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RECOVERING THE HAMILTONIAN FROM SPECTRAL DATA

C. HÉRIVEAUX AND T. PAUL

Abstract. We show that the contributions to the Gutzwiller formula with observable
associated to the iterates of a given elliptic nondegenerate periodic trajectory γ and
to certain families of observables localized near γ determine the quantum Hamiltonian
in a formal neighborhood of the trajectory γ, that is the full Taylor expansion of its
total symbol near γ. We also treat the “bottom of a well” case both for general and
Schrödinger operators.
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1. Introduction and main results

It is well known that spectral properties of semiclassical Hamiltonians and dynamical
properties of their principal symbols are linked. Even when there is no precise information
“eigenvalue by eigenvalue” of the spectrum, the so-called Gutzwiller trace formula provide
information on averages of the spectrum at scale of the Planck constant. More precisely, let
H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential operator on a compact
manifold X of dimension n+1, whose symbol H(x, ξ) is proper (as a map from T ∗X into
R). Let E be a regular value of H and γ a non-degenerate periodic trajectory of primitive
period Tγ lying on the energy surface H = E.

1



2 C. HÉRIVEAUX AND T. PAUL

Consider the Gutzwiller trace (see [10])

(1.1) Tr

(
ψr

(
H(x, ~Dx)− E

~

))
=
∑

i

ψr

(
E − Ei

~

)

where for r ∈ Z∗, ψr is a C∞ function whose Fourier transform is compactly supported
with support in a small enough neighborhood of rTγ and is identically one in a still smaller
neighborhood containing rTγ . As shown in [12], [13] (1.1) has an asymptotic expansion

(1.2) ei
Sγ
~

+σγ

∞∑

k=0

ark~
k

In [7] was shown how to compute the terms of this expansion to all orders in terms of
a microlocal Birkhoff canonical form for H in a formal neighborhood of γ, and that the
family of constants (ark)(k,r)∈N×Z∗ determine the microlocal Birkhoff canonical form for
H in a formal neighborhood of γ (and hence, a fortiori, determine the classical Birkhoff
canonical form). When it is known “a priori” that H(x, ~Dx) is a Schrödinger operator, it
is known that the normal form near the bottom of a well determines part of the potential
V [9]. But in the general case the Gutzwiller formula will determine only the normal
form of the Hamiltonian, that is to say H(x, ~Dx) only modulo unitary operators, and its
principal symbol only modulo symplectomorphisms. Of course it cannot determine more,
as the spectrum, and a fortiori the trace, is insensitive to unitary conjugation. The aim
of this paper is to address the question of determining the true Hamiltonian from more
precise spectral data, namely from the Gutzwiller trace formula with observables.

It is well know that, for any pseudodifferential operator O(x, ~Dx) of symbol O(x, ξ),
there is a result equivalent to (1.2) for the following quantity

(1.3) Tr

(
O(x, ~Dx)ψ

(
H(x, ~Dx)− E

~

))
=
∑

i

〈ϕj , O(x, ~Dx)ϕj〉ψ
(
E − Ei

~

)
,

(here ϕj is meant as the eigenvector of eigenvalue Ej) under the form of an asymptotic
expansion of the form

(1.4) ei
Sγ
~

+σγ

∞∑

k=0

ark(O)~k

where ark are distributions supported on γ.
We will show in the present paper that the knowledge of the coefficients aγk(O) for

O belonging to some family of observables localized near γ is enough to determine the
full Taylor expansion of the total symbol of H(x, ~Dx) near γ, in other words H(x, ~Dx)
microlocally in a formal neighborhood of γ, when γ is non-degenerate elliptic (including
the case where γ is reduced to a point (bottom of a well)). Let us first remark that
the trace formula with any observable microlocalized in a small enough neighborhood of
γ determines obviously its primitive period Tγ . We will assume that any multiple of Tγ is
isolated in the set of the periods of all the periodic trajectories on the same energy shell
(let us remark that in case this condition is not fulfilled, our results remains valid by taking
observables microlocalized in a neighborhood of the non-degenerate elliptic γ). Moreover
it is known ([5, 6]) that the coefficients of trace formula determines the Poincaré angles
modulo 2πZ and we prove in Appendix B that, in the case where γ is not reduced to one
point, any realization of the Poincaré angles as real numbers leads to a different Birkhoff
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normal form but give an explicit symplectomorphism that conjugates one to another:
hence, our reconstruction of the “true” Hamiltonian is independent of the choice of the
realization. We also show that in the “bottom of a well” case, the θis are determined by
the spectrum.

Therefore the only knowledge we will require will be the fact that there exists a geo-
metric periodic trajectory γ, possibly of dimension zero, which is elliptic non-degenerate
(see definition below) and whose set of periods in isolated in the set of periods of the same
energy shell.

We will be concerned by three cases:

(1) γ is a curve
(2) the general “bottom of a well” case (γ reduced to a point)
(3) the “bottom of a well” case when the Hamiltonian is a Schrödinger operator.

Our results will also be of three different kinds :

a. The knowledge of the coefficients of the trace formula for (1), or of some of the
diagonal matrix elements (expectation values) between eigenvectors of the Hamil-
tonian for (2),(3), for a family of observables satisfying some algebraic properties
on γ determine some Fermi coordinates (see definition below). It is the content of
Theorems 1.3, 1.9, 1.13.

b. The knowledge of the coefficients of the trace formula for (1), or of some of the
diagonal matrix elements (expectation values) between eigenvectors of the Hamil-
tonian for (2)-(3), for another family of observables, expressed on any (not neces-
sarily the one determined by a.) Fermi system of coordinates, determine the full
Taylor expansion of the total symbol of the Hamitonian expressed on these Fermi
coordinates (Theorems 1.4, 1.10, 1.14).

c. The combination of the two preceding cases, where the family of observables de-
fined in a. drives the knowledge of the full Hamiltonian. More precisely, the
knowledge of the quantities expressed in a. determines a family of observables,
which is precisely the one defined in b. expressed in the Fermi system determined
in a., the trace coefficients or some of the diagonal matrix elements of which de-
termine the full Taylor expansion of the Hamiltonian on a determined system of
coordinates (Corollaries 1.5, 1.11, 1.15).

Finally we obtain analog classical results as byproduct of the quantum ones in Section
4.

Definition 1.1. A periodic trajectory of the Hamiltonian flow generated byH(x, ξ) is said
to be non-degenerate elliptic if its linearized Poincaré map has eigenvalues (e±iθi)1≤i≤n,
θj ∈ R, and the rotation angles θi (1 ≤ i ≤ n) and π are independent over Q.

Definition 1.2 (Fermi coordinates). We will denote by “Fermi coordinates” any system
of local coordinates of T ∗M near γ, (x, t, ξ, τ) ∈ T ∗(Rn × S1), such that γ = {x = ξ =
τ = 0} and on which the principal symbol Hp of H(x, ~Dx) can be written for any chosen
realization of the Poincaré angles θi ∈ R as:

(1.5) Hp(x, t, ξ, τ) = H0(x, t, ξ, τ) +H2
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where

(1.6) H0(x, t, ξ, τ) = E +
n∑

i=1

θi
x2i + ξ2i

2
+ τ

and

(1.7) H2 = O
(
(x2 + ξ2 + |τ |) 3

2

)

The existence of such local coordinates, guaranteed by the Weinstein tubular neigh-
borhood Theorem ([16]), was proved in [6, 7, 17] under the hypothesis of non-degeneracy
mentioned earlier. However the construction of Fermi coordinates involves the knowledge
of the quadratic part of Hp in a neighborhood of γ. Our first result shows that a system
of Fermi coordinates can be determined by γ only at the classical level and some quantum
spectral quantities. (constructed out of a system of local coordinates near γ and some
quantum spectral quantities.)

Theorem 1.3. Let P k
p , k = 0, 1, . . . , 2n2 + n, p ∈ Z, be any pseudodifferential operators

whose respective principal symbols Pk
p satisfy in a local symplectic system of coordinates

(x, t, ξ, τ) ∈ T ∗(Rn × S1) such that γ = {x = ξ = τ = 0}:
(1.8) P0

p (x, t, ξ, τ) = e−2iπptτ and Pk
p (x, t, ξ, τ) = e−2iπptRk(x, ξ), k = 1, . . . , 2n2 + n

with the property that Rk(0) = ∇Rk(0) = 0 and the Hessians d2Rk(0) are linearly

independent.
An example of such symbols is given by the family,

(1.9)





Q1
ijp(x, t, ξ, τ) = e−2iπptxiξj

Q2
ijp(x, t, ξ, τ) = e−2iπptxixj

Q3
ijp(x, t, ξ, τ) = e−2iπptξiξj
Qp(x, t, ξ, τ) = e−2iπptτ

Then, the knowledge of the coefficients (al1(P
k
p ))0≤k≤2n2+n in (1.3)-(1.4) determines (in a

constructive way) an explicit system of Fermi coordinates near γ.

Theorem 1.4. Let γ be a non-degenerate elliptic periodic trajectory of the Hamiltonian
flow generated by the principal symbol Hp of H(x, ~Dx) on the energy shell H−1

p (E), and

let (x, t, ξ, τ) ∈ Rn × S1 × Rn+1 be a system of Fermi coordinates near γ.
For (m,n, p) ∈ N2n × Z, let Omnp, Op be any pseudodifferential operator whose total

Weyl symbols (in this system of coordinates) Omnp, Op satisfy in a neighborhood of γ:

(1.10)





Omnp(x, t, ξ, τ) = e−i2πpt
n∏

j=1

(
xj+iξj√

2

)mj
(

xj−iξj√
2

)nj

+
∑

2l+N=|m|+|n|+1

O(~l(x2 + ξ2 + |τ |)N
2 )

Op(x, t, ξ, τ) = e−i2πptτ +
∑

2l+N=3

O(~l
(
x2 + ξ2 + |τ |

)N
2 )

Then the knowledge of the coefficients alk(Omnp) and alk(Oq) in (1.3)-(1.4) for k ≤ N
and m,n, p, q satisfying

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) p ∈ Z, q ∈ Z∗
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determines the Taylor expansion near γ up to order M1 in (x, ξ) and M2 in τ , of the
total Weyl symbol, in this system of Fermi coordinates, of H(x, ~Dx) up to order l in ~ at
the condition that 2l +M1 + 2M2 ≤ N .

Concatenating the two preceding results we get the coordinate free statement:

Corollary 1.5. Let P k
p be as in Theorem 1.3. Then the knowledge of the coefficients

al1(Q
k
ijp), a

l
1(Qp) for p ∈ Z, l ∈ Z, 1 ≤ i, j ≤ n, k ∈ {1, 2, 3} determine observables Omnp,

Oq out of which the coefficients alk(Omnp) and a
l
k(Oq), for k ≤ N and m,n, p, q satisfying

conditions (1), (2), (3) in Theorem 1.4, determine modulo a function vanishing to infinite
order on γ, the full symbol of H(x, ~Dx), in a determined system of local coordinates near
γ.

Remark 1.6. It is easy to see that Condition 2 implies that the number of observables
in the transverse to γ directions (for each Fourier coefficient in t) needed for determining
H(x, ~Dx) up to order N is a polynomial function of N of degree n, while the number
of all polynomial functions in (x, ξ, τ) of order N is a polynomial in N of higher degree
2n+ 1. The fact that not all observables are needed can be understood by the fact that
we know that the Hamiltonian we are looking for is conjugated to the normal form by a
unitary operator and not by any operator (see the discussion after Theorem 2.1). At the
classical level this is a trace of the fact that we are looking for a symplectomorphism, and
not any diffeomorphism (see section 4).

Remark 1.7. The asymptotic expansion of the trace (1.3) involves only the microlocaliza-
tion of H(x, ~Dx) in a formal neighborhood of γ. Therefore there is no hope to recover
from spectral data more precise information that the Taylor expansion of its symbol near
γ. The rest of the symbol concerns spectral data of order ~∞.

Let us now consider the case where γ is reduced to one point, namely the “bottom of a
well” case. Let us assume that the principal symbolHp ofH(x, ~Dx) has a global minimum
at z0 ∈ T ∗M, and let d2Hp(z0) be the Hessian of H at z0. Let us define the matrix Ω
defined by d2Hp(z0)(·, ·) =: ωz0(·,Ω−1·) where ωz0(·, ·) is the canonical symplectic form of
T ∗M at z0. The eigenvalues of Ω are purely imaginary, let us denote them by ±iθj with
θj > 0, j = 1 . . . n. Let us assume moreover that θj , j = 1 . . . n are rationally independent.

Definition 1.8. By extension of definition 1.2, we will also denote by Fermi coordinates
any system of Darboux coordinates (x, ξ) ∈ T ∗Rn centered at z0 such that:

(1.11) Hp(x, ξ) = Hp(z0) +

n∑

i=1

θi
x2i + ξ2i

2
+O((x, ξ)3).

The existence of such local coordinates will be proved in section 3, once again by using
the knowledge of the quadratic part of Hp near z0. Our next result shows that one can
explicitely construct Fermi coordinates out of the knowledge of some quantum spectral
quantities.

Theorem 1.9. Let P k, k = 1 . . . 2n2 + n be any pseudodifferential operators whose prin-
cipal symbols Pk is such that Pk(z0) = ∇Pk(z0) = 0 and the Hessians d2Pk(z0) are

linearly independent.
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An example of such symbols is given by the family, 1 ≤ i, j ≤ n, k ∈ {1, 2, 3},

(1.12)





Q1
ij(x, ξ) = xiξj

Q2
ij(x, ξ) = xixj

Q3
ij(x, ξ) = ξiξj

in any system (x, ξ) ∈ T ∗Rn of Darboux coordinates centered at z0.
Then, for any ǫ = ǫ(~) > 0, ~ = o(ǫ(~)) (e.g. ǫ = ~1−η, η > 0), the knowledge of the

spectrum of H(x, ~Dx) in [Hp(z0), Hp(z0) + ǫ] and the diagonal matrix elements of P k

between the corresponding eigenvectors of H(x, ~Dx) determines (in a constructive way)
an explicit system of Fermi coordinates.

Theorem 1.10. For (m,n) ∈ N2n, let Omn be any pseudodifferential operator whose total
Weyl symbol Omn satisfy in a neighborhood of z0:

Omn(x, ξ) =

n∏

j=1

(
xj + iξj√

2

)mj
(
xj − iξj√

2

)nj

+
∑

2l+N=
|m|+|n|+1

O
(
~l
(
x2 + ξ2

)N
2

)
(1.13)

in a system (x, ξ) ∈ T ∗Rn of Fermi coordinates centered at z0.
Then the knowledge of the spectrum of H(x, ~Dx) in [Hp(z0), Hp(z0) + ǫ] with ~1−α =

O(ǫ) for some α > 0, and the diagonal matrix elements of Omn between the corresponding
eigenvectors of H(x, ~Dx),

for:

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0,

determines the Taylor expansion up to order N of the full symbol of H(x, ~Dx) at z0 in
the coordinates (x, ξ).

Corollary 1.11. The diagonal matrix elements of the operators P k as in Theorem 1.9
determine observables Omn whose diagonal matrix elements as in Theorem 1.10 determine,
modulo a function vanishing to infinite order at z0, the full symbol of H(x, ~Dx), in a
determined system of local coordinates near z0.

Remark 1.12. Although we will not prove it here, let us remark that Theorem 1.10 (and
also Theorem 1.4) is also valid in the framework of quantization of Kälherian manifolds.

In the case where H(x, ~Dx) is a Schrödinger operator −~2∆+V , it is known, [9], that
the (actually classical) normal form determines the Taylor expansion of the potential in
the case where the latter is invariant, for each i = 1 . . . n, by the symmetry xi → −xi. The
same result holds without the symmetry assumption in the case n = 1, with assumption
V ′′′(0) 6= 0, as it has been shown in [3].

Let now H = −~2∆+ V be a Schrödinger operator and q0 be a global non-degenerate
minimum of V . Let us assume that the square-roots (θi)1≤i≤n of the eigenvalues of d2V (q0)
are linearly independent over the rationals. In that precise case, we will denote by Fermi
coordinates any system of Darboux coordinates (x, ξ) ∈ T ∗Rn, in which the (principal
or total, both notions are equivalent here) symbol H of our Schrödinger operator can be
written as:

(1.14) H(x, ξ) = V (q0) +

n∑

i=1

θi
x2i + ξ2i

2
+R(x)
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where R(x) = O(x3). The existence of such local coordinates will also be proved in section
3, and Theorem 1.13 below proves that one can explicitely construct Fermi coordinates
out of any system of local coordinates centered at q0.

Theorem 1.14 shows that the matrix elements of only a finite number of observables
are necessary to recover the full Taylor expansion of the potential in the general case.

Theorem 1.13. Let P k, k = 1 . . . n(n+1)
2 be any pseudodifferential operators whose prin-

cipal symbols are potentials Pk such that Pk(q0) = ∇Pk(q0) = 0 and the Hessians

d2Pk(q0) are linearly independent (an example of such potentials is the family Q2
ij(x) =

xixj in a local system of coordinates centered at q0).
Then, for any ǫ = ǫ(~) > 0, ~ = o(ǫ), the knowledge of the spectrum of H(x, ~Dx)

in [V (q0), V (q0) + ǫ] and the diagonal matrix elements of P k, k = 1 . . . n
2+n
2 between the

corresponding eigenvectors of H(x, ~Dx) determines (in a constructive way) an explicit
system of Fermi coordinates.

Theorem 1.14. Let (x, ξ) ∈ T ∗Rn be a system of Fermi coordinates centered at (q0, 0).
Then the knowledge of the spectrum of H(x, ~Dx) in [V (q0), V (q0)+ǫ] with ~1−α = O(ǫ)

for some α > 0, and the diagonal matrix elements of the 2n − 1 observables Om0, m =
(m1, . . . ,mn) ∈ {0, 1}n \ {0}, defined in Theorem 1.10, between the corresponding eigen-
vectors of H(x, ~Dx) determines the full Taylor expansion of V at q0 in the coordinates
x.

Corollary 1.15. The diagonal matrix elements of the operators P k as in Theorems 1.13
determine 2n − 1 observables Om0 whose diagonal matrix elements as in Theorem 1.14
determine the potential V up to a function vanishing to infinite order at q0.

Remark 1.16. Note that since we are dealing with observables localized near the bottoms
of the wells, the hypothesis that z0 in Theorems 1.9-1.10 and q0 in Theorems 1.13 and
1.14 are global minima can be released and the corresponding results can be formulated
in a straightforward way.

The proof of Theorem 1.4 relies on two results having their own interest per se: Propo-

sition 2.13 which shows that the coefficients of the trace formula determine the matrix
elements 〈ϕj , O(x, ~Dx)ϕj〉 where ϕj are the eigenvectors of the normal form of the Hamil-
tonian, and Proposition 2.14 which states that the knowledge of the matrix elements of
the conjugation of a given known selfadjoint operator by a unitary one determines, in a
certain sense, the latter.

As a byproduct of Proposition 2.14 we obtain also a purely classical result, somehow
analog of it: the averages on Birkhoff angles associated to Birkhoff coordinates of the same
classical observables than the ones in Theorem 1.4 determine the Taylor expansion of the
(true) Hamiltonian. This is the content of Theorem 4.2 below.

The paper is organized as follows. Section 2 is devoted to the proof of Theorems 1.4,
1.10 and 1.14. In section 3, we give an explicit construction of some Fermi coordinates out
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of any system of local coordinates in both the periodic and “Bottom of the well” case: this
is the content of Theorems 1.3, 1.9 and 1.13. In Section 4 we show the classical equivalent
of our quantum formulation.

Through the whole paper, Jl,mK, l < m, will stand for the set of integers {l, . . . ,m}
and we we will assume, without loss of generality, that the period of γ is equal to 1.

2. Recovering the Hamiltonian in some given Fermi coordinates

Let us start this section by observing that, by microlocalization near γ, it is enough, in
order to prove Theorem 1.4, to prove Theorem 2.1 below, which is nothing but the same
statement expressed in a local Fermi system of coordinates.

The proof of Theorem 2.1 will need a construction of the quantum Birkoff normal form,
given in subsection 2.1. The rest of the proof is then a consequence of Proposition 2.13
(subsection 2.2) and Proposition 2.14 (subsection 2.3). Subsection 2.4 contains the proof
of the analogs of Theorem 1.4 when γ is reduced to a single point, both in the general and
“Schrödinger” cases (Theorems 1.10 and 1.14).

Theorem 2.1. Let H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential op-
erator on L2(Rn×S1). Let (x, t, ξ, τ) ∈ T ∗(Rn×S1) be the canonical symplectic coordinates
and let us assume that γ = S1 = {x = ξ = τ = 0} is a non degenerate elliptic periodic
orbit of the Hamiltonian flow generated by the principal symbol Hp of H(x, ~Dx) on the
energy shell H−1

p (E).
Let us assume moreover that Hp can be written in these coordinates as:

(2.1) Hp(x, t, ξ, τ) = H0(x, t, ξ, τ) +H2

where

(2.2) H2 = O
(
(x2 + ξ2 + |τ |) 3

2

)

And H0 is equal to:

(2.3) H0(x, t, ξ, τ) = E +

n∑

i=1

θi
x2i + ξ2i

2
+ τ

For (m,n, p) ∈ N2n × Z×, let Omnp, Op be any pseudodifferential operator whose total
Weyl symbols Omnp, Op satisfy in a neighborhood of γ:

(2.4)





Omnp(x, t, ξ, τ) = e−i2πpt
∏n

j=1

(
xj+iξj√

2

)mj
(

xj−iξj√
2

)nj

+
∑

2l+N=|m|+|n|+1

O(~l
(
x2 + ξ2 + |τ |

)N
2 )

Op(x, t, ξ, τ) = e−i2πptτ +
∑

2l+N=3

O(~l
(
x2 + ξ2 + |τ |

)N
2 )

Then the knowledge of the coefficients alk(Omnp) and alk(Oq) in (1.3)-(1.4) for k ≤ N
and m,n, p, q satisfying

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) p ∈ Z, q ∈ Z∗

determines the Taylor expansion near γ of the full symbol (in the system of coordinates
(x, t, ξ, τ)) of H(x, ~Dx) up to order N .
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The proof of Theorem 2.1 will be divided into three steps: first, we will prove in Propo-
sition 2.2 the existence of the quantum Birkhoff normal form in a form convenient for our
computations, especially concerning the discussion of orders. In Proposition 2.13, we will
show that the trace formula with any observable O determines the matrix elements of O
in the eigenbasis of the normal form. Finally, in Proposition 2.14, we will show that these
matrix elements determines H(x, ~Dx) in a formal neighborhood of x = ξ = τ = 0, which
will lead to Theorem 2.1.

Let us first fix some notations and standrad results. For i ∈ J1, nK := {1, . . . , n}, we
define the following operators on L2(Rn × S1):

• ai =
1√
2
(xi + ~∂xi

)

• a∗i = 1√
2
(xi − ~∂xi

)

• Dt = −i~∂t
• Pi :=

1
2

(
−~∂2xi

+ x2i
)
= a∗i ai +

~

2

For µ ∈ Nn, ν ∈ Z we will denote by |µ, ν〉 the common eigenvectors of P1 . . . Pn and Dt:

(2.5) Pi|µ, ν〉 = (µi +
1

2
)~|µ, ν〉 and Dt|µ, ν〉 = 2π~ν|µ, ν〉.

These vectors are explicitly constructed as follows:

(2.6) |0, 0〉(x, t) := 1

(π~)
n
4
e

−x2

2~ , |µ, ν〉(x, t) := ei2πνt
n∏

i=1

1√
µi!~|µ|

a∗µi

i |0, 0〉(x, t)

We will also need the notation

(2.7) |µ〉(x) := |µ, 0〉(x, 0)
We will not need the explicit expressions of |µ, ν〉(x, t) and |µ〉(x) in terms of rescaled
Hermite functions, but rather use the following indentites:

(2.8)





ai|µ, ν〉 =
√
µi~|µ1, . . . , µi−1, µi − 1, µi+1, . . . , µn, ν〉

a∗i |µ, ν〉 =
√
(µi + 1)~|µ1, . . . , µi−1, µi + 1, µi+1, . . . , µn, ν〉

[ai, a
∗
j ] = δij~, [ai, aj ] = 0.

We shall write |µ| :=
n∑

i=1

µi, zi = xi+iξi√
2

, pi =
x2
i+ξ2i
2 and denote by OpW (f) the

pseudodifferential operator whose total Weyl symbol is f . We have

(2.9) OpW (zi) = ai, OpW (z̄i) = a∗i , OpW (ziz̄i) = Pi and OpW (τ) = Dt

Finally, we will denote by a, a∗ or P the n-tuple of operators ai, a
∗
i , Pi, i ∈ J1, nK and

denote for j n-tuple of nonnegative integers, Xj =
n∏

i=1

Xji
i .

2.1. Construction of the Quantum Birkhoff normal form. Our construction of the
normal form, inspired by [7], is the content of the following Proposition.

Proposition 2.2. Let H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential
operator on L2(Rn × S1), whose principal symbol is
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(2.10) Hp(x, t, ξ, τ) = H0(p, τ) +H2

where H0(p, τ) =
∑n

i=1 θipi + τ and H2 vanishes to the third order on x = ξ = τ = 0.

Then for any N ≥ 3, there exists a self-adjoint semiclassical elliptic pseudodifferen-

tial operator W̃≤N and a smooth function h(p1, . . . , pn, τ, ~) satisfying microlocally in a
neighborhood of x = ξ = τ = 0 the following statement:

∀M > 0, ∃CN = CN (M) > 0, ∀(µ, ν, ~) ∈ Nn × Z× [0, 1[, |µ~|+ |ν~| < M,
∣∣∣∣
∣∣∣∣
(
e

iW̃≤N
~ He

−iW̃≤N
~ − h(P1, . . . , Pn, Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ ≤ CN (|µ~|+ |ν~|)N+1

2
(2.11)

The operators W̃≤N can be computed recursively in the form:

(2.12) W̃≤N =W≤N + (D2
t +

n∑

i=1

Pi)
N+1

where

(2.13)




W≤N =

∑
3≤q≤N Wq

Wq :=
∑

2p+|j|+|k|+2m=q

αpjkm(t)~pOpW (zj z̄k)Dm
t

with αpjkm smooth and Wq is symmetric.

Remark 2.3 (Important convention). We are only interested in recovering the Hamil-
tonian in a formal neighborhood of γ: every asymptotic expansion is meant microlocally
and we will be rewriting equations such as (2.11) simply as:

(2.14)

∣∣∣∣
∣∣∣∣
(
e

iW̃≤N
~ He

−iW̃≤N
~ − h(P1, . . . , Pn, Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ = O

(
|µ~|+ |ν~|)N+1

2

)

By abuse of notation, we will identify the same way any operator with its version microlo-
calized near γ.

Remark 2.4. We introduce W̃≤N in order to gain ellipticity and self-adjointness like it has
been done in Lemma 4.5 of [7].

The proof of Proposition 2.2 will need several preliminaries:

Definition 2.5. We will say that a pseudodifferential operator A on L2(Rn × S1) is
“polynomial of order r ∈ N” (PO(r)) if there exists αpjkm ∈ C∞(S1,C) such that:

(2.15) A =
∑

2p+|j|+|k|+2m=r

αpjkm(t)~pOpW (zj z̄k)Dm
t

These operators have the following properties.

Proposition 2.6. Let A be a pseudodifferential operator on L2(Rn × S1). Then, there
exists a family of operators Ar, r ∈ N such that for any i ∈ N, Ar is PO(r) and

(2.16) ∀N ∈ N,

∥∥∥∥∥

(
A−

N∑

r=0

Ar

)
|µ, ν〉

∥∥∥∥∥ = O
(
(|µ~|+ |ν~|)

N+1
2

)
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Let us define a notion of suitable asymptotic equivalence.

Definition 2.7. Let us introduce for any operator A the notations ⌊A⌋r et ⌊A⌋≤N which
represent respectively the terms of order r and of order smaller or equal to N in the
expansion (2.16).
If A and B are two operators, we will write A ∼ B if, for any r ∈ N, ⌊A⌋r = ⌊B⌋r.
Also, if (An)n∈N is a family of operators, we will write that:

(2.17) A ∼
+∞∑

n=0

An

if for any N ∈ N, ⌊An⌋≤N is zero for n sufficiently large, and the finite sum:

(2.18)

+∞∑

n=0

⌊An⌋≤N = ⌊A⌋≤N .

Proof of proposition 2.6. Let a be the total Weyl symbol of A. Let us define the family
(αpjkm)(p,m,j,k)∈N2×(Nn)2 of functions on S1 by the Taylor expansion of a near z = z̄ =
τ = ~ = 0, for any N ∈ N:

(2.19) a(z, t, z̄, τ, ~) =

N∑

r=0

∑

2p+|j|+|k|
+2m=r

αpjkm(t)~pzj z̄kτm +

N+1
2∑

p=0

O
(
~p(|z|2 + |τ |)N+1

2 −p
)

For any r ∈ N, let us notice (z, t, z̄, τ, ~) 7→ ∑
2p+|j|+|k|+2m=r αpjkm(t)~pzj z̄kτm is the

total symbol of a pseudodifferential operator Ar, which is PO(r). And by (2.5), (2.9) and
(2.19) (see [7]):

∀N ∈ N,

∥∥∥∥∥

(
A−

N∑

r=0

Ar

)
|µ, ν〉

∥∥∥∥∥ =

N+1
2∑

p=0

~pO
(
(|µ~|+ |ν~|)

N+1
2 −p

)

= O
(
(|µ~|+ |ν~|)

N+1
2

)
.

(2.20)

This concludes the proof. �

The following lemma will be crucial for our computations.

Lemma 2.8. Let F and G be PO(r) and PO(r′) respectively then [F,G]
i~ is PO(r+ r′ − 2).

Proof. The proof of Lemma 2.8 will be a direct consequence of the two following lemmas,
whose proof will be given at the end of this proof.

Lemma 2.9. Any monomial operator of order r, that is of the form α(t)~pb1 . . . blD
m
t ,

where:

• for j ∈ J1, lK, bj ∈ {a1, a∗1, . . . , an, a∗n}
• 2p+ l + 2m = r

is PO(r).

Lemma 2.10. If F and G are monomials of order r and r′ respectively, then [F,G]
i~ is

PO(r + r′ − 2)
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Indeed, any PO(r) is a finite sum of monomials of the same order, hence if F and G

are PO(r) and PO(r′) respectively, then [F,G]
i~ is a finite sum of quantities of type [F̃ ,G̃]

i~

where F̃ and G̃ are monomials of order r and r′ respectively. Any of those quantities are
PO(r+r′−2) by Lemmas 2.9 and 2.10, and a finite sum of PO(r+r′−2) is PO(r+r′−2).
Lemma 2.8 is proved. �

Let us prove now Lemmas 2.9 and 2.10:

Proof of Lemma 2.9. Since for any i, j ∈ J1, nK, i 6= j, ai and a∗i commute with both aj
and a∗j , it is sufficient to prove that any ordered product b1 . . . bl, where l ≥ 1 and for

any j ∈ J1, lK, bj ∈ {a1, a∗1}, is PO(r). For any such ordered product, let us introduce the
integer k(b1 . . . bl) = ♯{m ∈ J1, lK, bm = a∗1}.

We will proceed by induction on l. Let us define for any positive integer l the following
assertion

(Al): “Any ordered product b1 . . . bl, where for any j ∈ J1, lK, bj ∈ {a1, a∗1}, is the sum

of the operator OpW (zl−k
1 z̄k1 ) (where k = k(b1 . . . bl) and of a linear combination of the

operators ~pOpW (zj1 z̄
m
1 ) with p ≥ 1, 2p+ j +m = l and j −m = l − 2k. ”.

If l = 1, there is nothing to prove since a1 = OpW (z1) and a
∗
1 = OpW (z̄1).

If l = 2, 



a21 = OpW (z21)

a∗21 = OpW (z̄21)

a1a
∗
1 = P1 +

~

2 = OpW (z1z̄1) +
~

2

a∗1a1 = OpW (z1z̄1)− ~

2

and therefore, the assertion is proved for l = 2.
Now, let l be a positive integer, and let us assume (Ak) up to order k = l. Let

B = b1 . . . bl+1 be an ordered product, where for any j ∈ J1, l+ 1K, bj ∈ {a1, a∗1}.
If for any j ∈ J1, lK, bj = bj+1, then B = OpW (zl+1

1 ) or B = OpW (z̄l+1
1 ).

Otherwise, one can assume that b1 = a1, and that j0 = max{j ∈ J1, l + 1K, bj = a1}
satisfies: 1 ≤ j0 ≤ l. Then, we have: [aj01 , a

∗
1] = j0~a

j0−1
1 , so that:

(2.21) b1 . . . bl+1 = aj01 a
∗
1bj0+2 . . . bl+1 = a∗1a

j0
1 bj0+2 . . . bl+1 + ~j0a

j0−1
1 bj0+2 . . . bl+1

Therefore, if one sets k := k(b1 . . . bl+1), since
(
l+1
k

)
=
(
l
k

)
+
(

l
k−1

)
:

(
l+ 1

k

)
b1 . . . bl+1 =

(
l

k

)
aj01 a

∗
1bj0+2 . . . bl+1 +

(
l

k − 1

)
a∗1a

j0
1 bj0+2 . . . bl+1

+ ~

(
l

k − 1

)
j0a

j0−1
1 bj0+2 . . . bl+1

(2.22)

(Al−1) gives us that a
j0−1
1 bj0+2 . . . bl+1 is a linear combination of the operators ~pOpW (zj1z̄

m
1 )

with 2p+ j +m = l − 1 and j −m = l + 1− 2k.
Let us now observe that

(2.23)

(
l + 1

k

)
OpW (zl+1−kz̄k) =

(
l

k

)
a1Op

W (zl−kz̄k) +

(
l

k − 1

)
a∗1Op

W (zl+1−kz̄k−1)

so that (Al), for ordered products aj0−1
1 a∗1bj0+2 . . . bl+1 and aj01 bj0+2 . . . bl+1, gives us, by

equation that
(
l+1
k

)
b1 . . . bl+1 is the sum of

(
l
k

)
a1Op

W (zl−kz̄k)+
(

l
k−1

)
a∗1Op

W (zl+1−kz̄k−1) =
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(
l+1
k

)
OpW (zl+1−kz̄k) and a linear combination of the operators ~pOpW (zj1 z̄

m
1 ) with p ≥ 1,

2p+ j +m = l + 1 and j −m = l + 1− 2k �

Proof of Lemma 2.10. It is sufficient to remark that if F and G are of the form:

F = α(t)b1 . . . blD
m
t and G = β(t)b′1 . . . b

′
l′D

m′

t

where:

• α and β are smooth
• l + 2m = r, l′ + 2m′ = r′

• For j ∈ J1, lK, for j′ ∈ 1, l′K, bj, b′j′ ∈ {a1, a∗1}
then [F,G]

i~ is a finite sum of monomials of order r + r′ − 2 since, by Lemma 2.9, each of
them is PO(r + r′ − 2). With those assumptions on F and G, we get:

[F,G]

i~
=
[α(t)b1 . . . blD

m
t , β(t)b

′
1 . . . b

′
l′D

m′

t ]

i~

=α(t)β(t)
[b1 . . . bl, b

′
1 . . . b

′
l′ ]

i~
Dm+m′

t + α(t)b1 . . . bl
[Dm

t , β(t)]

i~
b′1 . . . b

′
l′D

m′

t

−β(t)b′1 . . . b′l′
[Dm′

t , α(t)]

i~
b1 . . . blD

m
t

(2.24)

Therefore it is sufficient to prove that
[b1...bl,b

′
1...b

′
l′
]

i~ ,
[Dm

t ,β(t)]
i~ and

[Dm′

t ,α(t)]
i~ are respectively:

PO(l+ l′−2), PO(2m−2) and PO(2m′−2) (with the convention that a PO(j) with j < 0
is 0).
For the two last, it is quite obvious, since:

(2.25)
[Dm

t , β(t)]

i~
=

m−1∑

k=0

(
m

k

)
(i~)m−k−1β(m−k)(t)Dk

t

Now, for j ∈ J1, l′K, let us set ǫj = 1 if b′j = a∗1, ǫj = −1 otherwise. Since [a1, a
∗
1] = ~, we

get:

b1 . . . blb
′
1 . . . b

′
l′ = b′1b1 . . . blb

′
2 . . . b

′
l′ +

ǫ1 + 1

2
~

l∑

k=1
bk=a1

b1 . . . bk−1bk+1 . . . blb
′
2 . . . b

′
l′

+
ǫ1 − 1

2
~

l∑

j=1
bk=a∗

1

b1 . . . bk−1bk+1 . . . blb
′
2 . . . b

′
l′

Hence by induction on j ∈ J1, l′K:

[b1 . . . bl, b
′
1 . . . b

′
l′ ]

i~
=− i

l′∑

j=1

ǫj + 1

2

l∑

k=1
bk=a1

b′1 . . . b
′
j−1b1 . . . bk−1bk+1 . . . blb

′
j+1 . . . b

′
l′

− i
l′∑

j=1

ǫj − 1

2

l∑

k=1
bk=a∗

1

b′1 . . . b
′
j−1b1 . . . bk−1bk+1 . . . blb

′
j+1 . . . b

′
l′

(2.26)

The right-hand side of (2.26) is a finite sum of monomials of order l + l′ − 2, hence it is
PO(l+ l′ − 2) by Lemma 2.9, and Lemma 2.10 is proved. �
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Proposition 2.11. Let G be PO(r). There exists F , PO(r), and G1 = G1(P1, . . . , Pn, Dt, ~)
such that:

(2.27)
[H0(P,Dt), F ]

i~
= G+G1

Moreover, F is symmetric if G is symmetric, G1 = 0 if r is odd, and G1 is an homogeneous
polynomial function of total order r

2 if r is even.

Remark 2.12. If F =
∑

2p+|j|+|k|+2m=r αpjkm(t)~pOpW (zj z̄k)Dm
t , one can choose:

(2.28)

∫

S1

αpjjm(t)dt = 0

Indeed, any OpW (zj z̄j)Dm
t commutes with H0(P,Dt, ~). It is the choice we will make

through this article.

Proof of Proposition 2.11. Let us first assume that G is a monomial of order r: G =
β(t)b1 . . . blD

m
t where:

• α is smooth
• l + 2m = r
• For j ∈ J1, lK, bj ∈ {a1, a∗1, . . . , an, a∗n}

and let us look for F of the form: F = α(t)b1 . . . blD
m
t . We have:

[H0, F ]

i~
=
[H0, α(t)b1 . . . blD

m
t ]

i~

=α(t)

n∑

s=1

θs
[Ps, b1 . . . bl]

i~
Dm

t +
[Dt, α(t)]

i~
b1 . . . blD

m
t

=α(t)
n∑

s=1

θs
[Ps, b1 . . . bl]

i~
Dm

t + α′(t)b1 . . . blD
m
t

(2.29)

If we set, for s ∈ J1, nK, ks = ♯{m ∈ J1, lK, bm = a∗s} and js = ♯{m ∈ J1, lK, bm = as}, we
deduce from (2.26) that:

(2.30)
[Ps, b1 . . . bl]

i~
= i(js − ks)b1 . . . bl

Hence:

(2.31)
[H0, F ]

i~
= i

n∑

s=1

θs(js − ks)α(t)b1 . . . blD
m
t + α′(t)b1 . . . blD

m
t

[H0,F ]
i~ = G admits a solution if there exists α such that:

(2.32) i

n∑

s=1

θs(js − ks)α(t) + α′(t) = β(t)

If (cp(α))p∈Z and (cp(β))p∈Z are the Fourier coefficients of α and β, it is sufficient that,
for p ∈ Z, cp(α) is solution of:

(2.33) i

(
n∑

s=1

θs(js − ks) + 2πp

)
cp(α) = cp(β)
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and

(2.34) cp(α) =
p→+∞

O

(
1

|p|∞
)

If the n-tuples j and k are different, the non-degeneracy condition on the θis together with

the fact that cp(β) =
p→+∞

O
(

1
|p|∞

)
(because β is smooth), gives the existence of cp(α)

satisfying (2.33) and (2.34).
If r is odd, j and k can’t be equal, hence Proposition 2.11 is proved in this case (r odd
and G monomial)
If r is even, and j = k, there exists a family (cp(α))p∈Z∗ satisfying (2.33) and (2.34).
Hence, if α is the smooth function with Fourier coefficients cp(α) for p 6= 0 and c0(α) = 0,
we get:

(2.35)
[H0, F ]

i~
= G+ c0(β)b1 . . . blD

m
t

And from the proof of Lemma 2.9, we know that c0(β)b1 . . . blD
m
t can be reordered as the

sum: G1(P,Dt, ~) := c0(β)
∑

2p+2|k|=l ap,k~
pP kDm

t . Therefore, Proposition 2.11 is proved

in the case where r is even and G is monomial.
The general case is easily deduced from the case where G is monomial, since G is a finite
sum of monomials of the same order.
Also, the form of F allows us to conclude immediately that F is symmetric if G is so. �

Now we have everything we need for the proof by induction of Proposition 2.2.

Proof of Proposition 2.2. Microlocally near x = ξ = τ = 0, H(x, ~Dx) satisfies, in the
sense of Definition 2.7,

(2.36) H := H(x, ~Dx) ∼ H0(P1, . . . , Pn, ~Dt) +
∑

q≥3

Hq, Hq := ⌊H(x, ~Dx)⌋q

Let us set W≤2 = 0, and construct by induction (Wq)q≥3 and (Hq)q≥3, such that:

• for q ≥ 3, Wq is PO(q) and Hq is zero if q is odd, an homogeneous polynomial
function of total order q

2 if q is even.
• and for any q ≥ 3:

i

~
[Wq, H0]+Hq+

 i
~
[W≤q−1, H −H0] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W≤q−1, . . . ,W≤q−1, H ]


q

= Hq(P,Dt, ~)

The existence of such a family is garanteed by Proposition 2.11.

Let us set, for any N ≥ 3, W̃≤N :=
∑N

q=3Wq +(|Dt|2 +
∑n

i=1 Pi)
N+1

2 . As for any q ≥ 2

H2q is an homogeneous polynomial function of total order q, we can choose, by Borel’s
lemma, a smooth function h such that, for any N ≥ 2 and in a neighborhood of p = τ = 0:

(2.37)

∣∣∣∣∣h(p, τ, ~)−H0(p, τ) −
N∑

q=2

H2q(p, τ, ~)

∣∣∣∣∣ = O
(
(|p|+ |τ | + |~|)N+1

)
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We have, for any N ≥ 3:

e
iW̃≤N

~ He
−iW̃≤N

~ ∼ H +
i

~
[W̃≤N , H ] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]

∼ H +
i

~
[W≤N , H0] +

i

~
[W≤N , H −H0] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]

+
i

~
[W̃≤N −W≤N , H ]

Since the for any q ≤ N , Wq is PO(q) and H0 is PO(2), Lemma 2.8 gives us that:

(2.38)

⌊
i

~
[W≤N , H0]

⌋

q

=
i

~
[Wq, H0]

Since the expansion of H − H0 in PO(r) contains no term of order less or equal to 2,
Lemma 2.8 also gives for q ≤ N :

(2.39)

⌊
i

~
[W≤N , H −H0]

⌋

q

= ⌊ i
~
[W≤q−1, H −H0]⌋q

Lemma 2.8 finally gives us, that since the expansion of H(x, ~Dx) in PO(r) contains no

term of order less or equal to 1 and the one of W̃≤N no term of order less or equal to 2
for q ≤ N :

(2.40)


∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]


q

=

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W≤q−1, . . . ,W≤q−1, H ]


q

and since the one of W̃≤N −W≤N contains no term of order less or equal to N + 1:

(2.41) ⌊ i
~
[W̃≤N −W≤N , H ]⌋q = 0

Therefore for any q ≤ N :

(2.42)

⌊
e

iW̃≤N
~ He

−iW̃≤N
~

⌋

q

= Hq(P,Dt, ~) = ⌊h(P,Dt, ~)⌋q

Finally Proposition 2.6 gives us:

(2.43)

∣∣∣∣
∣∣∣∣
(
e

iW̃≤N
~ He

−iW̃≤N
~ − h(P,Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ = O

(
|µ~|+ |ν~|)N+1

2

)

which concludes the proof. �

2.2. Recovering the matrix elements from the Trace formula. The next result is
the first inverse result needed for the proof of Therorem 2.1.

Proposition 2.13. Let O be a pseudodifferential operator whose principal symbol vanishes
on γ.
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(1) There exists a smooth function f vanishing at (0, 0, 0) such that for any N ≥ 3:

(2.44) 〈µ, ν|e
iW̃≤N

~ Oe
−iW̃≤N

~ |µ, ν〉 = f

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N

2

)

Moreover let, for any integer l, φl be a Schwartz function whose Fourier transform
is compactly supported in (l − 1, l + 1) and let (alj(O))l≥0 provided by the trace
formula (1.4). Then

(2) The Taylor expansion of f up to order N is entirely determined by the family
(alj(O)), 0 ≤ j ≤ N , l ∈ N.

Proof. Let us first prove point (1). Let us consider a monomial G = α(t)b1 . . . blD
m
t where:

• α is smooth
• l + 2m = r
• For j ∈ J1, lK, bj ∈ {a1, a∗1, . . . , an, a∗n}

Let us set for i ∈ J1, nK, ki = ♯{m ∈ J1, lK, bm = a∗i } and ji = ♯{m ∈ J1, lK, bm = ai}.
If j 6= k or α /∈ C, then: 〈µ, ν|G|µ, ν〉 = 0 for any (µ, ν) ∈ Nn × Z.
If now j = k and α ∈ C, then there exists complex numbers αl (0 ≤ li ≤ ji for

i ∈ J1, nK), such that:

(2.45) G =
∑

0≤li≤ji

αl~
|l|P j1−l1

1 . . . P jn−ln
n Dm

t , α0 = α

Therefore for any (µ, ν) ∈ Nn × Z:

(2.46) 〈µ, ν|G|µ, ν〉 =
∑

0≤li≤ji

αl~
|l|
((

µ+
1

2

)
~

)j−l

(2πν~)m

Hence, if G is PO(r), then for any (µ, ν) ∈ Nn × Z:

• 〈µ, ν|G|µ, ν〉 = 0 if r is odd.
• If r is even, there exists an homogeneous polynomial function g of order r

2 such
that:

(2.47) 〈µ, ν|G|µ, ν〉 = g

(
(µ+

1

2
)~, 2πν~, ~

)

By Proposition 2.6 and Borel’s lemma, we get that that for any operator A there exists
a function g such that for any (µ, ν) ∈ Nn × Z:

(2.48) 〈µ, ν|A|µ, ν〉 = g

(
(µ+

1

2
)~, 2πν~, ~

)
+O ((|µ~|+ |ν~|)∞)

Hence, the only point which remains to be proved, is that the function f in point (1) does
not depend on N . It is therefore sufficient to prove that for any q ≤ N − 1,

(2.49)

⌊
e

iW̃≤N
~ Oe

−iW̃≤N
~

⌋

q

=

⌊
e

iW̃≤q+1
~ Oe

−iW̃≤q+1
~

⌋

q

But (2.49) is a direct consequence of Lemma 2.8. Indeed,

(2.50) e
iW̃≤N

~ Oe
−iW̃≤N

~ ∼ O +
∑

l≥1

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , O]
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and since the principal symbol of O vanishes on γ, Lemma 2.8 gives us for any l ≥ 1 and
any q ≤ N − 1:

(2.51)


il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , O]


q

=


il

~ll!
[

l times︷ ︸︸ ︷
W̃≤q+1, . . . , W̃≤q+1, O]


q

Let us now move on to the proof of point (2).

Since φ̂l is supported near a single period of the flow, one can microlocalize the trace
formula with observables near γ:

(2.52) Tr

(
Oφl

(
H − E

~

))
= Tr

(
O

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eitH−E
~ dt

)
+O(~∞)

where ρ ∈ C∞
0 (R) is compactly supported and ρ = 1 in a neighborhood of p = τ = 0.

Therefore we can conjugate (2.52) by the microlocally unitary operator e
iW̃≤N

~ :

Tr

(
Oφl

(
H − E

~

))
=

= Tr


(e

iW̃≤N
~ Oe

−iW̃≤N
~

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit e

iW̃≤N
~ He

−iW̃≤N
~ −E

~ dt


+O(~∞)

Thanks to Proposition 2.2, we can lighten the r.h.s. for any (µ, ν) ∈ Nn × Z

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit e

iW̃≤N
~ He

−iW̃≤N
~ −E

~ dt|µ, ν〉

=

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉

(2.53)

As φ̂l is smooth and compactly supported, together with the non-degeneracy condition
on the θis, we can assure that if we choose a sufficiently small support for ρ, we have for
any η > 0:

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉

=

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~η

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉+O(~∞)
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Hence, choosing η < 1
2 :

Tr

(
Oφl

(
H − E

~

))
+O(~∞)

=
∑

µ,ν

〈µ, ν|e
iW̃≤N

~ Oe
−iW̃≤N

~ |µ, ν〉 ×
∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |ν|)~η

)
eit(2πν+θ.(µ+ 1

2 )) . . .

. . . exp


 it

~

∑

1≤q≤N−2

Hq

(
(µ+

1

2
)~, ν~, ~

)
+O

(
(|µ|+ |ν|)N+1

2 ~
N−1

2

)

 dt

=
∑

µ,ν

∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~η

)
eit(2πν+θ.(µ+ 1

2 ))


1 +

N−1
2∑

i≥1

~iQi(µ+
1

2
, ν, t)


×

N+1
2∑

p≥1

∑

|k|+m≤p

bk,m,p−|k|−m(µ+
1

2
)k(2πν)m~pdt+O(~

N+1
2 )

where for any i ≤ N−1
2 , Qi is a determined polynomial function, of degree in

(
µ+ 1

2 , ν
)

less or equal to i+1, which depends on the Hqs and the Taylor expansion of exp, and the
bk,m,s ((k,m, s) ∈ Nn+2\{0}) come from the Taylor expansion at (0, 0, 0) of the function
f defined in the first point of Proposition 2.13, i.e. for any N ≥ 1:

(2.54) f(x, y, z) =
∑

1≤|k|+m+s≤N

bk,m,sx
kymzs +O

(
|x|+ |y|+ |z|)N+1

)

Now, let us set:

(2.55) ∀t ∈ R∗, ∀α ∈ (R\2π
t
Z)n, g(t, α) :=

ei
t
2 (α1+···+αn)

∏
i(1− eitαi)

By the non-degeneracy condition on the θis, g is well defined on the compact support of

φ̂l around a single period, which is precisely l. It also implies that θi.µ is bounded below
by C|µ| (where C > 0) as |µ| goes to ∞.
Therefore we get from the Poisson formula and the Riemann-Lebesgue lemma that the
quantity Xp(l) below can be computed recursively on p ≤ N+1

2 from the alj(O), j =
0, . . . , p:

Xp(l) =
∑

|k|+m≤p

bk,m,p−|k|−m

[(
−i ∂
∂t

)m
(
φ̂l(t)

(−i
t

)k
∂kg

∂αk
(t, α)

)]
(l, θ)

=
∑

|k|+m≤p

bk,m,p−|k|−m

[(
−i ∂
∂t

)m(
−i ∂
t∂α

)k

g

]
(l, θ)

(2.56)

since φ̂l is identically 1 around l.

Now, let us set, for any i ∈ J1, nK, any t ∈ R and any α ∈ (R\ 2π
t Z)

n, xi(t, α) = ei
tαi
2 . and

also define holomorphic function h on C\{−1, 1} by h(z) = z
1−z2 for z ∈ C\{−1, 1}. We
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have for any k ∈ Nn:

(2.57)

(
−i ∂
t∂α

)k

g =

n∏

i=1

(
−i ∂

t∂αi

)ki

(h ◦ xi)

For any i ∈ J1, nK, an easy induction on ki ∈ N leads to the following, since for any

z ∈ C\{−1, 1}, h(z) = 1
2

(
1

1−z − 1
1+z

)
, and −i ∂xi

t∂αi
= 1

2xi:

(2.58)

(
−i ∂

t∂αi

)ki

(h ◦ xi) =
ki!

2ki+1

(
xi

(1− xi)ki+1
+

xi
(1 + xi)ki+1

)

Now, since −i∂xi

∂t = αi

2 xi, an induction on si ∈ N shows that:
(2.59)(

−i ∂
∂t

)si (
−i ∂

t∂αi

)ki

(h ◦ xi) =
(ki + si)!α

si
i

2ki+si+1

(
xi

(1 − xi)ki+si+1
+

xi
(1 + xi)ki+si+1

)

Let us now introduce for any n-tuple s such that |s| = m, the multinomial coefficient:
(
m

s

)
=

m!

s1! . . . sn!

We have:

(2.60)

(
−i ∂
∂t

)m(
−i ∂
t∂α

)k

g =
∑

|s|=m

(
m

s

) n∏

i=1

(
−i ∂
∂t

)si (
−i ∂

t∂αi

)ki

(h ◦ xi)

Let us use Kronecker theorem, whose hypothesis is precisely the non-degeneracy condition
on the θis: for any n-tuple (x1, . . . , xn) ∈ Sn1 , one can find a sequence of integers (lp)p∈Z,
such that:

∀j ∈ J1, nK, xj(lp, θ) −→
p→+∞

xj

Therefore, setting, for any (x1, . . . , xn) ∈ (S1\{−1, 1})n and (k,m) ∈ Nn+1:

u(k,m) =
∑

|s|=m

(
m

s

) n∏

i=1

(ki + si)!θ
si
i

2ki+si+1

(
xi

(1− xi)ki+si+1
+

xi
(1 + xi)ki+si+1

)

we have that (2.56), (2.59) and (2.60) together with Kronecker theorem allows us to
conclude thatXp :=

∑
|k|+m≤p bk,m,p−|k|−mu

(k,m) is determined by the alj(O), j = 0, . . . , p.

Hence, the only thing which remains to be proved is that, if one chooses xi tending to 1
in a way convenient to us, the |u(k,m)|s will be ordered for ≪. More precisely, let xi tend
to 1 in such a way that:

(2.61) ∀i ∈ J1, n− 1K, |1− xi| ≪ |1− xi+1|p

If ≃ means that two functions are equivalent up a multiplicative constant as the xis tend
to 1 as in (2.61), we have for any (k,m) ∈ Nn+1:

(2.62) (1− x1)
mu(k,m) ≃

n∏

i=1

1

(1− xi)ki+1

Hence, if one sets m̃ = (m, 0, . . . , 0):

(2.63) u(k,m) ≪ u(k
′,m′) if k + m̃ < k′ + m̃′
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where < is the lexicographical order on Nn. Therefore, for any p ∈ N and (k,m) ∈ Nn+1

such that |k0|+m0 ≤ p, the following quantity can be recursively determined from Xp:

(2.64) Xk0,m0 =
∑

k′+m̃′=k+m̃

bk,m,p−|k|−mu
(k,m)

Reversing for example the roles of i = 1 and i = 2 in (2.61), and observing that k2 +m 6=
k′2 +m′ if k+ m̃ = k′ + m̃′ and (k,m) 6= (k′,m′), one determines bk,m,p−|k|−m from (2.64)

recursively on m. Finally, each bk,m,s with |k| +m + s ≤ N is determined by the alj(O),

with j = 0 . . . N and l ∈ N and the point (2) is proved, which ends the proof of Proposition
2.13.

�

2.3. Recovering the Hamiltonian from matrix elements. In order to finish the
proof of Theorem 2.1 we will show how the knowledge of the diagonal matrix elements of
a given known selfadjoint operator conjugated by a unitary one determines the latter (in
the framework of asymptotic expansion).

Let W̃≤N as in Proposition 2.2 and Omnp, Op as in Theorem 2.1. By Proposition 2.13,
there exists smooth functions fmnp and fp vanishing at (0, 0, 0) if (m,n) 6= (0, 0) such that
for any N ≥ 3:

(2.65) 〈µ, ν|e
iW̃≤N

~ Omnpe
−iW̃≤N

~ |µ, ν〉 = fmnp

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N

2

)

and

(2.66) 〈µ, ν|e
iW̃≤N

~ Ope
−iW̃≤N

~ |µ, ν〉 = fp

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N

2

)

Proposition 2.14. The Taylor expansions, at the origin, of the functions fmnp, fq up to
order N − 1, N ≥ 3, for (m,n, p, q) ∈ N2n × Z2 satisfying conditions

(1) 0 < |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) p ∈ Z, q ∈ Z∗

determine completely W≤N .

Proof of Proposition 2.14. Let us write

WN =
∑

2l+|j|+|k|+2s=N

αljks(t)~
lOpW (zj z̄k)Ds

t

:=
∑

2l+|j|+|k|+2s=N

∑

d∈Z

αljksd~
lei2πdtOpW (zj z̄k)Ds

t

(2.67)

where, for every αljjs0 is chosen to be zero by the convention of remark 2.12.
Since W2 = 0 we can proceed by induction on N ≥ 3: let’s assume W≤N−1 already

determined.
Let (m,n, p, q) ∈ N2n × Z× Z∗ be such that:

(2.68) 0 < |m|+ |n| ≤ N, ∀i ∈ J1, nK, mini = 0

Let us also state the following lemma, whose proof will be given after the end of the
present proof.
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Lemma 2.15. Let (j, k, s, d) ∈ N2n+1 × Z, such that: |j|+ |k|+ 2s = N .
If j +m = k + n, then:

(2.69)
〈µ, ν|[ei2πptOpW (zj z̄k)Ds

t , Omnp]|µ, ν〉 = −~gjks
((
µ+ 1

2

)
~, ν~

)

+O
(
~2(|µ~|+ |ν~|)N+|m|+|n|

2 −2 + ~(|µ~|+ |ν~|)N+|m|+|n|−1
2

)

where:

gjks

((
µ+

1

2

)
~, ν~

)
= (2πν~)s(µ~)max(j,k)

(
n∑

i=1

kimi − jini

µi~
+
ps

ν~

)

and max(j, k) = (max(ji, ki))1≤i≤n.
If j +m 6= k + n or d 6= p, then:

〈µ, ν|[ei2πdtOpW (zj z̄k)Ds
t , Omnp]|µ, ν〉 =O

(
~2(|µ~|+ |ν~|)N+|m|+|n|

2 −2
)

+O
(
~(|µ~|+ |ν~|)N+|m|+|n|−1

2

)(2.70)

We also have, if j = k:

〈µ, ν|[ei2πqtOpW (zj z̄k)Ds
t , Oq]|µ, ν〉 = −2π~q(1 + s) ((µ+ 1/2)~)

j
(ν~)s

+O
(
~2(|µ~|+ |ν~|)N−2

2 + ~(|µ~|+ |ν~|)N+1
2

)(2.71)

And if j 6= k or d 6= q:
(2.72)

〈µ, ν|[ei2πdtOpW (zj z̄k)Ds
t , Oq]|µ, ν〉 = O

(
~2(|µ~|+ |ν~|)N−2

2

)
+O

(
~(|µ~|+ |ν~|)N+1

2

)

By equation (2.65), the Taylor expansion of function fmnp up to order N−1 determines
modulo O

(
(|µ~| + |ν~|)N

)
:

(2.73) 〈µ, ν|e
iW̃≤2N

~ Omnpe
−iW̃≤2N

~ |µ, ν〉 − 〈µ, ν|Omnp|µ, ν〉
Since W̃≤2N is a sum of polynomial operators of order greater that 3, we get from Lemma
2.8 that :

(2.74)
∑

l≥2

il

~ll!
〈µ, ν|[

l times︷ ︸︸ ︷
W̃≤2N , . . . , W̃≤2N , Omnp]|µ, ν〉 = O

(
(|µ~|+ |ν~|)N+|m|+|n|−1

2

)

Hence, using the notations of Lemma 2.15, (2.73) is equal, modulo known terms and

O
(
(|µ~|+ |ν~|)N+|m|+|n|−1

2

)
+O

(
~(|µ~|+ |ν~|)N+|m|+|n|

2 −2
)
to:

(2.75)
∑

|j|+|k|+2s=N+1
j+m=k+n

iα0jkspgjks

((
µ+

1

2

)
~, ν~

)

Let us define the set Γ = {(j, k, s) ∈ N2n+1 | |j|+ |k|+ 2s = N, j +m = k + n}.
Let us choose µ1(~), . . . µn(~), ν(~) such that, as ~ tends to 0:

(2.76) ν
N−2
N−1 ≪ µ1 ≪ · · · ≪ µn ≪ ν ≪ ~−

1
3
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Let us also define i0 := min{i ∈ J1, nK,mi 6= ni} (it exists since (m,n) 6= (0, 0) and for any
i ∈ J1, nK, mini = 0). Let us also remark ji0ni0 − ki0mi0 never vanishes on Γ. We have by
(2.76) that, for (j, k, s) ∈ Γ,

(2.77) gjks

((
µ+

1

2

)
~, ν~

)
∼

~→0

ji0ni0 − ki0mi0

µi0~
(2πν~)s

n∏

i=1

(µi~)
max(ji,ki)

Let us now define a strict total order ≺ on Γ by:

(2.78)
(j, k, s) ≺ (j′, k′, s′)

m
(max(j1, k1), . . . ,max(jn, kn), s) < (max(j′1, k

′
1), . . . ,max(j′n, k

′
n), s

′)

where < is the lexicographical order on Nn+1. ≺ is asymmetric since for i ∈ J1, nK, the
sign of mi − ni determines whether max(ji, ki) is equal to ji or ki. (2.76) and (2.77) give
that:

(2.79) (j, k, s) ≺ (j′, k′, s′) ⇒ gjks

((
µ+

1

2

)
~, ν~

)
≪
~→0

gj′k′s′

((
µ+

1

2

)
~, ν~

)

and for any (j, k, s) ∈ Γ:

O
(
(|µ~|+ |ν~|)N+|m|+|n|−1

2

)
+O

(
~(|µ~|+ |ν~|)N+|m|+|n|

2 −2
)
≪ gjks

((
µ+

1

2

)
~, ν~

)

Therefore, the Taylor expansion up to order N − 1 of the functions fmnp determines
the coefficients (α0jksp)|j|+|k|+2s=N,j+m=k+n by induction on (Γ, <).

Let (m,n, p) run over all the possible values in N2n×Z while satisfying condition (2.68).
We claim that one can determine every function α0jks with |j|+ |k|+ 2s = N and j 6= k.
Indeed, for any (j, k, s) ∈ N2n+1 such that |j|+ |k|+ 2s = N and j 6= k, let us choose for
any i ∈ J1, nK:

(2.80) ni = max(ji − ki, 0) and mi = max(ki − ji, 0)

then j +m = k+ n and (m,n) 6= (0, 0) while for any i ∈ J1, nK, mi = 0 or ni = 0. Finally,

|m|+ |n| =
n∑

i=1

|ji − ki| ≤ |j|+ |k| ≤ N

Let us remark that condition j 6= k is always satisfied if N is odd and |j|+ |k|+2s = N .
If N is even, the Taylor expansion up to order N

2 of the function fq determines modulo

known terms and O
(
(|µ~|+ |ν~|)N+2

2

)
+O

(
~(|µ~|+ |ν~|)N−2

2

)
:

(2.81)
∑

2|j|+2s=N

iα0jjsq2πq(1 + s) ((µ+ 1/2)~)
j
(ν~)s

Let us choose µ1(~), . . . µn(~), ν(~) such that, as ~ tends to 0:

(2.82) ν
N−2
N ≪ µ1 ≪ · · · ≪ µn ≪ ν ≪ ~−

1
2
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We have, for any (j, s, q) such that 2|j|+ 2s = N :

O
(
(|µ~|+ |ν~|)N+2

2

)
+O

(
~(|µ~|+ |ν~|)N−2

2

)
≪ ((µ+ 1/2)~)j (ν~)s

Thus, every α0jjsq is determined by induction on the set {2|j|+ 2s = N} ordered by the
lexicographical order. Hence, letting q run over Z∗, we finally determined every α0jksd

with |j|+ |k|+ 2s = N and d 6= 0 if j = k, hence the principal symbol of WN .
Let us now choose 1 ≤ l0 <

N
2 and assume that we already determined the functions

αljks with 2l+ |j|+ |k|+2s = N and l < l0. Let (m,n, p, q) ∈ N2n ×Z×Z∗ be such that:

(2.83) 0 < |m|+ |n| ≤ N − 2l0, ∀i ∈ J1, nK, mini = 0

The Taylor expansion of fmnp up to order N − 1− l0 determines

∑

2l0+|j|+|k|+2s=N
j+m=k+n

iαl0jksp~
l0gjks

((
µ+

1

2

)
~, ν~

)

modulo known termsO
(
(|µ~|+ |ν~|)N+|m|+|n|−1

2

)
+O

(
~l0+1(|µ~|+ |ν~|)N−2l0+|m|+|n|

2 −2
)
.

Let us choose µ1(~), . . . µn(~), ν(~) such that, as ~ tends to 0:

(2.84) ν
N−l0−2
N−l0−1 ≪ µ1 ≪ · · · ≪ µn ≪ ν ≪ ~

− 1
2l0+3

Then for any (j, k, s) such that 2l0 + |j| + |k| + 2s = N and j +m = k + n, we have:

O
(
(|µ~|+ |ν~|)N+|m|+|n|−1

2

)
+O

(
~l0+1(|µ~|+ |ν~|)N−2l0+|m|+|n|

2 −2
)
≪ ~l0gjks

((
µ+ 1

2

)
~, ν~

)
.

Therefore, every αl0jksp with 2l0+ |j|+ |k|+2s= N and j+m = k+n is determined just
like before. Letting (m,n, p) run over all the possible values in N2n × Z while satisfying
(2.83), we determined every αl0jksp with 2l0 + |j| + |k| + 2s = N − 1 and j 6= k. The

Taylor expansion of fq up to order N
2 determines the remaining αl0jjsq , and finally, every

function αl0jks where (j, k, s) satisfies l0 + |j| + |k| + 2s = N , which concludes our proof
by induction. �

Proof of Lemma 2.15. The principal symbol of 1
i~ [e

i2πdtOpW zj z̄kDs
t , Omnp] is:

σjkds(z, t, z̄, τ) =
{
ei2πdtzj z̄kτs,Omnp

}

=
{
ei2πdtzj z̄kτs, e−i2πptzmz̄n

}

+O
(
(|z|2 + τ)

|m|+|n|+N−1
2

)(2.85)
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Hence:

σjkds(z, t, z̄, τ) =− i

n∑

i=1

∂

∂zi
(ei2πdtzj z̄kτs)

∂

∂z̄i
(e−i2πptzmz̄n)

+ i

n∑

i=1

∂

∂z̄i
(ei2πdtzj z̄kτs)

∂

∂zi
(e−i2πptzmz̄n)

− ∂

∂τ
(ei2πdtzj z̄kτs)

∂

∂t
(e−i2πptzmz̄n)

+O
(
(|z|2 + τ)

|m|+|n|+N−1
2

)

=− iei2π(d−p)tzj+mz̄k+nτs

(
n∑

i=1

jini − kimi

ziz̄i
− 2πps

τ

)

+O
(
(|z|2 + τ)

|m|+|n|+N−1
2

)

(2.86)

Let us remark that if j + m = k + n, then j + m = k + n = max(j, k). Let us also
remark that if jini − kimi 6= 0, then ji +mi 6= 0 and ki + ni 6= 0. Therefore, the last line

in (2.86) can be reduced to a polynomial expression modulo O
(
(|z|2 + τ)

|m|+|n|+N−1
2

)
.

1
~
[ei2πdtOpW zj z̄kDs

t , Omnp] has the same principal symbol as the polynomial operator
obtained when replacing each zi by ai, z̄i by a

∗
i , τ by Dt in this polynomial expression.

Since the expansion in PO 1
~
[ei2πdtOpW zj z̄kDs

t , Omnp] starts at order N + |m|+ |n| − 2,
we can hence conclude that the asymptotic expansions (2.69) and (2.70) are verified.

Now, the principal symbol of 1
i~ [e

i2πdtOpW zj z̄kDs
t , Oq] is, modulo O

(
(|z|2 + τ)

N+1
2

)
:

σ̃jkds(z, t, z̄, τ) =
{
ei2πdtzj z̄kτs,Oq

}

=
{
ei2πdtzj z̄kτs, e−i2πqtτ

}

=
∂

∂t
(ei2πdtzj z̄kτs)

∂

∂τ
(e−i2πqtτ)

− ∂

∂τ
(ei2πdtzj z̄kτs)

∂

∂t
(e−i2πqtτ)

=i2π(d+ sq)ei2π(d−q)tzj z̄kτs

(2.87)

Hence, (2.71) and (2.72) are verified just as before.
�

Theorem 2.1 is, as it has already been said, a direct consequence of Propositions 2.13
and 2.14.

2.4. “Bottom of a well”. In this subsection, we treat the “Bottom of a well” analogs of
Theorem 1.4, namely Theorems 1.10 and 1.14. The proof of Theorem 1.10 is a line by line
analog of Theorem 1.4 after noticing that the knowledge of the spectrum near the bottom
determines the left hand side of the trace formula: we omit it here. However, Theorem
1.14, that needs less assumptions in the particular case of a Schrödinger operator, deserves
a proper proof.
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Proof of Theorem 1.14. In a system of Fermi coordinates, the (principal and total) symbol
of our Schrödinger operator can be written as:

(2.88) H(x, ξ) = V (q0) +

n∑

i=1

θi
x2i + ξ2i

2
+R(x), R(x) = O(x3)

Let H0(x, ξ) =
∑n

i=1 θi
x2
i+ξ2i
2 . Let us state the following lemma, which is a classical

analog of Proposition 2.11 (we therefore omit its proof) and uses the hypothesis of rational
independance of the θis.

Lemma 2.16. Let G ∈ C∞(T ∗(Rn),R) be an homogeneous polynomial of degree k ≥ 3.
There exists a unique couple of functions G1 ∈ C∞(Rn,R) and F ∈ C∞(T ∗(Rn),R) such
that

(2.89) ∀(x, ξ) ∈ T ∗(Rn), {H0, F}(x, ξ) = G(x, ξ)−G1(p)

and F is polynomial with no diagonal term when written as a function of (z, z̄) ( i.e. of
the form zlz̄l)

Moreover:

(1) F is an homogeneous polynomial of degree k and is entierely determined by the

extradiagonal termes of G, i.e. of the form zlz̄m (l 6= m) with z = (x+ iξ)/
√
2

(2) G1 is an homogeneous polynomial of degree k
2 if k is even, zero otherwise. More-

over, G1(zz̄) is equal to the sum of the diagonal terms of G.

Just like in the proof of Proposition 2.2, one shows recursively, using Lemma 2.16, the
existence of a family of real numbers (αlm)l,m∈N such that if the functions (FN )N≥3 are
defined for N ≥ 3 by:

(2.90) FN (z, z̄) =
∑

|l|+|m|=N

αlmz
lz̄m

there exists homogeneous polynomials Hi ∈ C∞(Rn,R) of degree i satisfying, for N ≥ 3:

(2.91) H ◦ expχF≤N
(x, ξ) =

⌊N
2 ⌋∑

i=1

Hi(p) +O((x, ξ)N+1)

Here p = p(x, ξ) = (
x2
i+ξ2i
2 )1≤i≤n, F≤N =

∑N
k=1 Fk and χF≤N

is the vector field:

(2.92) χF≤N
=

n∑

i=1

∂F≤N

∂ξi

∂

∂xi
− ∂F≤N

∂xi

∂

∂ξi

∑+∞
i=1 H

i (well defined modulo a flat function) is the classical Birkhoff normal form of H .

Let us also define for k ∈ Nn, |k| ≥ 3, ak = 1
k!

∂|k|R
∂xk (0). We observe that, for k ∈ Nn:

xk =

(
z + z̄√

2

)k

=
1

√
2
|k|

∑

(l,m)∈N
n

l+m=k

n∏

j=1

(
kj
mj

)
zlz̄m

(2.93)
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Let us define K = {k ∈ Nn, |k| ≥ 3} \ 2Nn. By lemma 2.16, there exists a unique
homogeneous polynomial of degree |k| ≥ 3 with no diagonal terms, such that:

(2.94) {H0, Ik}(x, ξ) =
{
xk if k ∈ K
xk − 1√

2
|k|

∏n
j=1

( kj

kj/2

)
|z|k if k ∈ 2Nn

Functions (FN )N≥3 and (Hi)i≥1 are constructed recursively as follows: let N ≥ 2

and let us assume that we already constructed F3, . . . , FN (F2 = 0), and H1, . . . , H
⌊N

2 ⌋

(H1(p) =
∑n

i=1 θipi). Let us set:

(2.95) GN+1(x, ξ) = H ◦ expχF≤N
(x, ξ) −

⌊N
2 ⌋∑

i=1

Hi(p) +O(‖(x, ξ)‖N+1)

and defined FN+1 and, if N is odd, H
N+1

2 by Lemma 2.16:

(2.96) {H0, FN+1}(x, ξ) =
{
GN+1(x, ξ) if N is even

GN+1(x, ξ)−H
N+1

2 (p) if N is odd

We remark that, in our case, (x, ξ) 7→ GN+1(x, ξ)−
∑

|k|=N+1 akx
k is a sum of terms that

depend only on F≤N , (Hi)1≤i≤⌊N
2 ⌋ and (ak)|k|≤N . Therefore, we get by induction that

the function(s):

(2.97) FN+1 −
∑

|k|=N+1

akIk and when N is odd, H
N+1

2 (p)−
∑

|l|=N+1
2

a2l
2|l|

n∏

j=1

(
2lj
lj

)
pl

depend only on (ak)|k|≤N .

Now, let us define, for k ∈ Nn, (lk,mk) ∈ N2n by their components : for i ∈ J1, nK,
(lk)i = ⌊ki

2 ⌋, (mk)i = ki−⌊ki

2 ⌋. k 7→ (lk,mk) is a bijective correspondence between K and
the set Λ defined by:

(2.98) Λ = {(l,m) ∈ N2n | m− l ∈ {0, 1}n \ {0}, |l|+ |m| ≥ 3}
Moreover, for k ∈ K, Ik is entirely determined by (2.94) and is equal in z, z̄ coordinates

to:

(2.99) Ik(z, z̄) =
1

√
2
|k|

∑

(l,m)∈N
n

l+m=k

∏n
j=1

(
kj

mj

)

θ.(l −m)
zlz̄m

Therefore, if k ∈ K, |k| = N + 1, we get by (2.97) that:

(2.100) αlkmk
− ak

√
2
|k|

∏n
j=1

( kj

⌊kj/2⌋
)

θ.(lk −mk)

depends only on (ak)|k|≤N .

If now k ∈ 2Nn, |k| = N +1, and if we write H
N+1

2 (p) =
∑

|l|=N+1
2
blp

l we get by (2.97)

that:

(2.101) bk/2 −
ak

√
2
|k|

n∏

j=1

(
kj
kj/2

)

depends only on (ak)|k|≤N .
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Therefore we get by (2.100) and (2.101) that the family (ak)|k|=N+1 can be determined
from the terms of order N + 1 in the Taylor expansion of the classical Birkhoff normal
form, the family (αlkmk

)|k|=N+1 and the family (ak)|k|≤N .
So we just proved, by induction, that for any N ≥ 3, (ak)|k|≤N is determined by the

Taylor expansion of the classical Birkhoff normal form up to order N and the family
(αlm)(l,m)∈Λ,|l|+|m|≤N .

As shown in [8, 9], the Taylor expansion of the classical Birkhoff normal form is deter-
mined by the spectrum of H(x, ~Dx) in [V (q0), V (q0) + ǫ], ǫ > 0. In fact it is obvious
that one can take ǫ in the ~-dependent form given in Theorem 1.14 (and Theorem 1.10)
since the proof goes along the trace formula argument, and eigenvalues above this value
of ǫ gives a ~∞ contribution to the trace formula.

Moreover we have for N ≥ 2 and m ∈ {0, 1}n \ {0}
Om0 ◦ expχF≤N+1

(x, ξ) = Om0(x, ξ) + {F≤N+1,Om0}(x, ξ) +O((x, ξ)N+|m|)

= zm −
∑

(l,k)∈Λ
|l|+|k|=N+1

k−l=m

αlk|z|2l
n∑

i=1

kimi + · · ·+O((x, ξ)N+|m|)

where . . . stands for extradiagonal terms and terms which depends only on (αlk)(l,k)∈Λ,|l|+|m|≤N .
Therefore, the diagonal matrix elements of an observable Om0 is equal, modulo terms de-
pending only on (αlk)(l,k)∈Λ,|l|+|k|≤N , to

(2.102)
∑

(l,k)∈Λ
|l|+|k|≤N+1

k−l=m

αlk|µ~|l
n∑

i=1

kimi +O(~) +O(|µ~|N+|m|
2 )

This shows, as in the proof of Theorem 2.1, that the αlm, (l,m) ∈ Λ, are all determined,
so the full Taylor expansion of R, hence of V , near q0, is completely determined. �

3. Explicit construction of Fermi coordinates

In this section we prove Theorems 1.3, 1.9, and 1.13, using Lemmas A.1, A.2 and A.4
on linear and bilinear algebra. We start by the “bottom of a well”, toy model for the
priodic trajactory case.

3.1. General “Bottom of a well” case.

Proof of Theorem 1.9. Let (x, ξ) ∈ T ∗(Rn) be a system of Darboux coordinates centered
at z0. d

2Hp(z0) is a positive bilinear form on Tz0(T
∗M), therefore, by lemma A.1, there

exists a local change of variable φ, symplectic and linear in the Darboux coordinates, such
that:

(3.1) Hp ◦ φ(x, ξ) = Hp(z0) +

n∑

i=1

θi
x2i + ξ2i

2
+ O(‖(x, ξ)‖3).

We will prove that the diagonal matrix elements of the family of pseudodifferential
operators P k in the system of eigenvectors corresponding to eigenvalues of H(x, ~Dx) in
[Hp(z0), Hp(z0) + ǫ(~)] provides an explicit construction of such a symplectomorphism φ
(which is not unique).
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We first start with the case where the family (Pk)1≤k≤2n2+n is realized by the example
(1.12).

Let S be the matrix of dφz0 in the basis ( ∂
∂x1

, ∂
∂ξ1

, . . . , ∂
∂xn

, ∂
∂ξn

). We have for (i, j) ∈
J1, nK2 and s ∈ {1, 2, 3}:

Qs
i,j ◦ φ(x, ξ) =

(
n∑

k=1

Sis,2k−1xk + Sis,2kξk

)(
n∑

k=1

Sjs,2k−1xk + Sjs,2kξk

)

=
n∑

k,k′=1

Sis,2k−1Sjs,2k′−1xkxk′ +
n∑

k,k′=1

Sis,2kSjs,2k′−1ξkxk′

+

n∑

k,k′=1

Sis,2k−1Sjs,2k′xkξk′ +

n∑

k,k′=1

Sis,2kSjs,2kξkξk′

=

n∑

k=1

[Sis,2k−1Sjs,2k−1 + Sis,2kSjs,2k] zkz̄k +R,

(3.2)

where, for (i, j) ∈ J1, nK2, is =

{
2i− 1 if s ∈ {1, 2}
2i if s = 3

and js =

{
2j if s ∈ {1, 3}
2j − 1 if s = 2

,

and R is a linear combination of terms of the form zkzk′ ((k, k′) ∈ J1, nK) and zkz̄k′

((k, k′) ∈ J1, nK, k 6= k′).
Let Aφ be any Fourier integral operator implementing locally dφz0 and |µ〉 defined by

(2.7). The condition that A−1
φ |µ〉 belongs to the spectral interval defined in Theorem 1.9

reads as |µ~| ≤ ǫ. We get from (3.2) that:

(3.3) 〈µ|AφQ
s
i,jA

−1
φ |µ〉 =

n∑

k=1

[Sis,2k−1Sjs,2k−1 + Sis,2kSjs,2k]

(
µk +

1

2

)
~+O(~)

the term O(~) coming form the subsymbols contribution (let us recall we are microlocalized
in a bounded neighborhood of z0). Therefore (3.3) for |µ~| ≤ ǫ with the condition ~ = 0(ǫ)
determine the values of Si,2k−1Sj,2k−1 + Si,2kSj,2k for (i, j) ∈ J1, 2nK2 and k ∈ J1, nK.

As claimed by Lemma A.2, the preceding quantities are independent of the choice of
a symplectic matrix S satisfying (3.1). Since, as we already said, such a matrix S is not
unique, it is not possible to determine S out of the preceeding matrix elements. However,
by Lemma A.2, the family (Si,2k−1Sj,2k−1 + Si,2kSj,2k)(i,j)∈J1,2nK2,k∈J1,nK (determined by
the preceding matrix elements) allows us to construct explicitly a suitable matrix S, hence
a suitable symplectomorphism φ.

This ends the proof in the case where the family (Pk)1≤k≤2n2+n is realized by the
example (1.12). Let us now consider the general case. The family of Hessian matri-
ces (d2Pk(z0))1≤k≤2n2+n, forms a basis of the space of 2n × 2n symmetric matrices.
Hence, each d2Qs

i,j(z0) for (i, j) ∈ J1, nK2 and s ∈ {1, 2, 3} is a linear combination of

the matrices d2Pk(z0), 1 ≤ k ≤ 2n2 + n. Since Pk(z0) = ∇Pk(z0) = 0, there ex-
ists a family (λkijs)(i,j,s,k)∈J1,nK2×{1,2,3}×J1,2n2+nK of complex numbers such that for any

(i, j, s) ∈ J1, nK2 × {1, 2, 3}:

(3.4) Qs
i,j(x, ξ) =

2n2+n∑

m=1

λkijsPk(x, ξ) +O(‖(x, ξ)‖3)
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and therefore:

(3.5) 〈µ|AφQ
s
i,jA

−1
φ |µ〉 =

2n2+n∑

k=1

λkijs〈µ|AφP
kA−1

φ |µ〉+O(~) +O(|µ~|2)

Hence, the family (Si,2k−1Sj,2k−1 + Si,2kSj,2k)(i,j)∈J1,2nK2,k∈J1,nK is determined just as be-
fore, and this ends the proof in the general case. �

3.2. The“Schrödinger case”.

Proof of Theorem 1.13. Let x ∈ Rn be any system of local coordinates centered at q0 ∈
M, and (x, ξ) ∈ T ∗(Rn) the corresponding Darboux coordinates centered at (q0, 0) ∈
T ∗M. d2V (q0) being a positive bilinear form on Tq0M, there exists, by Lemma A.4, a
local change of variable u, linear and orthogonal in the Darboux coordinates, such that:

(3.6) V ◦ u(x) = 1

2

n∑

i=1

θ2i x
2
i +O(x3)

where the θ2i s are the eigenvalues of d2V (q0).
Let us denote by U the matrix of duq0 written in the basis ( ∂

∂x1
, . . . , ∂

∂xn
), and define

a symplectomorphism φ locally by its expression in the Darboux coordinates: φ(x, ξ) =
(Ux,Uξ).

If φ0 is the symplectomorphism sending (x, ξ) to ( x1√
θ1
, . . . , xn√

θn
,
√
θ1ξ1, . . . ,

√
θiξn), and

H is the (principal and total) symbol of the considered Schrödinger operator then:

(3.7) H ◦ φ ◦ φ0(x, ξ) = V (q0) +

n∑

i=1

θi
x2i + ξ2i

2
+O(x3)

Just as in proof of Theorem 1.9, the diagonal matrix elements of the family of the pseu-
dodifferential operators (Q2

ij)1≤i,j≤n in the system of eigenvectors corresponding to eigen-

values of H(x, ~Dx) in [V (q0), V (q0) + ǫ(~)] determine the family (UikUjk)1≤i,j,k≤n. An
orthogonal matrix U such that (3.7) is verified is not unique, therefore it is not possible
to determine the matrix U from the preceeding diagonal matrix elements. However, by
Lemma A.4, the family (UikUjk)1≤i,j,k≤n does not depend on the suitable matrix U (i.e.
orthogonal and satisfying (3.7)), and as we just saw it is determined by the preceeding ma-
trix elements. Therefore, one can determine the absolute values of the coefficients of any
suitable matrix U , and also, for any k ∈ J1, nK, an index ik ∈ J1, nK, such that Uikk 6= 0.
The choice of the sign of Uikk then determines the sign of every other coefficient of the
k-th column. Therefore, one can determine the 2n suitable matrices, corresponding to n
choices of signs, as claimed by Lemma A.4. Choosing one of them determines (explicitely)
a suitable symplectomorphism φ.

�

3.3. The periodic trajectory case.

Proof of Theorem 1.3. Let X,H(x, ~Dx), E, γ be as in Theorem 1.3. We first recall [6, 7,
16, 17] that there exists a (non unique) symplectomorphism φ from a neighborhood of S1

in T ∗(Rn × S1) in a neighborhood of γ in T ∗(X) such that

(3.8) Hp ◦ φ(x, t, ξ, τ) = H0 +H2 and γ(t) = φ(0, t, 0, 0).
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with H0 and H2 as in is defined as in (2.3) and (2.2). Expressing φ in a system a local
coordinates (x′, ξ′, t′, τ ′) near γ such that γ = {x′ = ξ′ = τ ′ = 0}, one can assume that:

(3.9) φ(x, t, ξ, τ) = φS(x, t, ξ, τ) = (S(t)(x, ξ), t, τ + qS(t, x, ξ))

Here, for any t ∈ S1, S(t) is a linear symplectic change of variable (identified with its
matrix in our system of coordinates), qS(t, ·, ·) is quadratic, qS(t, 0, 0) = 0 and

(3.10) dqS =

(
n∑

i=1

L̇i+n(t).(x, ξ)Li(t)− L̇i(t).(x, ξ)Li+n(t)

)
.(dx, dξ)

where for i ∈ J1, 2nK and t ∈ S1, Li(t) is the i-th line of the matrix S(t), L̇ the derivation
with respect to t, and for two line vectors of size 2n, u.v is their canonical scalar product.

For (i, j) ∈ J1, nK2, p ∈ Z and s ∈ {1, 2, 3}, let AS be any Fourier integral operator
implementing φS . We have

(3.11) 〈µ, ν|ASP
k
pA

−1
S |µ, ν〉 =

n∑

k=1

cp
(
Sσ
is,2k−1S

σ
js,2k−1 + Sσ

is,2kS
σ
js,2k

)(
µk +

1

2

)
~+O(~)

where cp(·) maps a function to its p-th Fourier coefficient, σ is the permutation defined by
(A.5), Sσ is defined by conjugation by the permutation matrix associated to σ just as in
(A.6), and where, for (i, j) ∈ J1, nK2,

is =

{
2i− 1 if s ∈ {1, 2}
2i if s = 3

, and js =

{
2j if s ∈ {1, 3}
2j − 1 if s = 2

.

Now, just as in the proof of Proposition 2.13, the coefficients
(
al1(P

k
p )
)
l∈Z

determine

cp

(
Sσ
is,2k−1S

σ
js,2k−1 + Sσ

is,2kS
σ
js,2k

)
for any k ∈ J1, nK. Therefore, if the coefficients al1(P

k
p )

are given for any l ∈ Z, (i, j) ∈ J1, nK2, p ∈ Z and s ∈ {1, 2, 3}, then the functions

(3.12) Ai,j,k := Sσ
i,2k−1S

σ
j,2k−1 + Sσ

i,2kS
σ
j,2k

are determined for any (i, j) ∈ J1, 2nK2 and k ∈ J1, nK.
An easy adaptation of the proof of Lemma A.2 shows that, once the set of functions

(Ai,j,k)(i,j)∈J1,2nK2,k∈J1,nK is given, one can construct explicitely a particular smooth func-

tion S1 ∋ t 7→ S0(t) with values in the set of symplectic matrices, such that equality (3.12)
holds. We also get that any matrix Sσ such that equality (3.12) holds is related to S0 by
the equality Sσ = Sσ

0U where t 7→ U(t) is a smooth function that takes its values in the
set of block diagonal matrices whose diagonal blocks are 2 by 2 rotations.

Now let us consider this particular S0 and let U be any smooth function that takes his
values in the set of block diagonal matrices whose diagonal blocks are 2 by 2 rotations. Let
us finally define S by the relation Sσ = Sσ

0U . Since for any t ∈ S1, qS(t, ·, ·) is quadratic,
we have:

P0
p ◦ φS(x, t, ξ, τ) = e−2iπptτ + e−2iπptqS(t, x, ξ)

= e−2iπptτ + e−2iπpt
n∑

k=1

(
∂2qS
∂x2k

+
∂2qS
∂ξ2k

)
(t)zkz̄k +R

(3.13)

where R is a linear combination of terms of the form e−2iπptzkzk′ ((k, k′) ∈ J1, nK) and
e−2iπptzkz̄k′ ((k, k′) ∈ J1, nK, k 6= k′).
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Just as before, the coefficients
(
al1(P

0
p )
)
l,p∈Z

determine the family of functions (of t

only)
(

∂2qS
∂x2

k

+ ∂2qS
∂ξ2

k

)
k∈J1,nK

.

Now, we get from equation (3.10) that, for k ∈ J1, nK and t ∈ S1:

∂2qS
∂x2k

(t) +
∂2qS
∂ξ2k

(t) =

n∑

i=1

Ṡi+n,k(t)Si,k(t) + Ṡi+n,k+n(t)Si,k+n(t)

−
n∑

i=1

Ṡi,k(t)Si+n,k(t) + Ṡi,k+n(t)Si+n,k+n(t)

(3.14)

For k ∈ J1, nK and t ∈ S1, let us denote by Uk(t) =

(
cos θk(t) − sin θk(t)
sin θk(t) cos θk(t)

)
the k-th

diagonal block of U(t). Then, for j ∈ J1, 2nK, k ∈ J1, nK and t ∈ S1:

(3.15)

(
Sj,k(t)
Sj,k+n(t)

)
= tUk(t)

(
S0,j,k(t)
S0,j,k+n(t)

)

Therefore:

(3.16)

(
Ṡj,k(t)

Ṡj,k+n(t)

)
= tUk(t)

(
Ṡ0,j,k(t)

Ṡ0,j,k+n(t)

)
+ tU̇k(t)

(
S0,j,k(t)
S0,j,k+n(t)

)

Let us now observe that for k ∈ J1, nK, and any t ∈ S1:

(3.17) U̇k(t)
tUk(t) =

(
0 −1
1 0

)

Therefore, since for any k ∈ J1, nK and t ∈ S1 Uk(t) is an orthogonal matrix and S0(t) is a
symplectic matrix, we get from equations (3.16) and (3.17):

∂2qS
∂x2k

(t) +
∂2qS
∂ξ2k

(t) =
∂2qS0

∂x2k
(t) +

∂2qS0

∂ξ2k
(t)

+ 2θ̇k(t)

(3.18)

Since the function t 7→ ∂2qS
∂x2

k

(t) + ∂2qS
∂ξ2

k

(t) has been determined above, and the function

t 7→ ∂2qS0

∂x2
k

(t)+
∂2qS0

∂ξ2
k

(t) is entirely determined by the explicitely contructed function t 7→ S0,

equation (3.18) then determines the function θ̇k. Therefore, the function t 7→ U(t), hence
the function t 7→ Sσ(t), is determined up to right multiplication by a constant block
diagonal matrix U0 whose diagonal block matrices are 2 by 2 rotations. It is now sufficient
to observe that if two functions t 7→ S1(t) and t 7→ S2(t) are related by the equation:

(3.19) Sσ
2 = Sσ

1U0

where U0 is a constant matrix, then

(3.20) φS2 = φS1 ◦ φUσ−1
0

and, if U0 is a constant block diagonal matrix whose diagonal block matrices are 2 by 2
rotations:

(3.21) H0 ◦ φ
Uσ−1

0
= H0

Finally, the choice of U0 in the determination of t 7→ S(t) does not change the validity of
equation (3.8) for φ = φS , and Theorem 1.3 is proved.
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�

4. Classical analogs

In this section we prove a classical result, analog to our preceeding quantum ones, and
motivated by the following straightforward lemma.

Lemma 4.1. Let O be a polynomial operator on L2(Rn×S1) whose Weyl symbol, expressed
in polar and cylindrical coordinates is the function O(A, τ, ϕ, τ). Then

(4.1) 〈µ, ν|O|µ, ν〉 =
∫

Tn×S1

O(µ~, ν~, ϕ, t)dϕdt +O(~).

where for any j = 1 . . . n, xj + iξj =
√
Aje

iϕj .

We concatenate analogs of Theorems 1.3 and 1.4 in the following

Theorem 4.2. Let γ be a non-degenerate elliptic periodic trajectory of the Hamiltonian
flow generated by a proper smooth Hamiltonian function H. Let Pk

p be functions satisfying

in a local symplectic system of coordinates (x, t, ξ, τ) ∈ T ∗(Rn × S1) such that γ = {x =
ξ = τ = 0}:
(4.2) P0

p (x, t, ξ, τ) = e−2iπptτ and Pk
p (x, t, ξ, τ) = e−2iπptRk(x, ξ), k = 1, . . . , 2n2 + n

with the property that Rk(0) = ∇Rk(0) = 0 and the Hessians d2Rk(0) are linearly

independent.
Let Φ be the formal (unknown a priori) symplectomorphism which leads to the Birkhoff

normal form near γ and (A, τ, ϕ, t) the corresponding (formal and also unknown a priori)
action-angle coordinates such that γ = {A = τ = 0}. Let us define near A = τ = 0 the
following “average” quantities

(4.3) Pk
p (A, τ) :=

∫

Tn×S1

Pk
p ◦ Φ(A, τ, ϕ, t)dϕdt.

Then the knowledge of ∇Pk
p (0, 0) for k = 1, . . . , 2n2 + n, determines (in a constructive

way) an explicit system of Fermi coordinates near γ.

Moreover, let now (x, t, ξ, τ) ∈ T ∗(Rn × S1) be any system of Fermi coordinates near γ
and let for (m,n, p) ∈ N2n × Z, Omnp, Op be functions satisfying in a neighborhood of γ:
(4.4)



Omnp(x, t, ξ, τ) = e−i2πpt
∏n

j=1

(
xj+iξj√

2

)mj
(

xj−iξj√
2

)nj

+O
(
|A|+ |τ |) |m|+|n|+1

2

)

Op(x, t, ξ, τ) = e−i2πptτ +O
(
|A|+ |τ |) 3

2

)

Then the knowledge of the Birkhoff normal form near γ and of the Taylor expansion at
A = τ = 0 up to order N of Omnp, Oq, defined as in (4.3) for

(1) 0 < |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) p ∈ Z, q ∈ Z∗

determines the Taylor expansion of the “true” Hamiltonian H up to the same order in the
picked-up system of Fermi coordinates.
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Proof. Let us first prove the second part of Theorem 4.2. Let (x, t, ξ, τ) ∈ T ∗(Rn × S1) be
a system of Fermi coordinates near γ. Let, for N ≥ 3, FN be the principal symbol of WN .
With the notations of Proposition 2.2 we write

(4.5) FN (z, t, z̄, τ) =
∑

|j|+|k|+2s=N

α0jks(t)e
2iπptzj z̄kτs

Let F satisfy

(4.6) F ∼
+∞∑

N=3

FN

With the notations of the proof of Proposition 2.2, we have:

(4.7) H ◦ exp(χF )(x, t, ξ, τ) ∼ h(p, τ, 0)

Let N ≥ 3, (m,n, p, q) ∈ N2n × Z× Z∗ and (j, k, s) ∈ N2n+1 satisfy:

(4.8) 0 < |m|+ |n| ≤ N, mini = 0 ∀i ∈ J1, nK, |j|+ |k|+ 2s = N

Then, as it has been seen in the proof of Lemma 2.15, if σ1
jks and σ2

jks are the symbols

of {α0jks(t)e
2iπptzj z̄kτs,Omnp} and {α0jks(t)e

2iπptzj z̄kτs,Oq} respectively, we have, if
j +m = k + n,

∫

Tn×S1

σ1
jks(A, τ, ϕ, t)dϕdt =icp(α0jks)A

max(j,k)τs

(
n∑

i=1

kimi − jini

Ai
+

2πps

τ

)

+O
(
|A|+ |τ |)N+|m|+|n|−1

2

)(4.9)

and if j +m 6= k + n,

(4.10)

∫

Tn×S1

σ1
jks(A, τ, ϕ, t)dϕdt = O

(
|A|+ |τ |)N+|m|+|n|−1

2

)

We also have, if j = k:

(4.11)

∫

Tn×S1

σ2
jks(A, τ, ϕ, t)dϕdt = icq(α0jks)2πq(1 + s)Ajτs +O

(
|A|+ |τ |)N+1

2

)

and if j 6= k:

(4.12)

∫

Tn×S1

σ2
jks(A, τ, ϕ, t)dϕdt = O

(
|A|+ |τ |)N+1

2

)

Now, let us set F2 = 0 and assume that the function F≤N−1 has been determined for

some N ≥ 3. Then for l ≥ 2, {
l times︷ ︸︸ ︷

F≤N , {. . . , {F≤N ,Omnp}}} and {
l times︷ ︸︸ ︷

F≤N , {. . . , {F≤N ,Oq}}}
are determined modulo O

(
|A|+ |τ |)N+|m|+|n|−1

2

)
and O

(
|A|+ |τ |)N+1

2

)
respectively.

Therefore, by (4.9) and (4.10), Omnp(A, τ) is equal, modulo O
(
|A|+ |τ |)N+|m|+|n|−1

2

)

and known terms to:

(4.13)
∑

|j|+|k|+2s=N
j=m=k+n

icp(α0jks)A
max(j,k)τs

(
n∑

i=1

kimi − jini

Ai
+

2πps

τ

)
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and by (4.11) and (4.12), Oq(A, τ) is equal, modulo known terms and O
(
|A|+ |τ |)N+1

2

)

to:

(4.14)
∑

2|j|+2s=N

icq(α0jjs)2πq(1 + s)Ajτs

Thus, just as in the proof of Proposition 2.14, let (m,n, p, q) ∈ N2n × Z× Z∗ run over all
possible values under condition (4.8), we determine every function α0jks, |j|+ |k|+2s = N ,
hence FN , which concludes the proof of the second part of Theorem 4.2.

The proof of the first part of the Theorem follows the same strategy with respect to
Theorem 1.3 than the proof of the second part with respect to Proposition 2.14. �

The last result of this paper will be the classical analog of Theorems 1.10 and 1.14.
Let us remind, [9], that in the case where H(x, ξ) = ξ2 + V (x) the classical normal

form determines the Taylor expansion of the potential when the latter is invariant by the
symmetry xi → −xi for each i ∈ J1, nK. In the general case the Taylor expansion of the
averages, in the sense of (4.3), of a finite number of classical observables are necessary to
recover the full potential.

Let us assume H ∈ C∞(T ∗M,R) has a global minimum at z0 ∈ T ∗M, and let d2Hp(z0)
be the Hessian of H at z0. Let us define the matrix Ω defined by d2Hp(z0)(·, ·) =:
ωz0(·,Ω−1·) where ωz0(·, ·) is the canonical symplectic form of T ∗M at z0. The eigen-
values of Ω being purely imaginary, we denote them by ±iθj with θj > 0, j ∈ J1, nK. Let
us assume that θj , j ∈ J1, nK are rationally independent.

Theorem 4.3. The statement of Theorem 4.2 remains valid verbatim by replacing γ by
z0 and ignoring the variables t, τ .

Let us now enunciate the classical analog of Theorem 1.14 in the case of a Schrödinger
operator with potential V ∈ C∞(M,R):

Theorem 4.4. Let q0 be a global non-degenerate minimum of V on M. Let us assume that
the square roots of the eigenvalues of d2V (q0) are linearly independent over the rationals.

Let Pk, k = 1 . . . n(n+1)
2 , be smooth functions on M such that Pk(q0) = ∇Pk(q0) = 0

and the Hessians d2Pk(q0) are linearly independent (an example of such potentials
is the family Qij(x) = xixj in a local system of coordinates centered at q0).

Then the knowledge of the Birkhoff normal form near q0 and of the Taylor expansion at

A = 0 up of the (finite number of) “average” Pk(A) determines (in a constructive way)
an explicit system of Fermi coordinates.

Moreover, let (x, ξ) ∈ T ∗Rn be any system of Fermi coordinates centered at (q0, 0) and
Om0 defined in Theorem 1.14.

Then the knowledge of the Taylor expansion at A = 0 up to order N ≥ 3 of the (finite
number) “average” quantities Om0 as in (4.3) together with the Bikhoff normal form itself,
determines the Taylor expansion up to order N of V at q0 in the picked-up system of
coordinates.

In the line of the proof of Theorem 4.2 the proofs of Theorem 4.4 and 4.3 are easy
adaptations of the proofs of Theorem 1.14 and 1.10. We omit them here.
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Appendix A. Lemmas on linear and bilinear algebra

Lemma A.1. Let q be a positive quadratic form on R2n. Then there exists a canonical
endomorphism φ on R2n, and a n-tuple of positive real numbers (λ1, . . . , λn), defined as the
imaginary part of the eigenvalues of positive imaginary part of the endomorphism defined
by:

(A.1) 〈·; a(·)〉q = ω(·, ·)
where 〈·; ·〉q be the scalar product associated to q and ω the canonical symplecic tform on
R2n, and such that:

(A.2) ∀(x, ξ) ∈ R2n, q(φ(x, ξ)) =

n∑

i=1

λi(x
2
i + ξ2i )

Moreover, if the real numbers λ1, . . . , λn are pairwise different, and φ′ is an endomorphism
of R2n. Then φ′ is canonical and satisfies (A.2) if and only there exists an orthogonal
isomophism u on R2n whose restriction to the plane spanned by ( ∂

∂xi
, ∂
∂ξi

) (for any i ∈
J1, nK) is a rotation, such that φ′ = φ ◦ u.
Proof of Lemma A.1. a is antisymmetric with respect to q, and therefore there exists a
q-orthonormal basis of R2n (u1, . . . , un, v1, . . . , vn) and a n-tuple of positive real numbers
(λ1, . . . , λn) such that, for j ∈ J1, nK:

(A.3) λja(uj) = −vj and λja(vj) = uj

Now let us set, for j ∈ J1, nK:

(A.4) ũj =
√
λjuj and ṽj =

√
λjvj

Then, (ũ1, . . . , ũn, ṽ1, . . . , ṽn) is a q-orthogonal basis of R2n satisfying, for j ∈ J1, nK,
q(ũj) = λj and q(ṽj) = λj , and the preceeding properties together with (A.2) implies that
it is also a symplectic basis, which concludes the proof of the first part of Lemma A.1.

To prove the second part of Lemma A.1, let us consider another symplectic and or-
thogonal basis (u′1, . . . , u

′
n, v

′
1, . . . , v

′
n) where, for j ∈ J1, nK, the q-norm of u′j and v′j is λj .

Then, by (A.2), for any j ∈ J1, nK, a(u′j) is orthogonal to any vector of the basis but v′j
and 〈v′j , a(u′j)〉q = w(v′j , u

′
j) = −1, therefore λja(u

′
j) = −v′j , and by the same argument,

λja(v
′
j) = u′j.

Therefore, the plane spanned by (uj, vj) and the plane by (u′j, v
′
j) are both the kernel

of a2 + λ2j (2-dimensional since we made the additional assumption the λis are pairwise
different). Therefore, if φ and φ′ are the endomorphisms which send the canonical basis
of R2n to basis (ũ1, . . . , ũn, ṽ1, . . . , ṽn) and basis (u′1, . . . , u

′
n, v

′
1, . . . , v

′
n) respectively, then

one can considerer the restriction to any plane spanned by ( ∂
∂xi

, ∂
∂ξi

) (for any i ∈ J1, nK)

is an orthogonal symplectomorphism from the plane to itself, that is a rotation.
�

Let σ be the permutation of J1, 2nK defined by:

(A.5) ∀i ∈ J1, 2nK, σ(i) =

{
2i− 1 si i ≤ n
2(i− n) si i ≥ n+ 1

and Mσ be the associated permutation matrix (i.e. for any (i, j) ∈ J1, 2nK2, (Mσ)ij =
δσ(i),j .
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Now, let us set, for any matrix S ∈ M2n(R):

(A.6) Sσ =M−1
σ SMσ.

Let us also, for (i, k) ∈ J1, 2nK × J1, nK, denote by LS,i,k the vector of R2 defined by

LS,i,k =

(
(Sσ)i,2k−1

(Sσ)i,2k

)
∈ R2. Then, for (i, k) ∈ J1, nK2, si,k will be the matrix of size 2

whose first line is tLS,2i−1,k and second line tLS,2i,k.

Lemma A.2. Let A be a positive matrix of size 2n. Let S be the (non-empty by lemma
A.1) set of symplectic matrices satisfying

(A.7) tSAS =

(
Dλ 0
0 Dλ

)

where Dλ is the diagonal matrix with (λ1, . . . , λn) as n-tuple of positive diagonal elements,
which we assume pairwise different. Then:

(1) The family (〈LS,i,k;LS,j,k〉)i,j)∈J1,2nK2,k∈J1,nK is independent of matrix S ∈ S.
(2) Once the preceeding invariants of S given, one can construct explicitely a particular

matrix of S (hence all of them by Lemma A.1).

Proof of Lemma A.2. Let us first prove the first point. Let (S, T ) ∈ S2. By Lemma A.1,
there exist n matrices belonging to SO2(R) and denoted by O1, . . . , On, such that:

(A.8) Tσ = Sσ




O1

. . .

On


 =




s1,1O1 · · · s1,nOn

...
...

sn,1O1 · · · sn,nOn




and (A.8) is equivalent to:

(A.9) ∀(i, k) ∈ J1, 2nK × J1, nK, LT,i,k = tOkLS,i,k

Hence (〈LS,i,k;LS,j,k〉)i,j)∈J1,2nK2,k∈J1,nK does not depend on the matrix S ∈ S and the
first point of Lemma A.2 is proven.

Now, let S ∈ S, and let (aijk)(i,j)∈J1,2nK2,k∈J1,nK be the family defined by:

(A.10) ∀(i, j) ∈ J1, 2nK2, ∀k ∈ J1, nK, aijk = 〈LS,i,k;LS,j,k〉

Let us assume that this family is given. Two vectors u and v of R2 are independent if
and only if: 〈u; v〉2 < 〈u;u〉〈v; v〉. Since matrix S is invertible, on can choose, for any
k ∈ J1, nK, a couple of indices (ik, jk) ∈ J1, 2nK2 such that:

(A.11) a2ikjkk < aikikkajkjkk

Let k ∈ J1, nK Let us choose a vector vikk, whose norm is
√
aikikk > 0. The following

system of equations with unknown v ∈ R2:

(A.12)

{
〈vikk; v〉 = aikjkk
〈v; v〉 = ajkjkk

admits exactly two solutions (by (A.11)), denoted by v+jkk et v−jkk obtained from one another
by orthogonal symmetry Rk of axis the line spanned by vikk.
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Let us set v−ikk = v+ikk = vikk. Since the families (v+ikk, v
+
jkk

) et (v−ikk, v
−
jkk

) are two basis

of R2, for any i ∈ J1, 2nK \ {ik, jk}, each one of the two systems:

(A.13)

{ 〈vikk; v〉 = aikik
〈v+jkk; v〉 = ajkik

et

{ 〈vikk; v〉 = aikik
〈v−jkk; v〉 = ajkik

admits exactly one solution denoted respectively by v+ik and v−ik, and satisfying relation

v−ik = Rkv
+
ik.

We are now able to construct 2n matrices (TA)A∈P(J1,nK) defined, for A ∈ P(J1, nK), by:

(A.14) ∀(i, k) ∈ J1, 2nK × J1, nK, LTA,i,k =

{
v+ik if k ∈ A
v−ik if else

In order to prove the second point of Lemma A.2, it is sufficient to prove the following
assertions:

(1) There exists at least one set A ∈ P(J1, nK), such that: TA ∈ S.
(2) There is at most one set A ∈ P(J1, nK), such that TA is symplectic (and A is

determined by family (aijk)(i,j)∈J1,2nK2,k∈J1,nK)

Indeed, once those two assertions proved, there will be exactly one set A ∈ P(J1, nK)
such that TA is symplectic, and it will be an element of S, constructed from the values of
family (aijk)(i,j)∈J1,2nK2,k∈J1,nK only.

Let us prove the first assertion. Let, for any k ∈ J1, nK, Ok be the unique element of
SO2(R) tel que: LS,ik,k = Okvikk (where S is a particular matrix of S).

The system (A.12) is equivalent to:

(A.15)

{
〈LS,ik,k;Okv〉 = aikjkk
〈Okv;Okv〉 = ajkjkk

which admits exactly two solutions: v+jkk et v−jkk. Hence, for any k ∈ J1, nK:

(A.16) LS,jk,k = Okv
+
jkk

or LS,jk,k = Okv
−
jkk

Let us define the set A by:

(A.17) A = {k ∈ N |LS,jk,k = Okv
+
jkk

}
Since each system (A.13) admit a unique solution, we obtain:

∀(i, k) ∈ J1, 2nK × J1, nK, LS,i,k =

{
Okv

+
ik if k ∈ A

Okv
−
ik if else

= OkLTA,i,k

(A.18)

that is:

(A.19) TA,σ = Sσ




O1

. . .

On




and TA ∈ S by Lemma A.1.
In order to prove the second assertion, let us use the following lemma:
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Lemma A.3. For any symplectic matrix B of size 2n, we have:

(A.20) ∀k ∈ J1, nK,

n∑

i=1

det(bi,k) = 1

If A1 and A2 are two parts of J1, nK, we get from (A.14) and relation v−ik = Rkv
+
ik that:

(A.21) ∀(i, k) ∈ J1, 2nK × J1, nK, LTA2 ,i,k
=

{
RkLTA1 ,i,k

if k ∈ A1∆A2

LTA1 ,i,k
if else

where A1∆A2 is the symmetric difference of A1 and A2: A1∆A2 = (A1 \A2) ∪ (A2 \A1).
Hence:

(A.22) ∀k ∈ J1, nK,

n∑

i=1

det ((tA2)i,k) = ǫk

n∑

i=1

det ((tA1)i,k)

where, for k ∈ J1, nK, ǫk = −1 if k ∈ A1∆A2, ǫk = 1 if else. Since A1∆A2 = ∅ if and only
if A1 = A2, there exists at most one part A of J1, nK such TA is symplectic. The second
assertion, hence the second point of Lemma A.3, is proven. �

Proof of Lemma A.3. Since B is a symplectic matrix, matrix Bσ satisfies:

(A.23) tBσJσBσ = Jσ

It is sufficient, for k ∈ J1, nK, to read equality (A.23) at line 2k and column 2k − 1 to
obtain:

(A.24)

n∑

i=1

det(bi,k) = 1

�

Lemma A.4. Let A ∈ Mn(R) be a positive matrix whose eigenvalues are pairwise dif-
ferent. Let D a diagonal matrix, similar to A. Then there exists exactly 2n orthogonal
matrices conjugating A to D, and they are obtained one from another by a possible change
of the sign of each column.

Proof of Lemma A.4. As A is positive, there exists an orthogonal matrix Q1 such that:

(A.25) Q−1
1 AQ1 = tQ1AQ1 = D

Let Q2 ∈ GLn(R). Then Q2 is orthogonal and satisfies: Q−1
2 AQ2 = D if and only if Q−1

2 Q1

is an orthogonal matrix which commutes to D, that is, because the diagonal elements of
D are pairwise different, if and only if Q−1

2 Q1 is an orthogonal diagonal matrix. Finally,
Q2 is orthogonal and satisfies: Q−1

2 AQ2 = D if and only if Q−1
2 Q1 is diagonal and its

elements belong to {−1, 1}, that is if Q2 is obtained from Q1 by a possible change of the
sign of each column. �
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Appendix B. Realizing the Poincaré angles

B.1. The periodic trajectory case. In this section we indicate how different systems
of Fermi coordinates and different Birkhoff normal forms exist for any realization of the
Poincaré angles as real numbers and we show how those normal forms are linked to each
other. Thus, our results are independent of this ambiguity.

Proposition B.1. Under the hypothesis of Theorem 1.4, the knowledge of the coefficients
of the trace formula determines the quantities eiθi , i = 1 . . . n. Moreover, let us denote by

Bθ1,...,θn(x, ξ, τ) = E +
∑n

i=1 θi
x2
i+ξ2i
2 + τ + O((x2 + ξ2 + |τ |)2) the Birkhoff normal form

of Hp associated to a given choice of angles θi. For k ∈ Zn, let hk(x, ξ) =
∑
πki(x

2
i + ξ2i )

and let Φk be the symplectomorphism defined, with the notation of (2.92), by

(B.1) Φk(x, ξ, t, τ) =
(
exp(tχhk

)(x, ξ), t, τ + π
∑

ki(x
2
i + ξ2i )

)

Then Bθ1,...,θn ◦ Φ = Bθ1+2k1π,...,θn+2knπ

Proof. The first part of the assertion belongs to Fried [5]. The fact that Φk is a symplec-
tormorphism can be checked directly. Moreover one sees immediatly that it conjugate the
quadratic in (x, ξ)/linear in τ part of Bθ1,...,θn to the one of Bθ1+2k1π,...,θn+2knπ. Moreover
Bθ1,...,θn ◦Φk is a function of τ and x2i +ξ

2
i only and it is easy to verify that the algorithmic

constructions of the two normal froms are covariantly conjugated by Φk. Therefore, it is
equal to Bθ1+2k1π,...,θn+2knπ. �

B.2. The “bottom of the well” case.

Proposition B.2. Under the hypothesis of Theorems 1.10 and 1.14, the knowledge of the
spectrum of H(x, ~Dx) in [Hp(z0), Hp(z0) + ǫ], ~ = o(ǫ), determine the spectrum of the
Hessian of the principal symbol of H(x, ~Dx) at z0.

Proof. By the quantum normal Birkhoof form construction we know that the bottom part

of the spectrum is {Hp(z0) +
n∑

i=1

θi(µi + 1/2)~ + O(~2), |µ~| = O(ǫ)}. Therefore, the

bottom part of the spectrum determines the set Λ = {
n∑

i=1

θi(µi + 1/2), µ ∈ Nn}. Let

us now assume that the θis are arranged in increasing order. θ1/2 is then equal to the
minimum of Λ. By induction, if θ1, . . . , θk are known for some k, 1 ≤ k < n, let us

define Λk = {∑k
i=1 θi(µi + 1/2)}. Let us set λk+1 := minΛ ∩ Λc

k. We easily see that

θk+1 = 2λk+1 −
∑k

i=1 θi, which concludes the proof. �
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27, 83-106 (1973).

[3] Y. Colin de Verdière and V. Guillemin, A semiclassical inverse problem I: Taylor expansions,
arXiv:0802.1605v1

[4] J.J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bichar-
acteristics. Inv. Math. 29 (1975), 39-79.

[5] D. Fried, Cyclic resultants of reciprocal polynomials, Holomorphic Dynamics, Lecture Notes in Math-
ematics Volume 1345, 1988, 124-128

[6] V. Guillemin, Wave-trace invariants, Duke Math. Journal, 83, (1996) 287-352.



RECOVERING HAMILTONIANS 41

[7] V.Guillemin and T. Paul, Some remarks about semiclassical trace invariants and quantum normal
forms, “Communication in Mathematical Physics” 294, pp. 1-19, 2010.

[8] V. Guillemin, T Paul and A. Uribe, “Bottom of the well” semi-classical trace invariants, Mathematical
Research Letters 14, p. 711-719, (2007).

[9] V.Guillemin and A. Uribe, Some inverse spectral results for semiclassical Schrödinger operators,
Mathematical Research Letters 14, p. 623-632, 2007

[10] M. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys. 12, (1971), 343-
358.
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