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Recovering the Hamiltonian from spectral data

We show that the contributions to the Gutzwiller formula with observable associated to the iterates of a given elliptic nondegenerate periodic trajectory γ and to certain families of observables localized near γ determine the quantum Hamiltonian in a formal neighborhood of the trajectory γ, that is the full Taylor expansion of its total symbol near γ. We also treat the "bottom of a well" case both for general and Schrödinger operators, and give some analog classical results.

Introduction and main results

It is well known that spectral properties of semiclassical Hamiltonians and dynamical properties of their principal symbols are linked. Even when there is no precise information "eigenvalue by eigenvalue" of the spectrum, the so-called Gutzwiller trace formula provide information on averages of the spectrum at scale of the Planck constant. More precisely, let H(x, D x ) be a self-adjoint semiclassical elliptic pseudodifferential operator on a compact manifold X of dimension n + 1, whose symbol H(x, ξ) is proper (as a map from T * X into R). Let E be a regular value of H and γ a non-degenerate periodic trajectory of primitive period T γ lying on the energy surface H = E.

Consider the Gutzwiller trace (see [START_REF] Gutzwiller | Periodic orbits and classical quantization conditions[END_REF])

(1.1) Tr ψ r H(x, D x ) -E = i ψ r E -E i
where for r ∈ Z * , ψ r is a C ∞ function whose Fourier transform is compactly supported with support in a small enough neighborhood of rT γ and is identically one in a still smaller neighborhood containing rT γ . As shown in [START_REF] Paul | Sur la formule semi-classique des traces[END_REF], [START_REF] Paul | The Semi-classical Trace Formula and Propagation of Wave Packets[END_REF] (1.1) has an asymptotic expansion

(1.2) e i Sγ +σγ ∞ k=0 a r k k
In [START_REF] Guillemin | Some remarks about semiclassical trace invariants and quantum normal forms[END_REF] was shown how to compute the terms of this expansion to all orders in terms of a microlocal Birkhoff canonical form for H in a formal neighborhood of γ, and that the family of constants (a r k ) (k,r)∈N×Z * determine the microlocal Birkhoff canonical form for H in a formal neighborhood of γ (and hence, a fortiori, determine the classical Birkhoff canonical form). When it is known "a priori" that H(x, D x ) is a Schrödinger operator, it is known that the normal form near the bottom of a well determines part of the potential V [START_REF] Guillemin | Some inverse spectral results for semiclassical Schrödinger operators[END_REF]. But in the general case the Gutzwiller formula will determine only the normal form of the Hamiltonian, that is to say H(x, D x ) only modulo unitary operators, and its principal symbol only modulo symplectomorphisms. Of course it cannot determine more, as the spectrum, and a fortiori the trace, is insensitive to unitary conjugation. The aim of this paper is to address the question of determining the true Hamiltonian from more precise spectral data, namely from the Gutzwiller trace formula with observables.

It is well know that, for any pseudodifferential operator O(x, D x ) of symbol O(x, ξ), there is a result equivalent to (1.2) for the following quantity (1.3) Tr O(x, D x )ψ H(x, D x ) -E = i ϕ j , O(x, D x )ϕ j ψ E -E i , (here ϕ j is meant as the eigenvector of eigenvalue E j ) under the form of an asymptotic expansion of the form

(1.4) e i Sγ +σγ ∞ k=0 a r k (O) k
where a r k are distributions supported on γ. We will show in the present paper that the knowledge of the coefficients a γ k (O) for O belonging to some family of observables localized near γ is enough to determine the full Taylor expansion of the total symbol of H(x, D x ) near γ, in other words H(x, D x ) microlocally in a formal neighborhood of γ, when γ is non-degenerate elliptic (including the case where γ is reduced to a point (bottom of a well)). Let us first remark that the trace formula with any observable microlocalized in a small enough neighborhood of γ determines obviously its primitive period T γ . We will assume that any multiple of T γ is isolated in the set of the periods of all the periodic trajectories on the same energy shell (let us remark that in case this condition is not fulfilled, our results remains valid by taking observables microlocalized in a neighborhood of the non-degenerate elliptic γ). Moreover it is known ( [START_REF] Fried | Cyclic resultants of reciprocal polynomials[END_REF][START_REF] Guillemin | Wave-trace invariants[END_REF]) that the coefficients of trace formula determines the Poincaré angles modulo 2πZ and we prove in Appendix B that, in the case where γ is not reduced to one point, any realization of the Poincaré angles as real numbers leads to a different Birkhoff normal form but give an explicit symplectomorphism that conjugates one to another: hence, our reconstruction of the "true" Hamiltonian is independent of the choice of the realization. We also show that in the "bottom of a well" case, the θ i s are determined by the spectrum.

Therefore the only knowledge we will require will be the fact that there exists a geometric periodic trajectory γ, possibly of dimension zero, which is elliptic non-degenerate (see definition below) and whose set of periods in isolated in the set of periods of the same energy shell.

We will be concerned by three cases:

(1) γ is a curve (2) the general "bottom of a well" case (γ reduced to a point) [START_REF] De Verdière | A semiclassical inverse problem I: Taylor expansions[END_REF] the "bottom of a well" case when the Hamiltonian is a Schrödinger operator.

Our results will also be of three different kinds :

a. The knowledge of the coefficients of the trace formula for [START_REF] Chazarain | Formule de Poisson pour les variétés Riemanniennes[END_REF], or of some of the diagonal matrix elements (expectation values) between eigenvectors of the Hamiltonian for (2), [START_REF] De Verdière | A semiclassical inverse problem I: Taylor expansions[END_REF], for a family of observables satisfying some algebraic properties on γ determine some Fermi coordinates (see definition below). It is the content of Theorems 1.3, 1.9, 1.13. b. The knowledge of the coefficients of the trace formula for [START_REF] Chazarain | Formule de Poisson pour les variétés Riemanniennes[END_REF], or of some of the diagonal matrix elements (expectation values) between eigenvectors of the Hamiltonian for (2)-( 3), for another family of observables, expressed on any (not necessarily the one determined by a.) Fermi system of coordinates, determine the full Taylor expansion of the total symbol of the Hamiltonian expressed on these Fermi coordinates (Theorems 1.4, 1.10, 1.14). c. The combination of the two preceding cases, where the family of observables defined in a. drives the knowledge of the full Hamiltonian. More precisely, the knowledge of the quantities expressed in a. determines a family of observables, which is precisely the one defined in b. expressed in the Fermi system determined in a., the trace coefficients or some of the diagonal matrix elements of which determine the full Taylor expansion of the Hamiltonian on a determined system of coordinates (Corollaries 1.5, 1.11, 1.15).

Finally we obtain analog classical results as byproduct of the quantum ones in Section 4.

Definition 1.1. A periodic trajectory of the Hamiltonian flow generated by H(x, ξ) is said to be non-degenerate elliptic if its linearized Poincaré map has eigenvalues (e ±iθi ) 1≤i≤n , θ j ∈ R, and the rotation angles θ i (1 ≤ i ≤ n) and π are independent over Q. Definition 1.2 (Fermi coordinates). We will denote by "Fermi coordinates" any system of local coordinates of T * M near γ, (x, t, ξ, τ ) ∈ T * (R n × S 1 ), such that γ = {x = ξ = τ = 0} and on which the principal symbol H p of H(x, D x ) can be written for any chosen realization of the Poincaré angles θ i ∈ R as:

(1.5) H p (x, t, ξ, τ ) = H 0 (x, t, ξ, τ ) + H 2 where (1.6) H 0 (x, t, ξ, τ ) = E + n i=1 θ i x 2 i + ξ 2 i 2 + τ and (1.7) H 2 = O (x 2 + ξ 2 + |τ |) 3 2
The existence of such local coordinates, guaranteed by the Weinstein tubular neighborhood Theorem ( [START_REF] Weinstein | Lectures on symplectic manifolds[END_REF]), was proved in [START_REF] Guillemin | Wave-trace invariants[END_REF][START_REF] Guillemin | Some remarks about semiclassical trace invariants and quantum normal forms[END_REF][START_REF] Zelditch | Wave invariants at elliptic closed geodesics[END_REF] under the hypothesis of non-degeneracy mentioned earlier. However the construction of Fermi coordinates involves the knowledge of the quadratic part of H p in a neighborhood of γ. Our first result shows that a system of Fermi coordinates can be determined by γ only at the classical level and some quantum spectral quantities. (constructed out of a system of local coordinates near γ and some quantum spectral quantities.) Theorem 1.3. Let P k p , k = 0, 1, . . . , 2n 2 + n, p ∈ Z, be any pseudodifferential operators whose respective principal symbols P k p satisfy in a local symplectic system of coordinates

(x, t, ξ, τ ) ∈ T * (R n × S 1 ) such that γ = {x = ξ = τ = 0}: (1.8) P 0 p (x, t, ξ, τ ) = e -2iπpt τ and P k p (x, t, ξ, τ ) = e -2iπpt R k (x, ξ), k = 1, . . . , 2n 2 + n with the property that R k (0) = ∇R k (0) = 0 and the Hessians d 2 R k (0) are linearly independent.
An example of such symbols is given by the family,

       Q 1 ijp (x, t, ξ, τ ) = e -2iπpt x i ξ j Q 2 ijp (x, t, ξ, τ ) = e -2iπpt x i x j Q 3 ijp (x, t, ξ, τ ) = e -2iπpt ξ i ξ j Q p (x, t, ξ, τ ) = e -2iπpt τ (1.9) 
Then, the knowledge of the coefficients (a l 1 (P k p )) 0≤k≤2n 2 +n in (1.3)-(1.4) determines (in a constructive way) an explicit system of Fermi coordinates near γ.

Theorem 1.4. Let γ be a non-degenerate elliptic periodic trajectory of the Hamiltonian flow generated by the principal symbol H p of H(x, D x ) on the energy shell H -1 p (E), and let (x, t, ξ, τ ) ∈ R n × S 1 × R n+1 be a system of Fermi coordinates near γ.

For (m, n, p) ∈ N 2n × Z, let O mnp , O p be any pseudodifferential operator whose total Weyl symbols (in this system of coordinates) O mnp , O p satisfy in a neighborhood of γ:

(1.10)              O mnp (x, t, ξ, τ ) = e -i2πpt n j=1 xj+iξj √ 2 mj xj -iξj √ 2 nj + 2l+N =|m|+|n|+1 O( l (x 2 + ξ 2 + |τ |) N 2 ) O p (x, t, ξ, τ ) = e -i2πpt τ + 2l+N =3 O( l x 2 + ξ 2 + |τ | N 2 )
Then the knowledge of the coefficients

a l k (O mnp ) and a l k (O q ) in (1.3)-(1.4) for k ≤ N and m, n, p, q satisfying (1) |m| + |n| ≤ N (2) ∀j = 1 . . . n, m j = 0 or n j = 0 (3) p ∈ Z, q ∈ Z *
determines the Taylor expansion near γ up to order M 1 in (x, ξ) and M 2 in τ , of the total Weyl symbol, in this system of Fermi coordinates, of H(x, D x ) up to order l in at the condition that 2l + M 1 + 2M 2 ≤ N .

Concatenating the two preceding results we get the coordinate free statement: Corollary 1.5. Let P k p be as in Theorem 1.3. Then the knowledge of the coefficients

a l 1 (Q k ijp ), a l 1 (Q p ) for p ∈ Z, l ∈ Z, 1 ≤ i, j ≤ n, k ∈ {1, 2, 3} determine observables O mnp , O q out of
which the coefficients a l k (O mnp ) and a l k (O q ), for k ≤ N and m, n, p, q satisfying conditions (1), ( 2), (3) in Theorem 1.4, determine modulo a function vanishing to infinite order on γ, the full symbol of H(x, D x ), in a determined system of local coordinates near γ.

Remark 1.6. It is easy to see that Condition 2 implies that the number of observables in the transverse to γ directions (for each Fourier coefficient in t) needed for determining H(x, D x ) up to order N is a polynomial function of N of degree n, while the number of all polynomial functions in (x, ξ, τ ) of order N is a polynomial in N of higher degree 2n + 1. The fact that not all observables are needed can be understood by the fact that we know that the Hamiltonian we are looking for is conjugated to the normal form by a unitary operator and not by any operator (see the discussion after Theorem 2.1). At the classical level this is a trace of the fact that we are looking for a symplectomorphism, and not any diffeomorphism (see section 4).

Remark 1.7. The asymptotic expansion of the trace (1.3) involves only the microlocalization of H(x, D x ) in a formal neighborhood of γ. Therefore there is no hope to recover from spectral data more precise information that the Taylor expansion of its symbol near γ. The rest of the symbol concerns spectral data of order ∞ .

Let us now consider the case where γ is reduced to one point, namely the "bottom of a well" case. Let us assume that the principal symbol H p of H(x, D x ) has a global minimum at z 0 ∈ T * M, and let d 2 H p (z 0 ) be the Hessian of H at z 0 . Let us define the matrix Ω defined by

d 2 H p (z 0 )(•, •) =: ω z0 (•, Ω -1 •)
where ω z0 (•, •) is the canonical symplectic form of T * M at z 0 . The eigenvalues of Ω are purely imaginary, let us denote them by ±iθ j with θ j > 0, j = 1 . . . n. Let us assume moreover that θ j , j = 1 . . . n are rationally independent. Definition 1.8. By extension of definition 1.2, we will also denote by Fermi coordinates any system of Darboux coordinates (x, ξ) ∈ T * R n centered at z 0 such that:

(1.11) H p (x, ξ) = H p (z 0 ) + n i=1 θ i x 2 i + ξ 2 i 2 + O((x, ξ) 3 ).
The existence of such local coordinates will be proved in section 3, once again by using the knowledge of the quadratic part of H p near z 0 . Our next result shows that one can explicitly construct Fermi coordinates out of the knowledge of some quantum spectral quantities.

Theorem 1.9. Let P k , k = 1 . . . 2n 2 + n be any pseudodifferential operators whose principal symbols P k is such that P k (z 0 ) = ∇P k (z 0 ) = 0 and the Hessians d 2 P k (z 0 ) are linearly independent.

An example of such symbols is given by the family,

1 ≤ i, j ≤ n, k ∈ {1, 2, 3}, (1.12)    Q 1 ij (x, ξ) = x i ξ j Q 2 ij (x, ξ) = x i x j Q 3 ij (x, ξ) = ξ i ξ j in any system (x, ξ) ∈ T * R n of Darboux coordinates centered at z 0 .
Then, for any ǫ = ǫ( ) > 0, = o(ǫ( )) (e.g. ǫ = 1-η , η > 0), the knowledge of the spectrum of H(x, D x ) in [H p (z 0 ), H p (z 0 ) + ǫ] and the diagonal matrix elements of P k between the corresponding eigenvectors of H(x, D x ) determines (in a constructive way) an explicit system of Fermi coordinates.

Theorem 1.10. For (m, n) ∈ N 2n , let O mn be any pseudodifferential operator whose total Weyl symbol O mn satisfy in a neighborhood of z 0 :

O mn (x, ξ) = n j=1 x j + iξ j √ 2 mj x j -iξ j √ 2 nj + 2l+N = |m|+|n|+1 O l x 2 + ξ 2 N 2 (1.13) in a system (x, ξ) ∈ T * R n of Fermi coordinates centered at z 0 .
Then the knowledge of the spectrum of H(x, D x ) in [H p (z 0 ), H p (z 0 ) + ǫ] with 1-α = O(ǫ) for some α > 0, and the diagonal matrix elements of O mn between the corresponding eigenvectors of H(x, D x ), for:

(1) |m| + |n| ≤ N (2) ∀j = 1 . . . n, m j = 0 or n j = 0, determines the Taylor expansion up to order N of the full symbol of H(x, D x ) at z 0 in the coordinates (x, ξ).

Corollary 1.11. The diagonal matrix elements of the operators P k as in Theorem 1.9 determine observables O mn whose diagonal matrix elements as in Theorem 1.10 determine, modulo a function vanishing to infinite order at z 0 , the full symbol of H(x, D x ), in a determined system of local coordinates near z 0 . Remark 1.12. Although we will not prove it here, let us remark that Theorem 1.10 (and also Theorem 1.4) is also valid in the framework of quantization of Kälherian manifolds.

In the case where H(x, D x ) is a Schrödinger operator -2 ∆ + V , it is known, [START_REF] Guillemin | Some inverse spectral results for semiclassical Schrödinger operators[END_REF], that the (actually classical) normal form determines the Taylor expansion of the potential in the case where the latter is invariant, for each i = 1 . . . n, by the symmetry x i → -x i . The same result holds without the symmetry assumption in the case n = 1, with assumption V ′′′ (0) = 0, as it has been shown in [START_REF] De Verdière | A semiclassical inverse problem I: Taylor expansions[END_REF].

Let now H = -2 ∆ + V be a Schrödinger operator and q 0 be a global non-degenerate minimum of V . Let us assume that the square-roots (θ i ) 1≤i≤n of the eigenvalues of d 2 V (q 0 ) are linearly independent over the rationals. In that precise case, we will denote by Fermi coordinates any system of Darboux coordinates (x, ξ) ∈ T * R n , in which the (principal or total, both notions are equivalent here) symbol H of our Schrödinger operator can be written as:

(1.14) H(x, ξ) = V (q 0 ) + n i=1 θ i x 2 i + ξ 2 i 2 + R(x)
where R(x) = O(x 3 ). The existence of such local coordinates will also be proved in section 3, and Theorem 1.13 below proves that one can explicitly construct Fermi coordinates out of any system of local coordinates centered at q 0 . Theorem 1.14 shows that the matrix elements of only a finite number of observables are necessary to recover the full Taylor expansion of the potential in the general case. Theorem 1.13. Let P k , k = 1 . . . n(n+1) 2 be any pseudodifferential operators whose principal symbols are potentials P k such that P k (q 0 ) = ∇P k (q 0 ) = 0 and the Hessians d 2 P k (q 0 ) are linearly independent (an example of such potentials is the family Q 2 ij (x) = x i x j in a local system of coordinates centered at q 0 ).

Then, for any ǫ = ǫ( ) > 0, = o(ǫ), the knowledge of the spectrum of H(x, D x ) in [V (q 0 ), V (q 0 ) + ǫ] and the diagonal matrix elements of P k , k = 1 . . . n 2 +n 2 between the corresponding eigenvectors of H(x, D x ) determines (in a constructive way) an explicit system of Fermi coordinates.

Theorem 1.14. Let (x, ξ) ∈ T * R n be a system of Fermi coordinates centered at (q 0 , 0).

Then the knowledge of the spectrum of H(x, D x ) in [V (q 0 ), V (q 0 )+ǫ] with 1-α = O(ǫ) for some α > 0, and the diagonal matrix elements of the 2 n -1 observables O m0 , m = (m 1 , . . . , m n ) ∈ {0, 1} n \ {0}, defined in Theorem 1.10, between the corresponding eigenvectors of H(x, D x ) determines the full Taylor expansion of V at q 0 in the coordinates x.

Corollary 1.15. The diagonal matrix elements of the operators P k as in Theorems 1.13 determine 2 n -1 observables O m0 whose diagonal matrix elements as in Theorem 1.14 determine the potential V up to a function vanishing to infinite order at q 0 . Remark 1.16. Note that since we are dealing with observables localized near the bottoms of the wells, the hypothesis that z 0 in Theorems 1.9-1.10 and q 0 in Theorems 1.13 and 1.14 are global minima can be released and the corresponding results can be formulated in a straightforward way.

The proof of Theorem 1.4 relies on two results having their own interest per se: Proposition 2.13 which shows that the coefficients of the trace formula determine the matrix elements ϕ j , O(x, D x )ϕ j where ϕ j are the eigenvectors of the normal form of the Hamiltonian, and Proposition 2.14 which states that the knowledge of the matrix elements of the conjugation of a given known selfadjoint operator by a unitary one determines, in a certain sense, the latter.

As a byproduct of Proposition 2.14 we obtain also a purely classical result, somehow analog of it: the averages on Birkhoff angles associated to Birkhoff coordinates of the same classical observables than the ones in Theorem 1.4 determine the Taylor expansion of the (true) Hamiltonian. This is the content of Theorem 4.2 below.

The paper is organized as follows. Section 2 is devoted to the proof of Theorems 1.4, 1.10 and 1.14. In section 3, we give an explicit construction of some Fermi coordinates out of any system of local coordinates in both the periodic and "Bottom of the well" case: this is the content of Theorems 1.3, 1.9 and 1.13. In Section 4 we show the classical equivalent of our quantum formulation.

Through the whole paper, l, m , l < m, will stand for the set of integers {l, . . . , m} and we we will assume, without loss of generality, that the period of γ is equal to 1.

Recovering the Hamiltonian in some given Fermi coordinates

Let us start this section by observing that, by microlocalization near γ, it is enough, in order to prove Theorem 1.4, to prove Theorem 2.1 below, which is nothing but the same statement expressed in a local Fermi system of coordinates.

The proof of Theorem 2.1 will need a construction of the quantum Birkhoff normal form, given in subsection 2.1. The rest of the proof is then a consequence of Proposition 2.13 (subsection 2.2) and Proposition 2.14 (subsection 2.3). Subsection 2.4 contains the proof of the analogs of Theorem 1.4 when γ is reduced to a single point, both in the general and "Schrödinger" cases (Theorems 1.10 and 1.14).

Theorem 2.1. Let H(x, D x ) be a self-adjoint semiclassical elliptic pseudodifferential operator on L 2 (R n ×S 1 ). Let (x, t, ξ, τ ) ∈ T * (R n ×S 1 ) be the canonical symplectic coordinates and let us assume that γ = S 1 = {x = ξ = τ = 0} is a non degenerate elliptic periodic orbit of the Hamiltonian flow generated by the principal symbol H p of H(x, D x ) on the energy shell H -1 p (E). Let us assume moreover that H p can be written in these coordinates as:

(2.1) H p (x, t, ξ, τ ) = H 0 (x, t, ξ, τ ) + H 2 where (2.2) H 2 = O (x 2 + ξ 2 + |τ |) 3 2
And H 0 is equal to:

(2.3) H 0 (x, t, ξ, τ ) = E + n i=1 θ i x 2 i + ξ 2 i 2 + τ
For (m, n, p) ∈ N 2n × Z×, let O mnp , O p be any pseudodifferential operator whose total Weyl symbols O mnp , O p satisfy in a neighborhood of γ:

(2.4)              O mnp (x, t, ξ, τ ) = e -i2πpt n j=1 xj +iξj √ 2 mj xj-iξj √ 2 nj + 2l+N =|m|+|n|+1 O( l x 2 + ξ 2 + |τ | N 2 ) O p (x, t, ξ, τ ) = e -i2πpt τ + 2l+N =3 O( l x 2 + ξ 2 + |τ | N 2 )
Then the knowledge of the coefficients

a l k (O mnp ) and a l k (O q ) in (1.3)-(1.4) for k ≤ N and m, n, p, q satisfying (1) |m| + |n| ≤ N (2) ∀j = 1 . . . n, m j = 0 or n j = 0
(3) p ∈ Z, q ∈ Z * determines the Taylor expansion near γ of the full symbol (in the system of coordinates (x, t, ξ, τ )) of H(x, D x ) up to order N .

The proof of Theorem 2.1 will be divided into three steps: first, we will prove in Proposition 2.2 the existence of the quantum Birkhoff normal form in a form convenient for our computations, especially concerning the discussion of orders. In Proposition 2.13, we will show that the trace formula with any observable O determines the matrix elements of O in the eigenbasis of the normal form. Finally, in Proposition 2.14, we will show that these matrix elements determines H(x, D x ) in a formal neighborhood of x = ξ = τ = 0, which will lead to Theorem 2.1.

Let us first fix some notations and standard results. For i ∈ 1, n := {1, . . . , n}, we define the following operators on L 2 (R n × S 1 ):

• a i = 1 √ 2 (x i + ∂ xi ) • a * i = 1 √ 2 (x i -∂ xi ) • D t = -i ∂ t • P i := 1 2 -∂ 2 xi + x 2 i = a * i a i + 2 For µ ∈ N n ,
ν ∈ Z we will denote by |µ, ν the common eigenvectors of P 1 . . . P n and D t :

(2.5)

P i |µ, ν = (µ i + 1 2 ) |µ, ν and D t |µ, ν = 2π ν|µ, ν .
These vectors are explicitly constructed as follows:

(2.6) |0, 0 (x, t) := 1 (π ) n 4 e -x 2 2 , |µ, ν (x, t) := e i2πνt n i=1 1 µ i ! |µ| a * µi i |0, 0 (x, t)
We will also need the notation (2.7) |µ (x) := |µ, 0 (x, 0)

We will not need the explicit expressions of |µ, ν (x, t) and |µ (x) in terms of rescaled Hermite functions, but rather use the following identities:

(2.8)

     a i |µ, ν = √ µ i |µ 1 , . . . , µ i-1 , µ i -1, µ i+1 , . . . , µ n , ν a * i |µ, ν = (µ i + 1) |µ 1 , . . . , µ i-1 , µ i + 1, µ i+1 , . . . , µ n , ν [a i , a * j ] = δ ij , [a i , a j ] = 0.
We shall write |µ| :=

n i=1 µ i , z i = xi+iξi √ 2 , p i = x 2 i +ξ 2 i 2
and denote by Op W (f ) the pseudodifferential operator whose total Weyl symbol is f . We have

(2.9) Op W (z i ) = a i , Op W (z i ) = a * i , Op W (z i zi ) = P i and Op W (τ ) = D t
Finally, we will denote by a, a * or P the n-tuple of operators a i , a * i , P i , i ∈ 1, n and denote for j n-tuple of nonnegative integers, X j = n i=1 X ji i .

2.1. Construction of the Quantum Birkhoff normal form. Our construction of the normal form, inspired by [START_REF] Guillemin | Some remarks about semiclassical trace invariants and quantum normal forms[END_REF], is the content of the following Proposition.

Proposition 2.2. Let H(x, D x ) be a self-adjoint semiclassical elliptic pseudodifferential operator on L 2 (R n × S 1 ), whose principal symbol is

(2.10) H p (x, t, ξ, τ ) = H 0 (p, τ ) + H 2
where H 0 (p, τ ) = n i=1 θ i p i + τ and H 2 vanishes to the third order on x = ξ = τ = 0.

Then for any N ≥ 3, there exists a self-adjoint semiclassical elliptic pseudodifferential operator W ≤N and a smooth function h(p 1 , . . . , p n , τ, ) satisfying microlocally in a neighborhood of x = ξ = τ = 0 the following statement:

∀M > 0, ∃C N = C N (M ) > 0, ∀(µ, ν, ) ∈ N n × Z × [0, 1[, |µ | + |ν | < M, e i W ≤N He -i W ≤N -h(P 1 , . . . , P n , D t , ) |µ, ν ≤ C N (|µ | + |ν |) N +1 2 (2.11)
The operators W ≤N can be computed recursively in the form:

(2.12)

W ≤N = W ≤N + (D 2 t + n i=1 P i ) N +1
where

(2.13)    W ≤N = 3≤q≤N W q W q := 2p+|j|+|k|+2m=q α pjkm (t) p Op W (z j zk )D m t
with α pjkm smooth and W q is symmetric.

Remark 2.3 (Important convention). We are only interested in recovering the Hamiltonian in a formal neighborhood of γ: every asymptotic expansion is meant microlocally and we will be rewriting equations such as (2.11) simply as:

(2.14)

e i W ≤N He -i W ≤N -h(P 1 , . . . , P n , D t , ) |µ, ν = O |µ | + |ν |) N +1 2
By abuse of notation, we will identify the same way any operator with its version microlocalized near γ.

Remark 2.4. We introduce W ≤N in order to gain ellipticity and self-adjointness like it has been done in Lemma 4.5 of [START_REF] Guillemin | Some remarks about semiclassical trace invariants and quantum normal forms[END_REF].

The proof of Proposition 2.2 will need several preliminaries: Definition 2.5. We will say that a pseudodifferential operator

A on L 2 (R n × S 1 ) is "polynomial of order r ∈ N" (PO(r)) if there exists α pjkm ∈ C ∞ (S 1 , C) such that: (2.15) A = 2p+|j|+|k|+2m=r α pjkm (t) p Op W (z j zk )D m t
These operators have the following properties.

Proposition 2.6. Let A be a pseudodifferential operator on L 2 (R n × S 1 ). Then, there exists a family of operators A r , r ∈ N such that for any i ∈ N, A r is PO(r) and

(2.16) ∀N ∈ N, A - N r=0 A r |µ, ν = O (|µ | + |ν |) N +1
Let us define a notion of suitable asymptotic equivalence.

Definition 2.7. Let us introduce for any operator A the notations ⌊A⌋ r et ⌊A⌋ ≤N which represent respectively the terms of order r and of order smaller or equal to N in the expansion (2.16).

If A and B are two operators, we will write A ∼ B if, for any r ∈ N, ⌊A⌋ r = ⌊B⌋ r . Also, if (A n ) n∈N is a family of operators, we will write that:

(2.17)

A ∼ +∞ n=0
A n if for any N ∈ N, ⌊A n ⌋ ≤N is zero for n sufficiently large, and the finite sum:

(2.18)

+∞ n=0 ⌊A n ⌋ ≤N = ⌊A⌋ ≤N .
Proof of proposition 2.6. Let a be the total Weyl symbol of A. Let us define the family (α pjkm ) (p,m,j,k)∈N 2 ×(N n ) 2 of functions on S 1 by the Taylor expansion of a near z = z = τ = = 0, for any N ∈ N:

(2.19) a(z, t, z, τ, ) = N r=0 2p+|j|+|k| +2m=r α pjkm (t) p z j zk τ m + N +1 2 p=0 O p (|z| 2 + |τ |) N +1 2 -p
For any r ∈ N, let us notice (z, t, z, τ, ) → 2p+|j|+|k|+2m=r α pjkm (t) p z j zk τ m is the total symbol of a pseudodifferential operator A r , which is PO(r). And by (2.5), (2.9) and (2.19) (see [START_REF] Guillemin | Some remarks about semiclassical trace invariants and quantum normal forms[END_REF]):

∀N ∈ N, A - N r=0 A r |µ, ν = N +1 2 p=0 p O (|µ | + |ν |) N +1 2 -p = O (|µ | + |ν |) N +1 2
.

(2.20)

This concludes the proof.

The following lemma will be crucial for our computations.

Lemma 2.8. Let F and G be PO(r) and PO(r ′ ) respectively then [F,G] i is PO(r + r ′ -2).

Proof. The proof of Lemma 2.8 will be a direct consequence of the two following lemmas, whose proof will be given at the end of this proof.

Lemma 2.9. Any monomial operator of order r, that is of the form α(t) p b 1 . . . b l D m t , where:

• for j ∈ 1, l , b j ∈ {a 1 , a * 1 , . . . , a n , a * n } • 2p + l + 2m = r is PO(r).
Lemma 2.10. If F and G are monomials of order r and r ′ respectively, then [F,G] 

i is PO(r + r ′ -2)
Indeed, any PO(r) is a finite sum of monomials of the same order, hence if F and G are PO(r) and PO(r ′ ) respectively, then [F,G] i is a finite sum of quantities of type [ F , G] i where F and G are monomials of order r and r ′ respectively. Any of those quantities are PO(r + r ′ -2) by Lemmas 2.9 and 2.10, and a finite sum of PO(r + r ′ -2) is PO(r + r ′ -2). Lemma 2.8 is proved.

Let us prove now Lemmas 2.9 and 2.10:

Proof of Lemma 2.9. Since for any i, j ∈ 1, n , i = j, a i and a * i commute with both a j and a * j , it is sufficient to prove that any ordered product b 1 . . . b l , where l ≥ 1 and for 

any j ∈ 1, l , b j ∈ {a 1 , a * 1 }, is PO(r).
* 1 = Op W (z 1 ). If l = 2,          a 2 1 = Op W (z 2 1 ) a * 2 1 = Op W (z 2 1 ) a 1 a * 1 = P 1 + 2 = Op W (z 1 z1 ) + 2 a * 1 a 1 = Op W (z 1 z1
) -2 and therefore, the assertion is proved for l = 2. Now, let l be a positive integer, and let us assume (A k ) up to order k = l. Let B = b 1 . . . b l+1 be an ordered product, where for any

j ∈ 1, l + 1 , b j ∈ {a 1 , a * 1 }. If for any j ∈ 1, l , b j = b j+1 , then B = Op W (z l+1 1 ) or B = Op W (z l+1 1 
). Otherwise, one can assume that b 1 = a 1 , and that j 0 = max{j ∈ 1, l + 1 , b j = a 1 } satisfies: 1 ≤ j 0 ≤ l. Then, we have: [a j0 1 , a * 1 ] = j 0 a j0-1

1

, so that:

(2.21) b 1 . . . b l+1 = a j0 1 a * 1 b j0+2 . . . b l+1 = a * 1 a j0 1 b j0+2 . . . b l+1 + j 0 a j0-1 1 b j0+2 . . . b l+1 Therefore, if one sets k := k(b 1 . . . b l+1 ), since l+1 k = l k + l k-1 : l + 1 k b 1 . . . b l+1 = l k a j0 1 a * 1 b j0+2 . . . b l+1 + l k -1 a * 1 a j0 1 b j0+2 . . . b l+1 + l k -1 j 0 a j0-1 1 b j0+2 . . . b l+1 (2.22) (A l-1 ) gives us that a j0-1 1 b j0+2 . . . b l+1 is a linear combination of the operators p Op W (z j 1 zm 1 ) with 2p + j + m = l -1 and j -m = l + 1 -2k.
Let us now observe that

(2.23) l + 1 k Op W (z l+1-k zk ) = l k a 1 Op W (z l-k zk ) + l k -1 a * 1 Op W (z l+1-k zk-1 )
so that (A l ), for ordered products a j0-1

1 a * 1 b j0+2 . . . b l+1 and a j0 1 b j0+2 . . . b l+1 , gives us, by equation that l+1 k b 1 . . . b l+1 is the sum of l k a 1 Op W (z l-k zk )+ l k-1 a * 1 Op W (z l+1-k zk-1 ) = l+1 k Op W (z l+1-k zk )
and a linear combination of the operators p Op W (z j

1 zm 1 ) with p ≥ 1, 2p + j + m = l + 1 and j -m = l + 1 -2k
Proof of Lemma 2.10. It is sufficient to remark that if F and G are of the form:

F = α(t)b 1 . . . b l D m t and G = β(t)b ′ 1 . . . b ′ l ′ D m ′ t
where:

• α and β are smooth

• l + 2m = r, l ′ + 2m ′ = r ′ • For j ∈ 1, l , for j ′ ∈ 1, l ′ , b j , b ′ j ′ ∈ {a 1 , a * 1 } then [F,G]
i is a finite sum of monomials of order r + r ′ -2 since, by Lemma 2.9, each of them is PO(r + r ′ -2). With those assumptions on F and G, we get:

[F, G] i = [α(t)b 1 . . . b l D m t , β(t)b ′ 1 . . . b ′ l ′ D m ′ t ] i =α(t)β(t) [b 1 . . . b l , b ′ 1 . . . b ′ l ′ ] i D m+m ′ t + α(t)b 1 . . . b l [D m t , β(t)] i b ′ 1 . . . b ′ l ′ D m ′ t -β(t)b ′ 1 . . . b ′ l ′ [D m ′ t , α(t)] i b 1 . . . b l D m t (2.24)
Therefore it is sufficient to prove that

[b1...b l ,b ′ 1 ...b ′ l ′ ] i , [D m t ,β(t)] i
and

[D m ′ t ,α(t)] i
are respectively: PO(l + l ′ -2), PO(2m -2) and PO(2m ′ -2) (with the convention that a PO(j) with j < 0 is 0). For the two last, it is quite obvious, since:

(2.25) [D m t , β(t)] i = m-1 k=0 m k (i ) m-k-1 β (m-k) (t)D k t Now, for j ∈ 1, l ′ , let us set ǫ j = 1 if b ′ j = a * 1 , ǫ j = -1 otherwise. Since [a 1 , a * 1 ] = , we get: b 1 . . . b l b ′ 1 . . . b ′ l ′ = b ′ 1 b 1 . . . b l b ′ 2 . . . b ′ l ′ + ǫ 1 + 1 2 l k=1 b k =a1 b 1 . . . b k-1 b k+1 . . . b l b ′ 2 . . . b ′ l ′ + ǫ 1 -1 2 l j=1 b k =a * 1 b 1 . . . b k-1 b k+1 . . . b l b ′ 2 . . . b ′ l ′ Hence by induction on j ∈ 1, l ′ : [b 1 . . . b l , b ′ 1 . . . b ′ l ′ ] i = -i l ′ j=1 ǫ j + 1 2 l k=1 b k =a1 b ′ 1 . . . b ′ j-1 b 1 . . . b k-1 b k+1 . . . b l b ′ j+1 . . . b ′ l ′ -i l ′ j=1 ǫ j -1 2 l k=1 b k =a * 1 b ′ 1 . . . b ′ j-1 b 1 . . . b k-1 b k+1 . . . b l b ′ j+1 . . . b ′ l ′ (2.26)
The right-hand side of (2.26) is a finite sum of monomials of order l + l ′ -2, hence it is PO(l + l ′ -2) by Lemma 2.9, and Lemma 2.10 is proved.

Proposition 2.11. Let G be PO(r). There exists F , PO(r), and G 1 = G 1 (P 1 , . . . , P n , D t , ) such that:

(2.27) [H 0 (P, D t ), F ] i = G + G 1 Moreover, F is symmetric if G is symmetric, G 1 = 0 if r is odd,
and G 1 is an homogeneous polynomial function of total order r 2 if r is even. Remark 2.12. If F = 2p+|j|+|k|+2m=r α pjkm (t) p Op W (z j zk )D m t , one can choose:

(2.28)

S 1
α pjjm (t)dt = 0 Indeed, any Op W (z j zj )D m t commutes with H 0 (P, D t , ). It is the choice we will make through this article.

Proof of Proposition 2.11. Let us first assume that G is a monomial of order r: G = β(t)b 1 . . . b l D m t where:

• α is smooth • l + 2m = r • For j ∈ 1, l , b j ∈ {a 1 , a * 1 , .
. . , a n , a * n } and let us look for F of the form: (2.30)

F = α(t)b 1 . . . b l D m t . We have: [H 0 , F ] i = [H 0 , α(t)b 1 . . . b l D m t ] i =α(t) n s=1 θ s [P s , b 1 . . . b l ] i D m t + [D t , α(t)] i b 1 . . . b l D m t =α(t) n s=1 θ s [P s , b 1 . . . b l ] i D m t + α ′ (t)b 1 . . . b l D m t ( 2 
[P s , b 1 . . . b l ] i = i(j s -k s )b 1 . . . b l Hence: (2.31) [H 0 , F ] i = i n s=1 θ s (j s -k s )α(t)b 1 . . . b l D m t + α ′ (t)b 1 . . . b l D m t [H0,F ] i
= G admits a solution if there exists α such that: If r is odd, j and k can't be equal, hence Proposition 2.11 is proved in this case (r odd and G monomial) If r is even, and j = k, there exists a family (c p (α)) p∈Z * satisfying (2.33) and (2.34). Hence, if α is the smooth function with Fourier coefficients c p (α) for p = 0 and c 0 (α) = 0, we get:

(2.32) i n s=1 θ s (j s -k s )α(t) + α ′ (t) = β(t)
(2.35) [H 0 , F ] i = G + c 0 (β)b 1 . . . b l D m t
And from the proof of Lemma 2.9, we know that c 0 (β)b 1 . . . b l D m t can be reordered as the sum: G 1 (P, D t , ) := c 0 (β) 2p+2|k|=l a p,k p P k D m t . Therefore, Proposition 2.11 is proved in the case where r is even and G is monomial. The general case is easily deduced from the case where G is monomial, since G is a finite sum of monomials of the same order. Also, the form of F allows us to conclude immediately that F is symmetric if G is so. Now we have everything we need for the proof by induction of Proposition 2.2.

Proof of Proposition 2.2. Microlocally near x = ξ = τ = 0, H(x, D x ) satisfies, in the sense of Definition 2.7, (2.36)

H := H(x, D x ) ∼ H 0 (P 1 , . . . , P n , D t ) + q≥3 H q , H q := ⌊H(x, D x )⌋ q
Let us set W ≤2 = 0, and construct by induction (W q ) q≥3 and (H q ) q≥3 , such that:

• for q ≥ 3, W q is PO(q) and H q is zero if q is odd, an homogeneous polynomial function of total order q 2 if q is even. • and for any q ≥ 3:

i [W q , H 0 ]+H q +     i [W ≤q-1 , H -H 0 ] + l≥2 i l l l! [ l times W ≤q-1 , . . . , W ≤q-1 , H]     q = H q (P, D t , )
The existence of such a family is guaranteed by Proposition 2.11. Let us set, for any N ≥ 3,

W ≤N := N q=3 W q + (|D t | 2 + n i=1 P i ) N +1
2 . As for any q ≥ 2 H 2q is an homogeneous polynomial function of total order q, we can choose, by Borel's lemma, a smooth function h such that, for any N ≥ 2 and in a neighborhood of p = τ = 0:

(2.37) h(p, τ, ) -H 0 (p, τ ) - N q=2 H 2q (p, τ, ) = O (|p| + |τ | + | |) N +1
We have, for any N ≥ 3:

e i W ≤N He -i W ≤N ∼ H + i [ W ≤N , H] + l≥2 i l l l! [ l times W ≤N , . . . , W ≤N , H] ∼ H + i [W ≤N , H 0 ] + i [W ≤N , H -H 0 ] + l≥2 i l l l! [ l times W ≤N , . . . , W ≤N , H] + i [ W ≤N -W ≤N , H]
Since the for any q ≤ N , W q is PO(q) and H 0 is PO(2), Lemma 2.8 gives us that:

(2.38) i [W ≤N , H 0 ] q = i [W q , H 0 ]
Since the expansion of H -H 0 in PO(r) contains no term of order less or equal to 2, Lemma 2.8 also gives for q ≤ N :

(2.39) i [W ≤N , H -H 0 ] q = ⌊ i [W ≤q-1 , H -H 0 ]⌋ q
Lemma 2.8 finally gives us, that since the expansion of H(x, D x ) in PO(r) contains no term of order less or equal to 1 and the one of W ≤N no term of order less or equal to 2 for q ≤ N :

(2.40)

     l≥2 i l l l! [ l times W ≤N , . . . , W ≤N , H]      q =     l≥2 i l l l! [ l times W ≤q-1 , . . . , W ≤q-1 , H]    
q and since the one of W ≤N -W ≤N contains no term of order less or equal to N + 1:

(2.41) ⌊ i [ W ≤N -W ≤N , H]⌋ q = 0
Therefore for any q ≤ N :

(2.42)

e i W ≤N He -i W ≤N q = H q (P, D t , ) = ⌊h(P, D t , )⌋ q
Finally Proposition 2.6 gives us:

(2.43)

e i W ≤N He -i W ≤N -h(P, D t , ) |µ, ν = O |µ | + |ν |) N +1 2
which concludes the proof.

2.2.

Recovering the matrix elements from the Trace formula. The next result is the first inverse result needed for the proof of Theorem 2.1.

Proposition 2.13. Let O be a pseudodifferential operator whose principal symbol vanishes on γ.

(1) There exists a smooth function f vanishing at (0, 0, 0) such that for any N ≥ 3:

(2.44) µ, ν|e i W ≤N Oe -i W ≤N |µ, ν = f (µ + 1 2 ) , 2πν , + O (|µ | + |ν |) N 2
Moreover let, for any integer l, φ l be a Schwartz function whose Fourier transform is compactly supported in (l -1, l + 1) and let (a l j (O)) l≥0 provided by the trace formula (1.4). Then (2) The Taylor expansion of f up to order N is entirely determined by the family

(a l j (O)), 0 ≤ j ≤ N , l ∈ N. Proof. Let us first prove point (1). Let us consider a monomial G = α(t)b 1 . . . b l D m t where: • α is smooth • l + 2m = r • For j ∈ 1, l , b j ∈ {a 1 , a * 1 , . . . , a n , a * n } Let us set for i ∈ 1, n , k i = ♯{m ∈ 1, l , b m = a * i } and j i = ♯{m ∈ 1, l , b m = a i }. If j = k or α /
∈ C, then: µ, ν|G|µ, ν = 0 for any (µ, ν) ∈ N n × Z. If now j = k and α ∈ C, then there exists complex numbers α l (0 ≤ l i ≤ j i for i ∈ 1, n ), such that:

(2.45) G = 0≤li≤ji α l |l| P j1-l1 1 . . . P jn-ln n D m t , α 0 = α Therefore for any (µ, ν) ∈ N n × Z: (2.46) µ, ν|G|µ, ν = 0≤li≤ji α l |l| µ + 1 2 j-l (2πν ) m
Hence, if G is PO(r), then for any (µ, ν) ∈ N n × Z:

• µ, ν|G|µ, ν = 0 if r is odd.

• If r is even, there exists an homogeneous polynomial function g of order r 2 such that:

(2.47) µ, ν|G|µ, ν = g (µ + 1 2 ) , 2πν , By Proposition 2.6 and Borel's lemma, we get that that for any operator A there exists a function g such that for any (µ, ν) ∈ N n × Z:

(2.48) µ, ν|A|µ, ν = g (µ + 1 2 ) , 2πν , + O ((|µ | + |ν |) ∞ )
Hence, the only point which remains to be proved, is that the function f in point (1) does not depend on N . It is therefore sufficient to prove that for any q ≤ N -1,

(2.49)

e i W ≤N Oe -i W ≤N q = e i W ≤q+1 Oe -i W ≤q+1 q But (2.49) is a direct consequence of Lemma 2.8. Indeed, (2.50) e i W ≤N Oe -i W ≤N ∼ O + l≥1 i l l l! [ l times W ≤N , . . . , W ≤N , O]
and since the principal symbol of O vanishes on γ, Lemma 2.8 gives us for any l ≥ 1 and any q ≤ N -1:

(2.51)

     i l l l! [ l times W ≤N , . . . , W ≤N , O]      q =      i l l l! [ l times W ≤q+1 , . . . , W ≤q+1 , O]      q
Let us now move on to the proof of point (2). Since φl is supported near a single period of the flow, one can microlocalize the trace formula with observables near γ:

(2.52) Tr Oφ l H -E = Tr O R φl (t)ρ(P 1 + • • • + P n + |ζ|)e it H-E dt + O( ∞ )
where ρ ∈ C ∞ 0 (R) is compactly supported and ρ = 1 in a neighborhood of p = τ = 0. Therefore we can conjugate (2.52) by the microlocally unitary operator e i W ≤N :

Tr Oφ l H -E = = Tr   (e i W ≤N Oe -i W ≤N R φl (t)ρ(P 1 + • • • + P n + |ζ|)e it e i W ≤N He -i W ≤N -E dt   + O( ∞ )
Thanks to Proposition 2.2, we can lighten the r.h.s. for any (µ, ν)

∈ N n × Z R φl (t)ρ(P 1 + • • • + P n + |ζ|)e it e i W ≤N He -i W ≤N -E dt|µ, ν = R φl (t)ρ (|µ| + n 2 + |2πν|) e it h((µ+ 1 2 ) ,ν , )-E+O(|µ |+|ν |) N +1 2 ) dt |µ, ν (2.53) 
As φl is smooth and compactly supported, together with the non-degeneracy condition on the θ i s, we can assure that if we choose a sufficiently small support for ρ, we have for any η > 0:

R φl (t)ρ (|µ| + n 2 + |2πν|) e it h((µ+ 1 2 ) ,ν , )-E+O(|µ |+|ν |) N +1 2 ) dt |µ, ν = R φl (t)ρ (|µ| + n 2 + |2πν|) η e it h((µ+ 1 2 ) ,ν , )-E+O(|µ |+|ν |) N +1 2 ) dt |µ, ν + O( ∞ )
Hence, choosing η < 1 2 :

Tr

Oφ l H -E + O( ∞ ) = µ,ν µ, ν|e i W ≤N Oe -i W ≤N |µ, ν × R φl (t)ρ (|µ| + n 2 + |ν|) η e it(2πν+θ.(µ+ 1 2 )) . . . . . . exp   it 1≤q≤N -2 H q (µ + 1 2 ) , ν , + O (|µ| + |ν|) N +1 2 N -1 2   dt = µ,ν R φl (t)ρ (|µ| + n 2 + |2πν|) η e it(2πν+θ.(µ+ 1 2 ))   1 + N -1 2 i≥1 i Q i (µ + 1 2 , ν, t)   × N +1 2 p≥1 |k|+m≤p b k,m,p-|k|-m (µ + 1 2 ) k (2πν) m p dt + O( N +1 2 )
where for any i ≤ N -1 2 , Q i is a determined polynomial function, of degree in µ + 1 2 , ν less or equal to i + 1, which depends on the H q s and the Taylor expansion of exp, and the b k,m,s ((k, m, s) ∈ N n+2 \{0}) come from the Taylor expansion at (0, 0, 0) of the function f defined in the first point of Proposition 2.13, i.e. for any N ≥ 1:

(2.54) f (x, y, z) = 1≤|k|+m+s≤N b k,m,s x k y m z s + O |x| + |y| + |z|) N +1
Now, let us set:

(2.55) ∀t ∈ R * , ∀α ∈ (R\ 2π t Z) n , g(t, α) := e i t 2 (α1+•••+αn) i (1 -e itαi )
By the non-degeneracy condition on the θ i s, g is well defined on the compact support of φl around a single period, which is precisely l. It also implies that θ i .µ is bounded below by C|µ| (where C > 0) as |µ| goes to ∞. Therefore we get from the Poisson formula and the Riemann-Lebesgue lemma that the quantity X p (l) below can be computed recursively on p ≤ N +1 2 from the a l j (O), j = 0, . . . , p:

X p (l) = |k|+m≤p b k,m,p-|k|-m -i ∂ ∂t m φl (t) -i t k ∂ k g ∂α k (t, α) (l, θ) = |k|+m≤p b k,m,p-|k|-m -i ∂ ∂t m -i ∂ t∂α k g (l, θ) (2.56)
since φl is identically 1 around l. Now, let us set, for any i ∈ 1, n , any t ∈ R and any α ∈ (R\ 2π t Z) n , x i (t, α) = e i tα i 2 . and also define holomorphic function h on C\{-1, 1} by h(z) = z 1-z 2 for z ∈ C\{-1, 1}. We have for any k ∈ N n :

(2.57)

-i ∂ t∂α k g = n i=1 -i ∂ t∂α i ki (h • x i )
For any i ∈ 1, n , an easy induction on k i ∈ N leads to the following, since for any

z ∈ C\{-1, 1}, h(z) = 1 2 1 1-z -1
1+z , and -i ∂xi t∂αi = 1 2 x i :

(2.58)

-i ∂ t∂α i ki (h • x i ) = k i ! 2 ki+1 x i (1 -x i ) ki+1 + x i (1 + x i ) ki+1
Now, since -i ∂xi ∂t = αi 2 x i , an induction on s i ∈ N shows that: (2.59)

-i ∂ ∂t si -i ∂ t∂α i ki (h • x i ) = (k i + s i )!α si i 2 ki+si+1 x i (1 -x i ) ki+si+1 + x i (1 + x i ) ki+si+1
Let us now introduce for any n-tuple s such that |s| = m, the multinomial coefficient:

m s = m! s 1 ! . . . s n ! We have: (2.60) -i ∂ ∂t m -i ∂ t∂α k g = |s|=m m s n i=1 -i ∂ ∂t si -i ∂ t∂α i ki (h • x i )
Let us use Kronecker theorem, whose hypothesis is precisely the non-degeneracy condition on the θ i s: for any n-tuple (x 1 , . . . , x n ) ∈ S n 1 , one can find a sequence of integers (l p ) p∈Z , such that: ∀j ∈ 1, n , x j (l p , θ) -→ p→+∞ x j Therefore, setting, for any (x 1 , . . . , x n ) ∈ (S 1 \{-1, 1}) n and (k, m) ∈ N n+1 :

(2.61)

u (k,m) = |s|=m m s n i=1 (k i + s i )!θ si i 2 ki+si+1 x i (1 -x i ) ki+si+1 + x i (1 + x i ) ki+si+1
we have that (2.56), (2.59) and (2.60) together with Kronecker theorem allows us to conclude that X p := |k|+m≤p b k,m,p-|k|-m u (k,m) is determined by the a l j (O), j = 0, . . . , p. Hence, the only thing which remains to be proved is that, if one chooses x i tending to 1 in a way convenient to us, the |u (k,m) |s will be ordered for ≪. More precisely, let x i tend to 1 in such a way that

(2.62) ∀i ∈ 1, n -1 , |1 -x i | = o (|1 -x i+1 | p )
we have that s 1 = m gives the leading order in (2.61) and therefore

(2.63) (1 -x 1 ) m u (k,m) ∼ C n i=1 1 (1 -x i ) ki+1
for some C > 0. Hence, if one sets m = (m, 0, . . . , 0):

(2.64) u (k,m) = o u (k ′ ,m ′ ) if k + m < k ′ + m ′
where < is the lexicographical order on N n . Therefore, for any p ∈ N and (k, m) ∈ N n+1 such that |k 0 | + m 0 ≤ p, the following quantity can be recursively determined from X p :

(2.65)

X k0,m0 = k ′ + m ′ =k+ m b k,m,p-|k|-m u (k,m)
Reversing for example the roles of i = 1 and i = 2 in (2.62), and observing that 2) is proved, which ends the proof of Proposition 2.13.

k 2 + m = k ′ 2 + m ′ if k + m = k ′ + m ′ and (k, m) = (k ′ , m ′ ),

2.3.

Recovering the Hamiltonian from matrix elements. In order to finish the proof of Theorem 2.1 we will show how the knowledge of the diagonal matrix elements of a given known selfadjoint operator conjugated by a unitary one determines the latter (in the framework of asymptotic expansion).

Let W ≤N as in Proposition 2.2 and O mnp , O p as in Theorem 2.1. By Proposition 2.13, there exists smooth functions f mnp and f p vanishing at (0, 0, 0) if (m, n) = (0, 0) such that for any N ≥ 3:

(2.66) µ, ν|e i W ≤N O mnp e -i W ≤N |µ, ν = f mnp (µ + 1 2 ) , 2πν , + O (|µ | + |ν |) N 2 and (2.67) µ, ν|e i W ≤N O p e -i W ≤N |µ, ν = f p (µ + 1 2 ) , 2πν , + O (|µ | + |ν |) N 2
Proposition 2.14. The Taylor expansions, at the origin, of the functions f mnp , f q up to order N -1, N ≥ 3, for (m, n, p, q) ∈ N 2n × Z 2 satisfying conditions (1) 0

< |m| + |n| ≤ N (2) ∀j = 1 . . . n, m j = 0 or n j = 0 (3) p ∈ Z, q ∈ Z * determine completely W ≤N .
Proof of Proposition 2.14. Let us write

W N = 2l+|j|+|k|+2s=N α ljks (t) l Op W (z j zk )D s t := 2l+|j|+|k|+2s=N d∈Z α ljksd l e i2πdt Op W (z j zk )D s t (2.68)
where, for every α ljjs0 is chosen to be zero by the convention of remark 2.12.

Since W 2 = 0 we can proceed by induction on N ≥ 3: let's assume W ≤N -1 already determined.

Let (m, n, p, q) ∈ N 2n × Z × Z * be such that:

(2.69) 0 < |m| + |n| ≤ N, ∀i ∈ 1, n , m i n i = 0
Let us also state the following lemma, whose proof will be given after the end of the present proof. If j + m = k + n, then:

(2.70) µ, ν|[e i2πpt Op W (z j zk )D s t , O mnp ]|µ, ν = -g jks µ + 1 2 , ν +O 2 (|µ | + |ν |) N +|m|+|n| 2 -2 + (|µ | + |ν |) N +|m|+|n|-1 2 
where:

g jks µ + 1 2 , ν = (2πν ) s (µ ) max(j,k) n i=1 k i m i -j i n i µ i + ps ν and max(j, k) = (max(j i , k i )) 1≤i≤n . If j + m = k + n or d = p, then: µ, ν|[e i2πdt Op W (z j zk )D s t , O mnp ]|µ, ν =O 2 (|µ | + |ν |) N +|m|+|n| 2 -2 + O (|µ | + |ν |) N +|m|+|n|-1 2
(2.71)

We also have, if j = k:

µ, ν|[e i2πqt Op W (z j zk )D s t , O q ]|µ, ν = -2π q(1 + s) ((µ + 1/2) ) j (ν ) s +O 2 (|µ | + |ν |) N -2 2 
+ (|µ | + |ν |) N +1 2
(2.72)

And if j = k or d = q: (2.73) µ, ν|[e i2πdt Op W (z j zk )D s t , O q ]|µ, ν = O 2 (|µ | + |ν |) N -2 2 + O (|µ | + |ν |) N +1 2
By equation (2.66), the Taylor expansion of function f mnp up to order N -

1 determines modulo O (|µ | + |ν |) N : (2.74) µ, ν|e i W ≤2N O mnp e -i W ≤2N |µ, ν -µ, ν|O mnp |µ, ν
Since W ≤2N is a sum of polynomial operators of order greater that 3, we get from Lemma 2.8 that :

(2.75)

l≥2 i l l l! µ, ν|[ l times W ≤2N , . . . , W ≤2N , O mnp ]|µ, ν = O (|µ | + |ν |) N +|m|+|n|-1 2
Hence, using the notations of Lemma 2.15, (2.74) is equal, modulo known terms and

O (|µ | + |ν |) N +|m|+|n|-1 2 + O (|µ | + |ν |) N +|m|+|n| 2
-2 to:

(2.76)

|j|+|k|+2s=N +1 j+m=k+n iα 0jksp g jks µ + 1 2 , ν Let us define the set Γ = {(j, k, s) ∈ N 2n+1 | |j| + |k| + 2s = N, j + m = k + n}.
Let us choose µ 1 ( ), . . . µ n ( ), ν( ) such that, as tends to 0:

(2.77) ν N -2 N -1 ≪ µ 1 ≪ • • • ≪ µ n ≪ ν ≪ -1 where ≪ is defined by f ≪ g ⇔ f = →0 o(g).
Let us also define i 0 := min{i ∈ 1, n , m i = n i } (it exists since (m, n) = (0, 0) and for any i ∈ 1, n , m i n i = 0). Let us also remark j i0 n i0k i0 m i0 never vanishes on Γ. We have by (2.77) that, for (j, k, s) ∈ Γ, (2.78)

g jks µ + 1 2 , ν ∼ →0 j i0 n i0 -k i0 m i0 µ i0 (2πν ) s n i=1 (µ i ) max(ji,ki)
Let us now define a strict total order ≺ on Γ by:

(2.79) (j, k, s) ≺ (j ′ , k ′ , s ′ ) (max(j 1 , k 1 ), . . . , max(j n , k n ), s) < (max(j ′ 1 , k ′ 1 ), . . . , max(j ′ n , k ′ n ), s ′ )
where < is the lexicographical order on N n+1 . ≺ is asymmetric since for i ∈ 1, n , the sign of m in i determines whether max(j i , k i ) is equal to j i or k i . (2.77) and (2.78) give that:

(2.80) (j, k, s) ≺ (j ′ , k ′ , s ′ ) ⇒ g jks µ + 1 2 , ν ≪g j ′ k ′ s ′ µ + 1 2 , ν
and for any (j, k, s) ∈ Γ:

O (|µ | + |ν |) N +|m|+|n|-1 2 + O (|µ | + |ν |) N +|m|+|n| 2 -2 ≪ g jks µ + 1 2 , ν
Therefore, the Taylor expansion up to order N -1 of the functions f mnp determines the coefficients (α 0jksp ) |j|+|k|+2s=N,j+m=k+n by induction on (Γ, <).

Let (m, n, p) run over all the possible values in N 2n × Z while satisfying condition (2.69). We claim that one can determine every function α 0jks with |j| + |k| + 2s = N and j = k. Indeed, for any (j, k, s) ∈ N 2n+1 such that |j| + |k| + 2s = N and j = k, let us choose for any i ∈ 1, n :

(2.81) n i = max(j ik i , 0) and m i = max(k ij i , 0) then j + m = k + n and (m, n) = (0, 0) while for any i ∈ 1, n , m i = 0 or n i = 0. Finally,

|m| + |n| = n i=1 |j i -k i | ≤ |j| + |k| ≤ N
Let us remark that condition j = k is always satisfied if N is odd and |j| + |k| + 2s = N . If N is even, the Taylor expansion up to order N 2 of the function f q determines modulo known terms and O (|µ

| + |ν |) N +2 2 + O (|µ | + |ν |) N -2 2 : (2.82) 2|j|+2s=N iα 0jjsq 2πq(1 + s) ((µ + 1/2) ) j (ν ) s
Let us choose µ 1 ( ), . . . µ n ( ), ν( ) such that, as tends to 0:

(2.83) ν N -2 N ≪ µ 1 ≪ • • • ≪ µ n ≪ ν ≪ -1 2
We have, for any (j, s, q) such that 2|j| + 2s = N :

O (|µ | + |ν |) N +2 2 + O (|µ | + |ν |) N -2 2 ≪ ((µ + 1/2) ) j (ν ) s
Thus, every α 0jjsq is determined by induction on the set {2|j| + 2s = N } ordered by the lexicographical order. Hence, letting q run over Z * , we finally determined every α 0jksd with |j| + |k| + 2s = N and d = 0 if j = k, hence the principal symbol of W N .

Let us now choose 1 ≤ l 0 < N 2 and assume that we already determined the functions α ljks with 2l + |j| + |k| + 2s = N and l < l 0 . Let (m, n, p, q) ∈ N 2n × Z × Z * be such that:

(2.84) 0 < |m| + |n| ≤ N -2l 0 , ∀i ∈ 1, n , m i n i = 0
The Taylor expansion of f mnp up to order N -1l 0 determines

2l0+|j|+|k|+2s=N j+m=k+n iα l0jksp l0 g jks µ + 1 2 , ν modulo known terms O (|µ | + |ν |) N +|m|+|n|-1 2 +O l0+1 (|µ | + |ν |) N -2l 0 +|m|+|n| 2 -2 .
Let us choose µ 1 ( ), . . . µ n ( ), ν( ) such that, as tends to 0,

(2.85) ν N -l 0 -2 N -l 0 -1 ≪ µ 1 ≪ • • • ≪ µ n ≪ ν ≪ -1 2l 0 +3
Then for any (j, k, s) such that 2l 0 + |j| + |k| + 2s = N and j + m = k + n, we have:

O (|µ | + |ν |) N +|m|+|n|-1 2 +O l0+1 (|µ | + |ν |) N -2l 0 +|m|+|n| 2 -2 ≪ l0 g jks µ + 1 2 , ν .
Therefore, every α l0jksp with 2l 0 + |j| + |k| + 2s = N and j + m = k + n is determined just like before. Letting (m, n, p) run over all the possible values in N 2n × Z while satisfying (2.84), we determined every α l0jksp with 2l 0 + |j| + |k| + 2s = N -1 and j = k. The Taylor expansion of f q up to order N 2 determines the remaining α l0jjsq , and finally, every function α l0jks where (j, k, s) satisfies l 0 + |j| + |k| + 2s = N , which concludes our proof by induction.

Proof of Lemma 2.15. The principal symbol of 1 i [e i2πdt Op W z j zk D s t , O mnp ] is:

σ jkds (z, t, z, τ ) = e i2πdt z j zk τ s , O mnp = e i2πdt z j zk τ s , e -i2πpt z m zn + O (|z| 2 + τ ) |m|+|n|+N -1 2 
(2.86) Hence:

σ jkds (z, t, z, τ ) = -i n i=1 ∂ ∂z i (e i2πdt z j zk τ s ) ∂ ∂ zi (e -i2πpt z m zn ) + i n i=1 ∂ ∂ zi (e i2πdt z j zk τ s ) ∂ ∂z i (e -i2πpt z m zn ) - ∂ ∂τ (e i2πdt z j zk τ s ) ∂ ∂t (e -i2πpt z m zn ) + O (|z| 2 + τ ) |m|+|n|+N -1 2 = -ie i2π(d-p)t z j+m zk+n τ s n i=1 j i n i -k i m i z i zi - 2πps τ + O (|z| 2 + τ ) |m|+|n|+N -1 2 (2.87) Let us remark that if j + m = k + n, then j + m = k + n = max(j, k).
Let us also remark that if j i n ik i m i = 0, then j i + m i = 0 and k i + n i = 0. Therefore, the last line in (2.87) can be reduced to a polynomial expression modulo

O (|z| 2 + τ ) |m|+|n|+N -1 2
.

1 [e i2πdt Op W z j zk D s t , O mnp ] has the same principal symbol as the polynomial operator obtained when replacing each z i by a i , zi by a * i , τ by D t in this polynomial expression. Since the expansion in PO 1 [e i2πdt Op W z j zk D s t , O mnp ] starts at order N + |m| + |n| -2, we can hence conclude that the asymptotic expansions (2.70) and (2.71) are verified.

Now, the principal symbol of

1 i [e i2πdt Op W z j zk D s t , O q ] is, modulo O (|z| 2 + τ ) N +1 2 : σjkds (z, t, z, τ ) = e i2πdt z j zk τ s , O q = e i2πdt z j zk τ s , e -i2πqt τ = ∂ ∂t (e i2πdt z j zk τ s ) ∂ ∂τ (e -i2πqt τ ) - ∂ ∂τ (e i2πdt z j zk τ s ) ∂ ∂t (e -i2πqt τ ) =i2π(d + sq)e i2π(d-q)t z j zk τ s (2.88)
Hence, (2.72) and (2.73) are verified just as before.

Theorem 2.1 is, as it has already been said, a direct consequence of Propositions 2.13 and 2.14.

2.4. "Bottom of a well". In this subsection, we treat the "Bottom of a well" analogs of Theorem 1.4, namely Theorems 1.10 and 1.14. The proof of Theorem 1.10 is a line by line analog of Theorem 1.4 after noticing that the knowledge of the spectrum near the bottom determines the left hand side of the trace formula: we omit it here. However, Theorem 1.14, that needs less assumptions in the particular case of a Schrödinger operator, deserves a proper proof.

Proof of Theorem 1.14. In a system of Fermi coordinates, the (principal and total) symbol of our Schrödinger operator can be written as:

(2.89) H(x, ξ) = V (q 0 ) + n i=1 θ i x 2 i + ξ 2 i 2 + R(x), R(x) = O(x 3 ) Let H 0 (x, ξ) = n i=1 θ i x 2 i +ξ 2 i 2 .
Let us state the following lemma, which is a classical analog of Proposition 2.11 (we therefore omit its proof) and uses the hypothesis of rational independence of the θ i s.

Lemma 2.16. Let G ∈ C ∞ (T * (R n ), R) be an homogeneous polynomial of degree k ≥ 3. There exists a unique couple of functions G 1 ∈ C ∞ (R n , R) and F ∈ C ∞ (T * (R n ), R) such that (2.90) ∀(x, ξ) ∈ T * (R n ), {H 0 , F }(x, ξ) = G(x, ξ) -G 1 (p)
and F is polynomial with no diagonal term when written as a function of (z, z) ( i.e. of the form z l zl ) Moreover:

(1) F is an homogeneous polynomial of degree k and is entirely determined by the extra-diagonal terms of G, i.e. of the form

z l zm (l = m) with z = (x + iξ)/ √ 2 (2) G 1 is an homogeneous polynomial of degree k 2 if k is even, zero otherwise. More- over, G 1 (z z) is equal to the sum of the diagonal terms of G.
Just like in the proof of Proposition 2.2, one shows recursively, using Lemma 2.16, the existence of a family of real numbers (α lm ) l,m∈N such that if the functions (F N ) N ≥3 are defined for N ≥ 3 by: (2.91)

F N (z, z) = |l|+|m|=N α lm z l zm there exists homogeneous polynomials H i ∈ C ∞ (R n , R) of degree i satisfying, for N ≥ 3: (2.92) H • exp χ F ≤N (x, ξ) = ⌊ N 2 ⌋ i=1 H i (p) + O((x, ξ) N +1 )
Here p = p(x, ξ) = (

x 2 i +ξ 2 i 2 ) 1≤i≤n , F ≤N = N k=1 F k and χ F ≤N is the vector field: (2.93) χ F ≤N = n i=1 ∂F ≤N ∂ξ i ∂ ∂x i - ∂F ≤N ∂x i ∂ ∂ξ i +∞ i=1 H i (well defined modulo a flat function) is the classical Birkhoff normal form of H. Let us also define for k ∈ N n , |k| ≥ 3, a k = 1 k! ∂ |k| R
∂x k (0). We observe that, for k ∈ N n :

x k = z + z √ 2 k = 1 √ 2 |k| (l,m)∈N n l+m=k n j=1 k j m j z l zm (2.94) Let us define K = {k ∈ N n , |k| ≥ 3} \ 2N n
. By lemma 2.16, there exists a unique homogeneous polynomial of degree |k| ≥ 3 with no diagonal terms, such that:

(2.95) {H 0 , I k }(x, ξ) = x k if k ∈ K x k -1 √ 2 |k| n j=1 kj kj /2 |z| k if k ∈ 2N n
Functions (F N ) N ≥3 and (H i ) i≥1 are constructed recursively as follows: let N ≥ 2 and let us assume that we already constructed F 3 , . . . , F N (F 2 = 0), and

H 1 , . . . , H ⌊ N 2 ⌋ (H 1 (p) = n i=1 θ i p i ). Let us set: (2.96) G N +1 (x, ξ) = H • exp χ F ≤N (x, ξ) - ⌊ N 2 ⌋ i=1 H i (p) + O( (x, ξ) N +1 )
and defined

F N +1 and, if N is odd, H N +1 2
by Lemma 2.16:

(2.97) {H 0 , F N +1 }(x, ξ) = G N +1 (x, ξ) if N is even G N +1 (x, ξ) -H N +1 2 (p) if N is odd
We remark that, in our case, (x, ξ) → G N +1 (x, ξ) -|k|=N +1 a k x k is a sum of terms that depend only on F ≤N , (H i ) 1≤i≤⌊ N 2 ⌋ and (a k ) |k|≤N . Therefore, we get by induction that the function(s):

(2.98) F N +1 - |k|=N +1 a k I k and when N is odd, H N +1 2 (p) - |l|= N +1 2 a 2l 2 |l| n j=1 2l j l j p l depend only on (a k ) |k|≤N . Now, let us define, for k ∈ N n , (l k , m k ) ∈ N 2n by their components : for i ∈ 1, n , (l k ) i = ⌊ ki 2 ⌋, (m k ) i = k i -⌊ ki 2 ⌋. k → (l k , m k
) is a bijective correspondence between K and the set Λ defined by:

(2.99) Λ = {(l, m) ∈ N 2n | m -l ∈ {0, 1} n \ {0}, |l| + |m| ≥ 3}
Moreover, for k ∈ K, I k is entirely determined by (2.95) and is equal in z, z coordinates to:

(2.100) So we just proved, by induction, that for any N ≥ 3, (a k ) |k|≤N is determined by the Taylor expansion of the classical Birkhoff normal form up to order N and the family (α lm ) (l,m)∈Λ,|l|+|m|≤N .

I k (z, z) = 1 √ 2 |k| (l,m)∈N n l+m=k n j=1 kj mj θ.(l -m) z l zm Therefore, if k ∈ K, |k| = N + 1,
As shown in [START_REF] V. Guillemin | Bottom of the well" semi-classical trace invariants[END_REF][START_REF] Guillemin | Some inverse spectral results for semiclassical Schrödinger operators[END_REF], the Taylor expansion of the classical Birkhoff normal form is determined by the spectrum of H(x, D x ) in [V (q 0 ), V (q 0 ) + ǫ], ǫ > 0. In fact it is obvious that one can take ǫ in the -dependent form given in Theorem 1.14 (and Theorem 1.10) since the proof goes along the trace formula argument, and eigenvalues above this value of ǫ gives a ∞ contribution to the trace formula.

Moreover we have for N ≥ 2 and m ∈ {0,

1} n \ {0} O m0 • exp χ F ≤N +1 (x, ξ) = O m0 (x, ξ) + {F ≤N +1 , O m0 }(x, ξ) + O((x, ξ) N +|m| ) = z m - (l,k)∈Λ |l|+|k|=N +1 k-l=m α lk |z| 2l n i=1 k i m i + • • • + O((x, ξ) N +|m| )
where . . . stands for extra-diagonal terms and terms which depends only on (α lk ) (l,k)∈Λ,|l|+|m|≤N . Therefore, the diagonal matrix elements of an observable O m0 is equal, modulo terms depending only on (α lk ) (l,k)∈Λ,|l|+|k|≤N , to (2.103)

(l,k)∈Λ |l|+|k|≤N +1 k-l=m α lk |µ | l n i=1 k i m i + O( ) + O(|µ | N +|m| 2 )
This shows, as in the proof of Theorem 2.1, that the α lm , (l, m) ∈ Λ, are all determined, so the full Taylor expansion of R, hence of V , near q 0 , is completely determined.

Explicit construction of Fermi coordinates

In this section we prove Theorems 1.3, 1.9, and 1.13, using Lemmas A.1, A.2 and A.4 on linear and bilinear algebra. We start by the "bottom of a well", toy model for the periodic trajectory case.

3.1.

General "Bottom of a well" case.

Proof of Theorem 1.9. Let (x, ξ) ∈ T * (R n ) be a system of Darboux coordinates centered at z 0 . d 2 H p (z 0 ) is a positive bilinear form on T z0 (T * M), therefore, by lemma A.1, there exists a local change of variable φ, symplectic and linear in the Darboux coordinates, such that:

(3.1) H p • φ(x, ξ) = H p (z 0 ) + n i=1 θ i x 2 i + ξ 2 i 2 + O( (x, ξ) 3 ).
We will prove that the diagonal matrix elements of the family of pseudodifferential operators P k in the system of eigenvectors corresponding to eigenvalues of H(x, D x ) in [H p (z 0 ), H p (z 0 ) + ǫ( )] provides an explicit construction of such a symplectomorphism φ (which is not unique).

We first start with the case where the family (P k ) 1≤k≤2n 2 +n is realized by the example (1.12).

Let S be the matrix of dφ z0 in the basis ( ∂ ∂x1 , ∂ ∂ξ1 , . . . , ∂ ∂xn , ∂ ∂ξn ). We have for (i, j) ∈ 1, n 2 and s ∈ {1, 2, 3}:

Q s i,j • φ(x, ξ) = n k=1 S i s ,2k-1 x k + S i s ,2k ξ k n k=1 S j s ,2k-1 x k + S j s ,2k ξ k = n k,k ′ =1 S i s ,2k-1 S j s ,2k ′ -1 x k x k ′ + n k,k ′ =1 S i s ,2k S j s ,2k ′ -1 ξ k x k ′ + n k,k ′ =1 S i s ,2k-1 S j s ,2k ′ x k ξ k ′ + n k,k ′ =1 S i s ,2k S j s ,2k ξ k ξ k ′ = n k=1 [S i s ,2k-1 S j s ,2k-1 + S i s ,2k S j s ,2k ] z k zk + R, (3.2) 
where, for (i,

j) ∈ 1, n 2 , i s = 2i -1 if s ∈ {1, 2} 2i if s = 3 and j s = 2j if s ∈ {1, 3} 2j -1 if s = 2 ,
and R is a linear combination of terms of the form

z k z k ′ ((k, k ′ ) ∈ 1, n ) and z k zk ′ ((k, k ′ ) ∈ 1, n , k = k ′ ).
Let A φ be any Fourier integral operator implementing locally dφ z0 and |µ defined by (2.7). The condition that A -1 φ |µ belongs to the spectral interval defined in Theorem 1.9 reads as |µ | ≤ ǫ. We get from (3.2) that:

(3.3) µ|A φ Q s i,j A -1 φ |µ = n k=1 [S i s ,2k-1 S j s ,2k-1 + S i s ,2k S j s ,2k ] µ k + 1 2 + O( )
the term O( ) coming form the subsymbols contribution (let us recall we are microlocalized in a bounded neighborhood of z 0 ). Therefore (3.3) for |µ | ≤ ǫ with the condition = 0(ǫ) determine the values of S i,2k-1 S j,2k-1 + S i,2k S j,2k for (i, j) ∈ 1, 2n 2 and k ∈ 1, n . As claimed by Lemma A.2, the preceding quantities are independent of the choice of a symplectic matrix S satisfying (3.1). Since, as we already said, such a matrix S is not unique, it is not possible to determine S out of the preceding matrix elements. However, by Lemma A.2, the family (S i,2k-1 S j,2k-1 + S i,2k S j,2k ) (i,j)∈ 1,2n 2 ,k∈ 1,n (determined by the preceding matrix elements) allows us to construct explicitly a suitable matrix S, hence a suitable symplectomorphism φ.

This ends the proof in the case where the family (P k ) 1≤k≤2n 2 +n is realized by the example (1.12). Let us now consider the general case. The family of Hessian matrices (d 2 P k (z 0 )) 1≤k≤2n 2 +n , forms a basis of the space of 2n × 2n symmetric matrices. Hence, each d 2 Q s i,j (z 0 ) for (i, j) ∈ 1, n 2 and s ∈ {1, 2, 3} is a linear combination of the matrices

d 2 P k (z 0 ), 1 ≤ k ≤ 2n 2 + n. Since P k (z 0 ) = ∇P k (z 0 ) = 0, there ex- ists a family (λ k ijs ) (i,j,s,k)∈ 1,n 2 ×{1,2,3}× 1 
,2n 2 +n of complex numbers such that for any (i, j, s) ∈ 1, n 2 × {1, 2, 3}:

(3.4) Q s i,j (x, ξ) = 2n 2 +n m=1 λ k ijs P k (x, ξ) + O( (x, ξ) 3 )
and therefore:

(3.5) µ|A φ Q s i,j A -1 φ |µ = 2n 2 +n k=1 λ k ijs µ|A φ P k A -1 φ |µ + O( ) + O(|µ | 2 )
Hence, the family (S i,2k-1 S j,2k-1 + S i,2k S j,2k ) (i,j)∈ 1,2n 2 ,k∈ 1,n is determined just as before, and this ends the proof in the general case.

3.2.

The"Schrödinger case".

Proof of Theorem 1.13. Let x ∈ R n be any system of local coordinates centered at q 0 ∈ M, and (x, ξ) ∈ T * (R n ) the corresponding Darboux coordinates centered at (q 0 , 0) ∈ T * M. d 2 V (q 0 ) being a positive bilinear form on T q0 M, there exists, by Lemma A.4, a local change of variable u, linear and orthogonal in the Darboux coordinates, such that:

(3.6) V • u(x) = 1 2 n i=1 θ 2 i x 2 i + O(x 3 )
where the θ 2 i s are the eigenvalues of d 2 V (q 0 ). Let us denote by U the matrix of du q0 written in the basis ( ∂ ∂x1 , . . . , ∂ ∂xn ), and define a symplectomorphism φ locally by its expression in the Darboux coordinates: φ

(x, ξ) = (U x, U ξ). If φ 0 is the symplectomorphism sending (x, ξ) to ( x1 √ θ1 , . . . , xn √ θn , √ θ 1 ξ 1 , . . . , √ θ i ξ n )
, and H is the (principal and total) symbol of the considered Schrödinger operator then:

(3.7) H • φ • φ 0 (x, ξ) = V (q 0 ) + n i=1 θ i x 2 i + ξ 2 i 2 + O(x 3 )
Just as in proof of Theorem 1.9, the diagonal matrix elements of the family of the pseudodifferential operators (Q 2 ij ) 1≤i,j≤n in the system of eigenvectors corresponding to eigenvalues of H(x, D x ) in [V (q 0 ), V (q 0 ) + ǫ( )] determine the family (U ik U jk ) 1≤i,j,k≤n . An orthogonal matrix U such that (3.7) is verified is not unique, therefore it is not possible to determine the matrix U from the preceding diagonal matrix elements. However, by Lemma A.4, the family (U ik U jk ) 1≤i,j,k≤n does not depend on the suitable matrix U (i.e. orthogonal and satisfying (3.7)), and as we just saw it is determined by the preceding matrix elements. Therefore, one can determine the absolute values of the coefficients of any suitable matrix U , and also, for any k ∈ 1, n , an index i k ∈ 1, n , such that U i k k = 0. The choice of the sign of U i k k then determines the sign of every other coefficient of the k-th column. Therefore, one can determine the 2 n suitable matrices, corresponding to n choices of signs, as claimed by Lemma A.4. Choosing one of them determines (explicitly) a suitable symplectomorphism φ.

The periodic trajectory case.

Proof of Theorem 1.3. Let X, H(x, D x ), E, γ be as in Theorem 1.3. We first recall [START_REF] Guillemin | Wave-trace invariants[END_REF][START_REF] Guillemin | Some remarks about semiclassical trace invariants and quantum normal forms[END_REF][START_REF] Weinstein | Lectures on symplectic manifolds[END_REF][START_REF] Zelditch | Wave invariants at elliptic closed geodesics[END_REF] that there exists a (non unique) symplectomorphism φ from a neighborhood of S 1 in T * (R n × S 1 ) in a neighborhood of γ in T * (X) such that (3.8) H p • φ(x, t, ξ, τ ) = H 0 + H 2 and γ(t) = φ(0, t, 0, 0).

with H 0 and H 2 as in is defined as in (2.3) and (2.2). Expressing φ in a system a local coordinates (x ′ , ξ ′ , t ′ , τ ′ ) near γ such that γ = {x ′ = ξ ′ = τ ′ = 0}, one can assume that:

(3.9) φ(x, t, ξ, τ ) = φ S (x, t, ξ, τ ) = (S(t)(x, ξ), t, τ + q S (t, x, ξ))

Here, for any t ∈ S 1 , S(t) is a linear symplectic change of variable (identified with its matrix in our system of coordinates), q S (t, •, •) is quadratic, q S (t, 0, 0) = 0 and

(3.10) dq S = n i=1 Li+n (t).(x, ξ)L i (t) -Li (t).(x, ξ)L i+n (t) .(dx, dξ)
where for i ∈ 1, 2n and t ∈ S 1 , L i (t) is the i-th line of the matrix S(t), L the derivation with respect to t, and for two line vectors of size 2n, u.v is their canonical scalar product. For (i, j) ∈ 1, n 2 , p ∈ Z and s ∈ {1, 2, 3}, let A S be any Fourier integral operator implementing φ S . We have

(3.11) µ, ν|A S P k p A -1 S |µ, ν = n k=1 c p S σ i s ,2k-1 S σ j s ,2k-1 + S σ i s ,2k S σ j s ,2k µ k + 1 2 + O( )
where c p (•) maps a function to its p-th Fourier coefficient, σ is the permutation defined by (A.5), S σ is defined by conjugation by the permutation matrix associated to σ just as in (A.6), and where, for (i, j) ∈ 1, n 2 ,

i s = 2i -1 if s ∈ {1, 2} 2i if s = 3 , and j s = 2j if s ∈ {1, 3} 2j -1 if s = 2 .
Now, just as in the proof of Proposition 2.13, the coefficients a l 1 (P k p ) l∈Z determine c p S σ i s ,2k-1 S σ j s ,2k-1 + S σ i s ,2k S σ j s ,2k for any k ∈ 1, n . Therefore, if the coefficients a l 1 (P k p ) are given for any l ∈ Z, (i, j) ∈ 1, n 2 , p ∈ Z and s ∈ {1, 2, 3}, then the functions (3.12)

A i,j,k := S σ i,2k-1 S σ j,2k-1 + S σ i,2k S σ j,2k are determined for any (i, j) ∈ 1, 2n 2 and k ∈ 1, n . An easy adaptation of the proof of Lemma A.2 shows that, once the set of functions (A i,j,k ) (i,j)∈ 1,2n 2 ,k∈ 1,n is given, one can construct explicitly a particular smooth function S 1 ∋ t → S 0 (t) with values in the set of symplectic matrices, such that equality (3.12) holds. We also get that any matrix S σ such that equality (3.12) holds is related to S 0 by the equality S σ = S σ 0 U where t → U (t) is a smooth function that takes its values in the set of block diagonal matrices whose diagonal blocks are 2 by 2 rotations. Now let us consider this particular S 0 and let U be any smooth function that takes his values in the set of block diagonal matrices whose diagonal blocks are 2 by 2 rotations. Let us finally define S by the relation S σ = S σ 0 U . Since for any t ∈ S 1 , q S (t, •, •) is quadratic, we have:

P 0 p • φ S (x, t, ξ, τ ) = e -2iπpt τ + e -2iπpt q S (t, x, ξ) = e -2iπpt τ + e -2iπpt n k=1 ∂ 2 q S ∂x 2 k + ∂ 2 q S ∂ξ 2 k (t)z k zk + R (3.13)
where R is a linear combination of terms of the form e

-2iπpt z k z k ′ ((k, k ′ ) ∈ 1, n ) and e -2iπpt z k zk ′ ((k, k ′ ) ∈ 1, n , k = k ′ ).
Just as before, the coefficients a l 1 (P 0 p ) l,p∈Z determine the family of functions (of t only) 

H 0 • φ U σ -1 0 = H 0
Finally, the choice of U 0 in the determination of t → S(t) does not change the validity of equation (3.8) for φ = φ S , and Theorem 1.3 is proved.

Classical analogs

In this section we prove a classical result, analog to our preceding quantum ones, and motivated by the following straightforward lemma. where for any j = 1 . . . n, x j + iξ j = A j e iϕj .

We concatenate analogs of Theorems 1.3 and 1.4 in the following Theorem 4.2. Let γ be a non-degenerate elliptic periodic trajectory of the Hamiltonian flow generated by a proper smooth Hamiltonian function H. Let P k p be functions satisfying in a local symplectic system of coordinates (x, t, ξ, τ ) ∈ T * (R n × S 1 ) such that γ = {x = ξ = τ = 0}: (4.2) P 0 p (x, t, ξ, τ ) = e -2iπpt τ and P k p (x, t, ξ, τ ) = e -2iπpt R k (x, ξ), k = 1, . . . , 2n 2 + n with the property that R k (0) = ∇R k (0) = 0 and the Hessians d 2 R k (0) are linearly independent.

Let Φ be the formal (unknown a priori) symplectomorphism which leads to the Birkhoff normal form near γ and (A, τ, ϕ, t) the corresponding (formal and also unknown a priori) action-angle coordinates such that γ = {A = τ = 0}. Let us define near A = τ = 0 the following "average" quantities Then the knowledge of ∇P k p (0, 0) for k = 1, . . . , 2n 2 + n, determines (in a constructive way) an explicit system of Fermi coordinates near γ.

Moreover, let now (x, t, ξ, τ ) ∈ T * (R n × S 1 ) be any system of Fermi coordinates near γ and let for (m, n, p) ∈ N 2n × Z, O mnp , O p be functions satisfying in a neighborhood of γ: Then the knowledge of the Birkhoff normal form near γ and of the Taylor expansion at A = τ = 0 up to order N of O mnp , O q , defined as in (4.3) for

(1) 0 < |m| + |n| ≤ N (2) ∀j = 1 . . . n, m j = 0 or n j = 0 (3) p ∈ Z, q ∈ Z * determines the Taylor expansion of the "true" Hamiltonian H up to the same order in the picked-up system of Fermi coordinates.

Proof. Let us first prove the second part of Theorem 4.2. Let (x, t, ξ, τ ) ∈ T * (R n × S 1 ) be a system of Fermi coordinates near γ. Let, for N ≥ 3, F N be the principal symbol of W N .

With the notations of Proposition 2.2 we write Then, as it has been seen in the proof of Lemma 2.15, if σ 1 jks and σ 2 jks are the symbols of {α 0jks (t)e 2iπpt z j zk τ s , O mnp } and {α 0jks (t)e 2iπpt z j zk τ s , O q } respectively, we have, if j + m = k + n, We also have, if j = k: 

T n ×S 1

  For any such ordered product, let us introduce the integer k(b 1 . . . b l ) = ♯{m ∈ 1, l , b m = a * 1 }. We will proceed by induction on l. Let us define for any positive integer l the following assertion (A l ): "Any ordered product b 1 . . . b l , where for any j ∈ 1, l , b j ∈ {a 1 , a * 1 }, is the sum of the operator Op W (z l-k 1 zk 1 ) (where k = k(b 1 . . . b l ) and of a linear combination of the operators p Op W (z j 1 zm 1 ) with p ≥ 1, 2p + j + m = l and jm = l -2k. ". If l = 1, there is nothing to prove since a 1 = Op W (z 1 ) and a

  .29) If we set, for s ∈ 1, n , k s = ♯{m ∈ 1, l , b m = a * s } and j s = ♯{m ∈ 1, l , b m = a s }, we deduce from (2.26) that:

  If (c p (α)) p∈Z and (c p (β)) p∈Z are the Fourier coefficients of α and β, it is sufficient that, for p ∈ Z, c p (α) is solution of: (2.33) i n s=1 θ s (j sk s ) + 2πp c p (α) = c p (βIf the n-tuples j and k are different, the non-degeneracy condition on the θ i s together with the fact that c p (β) = p→+∞ O 1 |p| ∞ (because β is smooth), gives the existence of c p (α) satisfying (2.33) and (2.34).

  one determines b k,m,p-|k|-m from (2.65) recursively on m. Finally, each b k,m,s with |k| + m + s ≤ N is determined by the a l j (O), with j = 0 . . . N and l ∈ N and the point (

Lemma 2 . 15 .

 215 Let (j, k, s, d) ∈ N 2n+1 × Z, such that: |j| + |k| + 2s = N .

Lemma 4 . 1 .

 41 Let O be a polynomial operator on L 2 (R n ×S 1 ) whose Weyl symbol, expressed in polar and cylindrical coordinates is the function O(A, τ, ϕ, τ ). Then

T n ×S 1 O

 1 (µ , ν , ϕ, t)dϕdt + O( ).

T n ×S 1 P

 1 k p • Φ(A, τ, ϕ, t)dϕdt.

2 nj+ 2 O

 22 (4.4)    O mnp (x, t, ξ, τ ) = e -i2πpt n j=1 xj +iξj √ 2 mj xj -iξj √ O |A| + |τ |) |m|+|n|+1 p (x, t, ξ, τ ) = e -i2πpt τ + O |A| + |τ |)3 2

(4. 5 )

 5 F N (z, t, z, τ ) = |j|+|k|+2s=N α 0jks (t)e 2iπpt z j zk τ sWith the notations of the proof of Proposition 2.2, we have:(4.7) H • exp(χ F )(x, t, ξ, τ ) ∼ h(p, τ, 0) Let N ≥ 3, (m, n, p, q) ∈ N 2n × Z × Z * and (j, k, s) ∈ N 2n+1 satisfy: (4.8) 0 < |m| + |n| ≤ N, m i n i = 0 ∀i ∈ 1, n , |j| + |k| + 2s = N

σ 1 N +|m|+|n|-1 2 ( 4 . 9 )

 1249 jks (A, τ, ϕ, t)dϕdt =ic p (α 0jks )A max(j,k) τ s n i=1 k i m ij i n i A i + 2πps τ + O |A| + |τ |) and if j + m = k + n,(4.10)T n ×S 1 σ 1 jks (A, τ, ϕ, t)dϕdt = O |A| + |τ |) N +|m|+|n|-1 2

(4. 11 )T n ×S 1 σ 2

 112 jks (A, τ, ϕ, t)dϕdt = ic q (α 0jks )2πq(1 + s)A j τ s + O |A| + |τ |) N +1 2and if j = k:(4.12)T n ×S 1 σ 2 jks (A, τ, ϕ, t)dϕdt = O |A| + |τ |) N +12Now, let us set F 2 = 0 and assume that the function F ≤N -1 has been determined for someN ≥ 3. Then for l ≥ 2, { l times F ≤N , {. . . , {F ≤N , O mnp }}} and { l times F ≤N , {. . . , {F ≤N , O q }}} are determined modulo O |A| + |τ |) (4.9) and (4.10), O mnp (A, τ ) is equal, modulo O |A| + |τ |) p (α 0jks )A max(j,k) τ s n i=1 k i m ij i n i A i + 2πps τ

  ) |k|≤N . If now k ∈ 2N n , |k| = N + 1, and if we write H Therefore we get by (2.101) and (2.102) that the family (a k ) |k|=N +1 can be determined from the terms of order N + 1 in the Taylor expansion of the classical Birkhoff normal form, the family (α l k m k ) |k|=N +1 and the family (a k ) |k|≤N .

		we get by (2.98) that:
	(2.101)	α l k m k -	a k √ 2 |k|	n j=1 θ.(l k -m k ) kj ⌊kj /2⌋
	depends only on (a k N +1 2 (p) = |l|= N +1 2 that:	b l p l we get by (2.98)
	(2.102)	b k/2 -	a k √ 2 |k|	n j=1	k j k j /2
	depends only on (a k ) |k|≤N .				

  Now, we get from equation (3.10) that, for k ∈ 1, n and t ∈ S 1 :For k ∈ 1, n and t ∈ S 1 , let us denote by U k (t) = cos θ k (t)sin θ k (t) sin θ k (t) cos θ k (t) the k-th diagonal block of U (t). Then, for j ∈ 1, 2n , k ∈ 1, n and t ∈ S 1 : Let us now observe that for k ∈ 1, n , and any t ∈ S 1 : Therefore, since for any k ∈ 1, n and t ∈ S 1 U k (t) is an orthogonal matrix and S 0 (t) is a symplectic matrix, we get from equations (3.16) and (3.17): (t) is entirely determined by the explicitly constructed function t → S 0 , equation (3.18) then determines the function θk . Therefore, the function t → U (t), hence the function t → S σ (t), is determined up to right multiplication by a constant block diagonal matrix U 0 whose diagonal block matrices are 2 by 2 rotations. It is now sufficient to observe that if two functions t → S 1 (t) and t → S 2 (t) are related by the equation:

	∂ 2 qS ∂x 2 k	+ ∂ 2 qS ∂ξ 2 k	k∈ 1,n	.			
	(3.14)	∂ 2 q S ∂x 2 k	(t) +	∂ 2 q S ∂ξ 2 k	(t) =	n i=1 n	Ṡi+n,k (t)S i,k (t) + Ṡi+n,k+n (t)S i,k+n (t)
							-	i=1	Ṡi,k (t)S i+n,k (t) + Ṡi,k+n (t)S i+n,k+n (t)
	(3.15)					S j,k (t) S j,k+n (t)		= t U k (t)	S 0,j,k (t) S 0,j,k+n (t)
	Therefore:								
	(3.16)	Ṡj,k (t) Ṡj,k+n (t)	= t U k (t)		Ṡ0,j,k (t) Ṡ0,j,k+n (t)	+ t	Uk (t)	S 0,j,k (t) S 0,j,k+n (t)
	(3.17)						Uk (t) t U k (t) =	0 -1 1 0
	(3.18)				∂ 2 q S ∂x 2 k	(t) +	∂ 2 q S ∂ξ 2 k	(t) =	∂ 2 q S0 ∂x 2 k	(t) +	∂ 2 q S0 ∂ξ 2 k	(t)
										+ 2 θk (t)
	Since the function t → ∂ 2 qS ∂x 2 k t → ∂ 2 qS 0 ∂x 2 k (t)+ ∂ 2 qS 0 ∂ξ 2 k	(t) + ∂ 2 qS ∂ξ 2 k	(t) has been determined above, and the function
	(3.19)								S σ 2 = S σ 1 U 0
	where U 0 is a constant matrix, then	
	(3.20)							φ S2 = φ S1 • φ U σ -1 0
	and, if U 0 is a constant block diagonal matrix whose diagonal block matrices are 2 by 2
	rotations:								
	(3.21)								

and by (4.11) and (4.12), O q (A, τ ) is equal, modulo known terms and O |A| + |τ |) N +1 2

to:

(4. [START_REF] Paul | A construction of quasimodes using coherent states[END_REF] 2|j|+2s=N ic q (α 0jjs )2πq(1 + s)A j τ s Thus, just as in the proof of Proposition 2.14, let (m, n, p, q) ∈ N 2n × Z × Z * run over all possible values under condition (4.8), we determine every function α 0jks , |j|+|k|+2s = N , hence F N , which concludes the proof of the second part of Theorem 4.2.

The proof of the first part of the Theorem follows the same strategy with respect to Theorem 1.3 than the proof of the second part with respect to Proposition 2.14.

The last result of this paper will be the classical analog of Theorems 1.10 and 1.14. Let us remind, [START_REF] Guillemin | Some inverse spectral results for semiclassical Schrödinger operators[END_REF], that in the case where H(x, ξ) = ξ 2 + V (x) the classical normal form determines the Taylor expansion of the potential when the latter is invariant by the symmetry x i → -x i for each i ∈ 1, n . In the general case the Taylor expansion of the averages, in the sense of (4.3), of a finite number of classical observables are necessary to recover the full potential.

Let us assume H ∈ C ∞ (T * M, R) has a global minimum at z 0 ∈ T * M, and let d 2 H p (z 0 ) be the Hessian of H at z 0 . Let us define the matrix Ω defined by

The eigenvalues of Ω being purely imaginary, we denote them by ±iθ j with θ j > 0, j ∈ 1, n . Let us assume that θ j , j ∈ 1, n are rationally independent. Let us now enunciate the classical analog of Theorem 1.14 in the case of a Schrödinger operator with potential V ∈ C ∞ (M, R): Theorem 4.4. Let q 0 be a global non-degenerate minimum of V on M. Let us assume that the square roots of the eigenvalues of d 2 V (q 0 ) are linearly independent over the rationals.

Let

2

, be smooth functions on M such that P k (q 0 ) = ∇P k (q 0 ) = 0 and the Hessians d 2 P k (q 0 ) are linearly independent (an example of such potentials is the family Q ij (x) = x i x j in a local system of coordinates centered at q 0 ).

Then the knowledge of the Birkhoff normal form near q 0 and of the Taylor expansion at A = 0 up of the (finite number of ) "average" P k (A) determines (in a constructive way) an explicit system of Fermi coordinates. Moreover, let (x, ξ) ∈ T * R n be any system of Fermi coordinates centered at (q 0 , 0) and O m0 defined in Theorem 1.14.

Then the knowledge of the Taylor expansion at A = 0 up to order N ≥ 3 of the (finite number) "average" quantities O m0 as in (4. [START_REF] De Verdière | A semiclassical inverse problem I: Taylor expansions[END_REF] together with the Birkhoff normal form itself, determines the Taylor expansion up to order N of V at q 0 in the picked-up system of coordinates.

In the line of the proof of Theorem 4.2 the proofs of Theorem 4.4 and 4.3 are easy adaptations of the proofs of Theorem 1.14 and 1.10. We omit them here.

Appendix A. Lemmas on linear and bilinear algebra Lemma A.1. Let q be a positive quadratic form on R 2n . Then there exists a canonical endomorphism φ on R 2n , and a n-tuple of positive real numbers (λ 1 , . . . , λ n ), defined as the imaginary part of the eigenvalues of positive imaginary part of the endomorphism defined by:

where •; • q be the scalar product associated to q and ω the canonical symplectic form on R 2n , and such that:

Moreover, if the real numbers λ 1 , . . . , λ n are pairwise different, and φ ′ is an endomorphism of R 2n . Then φ ′ is canonical and satisfies (A.2) if and only there exists an orthogonal isomorphism u on R 2n whose restriction to the plane spanned by

Proof of Lemma A.1. a is antisymmetric with respect to q, and therefore there exists a q-orthonormal basis of R 2n (u 1 , . . . , u n , v 1 , . . . , v n ) and a n-tuple of positive real numbers (λ 1 , . . . , λ n ) such that, for j ∈ 1, n :

Now let us set, for j ∈ 1, n :

(A.4) ũj = λ j u j and ṽj = λ j v j

Then, (ũ 1 , . . . , ũn , ṽ1 , . . . , ṽn ) is a q-orthogonal basis of R 2n satisfying, for j ∈ 1, n , q(ũ j ) = λ j and q(ṽ j ) = λ j , and the preceding properties together with (A.2) implies that it is also a symplectic basis, which concludes the proof of the first part of Lemma A.1.

To prove the second part of Lemma A.1, let us consider another symplectic and orthogonal basis (u ′ 1 , . . . , u ′ n , v ′ 1 , . . . , v ′ n ) where, for j ∈ 1, n , the q-norm of u ′ j and v ′ j is λ j . Then, by (A.2), for any j ∈ 1, n , a(u ′ j ) is orthogonal to any vector of the basis but v ′ j and v ′ j , a(u

and by the same argument, λ j a(v ′ j ) = u ′ j . Therefore, the plane spanned by (u j , v j ) and the plane by (u ′ j , v ′ j ) are both the kernel of a 2 + λ 2 j (2-dimensional since we made the additional assumption the λ i s are pairwise different). Therefore, if φ and φ ′ are the endomorphisms which send the canonical basis of R 2n to basis (ũ 1 , . . . , ũn , ṽ1 , . . . , ṽn ) and basis (u ′ 1 , . . . , u ′ n , v ′ 1 , . . . , v ′ n ) respectively, then one can considerer the restriction to any plane spanned by ( ∂ ∂xi , ∂ ∂ξi ) (for any i ∈ 1, n ) is an orthogonal symplectomorphism from the plane to itself, that is a rotation.

Let σ be the permutation of 1, 2n defined by:

and M σ be the associated permutation matrix (i.e. for any (i, j) ∈ 1, 2n 2 , (M σ ) ij = δ σ(i),j . Now, let us set, for any matrix S ∈ M 2n (R):

Then, for (i, k) ∈ 1, n 2 , s i,k will be the matrix of size 2 whose first line is t L S,2i-1,k and second line t L S,2i,k .

Lemma A.2. Let A be a positive matrix of size 2n. Let S be the (non-empty by lemma A.1) set of symplectic matrices satisfying

where D λ is the diagonal matrix with (λ 1 , . . . , λ n ) as n-tuple of positive diagonal elements, which we assume pairwise different. Then:

(1) The family ( L S,i,k ; L S,j,k ) i,j)∈ 1,2n 

and (A.8) is equivalent to:

Hence ( L S,i,k ; L S,j,k ) i,j)∈ 1,2n 2 ,k∈ 1,n does not depend on the matrix S ∈ S and the first point of Lemma A.2 is proven. Now, let S ∈ S, and let (a ijk ) (i,j)∈ 1,2n 2 ,k∈ 1,n be the family defined by: (A.10)

Let us assume that this family is given. Two vectors u and v of R 2 are independent if and only if: u; v 2 < u; u v; v . Since matrix S is invertible, on can choose, for any k ∈ 1, n , a couple of indices (i k , j k ) ∈ 1, 2n 2 such that:

The following system of equations with unknown v ∈ R 2 : (A.12)

admits exactly two solutions (by (A.11)), denoted by v + j k k et v - j k k obtained from one another by orthogonal symmetry R k of axis the line spanned by v i k k .

Let us set v

) are two basis of R 2 , for any i ∈ 1, 2n \ {i k , j k }, each one of the two systems:

ik admits exactly one solution denoted respectively by v + ik and v - ik , and satisfying relation

We are now able to construct 2 n matrices (T A ) A∈P( 1,n ) defined, for A ∈ P( 1, n ), by:

In order to prove the second point of Lemma A.2, it is sufficient to prove the following assertions:

(1) There exists at least one set A ∈ P( 1, n ), such that: T A ∈ S.

(2) There is at most one set A ∈ P( 1, n ), such that T A is symplectic (and A is determined by family (a ijk ) (i,j)∈ 1,2n 2 ,k∈ 1,n ) Indeed, once those two assertions proved, there will be exactly one set A ∈ P( 1, n ) such that T A is symplectic, and it will be an element of S, constructed from the values of family (a ijk ) (i,j)∈ 1,2n 2 ,k∈ 1,n only.

Let us prove the first assertion. Let, for any k ∈ 1, n , O k be the unique element of

where S is a particular matrix of S).

The system (A.12) is equivalent to:

which admits exactly two solutions: v + j k k et v - j k k . Hence, for any k ∈ 1, n :

Let us define the set A by: (A.17) [START_REF] Paul | The Semi-classical Trace Formula and Propagation of Wave Packets[END_REF]) admit a unique solution, we obtain:

that is:

and T A ∈ S by Lemma A.1.

In order to prove the second assertion, let us use the following lemma:

Lemma A.3. For any symplectic matrix B of size 2n, we have:

If A 1 and A 2 are two parts of 1, n , we get from (A.14) and relation v -

where A 1 ∆A 2 is the symmetric difference of A 1 and A 2 :

. Hence:

, there exists at most one part A of 1, n such T A is symplectic. The second assertion, hence the second point of Lemma A.3, is proven.

Proof of Lemma A.3. Since B is a symplectic matrix, matrix B σ satisfies: Proof of Lemma A.4. As A is positive, there exists an orthogonal matrix Q 1 such that: 

) and let Φ k be the symplectomorphism defined, with the notation of (2.93), by

Proof. The first part of the assertion belongs to Fried [START_REF] Fried | Cyclic resultants of reciprocal polynomials[END_REF]. The fact that Φ k is a symplectomorphism can be checked directly. Moreover one sees immediately that it conjugates the quadratic in (x, ξ)/linear in τ part of B θ1,...,θn to the one of B θ1+2k1π,...,θn+2knπ . Moreover B θ1,...,θn • Φ k is a function of τ and x 2 i + ξ 2 i only and it is easy to verify that the algorithmic constructions of the two normal forms are covariantly conjugated by Φ k . Therefore, it is equal to B θ1+2k1π,...,θn+2knπ . B.2. The "bottom of the well" case.