕ(1) = 1, for all x and
y ∈ S, if x ≤ y then ϕ(x) ≤ ϕ(y) and, for all x and y ∈ S, ϕ(xy) ≤ ϕ(x)ϕ(y)

A prehomomorphism ϕ such that ϕ(xy) < ϕ(x)ϕ(y) if and only if xy = 0
is called a trivial prehomomorphism.

Observe that given a prehomomorphism ϕ : S → T , (ϕ(S))∗ is a sub-
monoid of T while, in general, ϕ(S) may not be closed under product.

Lemma 33 For every prehomomorphism ϕ : S → T and ψ : T → U ,
the mapping ϕψ : S → U defined for all x ∈ S by ϕψ(x) = ψ(ϕ(x)) is a
prehomomorphism.

In other words, ordered monoids and prehomomorphisms forms a cate-
gory.

6.2 Well-behaved prehomomorphisms

Definition. Let S and T be two stably F ∗-quasi-inverse monoid. A
prehomomorphism ϕ : S → T is a well-behaved prehomomorphism when
the following condition are satisfied:

(P1) for all x and y ∈ Ŝ, ϕ(xy) ∈ T̂ ,
(P2) for all x, y and z ∈ Ŝ, ϕ(xLyzR) = (ϕ(x))Lϕ(y)(ϕ(z))R,
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where Ŝ (resp. T̂ ) denotes the set of maximal elements of S (resp. T ).
In particular, as an immediate consequence of (P1) and (P2), for all

non zero element x ∈ S, if ϕ(x) 6= 0, we have ϕ̂(x) = ϕ(x̂) and, if x ∈ Ŝ,
ϕ(xL) = (ϕ(x))L and ϕ(xR) = (ϕ(x))R.

Lemma 34 Stably F ∗-quasi-inverse monoids with well-behaved prehomo-
morphisms defined a category that contains the category of monoid and mor-
phism as a (isomorphic) subcategory.

Proof. Observe first that any monoid morphism ϕ : S → T can be lifted to
a trivial prehomomorphism ϕ : S0 → T 0 by taking additionally ϕ(0) = 0.
As both S0 and T 0 are stably F ∗-quasi-inverse monoids, ϕ extended in such
a way is moreover a well-behaved prehomomorphism.

Let S, T and U be three stably F ∗-quasi-inverse monoids. Let then
ϕ : S → T and ψ : T → U be two well-behaved prehomomorphisms. By
Lemma 33, ψ ◦ ϕ : S → U is a prehomomorphism.

The fact it is well-behaved is immediate from the definitions and Lemma 34
above. 2

6.3 Quasi-inverse extension and prehomomorphisms

We have already shown that for every monoid S there is a one-to-one mor-
phism i : S → Q(S), the canonical injection of S into Q(S). It can be
extended to a trivial one-to-one prehomomorphism i : S0 → Q(S) by taking
i(0) = 0. Remember that S0 is the trivial extension of S with an additional
new zero. What about a canonical (inverse) surjection from Q(S) onto S0 ?

Definition. For all monoid S, let define the mapping σS : Q(S) → S0

that maps 0 to 0 and any non zero triple (L, x,R) ∈ Q(S) to x.

Lemma 35 For all monoid S, the mapping σS : Q(S) → S0 is a (trivial
hence well-behaved) onto prehomomorphism.

Proof. Mapping σS is obviously onto and monotonic. It remains to prove
it is sub-multiplicative. Let u1 = (L1, x1, R1) and u2 = (L2, x2, R2) two non
zero elements of Q(S). If u1u2 = 0 we have ϕ(u1u2) = 0 < ϕ(u1)ϕ(u2) =
x1x2. If u1u2 6= 0 then ϕ(u1u2) = x1x2 henceforth ϕ(u1u2) = ϕ(u1)ϕ(u2).
In other words, ϕ is a trivial prehomomorphism. 2

24



6.4 Expansion prehomomorphism

We provide here the last peace that show that our extension construction
is actually a expansion in the sense of Birget and Rhodes in the category of
ordered monoids and prehomomorphisms.
Definition. Let S and T be two monoids. Let ϕ : S → T be a monoid
morphism and let still denote by ϕ the lift of ϕ to P(S) defined by as
ϕ : P(S)→ P(T ) by taking, for every X ⊆ S, ϕ(X) = {ϕ(x) : x ∈ X ∩ S}.

Let then Q(ϕ) be the expansion mapping Q(ϕ) : Q(S)→ Q(T ) defined
by Q(ϕ)(0) = 0 and for all non zero element u = (L, x,R) ∈ Q(S), by
Q(ϕ)(u) = (Tϕ(L), ϕ(x), ϕ(R)T ).

Lemma 36 For all monoids S and T , for all (monoid) morphism ϕ : S →
T , the expansion mapping Q(ϕ) : Q(S)→ Q(T ) is a well-behaved prehomo-
morphism such that, moreover, the following diagram commutes.

Q(S) Q(T )

S0 T 0

Q(ϕ)

σS σT

ϕ

In other words, ϕ ◦ σS = σT ◦ Q(ϕ).

Proof. Let S and T and τ : S → T as above. In order to simplify notation,
let us write ϕ′ in place of Q(ϕ).

Observe first that, by definition, ϕ′(0) = 0 and we also have

ϕ′(1) = (Tϕ(S), ϕ(1), ϕ(S)T )

hence ϕ′(1) = 1 since 1 ∈ S and ϕ(1) = 1 and thus 1 ∈ ϕ(S).
Monotonicity of ϕ′ immediately follows from the characterization of the

natural order provided by Lemma 28 and the fact that ϕ extended to P(S)
is monotonic.

Let then u1 = (L1, x1, R1) and u2 = (L2, x2, R2) two non zero elements
of Q(S). We have to show that ϕ′(u1u2) ≤ ϕ′(u1)ϕ′(u2). By definition, we
have:

ϕ′(u1u2) = (Tϕ(L1 ∩ (L2)x−1
1 ), ϕ(x1)ϕ(x2), ϕ(x−1

2 (R1) ∩R2)T )
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hence by distributivity of (the extension of) ϕ and product (over P(S)) w.r.t.
the intersection

ϕ′(u1u2) = (Tϕ(L1) ∩ Tϕ((L2)x−1
1 ),

ϕ(x1)ϕ(x2), ϕ(x−1
2 (R1))T ∩ ϕ(R2)T )

By definition, we also have:

ϕ′(u1)ϕ′(u2) = (Tϕ(L1) ∩ Tϕ(L2)(ϕ(x1))−1),
ϕ(x1)ϕ(x2), (ϕ(x2))−1ϕ(R1)T ∩ ϕ(R2)T )

Now we conclude that ϕ′(u1u2) ≤ ϕ′(u1)ϕ′(u2) by applying Lemma 28,
monotonicity of product and intersection in P(S) and the fact that, for all
X ⊆ S and all x ∈ S we have

ϕ(x−1(X)) ⊆ (ϕ(x))−1(ϕ(X))

and
ϕ((X)x−1) ⊆ (ϕ(X))(ϕ(x))−1

Indeed, let x ∈ S and X ⊆ S as above. Let y ∈ ϕ(x−1(X)). This means
that y = ϕ(z) for some z ∈ x−1(X) hence some z such that xz ∈ X. But
then, this also means, as ϕ extended to S is still a monoid morphism, that
ϕ(x)ϕ(z) ∈ ϕ(X) hence y = ϕ(z) ∈ (ϕ(x))−1(ϕ(X)). The other case is
symmetric.

A similar argument as above for proving that ϕ′(1) = 1 shows that for
all maximal element u = (S, x, S) of Q(S), we have ϕ′(u) = (T, ϕ(x), T )
hence ϕ′(u) is also maximal and, moreover, for two maximal elements u and
v ∈ Q(S), ϕ′(uv) = ϕ(u)ϕ(v). In other words, ϕ′ is well-behaved.

Diagram commutation immediately follows from the definitions of σS ,
σT and ϕ′ = Q(ϕ). 2

Corollary 37 The extension that lift any trivial quasi-inverse monoid S0

to a non trivial quasi-inverse monoid Q(S) turns out to be an expansion
in the sense of Birget and Rhodes[13] with prehomomorphisms instead of
morphisms.

Proof. As any monoid morphism ϕ : S → T can be lifted up to a trivial
well-behaved prehomomorphism ϕ : S0 → T 0 by taking ϕ(0) = 0, Lemma 36
and Lemma 35 just ensure that. 2

Remark. This Lemma really says that, via this expansion, the stan-
dard notion of recognizability over monoids by means of morphisms can be
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lifted up into a notion of quasi-recognizability over stably F ∗-quasi-inverse
monoids by means of well-behaved prehomomorphisms.

Our construction in [5], applied to languages of positives tiles, is an
instance of that more general fact.
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