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Abstract
The notion of quasi-recognizability has been defined in [5] as a rem-

edy to the collapse of standard algebraic recognizability on languages
of one-dimensional overlapping tiles [4]. There quasi-recognizability
makes an essential use of a peculiar class of ordered monoids. Our
purpose here is to provide a presentation and a study of these monoids.

Called well-behaved ordered monoids in [5], they can also be seen
as monoids S equipped with two unary mappings x 7→ xL and x 7→ xR

such that, if S is an inverse monoid then xL just equals x−1x and xR

just equals xx−1, and if S is not an inverse monoid then, as much as
possible, both xL and xR still behave the same way.

These quasi-inverse monoids are thus presented and studied as such
in this paper. It is shown in particular that quasi-inverse monoids are
U -semiadequate monoids [6] and that stable quasi-inverse monoids are
well-behaved ordered monoids [5].

The link between quasi-inverse monoids and prehomomorphisms is
also studied a little further. We show in particular that the extension
of arbitrary monoid S into a quasi-inverse monoid Q(S), used in [5],
is actually an expansion in the sense of Birget and Rhodes [12] in the
category of (ordered monoid) prehomomorphisms instead of (monoid)
homomorphisms.

1 Introduction
The notion of quasi-recognizability has been defined in [5] as a remedy
to the collapse of standard algebraic recognizability on languages of one-
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dimensional overlapping tiles [4] or, equivalently, subsets of McAlister monoid
[4, 9, 8].

Quasi-recognizability makes an essential use of prehomomorphisms and
a peculiar class of ordered monoids. The purpose of the present paper is to
study more in depth this class of monoids.

In order to do so, we first give an axiomatization of this class in terms
of monoid equipped with two unary operators called left and right context
operators. In this form they are called quasi-inverse monoids as they behave
somehow like inverse monoids but without inverses themselves.

This bi-unary axiomatization permits to relate this class of monoids with
other known classes. It finally turns out that quasi-inverse monoids are
exactly U -semiadequate monoids [6]. As such, they also generalize inverse
monoids or (two sided) restriction monoids [2, 1].

It is shown, as in [6], that quasi-inverse monoids can be equipped with a
two sided variant of Nambooripad natural order [11]. In general this order is
not stable under product. To remedy to this fact, we provide an additional
axiom that turns out to capture stability.

The resulting notion of stable quasi-inverse monoids is then shown equiv-
alent with the notion of well-behaved ordered monoid defined in [5].

The relationship between quasi-inver monoids and prehomomorphisms
is then studied. Defined on ordered monoids, McAlister and Reilly pre-
homomorphisms [10] are monotonic mappings ϕ such that the morphism
constraint ϕ(xy) = ϕ(x)ϕ(y) is relaxed in a submultiplicativity constraint
ϕ(xy) ≤ ϕ(x)ϕ(y).

From a rough point of view, quasi-inverse monoids can be seen as monoids
induced by images of inverse monoids [7] by prehomomorphisms.

More concretely, the extension of any monoid S into a non trivial quasi-
inverse monoid Q(S), already presented in [5], is studied here a little further.
In particular, we prove that this construction induces an expansion in the
sense of Birget and Rhodes [12] in the category of ordered monoids and
prehomomorphisms.

1.1 Related works

As already mentioned in earlier works, we believe that quasi-inverse monoids
together with prehomomorphisms can lead to many interesting developments
in computer science. For instance, in theory, defining quasi-recognizability
on top of quasi-inverse monoids, we already achieved a characterization of
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MSO definable languages of tiles [5]. With more application oriented per-
spectives, this notion leads us to a rather new modeling metaphor for musical
structures [3].

The purpose of this report is thus to give a rather self contained and
complete overview of the underlying theory.

Of course this theory lays somewhere in the rich border of the even richer
theory of inverse semigroup: a theory that has been developed for almost a
century [7]. There are similarities between our development and the known
theory. We already mentioned a few. It even occurs, as shown here, that
quasi-inverse monoids turn out to be U -semiadequate monoids [6].

However, it must be noticed that in [6] and following studies, the em-
phasis is put on U -semiadequate semigroups that moreover satisfies the con-
gruence property, i.e. U -semiadequate semigroups where both L̃ and R̃ are
congruences.

In our study, we are rather concerned with stable quasi-inverse monoids
i.e. U -semiadequate monoids where the induced (two-sided) natural order
is stable under product. It follows that we do not need the congruence
property. Our main construction Q(S) leads to quasi-inverse monoids that
do not satisfy that property. Thus it may still be the case that our work
diverges from known studies.

The fact we are dealing with monoids instead of semigroups also make
a somehow subtle difference. In particular, it is striking that in a stably U -
semiadequate monoids (or equivalently well-behaved ordered monoids [5]),
U just equals the set of subunits of S, i.e. those elements that are smaller
than or equal to 1. In other words, a stably U -semiadequate monoid is
completely an unambiguously determined by its induced order.

Moreover, although our construction of Q(S) has many similarities with
constructions à la McAlister, studied and developed further for instance
in Cornock PhD [1], the product in Q(S) just seems unrelated with the
products defined there.

Despite its simplicity and robustness, despite the richness of the under-
lying field, it seems (so far) that our construction is still original.

Anyhow, as Q(S) still looks like a sort of a double semi-direct product
between S and the two lattices Us(S) and Up(S) of left and right ideals
of S with intersection as product, a potential link with formerly defined
constructions need to be further investigated.
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1.2 Notations

In the remainder of the text, given a monoid S with neutral written 1 and
(possibly) absorbant element written 0, we write ≤p for the prefix preorder
and ≤s for the suffix preorder, defined, for all x and y ∈ S by x ≤p y when
xz = y for some z ∈ S and x ≤s y when zx = y for some z ∈ S.

Observe that, under both prefix and suffix preorder, 1 is the least element
of S and 0 (if ever) is the greatest.

We also write x−1(y) = {z ∈ S : xz = y} and (y)x−1 = {z ∈ S : zx = y}.
This notation extend to sets as follows. For all x ∈ S and Y ⊆ S we write
x−1(Y ) = {z ∈ S : xz ∈ Y } and (Y )x−1 = {z ∈ S : zx ∈ Y }.

2 Quasi-inverse monoids
In this section, we define quasi-inverse monoid that can be seen as almost
inverse monoids where we only require, for all element x, the existence of a
left context xL behaving “like” x−1x and a right context xR behaving “like”
xx−1.

2.1 Axiomatic definition

We give here the axiomatic definition of quasi-inverse monoid and study
some of its immediate properties.

Definition. A quasi-inverse monoid is a monoid S equipped with two
mappings x 7→ xL and x 7→ xR, called the left and right context mappings,
such for all x and y ∈ S:

(Q0) (xLyL)L = (xLyL)R = xLyL and (xRyR)L = (xRyR)R =
xRyR,

(Q1) xLxL = xL and xRxR = xR,
(Q2) xxL = x and xRx = x,
(Q3) (xy)LyL = (xy)L and xR(xy)R = (xy)R,
(Q4) xLyL = yLxL and xRyR = yRxR,

Lemma 1 In a quasi-inverse monoid S, we have 1L = 1R = 1.

Proof. By axiom (Q2) we have 1.1L = 1 hence 1L = 1 since 1 is neutral.
By symmetry we also have 1R = 1. 2
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Lemma 2 Let S be a quasi-inverse monoid, let CL(S) = {xL ∈ S : x ∈ S}
and let CR(S) = {xR ∈ S : x ∈ S}. We have CL(S) = CR(S) from now on
written C(S).

Moreover, C(S) is a commutative submonoid of idempotents of S with,
for all x ∈ C(S), xL = xR = x, i.e. left and right context operators are
identities over context elements.

Proof. Assume S is a quasi-inverse monoid. By Lemma 1 we have 1R =
1L = 1. It follows that, by (Q0) taking y = 1, for all x ∈ CR(S) (resp.
x ∈ CL(S)) one has xR = xL = x hence x ∈ CL(S) (resp. x ∈ CR(S)).
Then closure of C(S) follows from (Q0) again. Idempotency is provided by
(Q1). Commutativity is provided by (Q4). 2

The importance of axiom (Q3) becomes clear in Lemma 8 below.

Lemma 3 Let S be a quasi-inverse monoid. If 0 ∈ S then 0R = 0L from
now on written ⊥ and, for all x ∈ C(S), ⊥x = x⊥ = ⊥.

Proof. Assume 0 ∈ S. By (Q3) for all y ∈ S, we have (0y)LyL = (0y)L

hence, for all y ∈ S, 0LyL = 0L. By symmetry, for all y ∈ S we also have
yR0R = 0R. Now by Lemma 2, taking y = 0L or y = 0R we deduce that
0R = 0L with the announced property within context element. 2

Remark. We observe first that S = {1, 0} with 0L = 0R = 0 is a quasi-
inverse monoid. We observe also that S = {1, 0,⊥} with 0L = 0R = ⊥ is
also a quasi-inverse monoid. This suggests that taking ⊥ = 0 or ⊥ 6= 0 leads
to two types of quasi-inverse monoids with zero. This remark is however not
developed further.

Lemma 4 Let S be a quasi-inversive monoid S and let x and y ∈ S. If
x ≤s y (resp. x ≤p y) then yxL = y (resp. xRy = y).

If both x ≤s y and y ≤s x, i.e. x and y are L-equivalent, (resp. both
x ≤p y and y ≤p x, i.e. x and y are R-equivalent) then xL = yL (resp.
xR = yR).

Proof. Let x and y as above. By symmetry, we only prove the suffix case.
Assume x ≤s y henceforth y = xz. By (Q2) on y we have yxL = yyLxL,
hence by (Q3) yxL = yyL hence by (Q2) again, yxL = y.

If both x ≤s y and y ≤s x we have, by (Q3), both yLxL = yL and
xLyL = xL hence xL = yL since, by (Q4), context elements commute. 2
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2.2 Trivial and non trivial Quasi-inverse monoids

One may ask if, when S is a quasi-inverse monoid, the left and right context
mappings are uniquely determined. The answer is no in general as shown
by the following definition.

Definition. Let S be an arbitrary monoid. Let S0 = S + 0 be the trivial
extension of monoid S with a new zero element and the mappings x 7→ xL

and x 7→ xR defined by 0L = 0R = 0 and, for all x ∈ S, xL = xR = 1.

Lemma 5 The trivial extension S0 of a monoid S is a quasi-inverse monoid.

Proof. Straightforward. 2

Before developing the notion of non trivial quasi-inverse monoid, we
must say that, as proved in Lemma 16, as soon as C(S) is known, then both
mappings x 7→ xL and x 7→ xR are uniquely determined.

The notion of trivial extension of a monoid and the fact that, in par-
ticular, inverse monoid are quasi-inverse monoid leads us to the following
definition.

Definition. A quasi-inverse monoid S is said non trivial when, for every
x ∈ S, if xL = 1 (resp. if xR = 1) then there is y ∈ S such that yx = 1
(resp. xy = 1), i.e. x has a left (resp. right) group inverse.

Remark. We observe that, in particular, in a non trivial monoid with
zero, one must have 0L = 0R = ⊥ < 1.

Theorem 6 An inverse monoid is a non trivial quasi-inverse monoid.

Proof. Let S be an universe monoid. Recall that this means S is a monoid
such that for all x ∈ S there is a unique elements x−1 ∈ S, called the pseudo
inverse of x, such that xx−1x = x and x−1xx−1 = x−1.

In particular, observe that for all x ∈ S both x−1x and xx−1 are idem-
potent. Denoting by E(S) the set of idempotent of S, it is well-known that
E(S) is a commutative monoid. Even more, it can be shown [7] that idem-
potence commutation hypothesis is actually equivalent with the unicity of
pseudo inverses.

Let us show that S is quasi-inverse. In order to do so, for every x ∈ S,
let us take xL = x−1x and xR = xx−1. Since for all x and y ∈ S one has
(xy)−1 = y−1x−1 all axioms of quasi-inverse monoid are immediate.

For instance, for axiom (Q3), given x and y ∈ S, one has (xy)LyL =
y−1x−1xyy−1y hence by commutation (xy)LyL = y−1yy−1x−1xy hence be-
cause y−1yy−1 = y−1 (xy)LyL = (xy)L.
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The fact it is non trivial then immediately follows from the definition
since, for all x, if xL = 1 then x−1x = 1 and thus x−1 is a left group inverse
of x and if xR = 1 then xx−1 = 1 and thus x−1 is a right group inverse of
x. 2

Remark. Observe that when S is an inverse monoid with left and right
context operators defined as above, for all x and y ∈ S, if xLy = y (resp.
xRy = y) then x ≤s y (resp. x ≤p y). In other words, an inverse monoid
also satisfies the converse of the property stated in Lemma 4. For quasi-
inverse monoids, even non trivial ones, this is no longer true as illustrated, in
particular, by quasi-inverse extensions Q(S) of arbitrary monoids S defined
in Section 4.

2.3 Natural order

We define here, over quasi-inverse monoids, the analogous of the natural
order in inverse monoid.

Definition. In a quasi-inverse monoid S, let ≤ be the natural relation
defined, for every x and y ∈ S by x ≤ y when x = xRyxL.

Lemma 7 The relation ≤ in a quasi-inverse monoid S is an order relation.
When S is an inverse monoid, it coincides with Nambooripad natural order
in S.

Proof. Relation ≤ is obviously a preorder, i.e. reflexive and transitive. Let
us show it is anti-symmetric. Assume x ≤ y. By definition, x = xRyxL.
By left product with yR and right product with yL we have yRxyL =
yRxRyxLyL hence by context element commutation yRxyL = xR(yRyyL)xL

hence yRxyL = xRyxL. Assume now y ≤ x, this means y = yRxyL hence
x = y.

When S is inverse, we now that x = xRyxL, x = xRy, x = yxL, x =
ey for some e ∈ E(S) and x = yf for some f ∈ E(S) are all equivalent
properties, the last two being Nambooripad [11] natural orders definitions.
2

Remark. In general, it is not true that, in a quasi-inverse monoid, if
x ≤ y then for all z ∈ S, xz ≤ yz and zx ≤ zy, i.e. the natural order is
not necessarily stable under product. The missing axiom (Q5) is provided
in Section 3.1.
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Lemma 8 Let S be a quasi-inverse monoid. The set C(S) of context ele-
ments ordered by natural order is a meet semi-lattice with 1 as maximum
element, ⊥ = 0R = 0L as minimum element in the case 0 ∈ S, and for all
x and y ∈ C(S), x ∧ y = xy.

Proof. Let x ∈ C(S). By Lemma 2 one has xL = xR = x and, by (Q1),
xx = x hence x = xR1xL hence x ≤ 1.

Assume 0 ∈ S. By Lemma 3, let ⊥ = 0L = 0R. For all x ∈ C(S) we
have, again by Lemma 3, ⊥ = 0Rx0L hence ⊥ ≤ x.

Let us prove C(S) is a meet semi-lattice with product as meet operator.
In order to do so, let x an y ∈ C(S). Observe first that, by commutation and
idempotence of context elements we do have xy ≤ x and xy ≤ y. Conversely,
let z ∈ C(S) such that (a) z ≤ x and (b) z ≤ y. By (a) we have zxy = zy
hence by (b) zxy = z hence, by commutation of contexts and idempotence
of z, z = zxyz hence z ≤ xy. Altogether, this means that x ∧ y is defined
with x ∧ y = xy. 2

Remark. In particular, for all x and y ∈ C(S), x ≤ y if and only if xy = x.

Lemma 9 When S is a quasi-inverse monoid the set C(S) of context ele-
ments of S equals the set U(S) = {x ∈ S : x ≤ 1} of subunits of S ordered
by the (quasi-inverse) natural order.

Proof. Lemma 8 above already tells us that C(S) ⊆ U(S). Let thus x ∈ S
such that x ≤ 1. By definition of the quais-inverse natural order this means
that x = xRxL hence, since C(S) is a submonoid of S (Lemma 2), x ∈ C(S).
2

Lemma 10 When S is a quasi-inverse monoid, for all x and y ∈ S, if
x ≤ y then xR ≤ (yxL)R ≤ yR and xL ≤ (xRy)L ≤ yL,

Proof. Let x and y ∈ S with S quasi-inverse.
Assume x ≤ y. By symmetry, we only need to prove xR ≤ (yxL)R ≤ yR.
Since x ≤ y this means that x = xRyxL hence yxL ≤s x hence, by

(Q3), xR(yxL)R = xR that is to say xR ≤ (yxL)R. But we also have
yR(yxL) = yxL hence yR ≤p yxL hence, by (Q3) again, (yxL)RyR = (yxL)R.
2

Remark. One may ask about the converse. Assuming both xL ≤ yL and
xR ≤ yR could we have x ≤ y for any x and y ∈ S ? By Lemma 4 this
would mean that whenever x and y ∈ S are H-equivalent, i.e. both R and
L-equivalent, then they are equal. This will not be true in general as already
illustrated by inverse monoids.
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2.4 Natural order revisited

We show here that the natural order definition can be further simplified
as a two-sided variation of Nambooripad natural order [11] restricted to
idempotents of C(S).

Lemma 11 When S is a quasi-inverse monoid, for every e and f ∈ C(S)
and x ∈ S, exf ≤ x.

Proof. Let S be a quasi-inverse monoid. Let e and f ∈ C(S) and x ∈ S.
Observe first that (exf)Re = (exf)R. In fact, we have e ≤p exf hence,
by property (Q3) of quasi-inverse monoid, (exf)R(e)R = (exf)R. But,
by Lemma 2 we have (e)R = e hence the claim. Symmetrically, we have
f(exf)L = (exf)L. Altogether, (exf)Rx(exf)L = (exf)Rexf(exf)R and
thus exf ≤ x. 2

It follows that:

Corollary 12 In a quasi-inverse monoid S, for all x and y ∈ S, x ≤ y
if and only if there exists two context elements e and f ∈ C(S) such that
x = eyf .

Remark. We can also define two other orders in a quasi-inverse monoid
by saying x ≤L y (resp. x ≤R y) when there exists some e ∈ C(S) such that
x = ye (resp. x = ey).

It occurs however that these orders are both weaker than the natural
order defined above, i.e. (≤L ∪ ≤R) ⊆≤ and the inclusion can be strict as
shown by Q(S) defined below in Section 4.

As already observed in [6] for U -semiadequate semigroups, we have:
Lemma 13 In a quasi-inverse monoid ≤= (≤L ◦≤R) = (≤R ◦≤L) where ◦
denotes relation composition.
Proof. We obviously have ≤⊆ (≤L ◦ ≤R) since whenever x = eyf then
x = zf with z = ey. Conversely, both ≤L⊆≤ and ≤R⊆≤ as particular
instance of ≤ definition, hence, by transitivity (≤L ◦≤R) ⊆≤. 2

2.5 U-semiadequate monoids

We relate here quasi-inverse monoids with U -semiadequate semigroups as
defined in [6].
Definition. Let S be a semigroup and let U ⊆ E(S) be a subset of
idempotents of S. Extended Green relations L̃ and R̃ are defined from U ,
for all x and y ∈ S, by:
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xL̃y if for all e ∈ U , xe = x⇔ ye = y,

xR̃y if for all e ∈ U , ex = x⇔ ey = y.

One can easily check that relation L̃ (resp. R̃) is a left (resp. right)
congruence relation that generalizes Green’s relation L (resp. R). Moreover,
for all x ∈ S and y ∈ U , if yL̃x (resp. yR̃x) then, since y is idempotent,
yy = y hence, by definition, xy = x (resp. yx = x).

Definition. A semigroup S is a U -semiabundant when for all x ∈ S there
is at least one x+ ∈ U such that x+R̃x and one x∗ ∈ U such that x∗L̃x.

A semigroup S is U -semiadequate when it is U -semiabundant and U is
a commutative submonoid of S.

Lemma 14 A quasi-inverse monoid S is a C(S)-semiadequate monoid.

Proof. Let S be a quasi-inverse monoid. Let x ∈ S.
Let y ∈ C(S). Since xxL = x, if xLy = xL then xy = xxLy = xxL = x.

Conversely, if xy = x then, by axiom (Q3), (xy)LyL = (xy)L with, by axiom
(Q0), yL = y, hence xLy = xL.

In other words, we have xL̃xL and, by symmetrical arguments, xR̃xR.
Assume now there is some y ∈ C(S) such that yL̃x. This means in

particular, since, by axiom (Q2), xxL = x, that yxL = y hence y ≤ xL.
But, as observed above, since y is idempotent, we have yy = y hence, by
definition of L̃, xy = x. 2

The following properties is proved in [6]:

Lemma 15 In a U -semiadequate semigroup each L̃-class (resp. R̃-class)
has a unique element of U .

Proof. Follows from the facts (see [6] Lemma1.3) that, in a U -semiadequate
semigroup Green relation L (resp. R) and extended Green L̃ (resp. R̃) are
equal over U and the fact that, over commuting idempotents, L and R
relations are just equality. 2

Lemma 16 A U -semiadequate monoid S is a quasi-inverse monoid taking,
for all x ∈ S, xL = x+, xR = x∗.

Proof. Let S be a U -semiadequate monoid. For all x ∈ S, we put xL = x+

and xR = x∗.
Observe first, since 1 ∈ S, that 1∗ = 1+ = 1 henceforth 1 ∈ U . In-

deed, given 1∗ ∈ U we have 1∗1 = 1 hence 1∗ = 1 since 1 is neutral. By
symmetrical argument, we have 1+ = 1.
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By hypothesis, U is a commutative subsemigroup (hence a submonoid)
of idempotents with, by Lemma 15, for all x ∈ U , x∗ = x+ = x, hence
axioms (Q0), (Q1) and (Q4) of quasi-inverse monoids are satisfied.

As we have already observed that axiom (Q2) is satisfied it remains
now to prove axiom (Q3). Let x and y ∈ S. Since yy+ = y we also have
(xy)y+ = (xy) hence (xy)+y+ = (xy)+ since (xy)+L̃xy. A symmetrical
argument shows that x∗(xy)∗ = (xy)∗. 2

Corollary 17 Quasi-inverse monoids and U -semiadequate monoids are equiv-
alent notions.

3 Stable quasi-inverse monoids
We review here some additional properties of quasi-inverse monoid when the
natural order is stable w.r.t. the monoid product.

3.1 Stable quasi-inverse monoid

We provide here the missing axiom for natural order on quasi-inverse monoid
to be stable by product.

Definition. A quasi-inverse monoid is called stable when for all x, y ∈ S,
the following property is satisfied:

(Q5) for all z ∈ C(S), (xzy)Rxy(xzy)L = xzy.

Lemma 18 A quasi-inverse monoid is stable (as a quasi-inverse monoid)
if and only if, ordered by the (quasi-inverse) natural order, it is a (stable)
ordered monoid.

Proof. Let S be a quasi-inverse monoid. Observe that axiom (Q5)
essentially says that for all x and y ∈ S, for all z ∈ C(S), xzy ≤ xy.

If S ordered by the natural order is a (stable) ordered monoid then axiom
(Q5) is obviously satisfied.

Conversely assume (Q5) holds in S. Let x, x′ ∈ S such that x ≤ x′ and
let y ∈ S.

Since x = xRx
′xL we have xy = xRx

′xLy. By Lemma 11 this implies
that xy ≤ x′xLy hence by axiom (Q5), xy ≤ x′y.

By symmetrical arguments, we can prove that yx ≤ yx′.
2
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3.2 Well-behaved ordered monoid

The following definition is adapted from [4].

Definition. A monoid S is a well-behaved ordered monoid when it is
equipped with an order relation ≤ such that:

(W0) for all x, y and z ∈ S, if x ≤ y then xz ≤ yz and zx ≤ zy,
i.e. the order relation ≤ is stable under product,

and given the set U(S) = {x ∈ S : x ≤ 1} of subunits of S:

(W1) for all x ∈ U(S), xx = 1, i.e. subunit elements are idempo-
tents,

(W2) for all x and y ∈ S, if x ≤ y then there is e and f ∈ U(S)
such that x = eyf , i.e. the order relation is a natural order,

(W3) for all x ∈ S, both sets Lx = {e ∈ U(S) : xe = x} and
Rx = {e ∈ U(S) : ex = x} have least element,

Lemma 19 Let S be a stable quasi-inverse monoid with natural order ≤.
Monoid S ordered by ≤ is a well-behaved ordered monoid.

Proof. Axiom (W0) follows from axiom (Q5) and Lemma 18.
Axiom (W1). Assume there is some x ∈ S such that x ≤ 1. This means,

by definition of the natural order, that x = xLxR hence by Lemma 2, xL = x
(and xR = x) hence by axiom (Q1) x is idempotent.

Axiom (W2) follows from the definition of the natural order and the fact
that C(S) = U(S).

Axiom (W3). By symmetry, we only prove the left case. Let y ∈ U(S)
such that xy = x. We have to show that xL ≤ yR or, equivalently by
Lemma 8, that xLyL = xL. But, by (Q3) we have (xy)LyL = (xy)L with
(xy)L = xL since xy = x hence xLyL = xL. 2

Lemma 20 Let S be a well-ordered monoid S with order ≤ and subunits
U(S). Defining, for all x ∈ S, xL =

∧
{y ∈ U(S) : xy = x} and xR =

∧
{y ∈

U(S) : yx = x} turns S into a stable quasi-inverse monoid.

Proof. Axiom (Q4) follows from stability (W0) and idempotence of subunits
(W1).

Axioms (Q0) to (Q2) then immediately follows from axiom (W1) and
(W3).

14



Axiom (Q3) follows from (W”) and the observation that for all x and
y ∈ S and for all z ∈ U(S), if zx = x (resp. yz = y) then zxy = xy (resp.
xyz = xy).

Last, axioms (Q5) follows from Lemma18. 2

In other words, quasi-inverse monoid and well-ordered monoid are equiv-
alent algebraic structures.

3.3 Stable F ∗-property

We consider a stronger version of the F ∗-property (see [5]) where we as-
sume moreover that maximal elements of a F ∗-quasi-inverse monoids form
a submonoid.

Definition. An quasi-inverse monoid is said stably F ∗ when:

(1) any non zero element x ∈ S lies beneath a unique maximal element
x̂ ∈ S,

(2) for all non zero x and y ∈ S, x̂ŷ 6= 0 and ̂̂xŷ = x̂ŷ, i.e. the set Ŝ of
maximal elements of S is a submonoid of S.

Remark. Observe that the trivial extension S0 of an arbitrary monoid S
is a stably F ∗-quasi-inverse monoid. In Section 4 we will prove that this is
true as well for the non trivial extension Q(S) of S.

Applied to inverse monoid, the stably F ∗-property induces a rather
strong additional property.

Lemma 21 Let S be an inverse monoid ordered by natural order. If S is
stably F ∗ then Ŝ is a group.

Proof. Let x ∈ Ŝ. We have x−1 ∈ Ŝ. Otherwise, since x−1 6= 0, by
F ∗ property, x−1 < x̂−1 and thus, as the natural order is stable by inverse
mapping, x < (x̂−1)−1 which contradicts the fact that x ∈ Ŝ.

We conclude then by stability assumption of Ŝ. Indeed, this means that
both xx−1 and x−1x ∈ Ŝ hence, since both x−1x ≤ 1 and xx−1 ≤ 1, by
F ∗-assumption, xx−1 = x¯1x = 1. 2

Remark. Though fairly simple, it seems that this fact was left unnoticed.
This illustrates again the well-known fact that semigroup theories and re-
lated monoid theories sometimes slightly differs and the study presented
here is concerned with monoids rather than semigroups.
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4 A non trivial quasi-inverse extension
In this section, we define from arbitrary monoid S, sort of a monoid of
positive tiles Q(S) much in the same way the monoid TA of positive tiles [4]
over the alphabet A is been built upon A∗ with a canonical injection from
S to Q(S). It turns out that Q(S) is a non trivial quasi-inverse monoid.

4.1 Prefix and suffix upper sets

Let S be a monoid. Let Up(S) (resp. Us(S)) defined to be the set of upward
closed subsets of S preordered by ≤p (resp. ≤s).

More precisely, as S is a monoid hence with 1 ∈ S, Up(S) (resp. Us(S))
is the set U ⊆ S such that US = U (resp. SU = U).

For both x = p or x = s, elements of Ux(S) are from now on called
x-upper set. The set Ux(S) is turned into a monoid by taking ∩ as product.
One can check that, indeed, the intersection of two x-upper sets is indeed a
upper set. The neutral (or maximal) element is then S itself the absorbant
is the empty set ∅.

Remark. In semigroup theory non empty elements of Up(S) (resp. Us(S))
are sometimes called right ideals (resp. left ideals) of S. As ideals in order
theory must satisfy some extra condition we prefer to stick to the notion of
upper sets.

Lemma 22 Let S be some monoid and let x ∈ S. One have:

(0) xS is a p-upper set (resp. Sx a s-upper set).

Moreover, for every p-upper set (resp. s-upper set) U ⊆ S:

(1) if x ∈ U then x−1(U) = S (resp. (U)x−1 = S),

(2) xU is a p-upper set (resp. Ux is a s-upper set),

(3) x−1(U) is a p-upper set (resp. (U)x−1 is a s-upper sets),

(4) xx−1(U) ⊆ U ⊆ x−1(xU) (resp. (U)x−1x ⊆ U ⊆ (Ux)x−1),

Proof. Straightforward. 2
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4.2 The extension

Definition. Let S be a monoid. The quasi-inverse extension of S, written
Q(S) is defined to be

Q(S) = (Us(S)− ∅)× S × (Up(S)− ∅) + 0

with product defined by

(L1, x1, R1).(L2, x2, R2) = (L1 ∩ (L2)x−1
1 , x1x2, R2 ∩ x−1

2 (R1))

when both L1 ∩ (L2)x−1
1 6= ∅ and R2 ∩ x−1

2 (R1)) 6= es, and the product
equals 0 otherwise. This product is extended to 0 as expected 0 being the
absorbant elements.

Before proving in Theorem 25 that the monoid Q(S) is a quasi-invers
monoid, let us examine some properties of the idempotent elements of S.

Lemma 23 A non zero triple (L, x,R) ∈ Q(S) is idempotent if and only if
x ∈ S is idempotent, L ⊆ (L)x−1 and R ⊆ x−1(R).

In particular any element of the form (L, 1, R) ∈ Q(S) is idempotent.

Proof. Let (L, x,R) be an idempotent of Q(S). By definition of the product
in Q(S) this means that xx = x hence x is idempotent in S, L∩ (L)x−1 = L
hence L ⊆ (L)x−1 and R ∩ x−1(R) = R hence R ⊆ x−1R.

Conversely, let (L, x,R) be a non zero element of Qq(S) with x idem-
potent, L ⊆ (L)x−1 and R ⊆ x−1(R). We have (L, x,R).(L, x,R) =
(L ∩ (L)x−1, xx,R ∩ x−1(R)). By idempotence, xx = x. The fact that
L = (L∩ (L)x−1 (resp. R = R ∩ x−1(R)) immediately follows from the fact
that L ⊆ (L)x−1 (resp. R ⊆ x−1(R)). 2

Lemma 24 The set C(Q(S)) of elements of the form (L, 1, R) in Q(S) is
a commutative monoid.

Proof. Let (L, 1, R) and (M, 1, N) be two elements in Q(S) with the desired
form.

Assume first the product (L, 1, R).(M, 1, N) is non zero. By definition of
the product, this means that (L, 1, R).(M, 1, N) = (L∩M, 1, R∩N) hence,
by symmetrical arguments, (L, 1, R).(M, 1, N) = (M, 1, N).(L, 1, R).

In the case (L, x,R).(M,y,N) = 0 similar arguments show that we also
have (M,y,N).(L, x,R) = 0 since either L ∩M = ∅ or R ∩N = ∅. 2
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Theorem 25 When S be a monoid, Q(S) with left and right context map-
pings defined, for every non zero element (L, x,R) by:

(L, x,R)L = (Lx, 1, R) and (L, x,R)R = (L, 1, xR)

is a quasi-inverse monoid.
Moreover, the mapping i : S → Qq(S) defined i(x) = (S, x, S) is a one-

to-one morphism.

Proof. Let S and Q(S) defined as above.

Observe first that Lemma 22 ensures us that the left and right context
mappings defined as above are indeed well-defined, i.e. for all q = (L, x,R) ∈
Q(S), qL = (Lx, 1, R) ∈ Q(S) and qR = (L, 1, xR) ∈ Q(S).

Axiom (Q0) and (Q4) follow from Lemma 24 above.

Axiom (Q1) follows from Lemma 23

Let us prove axiom (Q2). Let q = (L, x,R). We need to prove that
qqL = q. By definition of the product qqL = (L ∩ (Lx)x−1, x.1, x−1(xR) ∩
1−1(R) hence the result since, by Lemma 22 we have L ⊆ (Lx)x−1 and
R ⊆ x−1(xR), and we obviously have x1 = x, and 1−1(R) = R.

Let us prove property (Q3). Let q = (L, x,R) and p = (M,y,N) be
some non zero element of Q(S). Assume q ≤s p. We need to prove that
pLqL = pL.

Since q ≤S p, this means there is some r = (O, z, P ) such that p = rq,
equivalently (a) M = O ∩ (L)z−1, (b) y = zx, and (c) N = R ∩ x−1(P ).

Now, we have pqL = (M∩(Lx)y−1, y, R∩N). We want to prove it equals
(M,y,N).

Observe first that, by (a) and (b), M ⊆ (Lx)y−1 hence M ∩ (Lx)y−1 =
M . In fact, let u ∈ M . By (a), u ∈ (L)z−1 hence uz ∈ L hence uzx ∈ Lx.
But by (b) uzx = uy hence uy ∈ Lx hence u ∈ (Lx)y−1.

By (c), we have N ⊆ R hence R ∩N = N .

The proof of the last statement is straightforward since, by Lemma 22,
x−1S = S = Sx−1 for arbitrary x ∈ S hence, over images by i of elements
of S, the product in Q(S) just mimics the product in S. 2

The following theorem says that our construction above essentially ex-
tend to arbitrary monoid the construction of the monoid of positive tiles [4]
from the free monoid A∗.
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4.3 Natural order in quasi-inverse extensions

Let us now review some additional properties of the natural order in Q(S).

Lemma 26 In Q(S), for every elements (L1, x1, R1) and (L2, x2, R2) we
have (L1, x1, R1) ≤ (L2, x2, R2) if and only if L1 ⊆ L2, x1 = x2 and R1 ⊆
R2.

Proof. Let u1 = (L1, x1, R1) and u2 = (L2, x2, R2).
We have u1 ≤ u2 when, by definition, u1 = (u1)Ru2(u1)L or, stated

explicitly: (L1, x1, R1) = (L1, 1, x1R1).(L2, x2, R2).(L1x1, 1, R1).
It follows that u1 ≤ u2 if and only if (1) x1 = x2 = x, (2) L1 = L1∩L2∩

(L1x)x−1, (3) R1 = R1 ∩R2 ∩ x−1(xR1).
However, by Lemma 22, we have L1 ⊆ (L1x)x−1 and R2 ⊆ x−1(xR2)

hence (2) can be rewritten L1 = L1 ∩ L2 or equivalently L1 ⊆ L2 and (3)
can be rewritten R1 = R1 ∩R2 henceforth R1 ⊆ R2. 2

Theorem 27 Quasi-inverse monoid Q(S) is a stable, i.e. for every u, v
and w ∈ Q(S), if u ≤ v then uw ≤ vw and wu ≤ wv.

Proof. Let u = (L1, x1, R1), v = (L2, x2, R2) and w = (M,y,N). Assume
u ≤ v. By Lemma 26 above, we have x1 = x2 from now on denoted by x,
L1 ⊆ L2 and R1 ⊆ R2.

By definition of the product we have uw = (L1∩(M)x−1, xy,N∩y−1(R1)
and vw = (L2 ∩ (M2)x−1, xy,N ∩ y−1(R2). Hence uw ≤ vw by applying
Lemma 26 and stability of the inclusion order by intersection and residual.

Symmetrical arguments show that wu ≤ wv. 2

Remark. By applying Lemma 18 we could have proven instead that the
quasi-inverse extension Q(S) of S satisfies axiom (Q5)

Lemma 26 has more consequences that are listed below.

Lemma 28 The extension Q(S) of monoid S is a meet semi-lattice.

Proof. By Lemma 26 we easily check that Q(S) satisfies the F ∗-property,
i.e. any non zero element (L, x,R) ∈ Q(S) lies beneath a unique maximal
element (S, x, S). The meet of two elements (L1, x1, R1) and (L2, x2, R2) is
then just defined as 0 when x1 6= x2 and (L1 ∩L2, x1, R1 ∩R2) otherwise. 2

Lemma 29 The extension Q(S) is (upward) bounded complete and (up-
ward) directed complete.
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Proof. Let X ⊆ Q(S) a non empty either directed or bounded subset of
Q(S). We have to show that X admits a greatest lower bound

∨
X.

If X = {0} then
∨
X = 0 and we are done. Otherwise, in both directed

and bounded case, by Lemma 26, there is some s ∈ S such that every u ∈ X
is of the form (Lu, x,Ru). Il follows that

∨
X = (

⋃
u∈X Lu, s,

⋃
u∈X Ru). 2

5 Quasi-inverse monoids and prehomomorphisms
In this section we show that our extension construction Q(S) induces an
expansion in the sense of Birget and Rhodes [12] of the category of trivial
quasi-inverse monoid with (well-behaved) prehomomorphisms into the cate-
gory of stable quasi-inverse monoids with well-behaved prehomomorphisms.

5.1 Prehomomorphisms

The following definition is adapted from McAlister and Reilly [10].

Definition. Let S and T be two ordered monoids with zeros. A mapping
ϕ : S → T is a prehomomorphism when ϕ(0) = 0, ϕ(1) = 1, for all x and
y ∈ S, if x ≤ y then ϕ(x) ≤ ϕ(y) and, for all x and y ∈ S, ϕ(xy) ≤ ϕ(x)ϕ(y)

A prehomomorphism ϕ such that ϕ(xy) < ϕ(x)ϕ(y) if and only if xy = 0
is called a trivial prehomomorphism.

Observe that given a prehomomorphism ϕ : S → T , (ϕ(S))∗ is a sub-
monoid of T while, in general, ϕ(S) may not be closed under product.

Lemma 30 For every prehomomorphism ϕ : S → T and ψ : T → U ,
the mapping ϕψ : S → U defined for all x ∈ S by ϕψ(x) = ψ(ϕ(x)) is a
prehomomorphism.

In other words, ordered monoids and prehomomorphisms forms a cate-
gory.

5.2 Well-behaved prehomomorphisms

Definition. Let S and T be two stably F ∗-quasi-inverse monoid. A
prehomomorphism ϕ : S → T is a well-behaved prehomomorphism when
the following condition are satisfied:

(P1) for all x and y ∈ Ŝ, ϕ(xy) ∈ T̂ ,
(P2) for all x, y and z ∈ Ŝ, ϕ(xLyzR) = (ϕ(x))Lϕ(y)(ϕ(z))R,
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where Ŝ (resp. T̂ ) denotes the set of maximal elements of S (resp. T ).
In particular, as an immediate consequence of (P1) and (P2), for all

non zero element x ∈ S, if ϕ(x) 6= 0, we have ϕ̂(x) = ϕ(x̂) and, if x ∈ Ŝ,
ϕ(xL) = (ϕ(x))L and ϕ(xR) = (ϕ(x))R.

Lemma 31 Stably F ∗-quasi-inverse monoids with well-behaved prehomo-
morphisms defined a category that contains the category of monoid and mor-
phism as a (isomorphic) subcategory.

Proof. Observe first that any monoid morphism ϕ : S → T can be lifted to
a trivial prehomomorphism ϕ : S0 → T 0 by taking additionally ϕ(0) = 0.
As both S0 and T 0 are stably F ∗-quasi-inverse monoids, ϕ extended in such
a way is moreover a well-behaved prehomomorphism.

Let S, T and U be three stably F ∗-quasi-inverse monoids. Let then
ϕ : S → T and ψ : T → U be two well-behaved prehomomorphisms. By
Lemma 30, ψ ◦ ϕ : S → U is a prehomomorphism.

The fact it is well-behaved is immediate from the definitions and Lemma 31
above. 2

5.3 Quasi-inverse extension and prehomomorphisms

We have already shown that for every monoid S there is a one-to-one mor-
phism i : S → Q(S), the canonical injection of S into Q(S). It can be
extended to a trivial one-to-one prehomomorphism i : S0 → Q(S) by taking
i(0) = 0. Remember that S0 is the trivial extension of S with an additional
new zero. What about a canonical (inverse) surjection from Q(S) onto S0 ?

Definition. For all monoid S, let define the mapping σS : Q(S) → S0

that maps 0 to 0 and any non zero triple (L, x,R) ∈ Q(S) to x.

Lemma 32 For all monoid S, the mapping σS : Q(S) → S0 is a (trivial
hence well-behaved) onto prehomomorphism.

Proof. Mapping σS is obviously onto and monotonic. It remains to prove
it is sub-multiplicative. Let u1 = (L1, x1, R1) and u2 = (L2, x2, R2) two non
zero elements of Q(S). If u1u2 = 0 we have ϕ(u1u2) = 0 < ϕ(u1)ϕ(u2) =
x1x2. If u1u2 6= 0 then ϕ(u1u2) = x1x2 henceforth ϕ(u1u2) = ϕ(u1)ϕ(u2).
In other words, ϕ is a trivial prehomomorphism. 2
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5.4 Expansion prehomomorphism

We provide here the last peace that show that our extension construction
is actually a expansion in the sense of Birget and Rhodes in the category of
ordered monoids and prehomomorphisms.

Definition. Let S and T be two monoids. Let ϕ : S → T be a monoid
morphism and let still denote by ϕ the lift of ϕ to P(S) defined by as
ϕ : P(S)→ P(T ) by taking, for every X ⊆ S, ϕ(X) = {ϕ(x) : x ∈ X ∩ S}.

Let then Q(ϕ) be the expansion mapping Q(ϕ) : Q(S)→ Q(T ) defined
by Q(ϕ)(0) = 0 and for all non zero element u = (L, x,R) ∈ Q(S), by
Q(ϕ)(u) = (Tϕ(L), phi(x), ϕ(R)T ).
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Lemma 33 For all monoids S and T , for all (monoid) morphism ϕ : S →
T , the expansion mapping Q(ϕ) : Q(S)→ Q(T ) is a well-behaved prehomo-
morphism such that, moreover, the following diagram commutes.

Q(S) Q(T )

S0 T 0

Q(ϕ)

σS σT

ϕ

In other words, ϕ ◦ σS = σT ◦ Q(ϕ).

Proof. Let S and T and τ : S → T as above. In order to simplify notation,
let us write ϕ′ in place of Q(ϕ).

Observe first that, by definition, ϕ′(0) = 0 and we also have

ϕ′(1) = (Tϕ(S), ϕ(1), ϕ(S)T )

hence ϕ′(1) = 1 since 1 ∈ S and ϕ(1) = 1 and thus 1 ∈ ϕ(S).

Monotonicity of ϕ′ immediately follows from the characterization of the
natural order provided by Lemma 26 and the fact that ϕ extended to P(S)
is monotonic.

Let then u1 = (L1, x1, R1) and u2 = (L2, x2, R2) two non zero elements
of Q(S). We have to show that ϕ′(u1u2) ≤ ϕ′(u1)ϕ′(u2). By definition, we
have:

ϕ′(u1u2) = (Tϕ(L1 ∩ (L2)x−1
1 ), ϕ(x1)ϕ(x2), ϕ(x−1

2 (R1) ∩R2)T )

hence by distributivity of (the extension of) ϕ and product (over P(S)) w.r.t.
the intersection

ϕ′(u1u2) = (Tϕ(L1) ∩ Tϕ((L2)x−1
1 ),

ϕ(x1)ϕ(x2), ϕ(x−1
2 (R1))T ∩ ϕ(R2)T )

By definition, we also have:

ϕ′(u1)ϕ′(u2) = (Tϕ(L1) ∩ Tϕ(L2)(ϕ(x1))−1),
ϕ(x1)ϕ(x2), (ϕ(x2))−1ϕ(R1)T ∩ ϕ(R2)T )
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Now we conclude that ϕ′(u1u2) ≤ ϕ′(u1)ϕ′(u2) by applying Lemma 26,
monotonicity of product and intersection in P(S) and the fact that, for all
X ⊆ S and all x ∈ S we have

ϕ(x−1(X)) ⊆ (ϕ(x))−1(ϕ(X))

and
ϕ((X)x−1) ⊆ (ϕ(X))(ϕ(x))−1

Indeed, let x ∈ S and X ⊆ S as above. Let y ∈ ϕ(x−1(X)). This means
that y = ϕ(z) for some z ∈ x−1(X) hence some z such that xz ∈ X. But
then, this also means, as ϕ extended to S is still a monoid morphism, that
ϕ(x)ϕ(z) ∈ ϕ(X) hence y = ϕ(z) ∈ (ϕ(x))−1(ϕ(X)). The other case is
symmetric.

A similar argument as above for proving that ϕ′(1) = 1 shows that for
all maximal element u = (S, x, S) of Q(S), we have ϕ′(u) = (T, ϕ(x), T )
hence ϕ′(u) is also maximal and, moreover, for two maximal elements u and
v ∈ Q(S), ϕ′(uv) = ϕ(u)ϕ(v). In other words, ϕ′ is well-behaved.

Diagram commutation immediately follows from the definitions of σS ,
σT and ϕ′ = Q(ϕ). 2

Corollary 34 The extension that lift any trivial quasi-inverse monoid S0

to a non trivial quasi-inverse monoid Q(S) turns out to be an expansion
in the sense of Birget and Rhodes[12] with prehomomorphisms instead of
morphisms.

Proof. As any monoid morphism ϕ : S → T can be lifted up to a trivial
well-behaved prehomomorphism ϕ : S0 → T 0 by taking ϕ(0) = 0, Lemma 33
and Lemma 32 just ensure that. 2

Remark. This Lemma really says that, via this expansion, the stan-
dard notion of recognizability over monoids by means of morphisms can be
lifted up into a notion of quasi-recognizability over stably F ∗-quasi-inverse
monoids by means of well-behaved morphisms.

Our construction in [5], applied to languages of positives tiles, is an
instance of that more general fact.
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