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Abstract. We show that the contributions to the Gutzwiller formula with observable
associated to the iterates of a given elliptic nondegenerate periodic trajectory γ and
to certain families of observables localized near γ determine the quantum Hamiltonian
in a formal neighborhood of the trajectory γ, that is the full Taylor expansion of its
total symbol near γ. We also treat the “bottom of a well” case both for general and
Schrödinger operators.

1. Introduction and main results

It is well known that spectral properties of semiclassical Hamiltonians and dynamical
properties of their principal symbols are linked. Even when there is no precise information
“eigenvalue by eigenvalue” of the spectrum, the so-called Gutzwiller trace formula provide
information on averages of the spectrum at scale of the Planck constant. More precisely, let
H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential operator on a compact
manifold X of dimension n+1, whose symbol H(x, ξ) is proper (as a map from T ∗X into
R). We will denote by σ = σ(H(x, ~Dx)) the spectrum of H(x, ~Dx).

Let E be a regular value of H and γ a non-degenerate periodic trajectory of period Tγ
lying on the energy surface H = E.

Consider the Gutzwiller trace (see [9])

(1.1) Tr

(
ψ

(
H(x, ~Dx)− E

~

))
=
∑

σ

ψ

(
E − Ei

~

)

1
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where ψ is a C∞ function whose Fourier transform is compactly supported with support
in a small enough neighborhood of Tγ and is identically one in a still smaller neighborhood
containing Tγ . As shown in [12], [13] (1.1) has an asymptotic expansion

(1.2) ei
Sγ
~

+σγ

∞∑

k=−n

ak~
k

In [6] was shown how to compute the terms of this expansion to all orders in terms of
a microlocal Birkhoff canonical form for H in a formal neighborhood of γ, and that the
constants ak,r, k, r = 0, 1, . . . determine the microlocal Birkhoff canonical form for H in a
formal neighborhood of γ (and hence, a fortiori, determine the classical Birkhoff canonical
form). When it is known “a priori” that H(x, ~Dx) is a Schrödinger operator, it is known
that the normal form near the bottom of a well determines part of the potential V [8].
But in the general case the Gutzwiller formula will determine only the normal form of the
Hamiltonian, that is to say H(x, ~Dx) only modulo unitary operators, and its principal
symbol only modulo symplectomorphisms. Of course it cannot determine more, as the
spectrum, and a fortiori the trace, is insensitive to unitary conjugation. The aim of this
paper is to address the question of determining the true Hamiltonian from more precise
spectral data, namely from the Gutzwiller trace formula with observables.

It is well know that, for any pseudodifferential operator O(x, ~Dx) of symbol O(x, ξ),
there is a result equivalent to (1.2) for the following quantity

(1.3) Tr

(
O(x, ~Dx)ψ

(
H(x, ~Dx)− E

~

))
=
∑

σ

〈ϕj , O(x, ~Dx)ϕj〉ψ
(
E − Ei

~

)
,

(here ϕj is meant as the eigenvector of eigenvalue Ej) under the form of an asymptotic
expansion of the form

(1.4) ei
Sγ
~

+σγ

∞∑

k=0

aγk(O)~k

where aγk are distribution supported on γ.
Through this article we will assume, without loss of generality, that the period of γ is

equal to 1.
We will show in the present paper that the knowledge of the coefficients aγk(O) for a

family of observables (and NOT all) localized near γ is enough to determine the (full Taylor
expansion of) the (total) symbol of H(x, ~Dx) near γ, in other words H(x, ~Dx) microlo-
cally in a formal neighborhood of γ, when γ is non-degenerate elliptic in the following
sense.

Definition 1.1. A periodic trajectory of the Hamiltonian flow generated byH(x, ξ) is said
to be non-degenerate elliptic if its linearized Poincaré map has eigenvalues (e±iθi)1≤i≤n,
θj ∈ R, and the rotation angles θi (1 ≤ i ≤ n) and π are independent over Q.

Definition 1.2 (Fermi coordinates). We will denote by “Fermi coordinates” any system
of local coordinates of T ∗M near γ, (x, t, ξ, τ) ∈ Rn × Rn × S1 × R, such that γ = {x =
ξ = τ = 0} and on which the principal symbol H0 of H(x, ~Dx) can be written as:

(1.5) H0(x, t, ξ, τ) = H0(x, t, ξ, τ) +H2
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where

(1.6) H2 = O(|x|3 + |ξ3|+ |xτ |+ |ξτ |)
And

(1.7) H0(x, t, ξ, τ) = E +

n∑

i=1

θi
x2i + ξ2i

2
+ τ

The existence of such local coordinates, guaranteed by the Weinstein tubular neigh-
borhood Theorem ([16]), was proved in [5, 6, 17] under the hypothesis of non-degeneracy
mentioned earlier.

Our main results are the following:

Theorem 1.3. Let γ be a non-degenerate elliptic periodic trajectory of the Hamiltonian
flow generated by the principal symbol H0 of H(x, ~Dx) on the energy shell H−1

0 (E), and
let (x, t, ξ, τ) be any system of local coordinates near γ, such that γ = {x = ξ = τ = 0}.

For 1 ≤ i, j ≤ n, p ∈ Z, and k ∈ {1, 2, 3}, let Qk
ijp and Qp be pseudodifferential operators

whose respective principal symbol Qk
ijp and Qp satisfy in a neighborhood of z0:

(1.8)





Q1
ij(x, t, ξ, τ) = e−2iπtxiξj

Q2
ij(x, t, ξ, τ) = e−2iπtxixj

Q3
ij(x, t, ξ, τ) = e−2iπtξiξj

Qp(x, t, ξ, τ) = e−2iπtτ.

Then for any ǫ > 0, the knowledge of the spectrum of H(x, ~Dx) in [H0(z0), H0(z0) +
( max
j=1...n

θj + n
2 + ǫ)~] and the diagonal matrix elements of Qk

ijp, Qp, 1 ≤ i, j ≤ n, k =

1, 2, 3, p ∈ Z between the corresponding eigenvectors of H(x, ~Dx) allows the explicit con-
struction of a particular local symplectic change of variable which sends the above system
to a system of Fermi coordinates near γ.

Theorem 1.4. Let γ be a non-degenerate elliptic periodic trajectory of the Hamiltonian
flow generated by the principal symbol H0 of H(x, ~Dx) on the energy shell H−1

0 (E), and
let (x, t, ξ, τ) be a system of Fermi coordinates near γ.

For (m,n, d, s) ∈ N2n × Z × {0, 1}, let Omnds be any pseudodifferential operator whose
principal symbols Omnds satisfies in a neighborhood of γ

(1.9) Omnds(x, t, ξ, τ) = ei2πdtτs
n∏

j

(xj + iξj)
mj (xj − iξj)

nj .

Then the knowledge of the coefficients ak(Omnds) in (1.3)-(1.4) for k ≤ N and m,n, d, s
satisfying

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

determines the Taylor expansion near γ of the full symbol of H(x, ~Dx) up to order N in
this system of Fermi coordinates.

Remark 1.5. Condition 2 implies that the number of observables (for each Fourier coef-
ficient in t) needed for determining H(x, ~Dx) up to order N is of order Nn+1 and not
N2n+2, number of all polynomials of order N . The fact that not all observables are needed
can be understood by the fact that we know that the Hamiltonian we are looking for is
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conjugated to the normal form by a unitary operator and not by any operator (see the
discussion after Theorem 2.1). At the classical level this is a trace of the fact that we are
looking for a symplectomorphism, and not any diffeomorphism (see section 4).

Remark 1.6. The asymptotic expansion of the trace (1.3) involves only the microlocaliza-
tion of H(x, ~Dx) in a formal neighborhood of γ. Therefore there is no hope to recover
from spectral data more precise information that the Taylor expansion of its symbol near
γ. The rest of the symbol concerns spectral data of order ~∞.

Let us now consider the case where γ is reduced to one point, namely the “bottom of
a well” case.

Let us assume that the principal symbol H0 of H(x, ~Dx) has a global minimum at
z0 ∈ T ∗M, and let d2H0(z0) be the Hessian of H at z0. Let us define matrix Ω defined by
d2H0(z0)(·, ·) =: ωz0(·,Ω−1·) where ωz0(·, ·) is the canonical symplectic form of T ∗M at z0.
Ω’s eigenvalues are purely imaginary, let us denote them by ±iθj with θj > 0, j = 1 . . . n.
Let us assume that θj , j = 1 . . . n are rationally independent.

Definition 1.7. By extension of definition 1.2, we will also denote by Fermi coordinates
any system of Darboux coordinates (x, ξ) ∈ T ∗Rn centered at z0 and such that:

(1.10) H0(x, ξ) = H0(z0) +

n∑

i=1

θi
x2i + ξ2i

2
+O((x, ξ)3).

The existence of such local coordinates will be proved in section 3, and Theorem 1.8
below proves that one can explicitely construct Fermi coordinates out of any system of
Darboux coordinates.

Theorem 1.8. Let (x, ξ) ∈ T ∗Rn be any system of Darboux coordinates centered at z0.
For 1 ≤ i, j ≤ n, k ∈ {1, 2, 3}, let Qk

ij be any pseudodifferential operator whose principal

symbol Qk
ij satisfy in a neighborhood of z0:

(1.11)





Q1
ij(x, ξ) = xiξj

Q2
ij(x, ξ) = xixj

Q3
ij(x, ξ) = ξiξj .

Then for any ǫ > 0, the knowledge of the spectrum of H(x, ~Dx) in [H0(z0), H0(z0) +
( max
j=1...n

θj + n
2 + ǫ)~] and the diagonal matrix elements of Qk

ij , 1 ≤ i, j ≤ n, k = 1, 2, 3

between the corresponding eigenvectors allows the explicit construction of a particular local
change of variable φ, linear and symplectic in the above Darboux coordinates, which sends
this system to a system of Fermi coordinates.

Theorem 1.9. Let (x, ξ) ∈ T ∗Rn be a system of Fermi coordinates centered at z0.
For (m,n) ∈ N2n, let Omn be any pseudodifferential operator whose principal symbol

Omn satisfy in a neighborhood of z0:

(1.12) Omn(x, ξ) =

n∏

j=1

(xj + iξj)
mj (xj − iξj)

nj ,

Then, for all ǫ > 0, the knowledge of the spectrum of H(x, ~Dx) in [H0(z0), H0(z0) + ǫ]
and the diagonal matrix elements of Omn between the corresponding eigenvectors, with

(1) |m|+ |n| ≤ N
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(2) ∀j = 1 . . . n, mj = 0 or nj = 0,

determines the Taylor expansion up to order N of the full symbol of H(x, ~Dx) at z0 in
the coordinates (x, ξ).

Remark 1.10. Although we will not prove it here, let us remark that Theorem 1.9 (and
also Theorem 1.4) is also valid in the framework of quantization of Kälherian manifolds.

In the case whereH(x, ~Dx) is a Schrödinger operator, it is known, [8], that the (actually
classical) normal form determines the Taylor expansion of the potential in the case where
the latter is invariant, for each i = 1 . . . n, by the symmetry xi → −xi. Same result holds
without the symmetry assumption in the case n = 1, with assumption V ′′′(0) 6= 0, as it
has been shown in [3].

Let now H = −~2∆+ V be a Schrödinger operator and q0 be a global non-degenerate
minimum of V . Let us assume that the square-roots (θi)1≤i≤n of the eigenvalues of d2V (q0)
are linearly independent over the rationals. In that precise case, we will denote by Fermi
coordinates any system of Darboux coordinates (x, ξ) ∈ T ∗Rn, in which the (principal
or total, both notions are equivalent here) symbol H of our Schrödinger operator can be
written as:

(1.13) H(x, ξ) = V (q0) +
n∑

i=1

θi
x2i + ξ2i

2
+R(x)

where R(x) = O(x3). The existence of such local coordinates will also be proved in section
3, and Theorem 1.11 below proves that one can explicitely construct Fermi coordinates
out of any system of local coordinates centered at q0.

Theorem 1.12 shows that the matrix elements of only a finite number of observables
are necessary to recover the full Taylor expansion of the potential in the general case.

Theorem 1.11. Let x ∈ Rn be any local system of coordinates centered at q0, and (x, ξ) ∈
T ∗Rn the corresponding Darboux coordinates centered at (q0, 0).

Then, for any ǫ > 0, the knowledge of the spectrum of H(x, ~Dx) in [V (q0), V (q0) +
( max
1≤j≤n

θj +
n
2 + ǫ)~] and the diagonal matrix elements between the corresponding eigen-

vectors of Q2
ij , 1 ≤ i, j ≤ n, defined in Theorem 1.8, allows the explicit construction of a

particular local change of variable φ, linear and symplectic in the above Darboux coordi-
nates, which sends this system to a system of Fermi coordinates.

Theorem 1.12. Let (x, ξ) ∈ T ∗Rn be a system of Fermi coordinates centered at (q0, 0).
Then, for all ǫ > 0, the knowledge of the spectrum of H(x, ~Dx) in [V (q0), V (q0) + ǫ]

and the diagonal matrix elements between the corresponding eigenvectors of the 2n − 1
observables Om0, m = (m1, . . . ,mn) ∈ {0, 1}n \ {0}, defined in Theorem 1.9, determines
the full Taylor expansion of V at q0 in the coordinates x.

Remark 1.13. Note that since we are dealing with observables localized near the bottoms
of the wells, the hypothesis that z0 in Theorems 1.8-1.9 and q0 in Theorems 1.11-1.12
are global minima can be released and the corresponding results can be formulated in a
straightforward way.
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The proof of Theorem 1.4 relies on two results having their own interest per se: Propo-

sition 2.13 which shows that the coefficients of the trace formula determine the matrix
elements 〈ϕj , O(x, ~Dx)ϕj〉 where ϕj are the eigenvectors of the normal form of the Hamil-
tonian, and Proposition 2.14 which states that the knowledge of the matrix elements of
the conjugation of a given known selfadjoint operator by a unitary one determines, in a
certain sense, the latter.

As a byproduct of Proposition 2.14 we obtain also a purely classical result, somehow
analog of it: the averages on Birkhoff angles associated to Birkhoff coordinates of the same
classical observables than the ones in Theorem 1.4 determine the Taylor expansion of the
(true) Hamiltonian. This is the content of Theorem 4.1 below.

The paper is organized as follows. In the first part of section 2, we give a detailed proof
of Theorem 1.4, while the last subsection contains the proof of Theorems 1.9 and 1.12. In
section 3, we give an explicit construction of some Fermi coordinates out of any system of
local coordinates in both the periodic and ”Bottom of the well” case: this is the content of
Theorems 1.3, 1.8 and 1.11. In Section 4 we show the classical equivalent of our quantum
formulation.

Through the whole paper, Jl,mK, l < m, will stand for the set of integers {l, . . . ,m}.

2. Recovering the Hamiltonian in some given Fermi coordinates

Let us start this section by observing that, since we are only interested in a microlocal
recovery of our Hamiltonian, it is enough, in order to prove Theorem 1.4, to prove following
Theorem 2.1. Its proof will first need a construction of the quantum Birkoff normal form,
which we give in subsection 2.1. The rest of the proof is then a consequence of Proposition
2.13 (subsection 2.2) and Proposition 2.14 (subsection 2.3). Subsection 2.4 contains the
proof of the analogs of Theorem 1.4 as γ is reduced to a single point, both in the general
and ”Schrödinger” case: Theorems 1.9 and 1.12.

Theorem 2.1. Let H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential op-
erator on L2(Rn×S1). Let (x, t, ξ, τ) ∈ T ∗(Rn×S1) be the canonical symplectic coordinates
near γ = S1, non degenerate elliptic periodic orbit of the Hamiltonian flow generated by
the principal symbol H0 of H(x, ~Dx) on the energy shell H−1

0 (E).
Let us assume that H0 can be written in these coordinates as:

(2.1) H0(x, t, ξ, τ) = H0(x, t, ξ, τ) +H2

where

(2.2) H2 = O(|x|3 + |ξ3|+ |xτ |+ |ξτ |)

And H0 is equal to:

(2.3) H0(x, t, ξ, τ) = E +

n∑

i=1

θi
x2i + ξ2i

2
+ τ
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For (m, d, s, n) ∈ N2n ×Z×{0, 1} let us choose any pseudodifferential operators Omnds

whose principal symbols are

(2.4) Omnds(x, t, ξ, τ) = ei2πdtτsΠj(xj + iξj)
mj (xj − iξj)

nj .

Then the knowledge of the coefficients ak(Omnds), k = 0 . . .N in ( (1.3),(1.4) with

(1) |m|+ |n| ≤ N
(2) ∀j ∈ J1, nK, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

determines the Taylor expansion near γ of the full symbol (in the system of coordinates
(x, t, ξ, τ)) of H(x, ~Dx) up to order N .

The proof of Theorem 2.1 will be essentially divided into three steps: first, we will prove
in Proposition 2.2 the existence of the quantum Birkhoff normal form in a form convenient
to our computations, especially concerning the discussion of orders. In Proposition 2.13,
we will show that the trace formula with any observable O determines the matrix elements
of O in the eigenbasis of the normal form. Finally, in Proposition 2.14, we will show that
these matrix elements determines H(x, ~Dx) in a formal neighborhood of x = ξ = τ = 0,
which will lead to Theorem 2.1.

For i ∈ J1, nK, let us consider on L2(Rn × S1) the operators:

• ai =
1√
2
(xi + ~∂xi

)

• a∗i = 1√
2
(xi − ~∂xi

)

• Dt = −i~∂t
• Pi :=

1
2

(
−~∂2xi

+ x2i
)
= a∗i ai +

~

2

For µ ∈ Nn, ν ∈ Z we will denote by |µ, ν〉 a common eigenvector of the Pi’s and Dt,
namely the vectors such that:

Pi|µ, ν〉 = (µi +
1

2
)~|µ, ν〉 and Dt|µ, ν〉 = 2π~|µ, ν〉.

Those vectors can be explicitly constructed as follows:

(2.5) |0, 0〉(x, t) := 1

(π~)
n
4
e

−x2

2~

and for any µ ∈ Nn

(2.6) |µ, ν〉(x, t) := ei2πνt
n∏

i=1

1√
µi!

(a∗i )
µi |0, 0〉(x, t)

Let us recall the following:

(2.7)





ai|µ, ν〉 =
√
µi~|µ1, . . . , µi−1, µi − 1, µi+1, . . . , µn, ν〉

a∗i |µ, ν〉 =
√
(µi + 1)~|µ1, . . . , µi−1, µi + 1, µi+1, . . . , µn, ν〉

[ai, a
∗
j ] = δij~

[ai, aj ] = 0.
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We will write |µ| :=
1=n∑
i=1

µi, zi =
xi+iξi√

2
, pi =

x2
i+ξ2i
2 and denote by OpW (f) the pseudo-

differential operator whose total Weyl symbol is f .

Finally, let us denote by a, a∗ or P the n-tuple of corresponding operators ai, a
∗
i , Pi,

i ∈ J1, nK. We’ll also use the usual convention that, if X is a n-tuple of complex numbers

or operators, and j a n-tuple of nonnegative integers, Xj stands for
∏n

i=1X
ji
i .

2.1. Construction of the Quantum Birkhoff normal form. Our construction of the
normal form, inspired by [6], is the following:

Proposition 2.2. Let H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential
operator on L2(Rn × S1), whose principal symbol is

(2.8) H0(x, t, ξ, τ) = H0(p, τ) +H2

where H0(p, τ) =
∑n

i=1 θipi + τ and H2 vanishes to the third order on x = ξ = τ = 0.

Then for any N ≥ 3, there exists a self-adjoint semiclassical elliptic pseudodifferen-

tial operator W̃≤N and a smooth function h(p1, . . . , pn, τ, ~) satisfying microlocally in a
neighborhood of x = ξ = τ = 0 the following statement:

∀M > 0, ∃CN > 0, ∀(µ, ν, ~) ∈ Nn × Z× [0, 1[, |µ~|+ |ν~| < M,
∣∣∣∣
∣∣∣∣
(
e

iW̃≤N
~ He

−iW̃≤N
~ − h(P1, . . . , Pn, Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ ≤ CN (|µ~|+ |ν~|)N+1

2
(2.9)

The operators can be computed recursively in the form:

(2.10) W̃≤N =W≤N + (D2
t +

n∑

i=1

Pi)
N+1

where

(2.11)




W≤N =

∑
3≤q≤N Wq

Wq :=
∑

2p+|j|+|k|+2m=q

αp,j,k,m(t)~pOpW (zj z̄k)Dm
t

with αp,j,k,m)smooth and Wq is symmetric.

Remark 2.3 (important convention). We are only interested in recovering the Hamil-
tonian in a formal neighborhood of γ: every asymptotic expansion is meant microlocally
and we’ll be rewriting equations such as (2.9) simply as:

∣∣∣∣
∣∣∣∣
(
e

iW̃≤N
~ He

−iW̃≤N
~ − h(P1, . . . , Pn, Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ = O

(
|µ~|+ |ν~|)N+1

2

)

By abuse of notation, we’ll identify the same way any operator with its version microlo-
calized near γ.

Remark 2.4. We introduce W̃≤N in order to gain ellipticity and self-adjointness like it has
been done in Lemma 4.5 of [6].
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The proof of Proposition 2.2 will need several preliminaries:

Definition 2.5. We will say that a pseudodifferential operator A on L2(Rn × S1) is
”polynomial of order r ∈ N” (PO(r)) if there exists βp,j,k,m ∈ C∞(S1,C) such that:

(2.12) A =
∑

2p+|j|+|k|+2m=r

αp,j,k,m(t)~pOpW (zj z̄k)Dm
t

These operators have the following properties.

Proposition 2.6. Let A be a pseudodifferential operator on L2(Rn×S1) Then, there exists
a family of operators Ar, r ∈ N such that for any i ∈ N, Ar is PO(r) and

(2.13) ∀N ∈ N,

∥∥∥∥∥

(
A−

N∑

r=0

Ar

)
|µ, ν〉

∥∥∥∥∥ = O
(
(|µ~|+ |ν~|)

N+1
2

)

Proof. We start by defining a notion of suitable asymptotic equivalence.

Definition 2.7. Let us introduce for any operator A the notations ⌊A⌋r et ⌊A⌋≤N which
represent respectively the terms of order r and of order smaller or equal to N in the
expansion (2.13).
If A and B are two operators, we’ll write that: A ∼ B if for any r ∈ N, ⌊A⌋r = ⌊B⌋r.
Also, if (An)n∈N is a family of operators, we’ll write that:

(2.14) A ∼
+∞∑

n=0

An

if for any N ∈ N, ⌊An⌋≤N is zero for n sufficiently large, and the finite sum:

(2.15)
+∞∑

n=0

⌊An⌋≤N = ⌊A⌋≤N .

Let a(z, t, z̄, τ) be the total symbol of A, the following Taylor expansion of which we
split in two terms:

∀N ∈ N, a(z, t, z̄, τ) =

N∑

r=0

∑

2p+|j|+|k|+2m=r

αp,j,k,m(t)~pzj z̄kτm+

N+1
2∑

p=0

O
(
~p(|z|2 + |τ |)N+1

2 −p
)

Now, for any r ∈ N, let us notice that the pseudodifferential operator Ar of symbol∑
2p+|j|+|k|+2m=r αp,j,k,m(t)~pzj z̄kτm is PO(r), and therefore:

∀N ∈ N,

∥∥∥∥∥

(
A−

N∑

r=0

Ar

)
|µ, ν〉

∥∥∥∥∥ =

N+1
2∑

p=0

~pO
(
(|µ~|+ |ν~|)

N+1
2 −p

)

= O
(
(|µ~|+ |ν~|)

N+1
2

)
.

(2.16)

This concludes the proof. �

The following lemma will be crucial for our computations.

Lemma 2.8. Let F and G be PO(r) and PO(r′) respectively then [F,G]
i~ is PO(r+ r′ − 2).
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Proof. The proof of Lemma 2.8 will be a direct consequence of the two following lemmas,
whose proof will be given at the end of this proof.

Lemma 2.9. Any monomial operator of order r, that is of the form α(t)~pb1 . . . blD
m
t ,

where:

• for j ∈ J1, lK, bj ∈ {a1, a∗1, . . . , an, a∗n}
• 2p+ l + 2m = r

is PO(r).

Lemma 2.10. If F and G are monomials of order r and r′ respectively, then [F,G]
i~ is

PO(r + r′ − 2)

Indeed, any PO(r) is a finite sum of monomials of the same order, hence if F and G

are PO(r) and PO(r′) respectively, then [F,G]
i~ is a finite sum of quantities of type [F̃ ,G̃]

i~

where F̃ and G̃ are monomials of order r and r′ respectively. Any of those quantities are
PO(r+r′−2) by Lemmas 2.9 and 2.10, and a finite sum of PO(r+r′−2) is PO(r+r′−2).
Therefore, Lemma 2.8 is proved. �

Let us now prove Lemmas 2.9 and 2.10:

Proof of Lemma 2.9. Since for any i, j ∈ J1, nK, i 6= j, ai and a
∗
i commute with both aj and

a∗j , it is sufficient, in order to prove Lemma 2.9, to prove the following assertion (Assl) for
any positive integer l: ” any ordered product b1 . . . bl, where for any j ∈ J1, lK, bj ∈ {a1, a∗1}
can be written as a finite sum of the quantities ~pOpW (zj1z̄

k
1 ) with 2p + j + k = l and

j − k = l − 2♯{m ∈ J1, lK, bm = a∗1}” More precisely, let us proceed by induction, and
introduce for any ordered product b1 . . . bl, the integer k(b1 . . . bl) = ♯{m ∈ J1, lK, bm = a∗1}.

• If l = 1, there is nothing to prove since a1 = OpW (z1) and a
∗
1 = OpW (z̄1).

• If l = 2, 



a21 = OpW (z21)

a∗21 = OpW (z̄21)

a1a
∗
1 = P1 +

~

2 = OpW (z1z̄1) +
~

2

a∗1a1 = OpW (z1z̄1)− ~

2

and therefore, the assertion is proved for l = 2.
• Now, let l be a positive integer, let us assume (Assk) up to order k = l, and let
B = b1 . . . bl+1 be an ordered product, where for any j ∈ J1, l + 1K, bj ∈ {a1, a∗1}.
If for any j ∈ J1, lK, bj = bj+1, then B = OpW (zl+1

1 ) or B = OpW (z̄l+1
1 ).

Otherwise, the proof of the symmetric case being identical, let us can assume that
b1 = a1, and set j0 = max{j ∈ J1, l + 1K, bj = a1}. Let us remark that: 1 ≤ j0 ≤ l

and [aj01 , a
∗
1] = j0~a

j0−1
1 , so that:

(2.17) b1 . . . bl+1 = aj01 a
∗
1bj0+2 . . . bl+1 = a∗1a

j0
1 bj0+2 . . . bl+1 + ~j0a

j0−1
1 bj0+2 . . . bl+1

Hence if one sets k := k(b1 . . . bl+1)
(
l+ 1

k

)
b1 . . . bl+1 =

(
l

k

)
aj01 a

∗
1bj0+2 . . . bl+1 +

(
l

k − 1

)
a∗1a

j0
1 bj0+2 . . . bl+1

+ ~

(
l

kb − 1

)
j0a

j0−1
1 bj0+2 . . . bl+1
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Now, because we assumed (Assl−1):

(l − 1)− 2k(aj0−1
1 bj0+2 . . . bl+1) = (l + 1)− 2k(b1 . . . bl+1)

we only need to observe that the
(
l+1
k

)
ordered monomials in the sum OpW (zl+1−k z̄k)

can be divided in two parts: the
(
l
k

)
ones whose first term is a1, whose sum is(

l
k

)
a1Op

W (zl−kz̄k) and the
(

l
k−1

)
who forms

(
l

k−1

)
a∗1Op

W (zl+1−kz̄k−1), and since:
(
l + 1

k

)
OpW (zl+1−kz̄k) =

(
l

k

)
a1Op

W (zl−kz̄k) +

(
l

k − 1

)
a∗1Op

W (zl+1−kz̄k−1)

the assumption of (Assl) will be enough to conclude our proof by induction.

�

Proof of Lemma 2.10. It is now sufficient in order to prove Lemma 2.10 to remark that if
F and G are of the form:

F = α(t)b1 . . . blD
m
t and G = β(t)b′1 . . . b

′
l′D

m′

t

where:

• α and β are smooth
• l + 2m = r, l′ + 2m′ = r′

• For j ∈ J1, lK, for j′ ∈ 1, l′K, bj, b′j′ ∈ {a1, a∗1}
then [F,G]

i~ is a finite sum of monomials of order r + r′ − 2 since, by Lemma 2.9, each of
them is PO(r + r′ − 2). With those assumptions on F and G, we get:

[F,G]

i~
=
[α(t)b1 . . . blD

m
t , β(t)b

′
1 . . . b

′
l′D

m′

t ]

i~

=α(t)β(t)
[b1 . . . bl, b

′
1 . . . b

′
l′ ]

i~
Dm+m′

t + α(t)b1 . . . bl
[Dm

t , β(t)]

i~
b′1 . . . b

′
l′D

m′

t

−β(t)b′1 . . . b′l′
[Dm′

t , α(t)]

i~
b1 . . . blD

m
t

(2.18)

Therefore it is sufficient to prove that
[b1...bl,b

′
1...b

′
l′
]

i~ ,
[Dm

t ,β(t)]
i~ and

[Dm′

t ,α(t)]
i~ are respectively:

PO(l+ l′−2), PO(2m−2) and PO(2m′−2) (with the convention that a PO(j) with j < 0
is 0).
For the two last, it is quite obvious, since:

(2.19)
[Dm

t , β(t)]

i~
=

m−1∑

k=0

(
m

k

)
(i~)m−k−1β(m−k)(t)Dk

t

Now, for j ∈ J1, l′K, let us set ǫj = 1 if b′j = a∗1, otherwise ǫj = −1. Since [a1, a
∗
1] = ~, we

get:

b1 . . . blb
′
1 . . . b

′
l′ = b′1b1 . . . blb

′
2 . . . b

′
l′ +

ǫ1 + 1

2
~

l∑

k=1
bk=a1

b1 . . . bk−1bk+1 . . . blb
′
2 . . . b

′
l′

+
ǫ1 − 1

2
~

l∑

j=1
bk=a∗

1

b1 . . . bk−1bk+1 . . . blb
′
2 . . . b

′
l′
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Hence by induction on j ∈ J1, l′K:

[b1 . . . bl, b
′
1 . . . b

′
l′ ]

i~
=− i

l′∑

j=1

ǫj + 1

2

l∑

k=1
bk=a1

b′1 . . . b
′
j−1b1 . . . bk−1bk+1 . . . blb

′
j+1 . . . b

′
l′

− i

l′∑

j=1

ǫj − 1

2

l∑

k=1
bk=a∗

1

b′1 . . . b
′
j−1b1 . . . bk−1bk+1 . . . blb

′
j+1 . . . b

′
l′

(2.20)

The right-hand side of (2.20) is a finite sum of monomials of order l + l′ − 2, hence
PO(l+ l′ − 2) by Lemma 2.9, and Lemma 2.10 is proved.

�

Lemma 2.11. Let G be PO(r). There exists F PO(r) and G1 = G1(P1, . . . , Pn, Dt, ~)
such that:

(2.21)
[H0(P,Dt), F ]

i~
= G+G1

Moreover, F is symmetric if G is symmetric, G1 = 0 if r is odd, and G1 is an homogeneous
polynomial function of total order r

2 if r is even.

Remark 2.12. If F =
∑

2p+|j|+|k|+2m=r αp,j,k,m(t)~pOpW (zj z̄k)Dm
t , one can choose:

(2.22)

∫

S1

αp,j,j,m(t)dt = 0

Indeed, any OpW (zj z̄j)Dm
t commutes with H0(P,Dt, ~)

Proof of Lemma 2.11. Let us first assume thatG is a monomial of order r: G = β(t)b1 . . . blD
m
t

where:

• α is smooth
• l + 2m = r
• For j ∈ J1, lK, bj ∈ {a1, a∗1, . . . , an, a∗n}

and let us look for F under the form: F = α(t)b1 . . . blD
m
t . We have:

[H0, F ]

i~
=
[H0, α(t)b1 . . . blD

m
t ]

i~

=α(t)

n∑

i=1

θi
[Pi, b1 . . . bl]

i~
Dm

t +
[Dt, α(t)]

i~
b1 . . . blD

m
t

=α(t)

n∑

i=1

θi
[Pi, b1 . . . bl]

i~
Dm

t + α′(t)b1 . . . blD
m
t

(2.23)

If for i ∈ J1, nK, ki = ♯{m ∈ J1, lK, bm = a∗i } and ji = ♯{m ∈ J1, lK, bm = ai}, we deduce
from (2.20) that:

(2.24)
[Pi, b1 . . . bl]

i~
=

√
−1(ji − ki)b1 . . . bl

Hence:

(2.25)
[H0, F ]√

−1~
=

√
−1

n∑

i=1

θi(ji − ki)α(t)b1 . . . blD
m
t + α′(t)b1 . . . blD

m
t
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The problem: [H0,F ]√
−1~

= G admits a solution if there exists α such that:

(2.26)
√
−1

n∑

i=1

θi(ji − ki)α(t) + α′(t) = β(t)

If (cp(α))p∈Z and (cp(β))p∈Z are the Fourier coefficients of α and β, it is sufficient that,
for p ∈ Z, cp(α) is solution of:

(2.27)
√
−1

(
n∑

i=1

θi(ji − ki) + 2πp

)
cp(α) = cp(β)

and

(2.28) cp(α) =
p→+∞

O

(
1

|p|∞
)

If the n-tuples j and k are different, the non-degeneracy condition on the θi’s together

with the fact that cp(β) =
p→+∞

O
(

1
|p|∞

)
(because β is smooth), gives the existence of

cp(α) satisfying (2.27) and (2.28).
If r is odd, j and k can’t be equal, hence Lemma 2.11 is proved in this case (r odd and G
monomial)
If r is even, and j = k, there exists a family (cp(α))p∈Z∗ satisfying (2.27) and (2.28).
Hence, if α is the smooth function with Fourier coefficients cp(α) for p 6= 0 and c0(α) = 0,
we get:

(2.29)
[H0, F ]√

−1~
= G+ c0(β)b1 . . . blD

m
t

And from the proof of Lemma 2.9, we know that c0(β)b1 . . . blD
m
t can be reordered as the

sum: G1(P,Dt, ~) := c0(β)
∑

2p+2|k|=l ap,k~
pP kDm

t . Therefore, Lemma 2.11 is proved in

the case where r is even and G is monomial.
The general case is easily deduced from the case where G is monomial, since G is a finite
sum of monomials of the same order.
Also, the form of F allows us to conclude immediately that F is symmetric if G is so. �

Now we have everything we need for the proof by induction of Proposition 2.2.

Proof of Proposition 2.2. Microlocally near x = ξ = τ = 0, H(x, ~Dx) satisfies

(2.30) H := H(x, ~Dx) ∼ H0(P1, . . . , Pn, ~Dt) +
∑

q≥3

Hq

where:

(2.31) Hq := ⌊H(x, ~Dx)⌋q
Let us look for W̃≤3 under the form predicted in Proposition 2.2, that is:

(2.32) W̃≤3 =W3 + (|Dt|2 +
n∑

i=1

Pi)
4
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where W3 is PO(3).

e
iW̃≤3

~ H(x, ~Dx)e
−iW̃≤3

~ ∼ H(x, ~Dx) +
i

~
[W̃≤3, H ] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤3, . . . , W̃≤3, H ]

∼ H0 +H3 +
i

~
[W3, H

0]

+
i

~
[W3, H −H0] +

i

~
[W̃≤3 −W3, H(x, ~Dx)]

+
∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤3, . . . , W̃≤3, H(x, ~Dx)] +

∑

q≥4

Hq

Since H3 is polynomial of order 3, let us choose W3, as in Lemma 2.11, such that:

(2.33) H3 +
i

~
[W3, H

0] = H1(P1, . . . , Pn, Dt, ~) ≡ 0

Since W3 is PO(3) and the expansion of H − H0 in PO(r) contains no PO(r) of order

less or equal to 2, the expansion of W̃≤3 −W3 no term order less or equal to 3, and the
one of H(x, ~Dx) no term of order less or equal to 1, we know from Lemma 2.10 that the
expansion of:

(2.34)
i

~
[W3, H −H0] +

i

~
[W̃≤3 −W3, H ] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤3, . . . , W̃≤3, H ] +

∑

q≥4

Hq

contains no term of order less or equal to 3.
Therefore, Proposition 2.6 gives us:

(2.35)

∣∣∣∣
∣∣∣∣
(
e

iW̃≤3
~ He

−iW̃≤3
~ −H0(P,Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ = O

(
|µ~|+ |ν~|)2

)

We can construct by induction (Wq)q≥3 and (Hq)q≥1, such that:

• for q ≥ 3,Wq is PO(q) and forHq−2 is zero if q is odd, an homogeneous polynomial
function of total order q

2 if q is even.
•

(2.36) H3 +
i

~
[W3, H

0] = H1(P,Dt, ~)

• and for any q ≥ 4:

i

~
[Wq, H

0]+Hq+

 i
~
[W≤q−1, H −H0] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W≤q−1, . . . ,W≤q−1, H ]


q

= Hq−2(P,Dt, ~)

Let us now set: W̃≤N :=
∑N

q=3Wq + (|Dt|2 +
∑n

i=1 Pi)
N+1

2 . Also, as for any q ≥ 0,

H2q is an homogeneous polynomial function of total order q+1, we can choose by Borel’s
lemma a smooth function h such that for any N ≥ 1, in a neighborhood of p = τ = 0.

(2.37)

∣∣∣∣∣h(p, τ, ~)−
N−1∑

q=0

H2q(p, τ, ~)

∣∣∣∣∣ = O
(
(|p|+ |τ |+ |~|)N+1

)
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Now, let us write, for any N ≥ 4

e
iW̃≤N

~ He
−iW̃≤N

~ ∼ H +
i

~
[W̃≤N , H ] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]

∼ H +
i

~
[W≤N , H

0] +
i

~
[W≤N , H −H0] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]

+
i

~
[W̃≤N −W≤N , H ]

Let us also observe that Lemma 2.8 gives us for q ≤ N :

(2.38)





⌊
i
~
[W≤N , H −H0]

⌋
q
= ⌊ i

~
[W≤q−1, H −H0]⌋q

∑
l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]


q

=

∑
l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W≤q−1, . . . ,W≤q−1, H ]


q

Therefore for any q ≤ N :

(2.39)

⌊
e

iW̃≤N
~ He

−iW̃≤N
~

⌋

q

= Hq−2(P,Dt, ~) = ⌊h(P,Dt, ~)⌋q

And Proposition 2.6 gives us:

(2.40)

∣∣∣∣
∣∣∣∣
(
e

iW̃≤N
~ He

−iW̃≤N
~ − h(P,Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ = O

(
|µ~|+ |ν~|)N+1

2

)

which concludes the proof. �

2.2. Recovering the matrix elements from the Trace formula. The next result is
the first inverse result needed for the proof of our main result.

Proposition 2.13. Let O be a pseudodifferential operator, whose principal symbol van-
ishes on γ.

(1) There exists a smooth function f vanishing at (0, 0, 0) such that for any N ≥ 3:

(2.41) 〈µ, ν|e
iW̃≤N

~ Oe
−iW̃≤N

~ |µ, ν〉 = f

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N

2

)

Moreover let, for any integer l, φl be a Schwartz function whose Fourier trans-
form is compactly supported in (l−1, l+1) and let (alj(O))l≥0 provided by the trace
formula:

(2.42) Tr

(
Oφl

(
H − E

~

))
∼

+∞∑

j=0

alj(O)~
j

(2) The Taylor expansion of f up to order N is entirely determined by the family
(alj(O)), 0 ≤ j ≤ N , l ∈ N.
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Proof. Let us first prove point 1.
Let us consider a monomial G = α(t)b1 . . . blD

m
t where:

• α is smooth
• l + 2m = r
• For j ∈ J1, lK, bj ∈ {a1, a∗1, . . . , an, a∗n}

Let us set for i ∈ J1, nK, ki = ♯{m ∈ J1, lK, bm = a∗i }
and ji = ♯{m ∈ J1, lK, bm = ai}.

If j 6= k or α /∈ C, then: 〈µ, ν|G|µ, ν〉 = 0 for any (µ, ν) ∈ Nn × Z.

If now j = k and α ∈ C, then there exists complex numbers αl (0 ≤ li ≤ ji for
i ∈ J1, nK), such that:

(2.43) G =
∑

0≤li≤ji

αl~
|l|P j1−l1

1 . . . P jn−ln
n Dm

t

and: α0 = α.
Therefore for any (µ, ν) ∈ Nn × Z:

(2.44) 〈µ, ν|G|µ, ν〉 =
∑

0≤li≤ji

αl~
|l|
((

µ+
1

2

)
~

)j−l

(2πν~)m

Hence, if G is PO(r), then for any (µ, ν) ∈ Nn × Z:

• 〈µ, ν|G|µ, ν〉 = 0 if r is odd.
• If r is even, there exists an homogeneous polynomial function g of order r

2 such
that:

(2.45) 〈µ, ν|G|µ, ν〉 = g

(
(µ+

1

2
)~, 2πν~, ~

)

From Proposition 2.6 and Borel’s lemma, we get that that for any operator A, there
exists a function g such that for any (µ, ν) ∈ Nn × Z:

(2.46) 〈µ, ν|A|µ, ν〉 = g

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N+1

2

)

Hence, the only point remaining to prove, is that function f in point 1 does not depend
on N . It is therefore sufficient to prove that for any q ≤ N − 1,

(2.47)

⌊
e

iW̃≤N
~ Oe

−iW̃≤N
~

⌋

q

=

⌊
e

iW̃≤q+1
~ Oe

−iW̃≤q+1
~

⌋

q

But (2.47) is a direct consequence of Lemma 2.8. Indeed,

(2.48) e
iW̃≤N

~ Oe
−iW̃≤N

~ ∼ O +
∑

l≥1

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , O]
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and since the principal symbol of O vanishes on γ, Lemma 2.8 gives us for any l ≥ 1 and
any q ≤ N − 1:

(2.49)


il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , O]


q

=


il

~ll!
[

l times︷ ︸︸ ︷
W̃≤q+1, . . . , W̃≤q+1, O]


q

Let us now move on to the proof of point 2.

Since φ̂l is supported near a single period of the flow, we know from the general theory
of Fourier integral operators that one can microlocalize the trace formula with observables
near γ:

(2.50) Tr

(
Oφl

(
H − E

~

))
= Tr

(
O

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eitH−E
~ dt

)
+O(~∞)

where ρ ∈ C∞
0 (R) is compactly supported and ρ = 1 in a neighborhood of p = τ = 0.

Therefore we can conjugate (2.50) by the microlocally unitary operator e
iW̃≤N

~ :

Tr

(
Oφl

(
H − E

~

))
=

= Tr


(e

iW̃≤N
~ Oe

−iW̃≤N
~

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit e

iW̃≤N
~ He

−iW̃≤N
~ −E

~ dt


+O(~∞)

Thanks to Proposition 2.2, we can lighten the r.h.s. for any (µ, ν) ∈ Nn × Z

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit e

iW̃≤N
~ He

−iW̃≤N
~ −E

~ dt|µ, ν〉

=

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉

(2.51)

As φ̂l is smooth and compactly supported, together with the non-degeneracy condition
on the θi’s, we can assure that if we choose a sufficiently small support for ρ, we have for
any η > 0:

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉

=

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~η

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉+O(~∞)
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Hence, choosing η < 1
2 :

Tr

(
Oφl

(
H − E

~

))
+O(~∞)

=
∑

µ,ν

〈µ, ν|e
iW̃≤N

~ Oe
−iW̃≤N

~ |µ, ν〉 ×
∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |ν|)~η

)
eit(2πν+θ.(µ+ 1

2 )) . . .

. . . exp


 it

~

∑

1≤q≤N−2

Hq

(
(µ+

1

2
)~, ν~, ~

)
+O

(
(|µ|+ |ν|)N+1

2 ~
N−1

2

)

 dt

=
∑

µ,ν

∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~η

)
eit(2πν+θ.(µ+ 1

2 ))


1 +

N−1
2∑

i≥1

~iQi(µ+
1

2
, ν, t)


×

N+1
2∑

p≥1

∑

|k|+m≤p

bk,m,p−|k|−m(µ+
1

2
)k(2πν)m~pdt+O(~

N+1
2 )

where for any i ≤ N−1
2 , Qi is a determined polynomial function, of degree in

(
µ+ 1

2 , ν
)

less or equal to i+1, which depends on the Hq’s and the Taylor expansion of exp, and the
bk,m,s ((k,m, s) ∈ Nn+2\{0}) come from the Taylor expansion at (0, 0, 0) of the function
f defined in the first point of Proposition 2.13, i.e. for any N ≥ 1:

(2.52) f(x, y, z) =
∑

1≤|k|+m+s≤N

bk,m,sx
kymzs +O

(
|x|+ |y|+ |z|)N+1

)

Now, let us set:

(2.53) ∀t ∈ R∗, ∀α ∈ (R\2π
t
Z)n, g(t, α) :=

ei
t
2 (α1+···+αn)

∏
i(1− eitαi)

By the non-degeneracy condition on the θi’s, g is well defined on the compact support of

φ̂l around a single period, which is precisely l. It also implies that θi.µ is bounded below
by C|µ| (where C > 0) as |µ| goes to ∞.
Therefore we get from the Poisson formula and the Riemann-Lebesgue lemma that the
following quantity Xp(l) can be computed recursively on p ≤ N+1

2 from the alj(O), j =
0, . . . , p:

Xp(l) =
∑

|k|+m≤p

bk,m,p−|k|−m

[(
−i ∂
∂t

)m
(
φ̂l(t)

(−i
t

)k
∂kg

∂αk
(t, α)

)]
(l, θ)

=
∑

|k|+m≤p

bk,m,p−|k|−m

[(
−i ∂
∂t

)m(
−i ∂
t∂α

)k

g

]
(l, θ)

(2.54)

since φ̂l is identically 1 around l.

Now, let us set, for any i ∈ J1, nK, any t ∈ R and any α ∈ (R\ 2π
t Z)

n, xi(t, α) = ei
tαi
2 . and

also define holomorphic function h on C\{−1, 1} by h(z) = z
1−z2 for z ∈ C\{−1, 1}. We
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have for any k ∈ Nn:

(2.55)

(
−i ∂
t∂α

)k

g =
n∏

i=1

(
−i ∂

t∂αi

)ki

(h ◦ xi)

For any i ∈ J1, nK, an easy induction on ki ∈ N leads to the following, since for any

z ∈ C\{−1, 1}, h(z) = 1
2

(
1

1−z − 1
1+z

)
, and −i ∂xi

t∂αi
= 1

2xi:

(2.56)

(
−i ∂

t∂αi

)ki

(h ◦ xi) =
ki!

2ki+1

(
xi

(1− xi)ki+1
+

xi
(1 + xi)ki+1

)

Now, since −i∂xi

∂t = αi

2 xi, an induction on si ∈ N shows that:
(2.57)(

−i ∂
∂t

)si (
−i ∂

t∂αi

)ki

(h ◦ xi) =
(ki + si)!α

si
i

2ki+si+1

(
xi

(1 − xi)ki+si+1
+

xi
(1 + xi)ki+si+1

)

Let us now introduce for any n-tuple s such that |s| = m, the multinomial coefficient:
(
m

s

)
=

m!

s1! . . . sn!

We have:

(2.58)

(
−i ∂
∂t

)m(
−i ∂
t∂α

)k

g =
∑

|s|=m

(
m

s

) n∏

i=1

(
−i ∂
∂t

)si (
−i ∂

t∂αi

)ki

(h ◦ xi)

Let us use Kronecker theorem, whose hypothesis is precisely the non-degeneracy condition
on the θi’s: for any n-tuple (x1, . . . , xn) ∈ Sn1 , one can find a sequence of integers (lp)p∈Z,
such that:

∀j ∈ J1, nK, xj(lp, θ) −→
p→+∞

xj

Therefore, if one sets, for any (x1, . . . , xn) ∈ (S1\{−1, 1})n and (k,m) ∈ Nn+1:

u(k,m) =
∑

|s|=m

(
m

s

) n∏

i=1

(ki + si)!θ
si
i

2ki+si+1

(
xi

(1− xi)ki+si+1
+

xi
(1 + xi)ki+si+1

)

Then (2.54), (2.57) and (2.58) together with Kronecker theorem allows us to conclude
that the following quantity is determined by the alj(O), j = 0, . . . , p:

(2.59) Xp =
∑

|k|+m≤p

bk,m,p−|k|−mu
(k,m)

Hence, the only thing remaining to prove is that, if one chooses the xi’s tending to 1 in a
way convenient to us, the |u(k,m)|’s will tend to ∞ to different orders.
Let us be more precise:

Let the xi’s tend to 1 in a way such that:

(2.60) ∀i ∈ J1, n− 1K, |1− xi| ≪ |1− xi+1|p
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If ≃ means that two functions are equivalent, as the xi’s tend to 1 as in (2.60), up a
multiplicative constant, we have for any (k,m) ∈ Nn+1:

(2.61) (1− x1)
mu(k,m) ≃

n∏

i=1

1

(1− xi)ki+1

Hence, if one sets m̃ = (m, 0, . . . , 0):

(2.62) u(k,m) ≪ u(k
′,m′) si k + m̃ < k′ + m̃′

where < is the lexicographical order on Nn. Therefore, for any p ∈ N and for any (k,m) ∈
Nn+1 such that |k0|+m0 ≤ p, the following quantity can be recursively determined from
Xp:

(2.63) Xk0,m0 =
∑

k′+m̃′=k+m̃

bk,m,p−|k|−mu
(k,m)

Reversing for example the roles of i = 1 and i = 2 in (2.60), and observing that k2 +m 6=
k′2 +m′ if k+ m̃ = k′ + m̃′ and (k,m) 6= (k′,m′), one determines bk,m,p−|k|−m from (2.63)

recursively on m. Finally, each bk,m,s with |k| +m + s ≤ N is determined by the alj(O),
with j = 0 . . .N and l ∈ N and the point 2 is proved, which ends the proof of Proposition
2.13.

�

2.3. Recovering the Hamiltonian from matrix elements. Our next result shows
how the knowledge of the matrix elements of the conjugation of a given known selfadjoint
operator by a unitary one determines the latter (in the framework of asymptotic expan-
sions).
For any (m,n, d, s) ∈ N2n × Z2, and any (x, t, ξ, τ) ∈ T ∗(Rn × S1), let us define:

(2.64) Omnds(x, t, ξ, τ) = ei2πdtτs
n∏

j=1

(xj + iξj)
mj (xj − iξj)

nj .

and let Omnds be a pseudodifferential operator whose Weyl principal symbol is Omnds.
By Proposition 2.13, there exists a smooth function fmnds vanishing at (0, 0, 0) such

that for any N ≥ 3:

(2.65)

〈µ, ν|e
iW̃≤N

~ Omndse
−iW̃≤N

~ |µ, ν〉 = fmnds

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N

2

)

Theorem 2.1 will now be a direct consequence of Proposition 2.13 and following propo-
sition:

Proposition 2.14. Let N ≥ 3. The Taylor expansion of fmnds up to order N − 1 for any
(m,n, d, s) ∈ N2n × Z2 satisfying conditions

(1) |m|+ |n| ≤ N
(2) ∀j ∈ J1, nK, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

determines completely W≤N
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Remark 2.15. Let us remark, like it will be seen in the proof of Proposition 2.14, that the

only relevant information is the asymptotic expansion of 〈µ, ν|e
iW̃≤N

~ Omndse
−iW̃≤N

~ |µ, ν〉
as ~ tends to 0 and µ, ν go to ∞ slower than any negative power of ~.

Proof of Proposition 2.14. LetN ≥ 3 and (m,n, d, s) ∈ (Nn)2×Z×{0, 1} satisfy conditions
(1), (2) and (3).
Then, we have:

e
iW̃≤N

~ Omndse
−iW̃≤N

~ ∼ Omnds +
i

~
[W̃≤N , Omnds] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , Omnds]

Therefore:

〈µ, ν|e
iW̃≤N

~ Omndse
−iW̃≤N

~ |µ, ν〉 − 〈µ, ν|Omnds|µ, ν〉

=
i

~
〈µ, ν|[W̃≤N , Omnds]|µ, ν〉+

∑

l≥2

il

~ll!
〈µ, ν|[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , Omnds]|µ, ν〉

+O ((|µ~|+ |ν~|)∞)

(2.66)

Now, since W̃≤N is a sum of polynomial operators of order greater that 3, we get from
Proposition 2.8 that for any l ≥ 2

(2.67)
il

~l
〈µ, ν|[

l−1 times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , ·]

maps a PO(r) into a sum of polynomial operators of order strictly larger than r. Therefore,
if A is a PO(r), we have:

(2.68)
∑

l≥2

il

~ll!
〈µ, ν|[

l−1 times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , A]|µ, ν〉 = O

(
(|µ~|+ |ν~|) 1

2

)
〈µ, ν|A|µ, ν〉

Finally, let us recall that:

WN =
∑

2p+|j|+|k|+2q=N

αp,j,k,q(t)~
pOpW (zj z̄k)Dq

t

:=
∑

2p+|j|+|k|+2q=N

∑

r∈Z

αp,j,k,q,r~
pe−i2πrtOpW (zj z̄k)Dq

t

(2.69)

Let us also state the following lemma, whose proof will be given after the end of the
present proof.

Lemma 2.16.

(2.70) 〈µ, ν|[e−i2πdtOpW (zj z̄k)Dq
t , Omnds]|µ, ν〉 = ~gjkqrmnds

((
µ+

1

2

)
~, ν~

)
+O(~2)
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where, if j +m = k + n and r = d:
(2.71)

gjkqrmnds

((
µ+

1

2

)
~, ν~

)
= (2πν~)q+s(µ~)max(j,k)




n∑

i=1
|ji|+|ki|>0

jini − kimi

µi~
+
d(q + s)

ν~




and if j +m 6= k + n or r 6= d, gjkqrmnds ≡ 0

Let us now proceed by induction on N ≥ 3, and first assume N = 3.
Equation (2.65) gives us that the Taylor expansion up to order 2 of function fmnds

determines modulo O
(
(|µ~|+ |ν~|)3

)
:

(2.72) 〈µ, ν|e
iW̃≤6

~ Omndse
−iW̃≤6

~ |µ, ν〉 − 〈µ, ν|Omnds|µ, ν〉

Thanks to (2.68), (2.72) is equal, modulo O
(
(|µ~|+ |ν~|) 2+|m|+|n|+2s

2

)
, to:

(2.73)∑

2p+|j|
+|k|+2q

=3

∑

r∈Z

αp,j,k,q,r~
p
(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
〈µ, ν| i

~
[e−i2πrtOpW (zj z̄k)Dq

t , Omnds]|µ, ν〉

and with the lemma’s notations modulo O
(
(|µ~|+ |ν~|) 2+|m|+|n|+2s

2

)
+O(~) to:

(2.74)
∑

|j|+|k|+2q=3
j+m=k+n

iα0,j,k,q,d

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
gjkqdmnds

((
µ+

1

2

)
~, ν~

)

Let us assume we already proved (assertion (⋆)) that quantity (2.74) determines coef-
ficients α0,j,k,q,d (|j|+ |k|+ 2q = 3, j +m = k + n).
We’ll have determined every function α0,j,k,q (|j| + |k| + 2q = 3). Indeed, for any
(j, k, q) ∈ N2n+1 such that |j|+ |k|+ 2q = 3, and for any i ∈ J1, nK, let us choose:

(2.75) ni = max(ji − ki, 0) and mi = max(ki − ji, 0)

d ∈ Z∗ and s = 1 if m = n = 0, d ∈ Z and s = 0 otherwise.
We have for any i ∈ J1, nK, mi = 0 or ni = 0, and

|m|+ |n| =
n∑

i=1

|ji − ki| ≤ |j|+ |k| ≤ 3

Therefore, (m,n, d, s) verifies the three assumptions (1), (2), and (3): (2.74) will hence
determine α0,j,k,q,d and letting d describe Z if j 6= k, Z∗ if j = k, we will have determined
functions α0,j,k,q (thanks to remark 2.12 for the case j = k)

Let us prove assertion (⋆) in the two cases: m 6= n and m = n.
Let us also define the set Γ of (j, k, q) such that: |j|+ |k|+ 2q = 3 and j +m = k + n.
Let us first assume that m 6= n, and choose µ1(~), . . . µn(~), ν(~) such that, as ~ tends to
0:

(2.76) 1 ≪ µ1, µ
2N
n ≪ ν, and ∀i ∈ J1, n− 1}, µ2N

i ≪ µi+1
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Let us also define i0 := min{i ∈ J1, nK,mi 6= ni}. We have, for (j, k, q) ∈ Γ:

(2.77) gjkqdmnds

((
µ+

1

2

)
~, ν~

)
∼

~→0

ji0ni0 − ki0mi0

µi0~
(2πν~)q

n∏

i=1

(µi~)
max(ji,ki)

and ji0ni0 − ki0mi0 never vanishes.
Also, (2.76) in additition to (2.77) gives us that:

(2.78) gjkqdmnds

((
µ+

1

2

)
~, ν~

)
≪ gj′k′q′dmnds

((
µ+

1

2

)
~, ν~

)

if (j, k, q) < (j′, k′, q′), where < is a strict total order on Γ defined by the lexicographical
order of (max(j1, k1), . . . ,max(jn, kn), q). It is indeed asymmetric since for i ∈ J1, nK, the
sign of mi − ni determines whether max(ji, ki) is equal to ji or ki.

Therefore, making additional assumption on function µ1(~) that: ~ = O(µ1(~)
3~3), we

get that qunatity (2.74) is determined modulo O
(
(|µ~|+ |ν~|) 2+|m|+|n|+2s

2

)
and assertion

(⋆) easily follows by induction on (Γ, <) in the case m 6= n.
If now m = n, we may assume that d 6= 0 like seen before. Also, s = 1, thus for any q,

(q + s)d 6= 0.
Hence,

(2.79) gjjqdmnds

((
µ+

1

2

)
~, ν~

)
= (2πν~)q(q + 1)d

n∏

i=1

(µi~)
ji

and assertion (⋆) is proved just as before.
Finally, all functions α0,j,k,q are determined for (j, k, q) satisfying |j|+ |k|+2q = 3. Let

(m,n, d, s) satisfy conditions (1), (2), and (3) with N = 1.
Therefore, we obtain from (2.73), that the Taylor expansion of fmnds up to order 2 also

determines, modulo O((|µ~| + |ν~|) 2+|m|+|n|+2s
2 ):

(2.80)∑

|j|+|k|
+2q=1

∑

r∈Z

α1,j,k,q,r~

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
〈µ, ν| i

~
[e−i2πrtOpW (zj z̄k)Dq

t , Omnds]|µ, ν〉

Just as before, with assumptions (2.76) and |µ~|+ |ν~| ≪ ~
2
3 , we can determine every

α1,j,k,q,d with |j|+ |k|+2q = 1 and j+m = k+n (there is actually just one corresponding
to q = 0, and (j, k) = (n,m)), and finally, every function α1,j,k,q with |j|+ |k|+ 2q = 1 ).
This prove the statement for N = 3.

Now, letN ≥ 3, and let us assume that we already determined the family (αp,j,k,q)2p+|j|+|k|+2q=N .
Let (m,n, d, s) conditions (1) (with N + 1), (2), and (3).
The Taylor expansion up to orderN of function fmnds determines modulo O

(
(|µ~| + |ν~|)N+1

)
:

(2.81) 〈µ, ν|e
iW̃≤2N+2

~ Omndse
−iW̃≤2N+2

~ |µ, ν〉 − 〈µ, ν|Omnds|µ, ν〉

which is equal, thanks to (2.68) and Lemma 2.16 and modulo O
(
(|µ~|+ |ν~|)N+|m|+|n|+2s

2

)
+

O(~), to:
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∑

|j|+|k|+2q≤N+1
j+m=k+n

iα0,j,k,q,d

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
gjkqdmnds

((
µ+

1

2

)
~, ν~

)

and by induction hypothesis, the following quantity is determined modulo

O
(
(|µ~|+ |ν~|)N+|m|+|n|+2s

2

)
+O(~):

(2.82)
∑

|j|+|k|+2q=N+1
j+m=k+n

iα0,j,k,q,d

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
gjkqdmnds

((
µ+

1

2

)
~, ν~

)

Now, making assumptions (2.76) and ~ = O
(
(|µ~|+ |ν~|)N

)
, we determine every

α0,j,k,q,d with |j|+ |k|+2q = N +1 and j+m = k+n, and like before, letting (m,n, d, s)
run over all possible values (under conditions (1), (2), and (3)), we determine every func-
tion α0,j,k,q.

Functions αp,j,k,q (2p+ |j|+ |k|+ 2q = N + 1) will now be determined by induction on

p. Let 0 ≤ p0 ≤ N−1
2 and let us assume we determined functions αp,j,k,q (0 ≤ p ≤ p0 and

|j|+ |k|+ 2q = N + 1− 2p).
Let (m,n, d, s) satisfy conditions (1) (with N+1−2(p0+1)), (2), and (3). Thus, the Taylor

expansion of fminds up to order N determines modulo O
(
(|µ~|+ |ν~|)N+|m|+|n|+2s

2

)
+

O(~p0+2)

(2.83)
∑

2p0+2+|j|+|k|+2q=N+1
j+m=k+n

iαp,j,k,q,d~
p0+1

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
gjkqdmnds

((
µ+

1

2

)
~, ν~

)

And with assumptions (2.76) and |µ~| + |ν~| ≪ ~
2(p0+1)
2p0+3 , heredity can be proved just as

before, which concludes the proof.
�

Proof of Lemma 2.16. The principal symbol of 1
i~ [e

−i2πdtOpW zj z̄kDq
t , Omnds] is:

(2.84) σjkdq(z, t, z̄, τ) =
{
e−i2πdtzj z̄kτq ,Omnds

}
=
{
e−i2πdtzj z̄kτq , ei2πdtzmz̄nτs

}

where e−i2πdtzj z̄kτq is meant for the function (z, t, z̄, τ) 7→ e−i2πdtzj z̄kτq .
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Hence

σjkdq(z, t, z̄, τ) =− i

n∑

i=1

∂

∂zi
(e−i2πdtzj z̄kτq)

∂

∂z̄i
(ei2πdtzmz̄nτs)

+ i

n∑

i=1

∂

∂z̄i
(e−i2πdtzj z̄kτq)

∂

∂zi
(ei2πdtzmz̄nτs)

+
∂

∂t
(e−i2πdtzj z̄kτq)

∂

∂τ
(ei2πdtzmz̄nτs)

− ∂

∂τ
(e−i2πdtzj z̄kτq)

∂

∂t
(ei2πdtzmz̄nτs)

= −izz̄|max(j,k)|τq+s

(
n∑

i=1

jini − kimi

ziz̄i
+ 2π

d(s+ q)

τ

)

(2.85)

which means that:

1

~
[e−i2πdtOpW zj z̄kDq

t , Omnds] =D
q+s
t

n∑

i=1
|ji|+|ki|>0

(jini − kimi)P
max(ji,ki)−1
i

n∏

i=1
i′ 6=i

P
max(ji′ ,ki′ )
i′

+ 2π(q + s)Dq+s−1
t Pmax(j,k) +O(~)

(2.86)

and finally:

1

~
〈µ, ν|[e−i2πdtOpW zj z̄kDq

t , Omnds]|µ, ν〉 =(2πν~)q+s(µ~)max(j,k)
n∑

i=1
|ji|+|ki|>0

jini − kimi

µi~

+ 2π(q + s)(2πν~)q+s−1(µ~)max(j,k) +O(~)

(2.87)

�

2.4. ”Bottom of the well”. In this subsection, we treat the ”Bottom of well” analogs
of Theorem 1.4, namely Theorems 1.9 and 1.12. The proof of Theorem 1.9 is a line by
line analog of Theorem 1.4: we omit it here. However, Theorem 1.12, that needs less
assumptions in the particular case of a Schrödinger operator, deserves a proper proof,
which we give below.

Proof of Theorem 1.12. In a system of Fermi coordinates, the (principal and total) symbol
of our Schrödinger operator can be written as:

(2.88) H(x, ξ) = V (q0) +

n∑

i=1

θi
x2i + ξ2i

2
+R(x)

where R(x) = O(x3).
Let ǫ be a positive real number, and let us prove that the knowledge of the spectrum

of H(x, ~Dx) in [V (q0), V (q0) + ǫ] and the diagonal matrix elements of the finite (2n − 1)
number of observables whose principal symbols in this system of local coordinates are:
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n∏
j=1

(xj + iξj)
mj , where for any j ∈ J1, nK, mj ∈ {0, 1} determine the Taylor expansion near

q0 of R.

Let H0 be the function defined by H0(x, ξ) =
∑n

i=1 θi
x2
i+ξ2i
2 .

Let us state the following lemma, which is a classical analog of Lemma 2.11 and uses
the hypothesis of rational independance of the θi’s (we therefore omit its proof).

Lemma 2.17. Let G ∈ C∞(T ∗(Rn),R) be an homogeneous polynomial of degree k ≥
3. There exists a unique couple of functions G1 ∈ C∞(Rn,R) and F ∈ C∞(T ∗(Rn),R)
satisfying:

(2.89) ∀(x, ξ) ∈ T ∗(Rn), {H0, F}(x, ξ) = G(x, ξ) −G1(p)

and F is polynomial with no diagonal term when written as a function of (z, z̄) ( i.e. of
the form zlz̄l)

Moreover:

(1) F is an homogeneous polynomial of degree k and is entierely determined by the
extradiagonal termes of G, i.e. of the form zlz̄m (l 6= m)

(2) G1 is an homogeneous polynomial of degree k
2 if k is even, zero if else. Moreover,

G1(zz̄) is equal to the sum of the diagonal terms of G.

Just like in the proof of proposition 2.2, one shows recursively using Lemma 2.17 the
existence of a family of real numbers (αlm)l,m∈N such that for any l ≥ 0, αll = 0, such
that if the functions (FN )N≥3 are defined for N ≥ 3 by:

(2.90) FN (z, z̄) =
∑

|l|+|m|=N

αlmz
lz̄m

there exists homogeneous polynomials of degree i denoted by Hi ∈ C∞(Rn,R) satisfying,
for N ≥ 3:

(2.91) (expχF≤N
)∗H(x, ξ) =

⌊N
2 ⌋∑

i=1

Hi(p) +O((x, ξ)N+1)

where p = p(x, ξ) = (
x2
i+ξ2i
2 )1≤i≤n, and F≤N =

∑N
k=1 Fk, and χF≤N

is the vector field:

(2.92) χF≤N
=

n∑

i=1

∂F≤N

∂ξi

∂

∂xi
− ∂F≤N

∂xi

∂

∂ξi

If H1 ∼∑+∞
i=1 H

i, then (x, ξ) 7→ H1(p) is the classical Birkhoff normal form of H (defined
modulo a flat function), which is equal to the principal symbol to the quantum Birkhoff
normal form.

Let us also define for k ∈ Nn, |k| ≥ 3: ak = 1
k!

∂|k|R
∂xk (0)

Let k ∈ Nn. Let us observe that:

xk =

(
z + z̄√

2

)k

=
1

√
2
|k|

∑

(l,m)∈N
n

l+m=k

n∏

j=1

(
kj
mj

)
zlz̄m

(2.93)
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Let us define K = {k ∈ Nn, |k| ≥ 3} \ 2Nn, and let k ∈ Nn, |k| ≥ 3. By lemma 2.17,
there exists an homogeneous polynomial of degree |k| with no diagnonal terms, such that:

(2.94) {H0, Ik}(x, ξ) =
{
xk if k ∈ K
xk − 1√

2
|k|

∏n
j=1

( kj

kj/2

)
|z|k if k ∈ 2Nn

Functions (FN )N≥3 and (Hi)i≥1 are constructed recursively as follows: let N ≥ 2 and

let us assume we already constructed F3, . . . , FN (F2 = 0), and H1, . . . , H
⌊N

2 ⌋ (H1(p) =∑n
i=1 θipi), and let us set:

(2.95) GN+1(x, ξ) = (expχF≤N
)∗H(x, ξ)−

⌊N
2 ⌋∑

i=1

Hi(p) +O(‖(x, ξ)‖N+1)

(2.96) {H0, FN+1}(x, ξ) =
{
GN+1(x, ξ) if N is even

GN+1(x, ξ)−H
N+1

2 (p) if N is odd

Let us remark that, in our case, GN+1(x, ξ) −
∑

|k|=N+1 akx
k is a sum of terms that

depends only on F≤N , (Hi)1≤i≤⌊N
2 ⌋ and (ak)|k|≤N . Therefore, FN+1 and H

N+1
2 if N is

odd depend only on (ak)|k|≤N+1.
More precisely,

(2.97)

{
FN+1 =

∑
|k|=N+1 akIk + . . .

H
N+1

2 (p) =
∑

|l|=N+1
2

a2l

2|l|

∏n
j=1

(
2lj
lj

)
pl + . . . (N odd)

where . . . stands for terms that depend only on (ak)|k|≤N .

Now, let us denote by Λ the set {0, 1}n\{0}. Let us also set, for k ∈ Nn, (lk,mk) ∈ N2n

as follows: for any i ∈ J1, nK, (lk)i = ⌊ki

2 ⌋, (mk)i = ki − ⌊ki

2 ⌋. k 7→ (lk,mk) is a biunique

correspondance between K and the set A = {(l,m) ∈ N2n | m− l ∈ Λ, |l|+ |m| ≥ 3}.
Moreover, for any k ∈ K, the coefficient of Ik is 1

θ.(mk−1k)
(well defined by the rational

independance of the θi’s). Therefore, the family (ak)|k|=N+1 can be determined recursively
from the Taylor expansion of the classical Birkhoff normal form and family (αlkmk

)|k|=N+1.
The Taylor expansion of the classical Birkhoff normal form is determined by the spectrum
of H(x, ~Dx) in [V (q0), V (q0) + ǫ], ǫ > 0 as it is already known. Now, let N ≥ 2, and
s ∈ Λ.

(expχF≤N+1
)∗
(
x+ iξ√

2

)s

= (x+ iξ)s + {F≤N+1, z
s}+O((x, ξ)N+|s|)

= −
∑

|k|=N+1
mk−lk=s

αlkmk
|z|2mk

n∑

i=1

(mk)i
|zi|2

+ · · ·+O((x, ξ)N+|s|)

(2.98)

where . . . stands for terms depending only on (ak)|k|≤N (hence already determined by
induction hypothesis) or extradiagonal terms. Therefore, the diagonal matrix elements of
an observable whose principal symbol is zs, s ∈ Λ will be equal modulo O(~) and for any
N ≥ 3 to:
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(2.99)
∑

|k|=N+1
mk−lk=s

αlkmk
(µ~)mk

n∑

i=1

(mk)i
µi~

+O(~) +O(|µ~|N+|s|
2 )

which, just in like the proof of Theorem 2.1 determines (αlkmk
)|k|=N+1. Therefore the

Taylor expansion of R, hence of V near q0 is completely determined, which concludes the
proof.

�

3. Explicit construction of Fermi coordinates

In this section we prove Theorems 1.3, 1.8, and 1.11, whose proofs are essentially a
consequence of lemmas on linear and bilinear algebra, which are stated and proven in the
appendix: Lemmas A.1, A.2, and A.4.

3.1. General ”Bottom of the well” case. The aim of this subsection is to prove The-
orem 1.8, that is the existence and the explicit constructivity of some Fermi coordinates
in the case where our trajectory is reduced to a single point.

Proof of Theorem 1.8. Let (x, ξ) ∈ T ∗(Rn) be a system of Darboux coordinates centered
at z0. d

2H0(z0) is a positive bilinear form on Tz0(T
∗M), therefore, by lemma A.1, there

exists a local change of variable φ, linear and symplectic in the Darboux coordinates, such
that:

(3.1) H0 ◦ φ(x, ξ) = H0(z0) +
n∑

i=1

θi
x2i + ξ2i

2
+O((x, ξ)3).

Let us prove that the diagonal matrix elements of the family of pseudodifferential op-
erators (Qk

ij)1≤i,j≤n,1≤k≤3 in the system of eigenvectors corresponding to eigenvalues of

H(x, ~Dx) in [H0(z0), H0(z0) + ( max
1≤j≤n

θj +
n
2 + ǫ).~] (for some ǫ > 0) allow the explicit

construction of such a symplectomorphism φ (which is not unique).
Let S be the matrix of dφz0 in the basis ( ∂

∂x1
, ∂
∂ξ1

, . . . , ∂
∂xn

, ∂
∂ξn

). We have for (i, j) ∈
J1, nK2 and s ∈ {1, 2, 3}:

Qs
i,j ◦ φ(x, ξ) =

(
n∑

k=1

Sis,2k−1xk + Sis,2kξk

)(
n∑

k=1

Sjs,2k−1xk + Sjs,2kξk

)

=

n∑

k,k′=1

Sis,2k−1Sjs,2k′−1xkxk′ +

n∑

k,k′=1

Sis,2kSjs,2k′−1ξkxk′

+

n∑

k,k′=1

Sis,2k−1Sjs,2k′xkξk′ +

n∑

k,k′=1

Sis,2kSjs,2kξkξk′

=

n∑

k=1

[Sis,2k−1Sjs,2k−1 + Sis,2kSjs,2k] zkz̄k +R,

(3.2)
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where, for (i, j) ∈ J1, nK2, is =

{
2i− 1 if s ∈ {1, 2}
2i if s = 3

and js =

{
2j if s ∈ {1, 3}
2j − 1 if s = 2

,

and R is a linear combination of terms of the form zkzk′ ((k, k′) ∈ J1, nK) and zkz̄k′

((k, k′) ∈ J1, nK, k 6= k′).
Therefore, if Mφ is the metaplectic representation of dφz0 , then for µ ∈ Nn:

(3.3) 〈µ|MφQ
s
i,jM

−1
φ |µ〉 =

n∑

k=1

[Sis,2k−1Sjs,2k−1 + Sis,2kSjs,2k]

(
µk +

1

2

)
~+O(~|µ~|).

hypothèse à rajouter: sous-symbole non constant ?

Therefore, we only need eigenvectors corresponding to |µ| = 1 to determine the values
of Si,2k−1Sj,2k−1 +Si,2kSj,2k for (i, j) ∈ J1, 2nK2 and k ∈ J1, nK. As it was already claimed
by Lemma A.2, the preceeding quantities are independent of the choice of a symplectic
matrix S satisfying (3.1). Since, as we already said, such a matrix S is not unique, it is not
possible to determine S out of the preceeding matrix elements. However, by Lemma A.2,
the family (Si,2k−1Sj,2k−1 + Si,2kSj,2k)(i,j)∈J1,2nK2,k∈J1,nK (determined by the preceeding
matrix elements) allows us to construct explicitely a suitable matrix S, hence a suitable
symplectomorphism φ.

�

3.2. The ”Schrödinger case”. In this subsection, we prove Theorem 1.11, that is the
existence and the explicit constructivity of some Fermi coordinates in the case where our
trajectory is reduced to a single point, with less assumptions than Theorem 1.8 but in the
particular case where our Hamiltonian is a Schrödinger operator.

Proof of Theorem 1.11. Let x ∈ Rn be any system of local coordinates centered at q0 ∈
M, and (x, ξ) ∈ T ∗(Rn) the corresponding Darboux coordinates centered at (q0, 0) ∈
T ∗M. d2V (q0) being a positive bilinear form on Tq0M, there exists, by Lemma A.4, a
local change of variable u, linear and orthogonal in the Darboux coordinates, such that:

(3.4) V ◦ u(x) = 1

2

n∑

i=1

θ2i x
2
i +O(x3)

where the θ2i ’s are the eigenvalues of d2V (q0).
Let us denote by U the matrix of duq0 written in the basis ( ∂

∂x1
, . . . , ∂

∂xn
), and define

a symplectomorphism φ locally by its expression in the Darboux coordinates: φ(x, ξ) =
(Ux,Uξ).

If φ0 is the symplectomorphism that sends (x, ξ) to ( x1√
θ1
, . . . , xn√

θn
,
√
θ1ξ1, . . . ,

√
θiξn),

and H is the (principal and total) symbol of the considered Schrödinger operator then:

(3.5) H ◦ φ ◦ φ0(x, ξ) = V (q0) +
n∑

i=1

θi
x2i + ξ2i

2
+O(x3)

Just as in proof of Theorem 1.8, the diagonal matrix elements of the family of pseudodif-
ferential operators (Q2

ij)1≤i,j≤n in the system of eigenvectors corresponding to eigenvalues

of H(x, ~Dx) in [H0(z0), H0(z0) + ( max
1≤j≤n

θj +
n
2 + ǫ).~] (for some ǫ > 0) determine the

family (UikUjk)1≤i,j,k≤n. An orthogonal matrix U such that (3.5) is verified is not unique,
therefore it is not possible to determine the matrix U from the preceeding diagonal ma-
trix elements. However, by Lemma A.4, the family (UikUjk)1≤i,j,k≤n does not depend
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on the suitable matrix U (i.e. orthogonal and satisfying (3.5)), and as we just saw it is
determined by the preceeding matrix elements. Therefore, one can determine the absolute
values of the coefficients of any suitable matrix U , and also, for any k ∈ J1, nK, an index
ik ∈ J1, nK, such that Uikk 6= 0. The choice of the sign of Uikk then determines the sign of
every other coefficient of the k-th column. Therefore, one can determine the 2n suitable
matrices, corresponding to n choices of signs, as claimed by Lemma A.4. Choosing one of
them determines (explicitely) a suitable symplectomorphism φ.

�

3.3. Periodic case. Let us finally finish this section by proving Theorem 1.3, that is the
explicit construct of some particular Fermi coordinates, obtained from our original system
of local coordinates by a symplectic change of variable.

Proof of Theorem 1.3. Let X,H(x, ~Dx), E, γ be as in Theorem 1.3.
We first recall [5, 6, 16, 17] that there exists a symplectomorphism φ from a neighbor-

hood of S1 in T ∗(Rn × S1) in a neighborhood of γ in T ∗(X) such that in the standard
symplectic coordinates of T ∗(Rn × S1),

(3.6) H0 ◦ φ(x, t, ξ, τ) = H0 +H2 and γ(t) = φ(0, 0, t, 0).

Here H0 is defined as in (2.3) by

H0(x, t, ξ, τ) = E +

n∑

i=1

θi
x2i + ξ2i

2
+ τ

and H2 satisfies condition (2.2):

H2 = O(|x|3 + |ξ3|+ |xτ | + |ξτ |).
Such a symplectomorphism is not unique. Expressing φ in a system a local coordinates

(x′, ξ′, t′, τ ′) near γ such that γ = {x′ = ξ′ = τ ′ = 0}, one can assume that:

(3.7) φ(x, t, ξ, τ) = φS(x, t, ξ, τ) = (S(t)(x, ξ), t, τ + qS(t, x, ξ))

where for any t ∈ S1, S(t) is a linear symplectic change of variable (identified with its
matrix in our system of coordinates), qS(t, ·, ·) is quadratic and satisfies: qu(t, 0, 0) = 0
and

(3.8) dqu =

(
n∑

i=1

L̇i+n(t).(x, ξ)Li(t)− L̇i(t).(x, ξ)Li+n(t)

)
.(dx, dξ)

where for i ∈ J1, 2nK and t ∈ S1, Li(t) is the i-th line of the matrix S(t), ˙ the derivation
with respect to t, and for two line vectors of size 2n, u.v is their canonical scalar product.

Now, just as in the proof of Theorem 1.8, for (i, j) ∈ J1, nK2, p ∈ Z and s ∈ {1, 2, 3}, the
matrix elements corresponding to operators of principal symbol (x, t, ξ, τ) 7→ e−2iπptQs

i,j(x, ξ)
and to eigenvectors indexed by (µ, 0) with |µ| = 1, determine the p-th Fourier coefficient
of:

(3.9) t 7→ Sσ
is,2k−1(t)S

σ
js ,2k−1(t) + Sσ

is,2k(t)S
σ
js ,2k(t)

where, for (i, j) ∈ J1, nK2, is =

{
2i− 1 if s ∈ {1, 2}
2i if s = 3

, js =

{
2j if s ∈ {1, 3}
2j − 1 if s = 2

, σ

is the permutation defined by (A.5), and Sσ is defined by conjugation by the permutation
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matrix associated to σ just as in (A.6).Therefore, those matrix elements determine the
functions:

(3.10) Ai,j,k := Sσ
i,2k−1S

σ
j,2k−1 + Sσ

i,2kS
σ
j,2k

for (i, j) ∈ J1, 2nK2 and k ∈ J1, nK.
An easy adaptation of the proof of Lemma A.2 shows that, once the set of functions

(Ai,j,k)(i,j)∈J1,2nK2,k∈J1,nK is given, one can construct explicitely a particular smooth func-

tion S1 ∋ t 7→ S0(t) with values in the set of symplectic matrices, such that equality (3.10)
holds. We also get that any matrix S such that equality (3.10) holds is related to S0 by
the equality Sσ = Sσ

0U where t 7→ U(t) is a smooth function that takes his values in the
set of block diagonal matrices whose diagonal block matrices are 2 by 2 rotations.

Now let us consider this particular S0 and let U be any smooth function that takes
his values in the set of block diagonal matrices whose diagonal block matrices are 2 by 2
rotations. Let us finally define S by the relation Sσ = Sσ

0U .
Now let p ∈ Z, and let us consider Qp an operator with principal symbol Qp(x, t, ξ, τ) =

e−2iπptτ . Since for any t ∈ S1, qS(t, ·, ·) is quadratic:

Qp ◦ φS(x, t, ξ, τ) = e−2iπptτ + e−2iπptqS(t, x, ξ)

= e−2iπptτ + e−2iπpt
n∑

k=1

(
∂2qS
∂x2k

+
∂2qS
∂ξ2k

)
zkz̄k +R

(3.11)

where R is a linear combination of terms of the form e−2iπptzkzk′ ((k, k′) ∈ J1, nK) and
e−2iπptzkz̄k′ ((k, k′) ∈ J1, nK, k 6= k′).

As in the proof of Theorem 1.9, for p ∈ Z, the diagonal matrix element corresponding
to operator Qp and eigenvectors indexed by (µ, 0) with |µ| = 1 determines the p-th Fourier

coefficient of the functions
(
t 7→ ∂2qS

∂x2
k

+ ∂2qS
∂ξ2

k

)
k∈J1,nK

. Hence, the family of matrix elements

associated to (Qp)p∈Z determines thes function
(
t 7→ ∂2qS

∂x2
k

+ ∂2qS
∂ξ2

k

)
k∈J1,nK

.

Now, we get from equation (3.8) that, for k ∈ J1, nK and t ∈ S1:

∂2qS
∂x2k

(t) +
∂2qS
∂ξ2k

(t) =

n∑

i=1

Ṡi+n,k(t)Si,k(t) + Ṡi+n,k+n(t)Si,k+n(t)

−
n∑

i=1

Ṡi,k(t)Si+n,k(t) + Ṡi,k+n(t)Si+n,k+n(t)

(3.12)

Now, for k ∈ J1, nK and t ∈ S1, let us denote by Uk(t) =

(
cos θk(t) − sin θk(t)
sin θk(t) cos θk(t)

)
the k-th

diagonal block of U(t). Then, for j ∈ J1, 2nK, k ∈ J1, nK and t ∈ S1:

(3.13)

(
Sj,k(t)
Sj,k+n(t)

)
= tUk(t)

(
S0,j,k(t)
S0,j,k+n(t)

)

Therefore:

(3.14)

(
Ṡj,k(t)

Ṡj,k+n(t)

)
= tUk(t)

(
Ṡ0,j,k(t)

Ṡ0,j,k+n(t)

)
+ tU̇k(t)

(
S0,j,k(t)
S0,j,k+n(t)

)
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Let us now observe that for k ∈ J1, nK, and any t ∈ S1:

(3.15) U̇k(t)
tUk(t) =

(
0 −1
1 0

)

Therefore, because for any k ∈ J1, nK, and t ∈ S1, Uk(t) is an orthogonal matrix and S0(t)
is a symplectic matrix, we get from equations (3.14) and (3.15):

∂2qS
∂x2k

(t) +
∂2qS
∂ξ2k

(t) =
∂2qS0

∂x2k
(t) +

∂2qS0

∂ξ2k
(t)

+ 2θ̇k(t)

(3.16)

Since the function t 7→ ∂2qS
∂x2

k

(t) + ∂2qS
∂ξ2

k

(t) has been determined above by matrix elements,

and the function t 7→ frac∂2qS0∂x
2
k(t) +

∂2qS0

∂ξ2
k

(t) is entirely determined by the explicitely

contructed function t 7→ S0, equation (3.16) then determines the function θ̇k. Therefore,
the function t 7→ U(t), hence the function t 7→ Sσ(t), is determined up to right multipli-
cation by a constant block diagonal matrix U0 whose diagonal block matrices are 2 by 2
rotations. It is now sufficient to observe, that if two functions t 7→ S1(t) and t 7→ S2(t)
are related by the equation:

(3.17) Sσ
2 = Sσ

1U0

where U0 is a constant matrix, then

(3.18) φS2 = φS1 ◦ φUσ−1
0

and, if U0 is a constant block diagonal matrix whose diagonal block matrices are 2 by 2
rotations:

(3.19) H0 ◦ φ
Uσ−1

0
= H0

Finally, the choice of U0 in the determination of t 7→ S(t) does not change the validity of
equation (3.6) for φ = φS , and Theorem 1.3 is proved.

�

4. Classical analogs

In this section we want to prove a classical analog to Proposition 2.14. It is well known
that matrix elements of quantum observables between eigenvectors of integrable Hamilto-
nians are given at the classical limit by Fourier coefficients in action-angle variables of the
classical Hamiltonian. More precisely in the case of diagonal matrix elements the result
states that, with the notation of section 2, for any bounded pseudodifferential operator O
on L2(Rn × S1),

(4.1) 〈µ, ν|O|µ, ν〉 ∼
∫

Tn×S1

O′(µ~, ν~;ϕ, s)dϕds,

where O′(p, τ : ϕ, s) is the principal symbol of O expressed in the action angles variables
(pi, ϕi) such that xl + iξl =

√
ple

iϕl . Therefore it is natural to ask if angle-averages of
observables expressed in Birkhoff coordinates determine the original Hamiltonian. Our
result is the following.
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Theorem 4.1. Let γ be a non-degenerate elliptic periodic trajectory of the Hamiltonian
flow generated by a proper smooth Hamiltonian function H. Let (x, t, ξ, τ) be any system
of local coordinates near γ such that γ = {x = ξ = τ = 0}.

For (m,n, d, s) ∈ N2n × Z × {0, 1} let Omnds be functions satisfying in a neighborhood
of γ:

(4.2) Omnds(x, ξ; t, τ) := ei2πdtτs
n∏

j=1

(xj + iξj)
mj (xj − iξj)

nj .

Let Φ be the formal (unknown a priori) symplectomorphism which leads to the Birkhoff
normal form near γ and (p, ϕ; τ, s) the corresponding Birkhoff coordinates such that γ =
{p = τ = 0}. Let us define near p = τ = 0 the following “average” quantities

(4.3) Omnds(p, τ) :=

∫

Tn×S1

Omnds ◦ Φ(p, τ ;ϕ, s)dϕds.

Then the knowledge of the Taylor expansion at p = τ = 0 up to order N of Omnds for

(1) |m|+ |n| ≤ N
(2) ∀j ∈ J1, nK, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

determines the Taylor expansion of Φ near γ up to order N in any system of Fermi
coordinates. Therefore the knowledge of these expansions together with the normal form
up to order N determine the Taylor expansion of the “true” Hamiltonian H up to the
same order again in any system of Fermi coordinates.

Remark 4.2. A Corollary of Theorem 4.1 in the line of Corollary ?? can be obtained in a
straightforward way. We omit it here.

Proof. We saw in the preceding sections that the diagonal matrix elements of the quantum
observables Omnds determine the full semiclassical expansion of the Taylor expansion of
the total symbol of the Hamiltonian. What’s left to be done is, roughly speaking, to check
that the classical limit of the matrix elements determine the one of the symbol. We will
need the following lemma (see [14] for a proof)

Lemma 4.3. Let O be an pseudodifferential operator on L2(Rn×S1) whose Weyl symbol,
expressed in polar and cylindrical coordinates is the function O(p, τ ;ϕ, s). Then

(4.4) 〈µ, ν|O|µ, ν〉 =
∫

Tn×S1

O(µ~, ν~;ϕ, s)dϕds +O(~).

Let Omnds be the pseudodifferential operator on L
2(Rn×S1) whose Weyl symbol is the

function Omnds. In order to prove Theorem 4.1, it is enough to see that one can recover
from the Taylor expansion of the averages O0

mnds up to order N the principal symbol

σN (z, t, z̄, τ) of W̃≤N up to order N . We will proceed by induction on N just as in the
proof of Proposition 2.14.
Let us first remark, by Egorov’s Theorem and the link between the construction of the
quantum Birkhoff normal forms and the classical normal form that the principal symbols

of e
iW̃≤N

~ Omndse
−iW̃≤N

~ , and Omnds ◦Φ have the same Taylor expansion up to order N −
1+|m|+|n|+2s. More precisely, the Taylor expansion of the principal symbol σN (z, t, z̄, τ)
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of W̃≤N up to order N is exactly:

(4.5) σN (z, t, z̄, τ) =
∑

|j|+|k|+2q≤N

α0,j,k,q(t)z
j z̄kτq +O

(
|z|2 + |τ |)N+1

2

)

and by Lemma 4.3, we get:

O0
mnds(µ~, ν~) = 〈µ, ν|e

iW̃≤N+1
~ Omndse

−iW̃≤N+1
~ |µ, ν〉+O

(
(|µ|+ |ν|)~)N/2+1

)
+O(~)

=
i

~
〈µ, ν|[W̃≤N+1, Omnds]|µ, ν〉+

∑

l≥2

il

~ll!
〈µ, ν|[

l times︷ ︸︸ ︷
W̃≤N+1, . . . , W̃≤N+1, Omnds]|µ, ν〉

+O
(
(|µ|+ |ν|)~)N+|m|+|n|+2s

2

)
+O(~)

=
∑

|j|+|k|+2q=N+1
j+m=k+n

α0,j,k,q,di~
−1〈µ, ν|[e−i2πdtOpW (zj z̄k)Dq

t , Omnds]|µ, ν〉

+
i

~
〈µ, ν|[W≤N , Omnds]|µ, ν〉+

N∑

l=2

il

~ll!
〈µ, ν|[

l times︷ ︸︸ ︷
W≤N , . . . ,W≤N , Omnds]|µ, ν〉

+O
(
(|µ|+ |ν|)~)N+|m|+|n|+2s

2

)
+O(~)

Now because the principal symbol of:

(4.6)
i

~
[W≤N , Omnds] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W≤N , . . . ,W≤N , Omnds]

is precisely:

(4.7)
N∑

l=1

1

l!
{

l times︷ ︸︸ ︷
σN , . . . , σN ,Omnds},

it depends, by equation (4.5), only on α0,j,k,q(t), |j|+|k|+2q ≤ N, up toO
(
(zz̄ + |τ |)N+|m|+|n|+2s

2

)
.

Therefore, one can conclude by induction again just like in the proof of Proposition
2.14.

�

The last result of this paper will be the classical analog of Theorems 1.9 and 1.12.
Let us remind, [8], that in the case where H(x, ξ) = ξ2 + V (x) the classical normal

form determines the Taylor expansion of the potential when the latter is invariant, for
each i ∈ J1, nK by the symmetry xi → −xi, In the general case the Taylor expansion of the
averages, in the sense of (4.3), of a finite number of classical observables are necessary to
recover the full potential.

Let us assume H ∈ C∞(T ∗M,R) has a global minimum at z0 ∈ T ∗M, and let d2H0(z0)
be the Hessian of H at z0. Let us define matrix Ω defined by d2H0(z0)(·, ·) =: ωz0(·,Ω−1·)
where ωz0(·, ·) is the canonical symplectic form of T ∗M at z0. Ω’s eigenvalues are purely
imaginary, let us denote them by ±iθj with θj > 0, j ∈ J1, nK. Let us assume that
θj , j ∈ J1, nK are rationally independent.
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Theorem 4.4. Let (x, ξ) ∈ T ∗Rn be any system of local coordinates centered at z0.
For (m,n) ∈ N2n, 1 ≤ i, j ≤ n and k ∈ {1, 2, 3}, let Omn, Qk

ij be functions satisfying
in a neighborhood of z0:

(4.8) Omn(x, ξ) =
n∏

j=1

(xj + iξj)
mj (xj − iξj)

nj ,

(4.9)





Q1
ij(x, ξ) = xiξj

Q2
ij(x, ξ) = xixj

Q3
ij(x, ξ) = ξiξj .

Let us denote by Φ the formal (unknown a priori) symplectomorphism which leads to the
Birkhoff normal form near z0 and (p, ϕ) the corresponding Birkhoff coordinates such that
{z0} = {p = 0}. Then the knowledge of the Taylor expansion at p = 0 up to order N ≥ 3
of the (finite number) “average” quantities

∫

Tn

Omn ◦ Φ(p, ϕ)dϕ,

with

(1) |m|+ |n| ≤ N
(2) ∀j ∈ J1, nK, mj = 0 or nj = 0

and the Taylor expansion up to order 2 of the quantities∫

Tn

Qk
ij ◦ Φ(p, ϕ)dϕ, (i, j) ∈ J1, nK2, k ∈ {1, 2, 3},

together with the Bikhoff normal form itself, determines the Taylor expansion up to order
N of H at z0 in the system of coordinates (x, ξ).

Let us now enunciate the classical analog of Theorem 1.12 in the case of a Schrödinger
operator with potential V ∈ C∞(M,R):

Theorem 4.5. Let q0 be a global non-degenerate minimum of V on M. Let us assume that
the square roots of the eigenvalues of d2V (q0) are linearly independent over the rationnals.

Let x ∈ Rn be any system of local coordinates centered at q0, and (x, ξ) the correspond-
ing Darboux coordinates centered at (q0, 0).

Let us denote by Φ the formal (unknown a priori) symplectomorphism which leads to
the Birkhoff normal form near (q0, 0) and (p, ϕ) the corresponding Birkhoff coordinates.

With the notations of Theorem 4.4, the knowledge of the Taylor expansion at p = 0 up
to order N ≥ 3 of the (finite number) “average” quantities

∫

Tn

Om0 ◦ Φ(p, ϕ)dϕ, m = (m1, . . . ,mn) ∈ {0, 1}n \ {0}

and the Taylor expansion up to order 2 of the quantities∫

Tn

Q2
ij ◦ Φ(p, ϕ)dϕ, (i, j) ∈ J1, nK2,

together with the Bikhoff normal form itself, determines the Taylor expansion up to order
N of V at q0 in the system of coordinates x.

In the line of the proof of Theorem 4.1 the proofs of Theorem 4.5 and 4.4 are easy
adaptations of the proofs of Theorem 1.12 and 1.9. We omit them here.
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Appendix A. Lemmas on linear and bilinear algebra

Lemma A.1. Let q be a positive quadratic form on R2n. Then there exists a canonical
endomorphism φ on R2n, and a n-tuple of positive real numbers (λ1, . . . , λn), defined as the
imaginary part of the eigenvalues of positive imaginary part of the endomorphism defined
by:

(A.1) 〈·; a(·)〉q = ω(·, ·)
where 〈·; ·〉q be the scalar product associated to q and ω the canonical form on R2n, and
such that:

(A.2) ∀(x, ξ) ∈ R2n, q(φ(x, ξ)) =

n∑

i=1

λi(x
2
i + ξ2i )

Moreover, if the real numbers λ1, . . . , λn are pairwise different, and φ′ is an endomorphism
of R2n. Then φ′ is canonical and satisfies (A.2) if and only there exists an orthogonal
isomophism u on R2n whose restriction to the plane spanned by ( ∂

∂xi
, ∂
∂ξi

) (for any i ∈
J1, nK) is a rotation, such that φ′ = φ ◦ u.
Proof of Lemma A.1. a is antisymmetric respective to q, and therefore there exists a q-
orthonormal basis of R2n (u1, . . . , un, v1, . . . , vn) and a n-tuple of positive real numbers
(λ1, . . . , λn) such that, for j ∈ J1, nK:

(A.3) λja(uj) = −vj and λja(vj) = uj

Now let us set, for j ∈ J1, nK:

(A.4) ũj =
√
λjuj and ṽj =

√
λjvj

Then, (ũ1, . . . , ũn, ṽ1, . . . , ṽn) is a q-orthogonal basis of R2n satisfying, for j ∈ J1, nK,
q(ũj) = λj and q(ṽj) = λj , and the preceeding properties together with (A.2) implies that
it is also a symplectic basis, which concludes the proof of the first part of Lemma A.1.

To prove the second part of Lemma A.1, let us consider another symplectic and or-
thogonal basis (u′1, . . . , u

′
n, v

′
1, . . . , v

′
n) where, for j ∈ J1, nK, the q-norm of u′j and v′j is λj .

Then, by (A.2), for any j ∈ J1, nK, a(u′j) is orthogonal to any vector of the basis but v′j
and 〈v′j , a(u′j)〉q = w(v′j , u

′
j) = −1, therefore λja(u

′
j) = −v′j , and by the same argument,

λja(v
′
j) = u′j.

Therefore, the plane spanned by (uj, vj) and the plane by (u′j, v
′
j) both are the kernel

of a2 + λ2j (2-dimensional since we made the additional assumption the λi’s are pairwise
different). Therefore, if φ and φ′ are the endomorphisms which send the canonical basis
of R2n to basis (ũ1, . . . , ũn, ṽ1, . . . , ṽn) and basis (u′1, . . . , u

′
n, v

′
1, . . . , v

′
n) respectively, then

one can considerer the restriction to any plane spanned by ( ∂
∂xi

, ∂
∂ξi

) (for any i ∈ J1, nK)

is an orthogonal symplectomorphism from the plane to itself, that is a rotation.
�

Let σ be the permutation of J1, 2nK defined by:

(A.5) ∀i ∈ J1, 2nK, σ(i) =

{
2i− 1 si i ≤ n
2(i− n) si i ≥ n+ 1

and Mσ be the associated permutation matrix (i.e. for any (i, j) ∈ J1, 2nK2, (Mσ)ij =
δσ(i),j .
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Now, let us set, for any matrix S ∈ M2n(R):

(A.6) Sσ =M−1
σ SMσ.

Let us also, for (i, k) ∈ J1, 2nK × J1, nK, denote by LS,i,k the vector of R2 defined by

LS,i,k =

(
(Sσ)i,2k−1

(Sσ)i,2k

)
∈ R2. Then, for (i, k) ∈ J1, nK2, si,k will be the matrix of size 2

whose first line is tLS,2i−1,k and second line tLS,2i,k.

Lemma A.2. Let A be a positive matrix of size 2n. Let S be the (non-empty by lemma
A.1) set of symplectic matrices satisfying

(A.7) tSAS =

(
Dλ 0
0 Dλ

)

where Dλ is the diagonal matrix with (λ1, . . . , λn) as n-tuple of positive diagonal elements,
which we assume pairwise different. Then:

(1) Family (〈LS,i,k;LS,j,k〉)i,j)∈J1,2nK2,k∈J1,nK is independent of matrix S ∈ S.
(2) Once the preceeding invariants of S given, one can construct explicitely a particular

matrix of S (hence all of them by Lemma A.1).

Proof of Lemma A.2. Let us first prove the first point. Let (S, T ) ∈ S2. By Lemma A.1,
there exists n matrices belonging to SO2(R) and denoted by O1, . . . , On, such that:

(A.8) Tσ = Sσ




O1

. . .

On


 =




s1,1O1 · · · s1,nOn

...
...

sn,1O1 · · · sn,nOn




and (A.8) is equivalent to:

(A.9) ∀(i, k) ∈ J1, 2nK × J1, nK, LT,i,k = tOkLS,i,k

Hence (〈LS,i,k;LS,j,k〉)i,j)∈J1,2nK2,k∈J1,nK does not depend of matrix S ∈ S and the first
point of Lemma A.2 is proven.

Now, let S ∈ S, and let (aijk)(i,j)∈J1,2nK2,k∈J1,nK be the family defined by:

(A.10) ∀(i, j) ∈ J1, 2nK2, ∀k ∈ J1, nK, aijk = 〈LS,i,k;LS,j,k〉

Let us assume that this family is given. Two vectors u and v of R2 are independent iif:
〈u; v〉2 < 〈u;u〉〈v; v〉. Since matrix S is invertible, on can choose, for any k ∈ J1, nK, a
couple of indices (ik, jk) ∈ J1, 2nK2 such that:

(A.11) a2ikjkk < aikikkajkjkk

Let k ∈ J1, nK Let us choose a vector vikk, whose norm is
√
aikikk > 0. The following

system of equations with unknown v ∈ R2:

(A.12)

{
〈vikk; v〉 = aikjkk
〈v; v〉 = ajkjkk

admits exactly two solutions (by (A.11)), denoted by v+jkk et v−jkk obtained from one another
by orthogonal symmetry Rk of axis the line spanned by vikk.
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Let us set v−ikk = v+ikk = vikk. Since families (v+ikk, v
+
jkk

) et (v−ikk, v
−
jkk

) are basis of R2,

for any i ∈ J1, 2nK \ {ik, jk}, each one of the two systems:

(A.13)

{ 〈vikk; v〉 = aikik
〈v+jkk; v〉 = ajkik

et

{ 〈vikk; v〉 = aikik
〈v−jkk; v〉 = ajkik

admits exactly one solution denoted respectively by v+ik and v−ik, and satisfying relation

v−ik = Rkv
+
ik.

We are now able to construct 2n matrices (TA)A∈P(J1,nK) defined, for A ∈ P(J1, nK), by:

(A.14) ∀(i, k) ∈ J1, 2nK × J1, nK, LTA,i,k =

{
v+ik if k ∈ A
v−ik if else

In order to prove the second point of Lemma A.2, it is sufficient to prove following
assertions:

(1) There exists at least one set A ∈ P(J1, nK), such that: TA ∈ S.
(2) There is at most one set A ∈ P(J1, nK), such that TA is symplectic (and A is

determined by family (aijk)(i,j)∈J1,2nK2,k∈J1,nK)

Indeed, one those two assertions proven, there will be exactly one set A ∈ P(J1, nK)
such that TA is symplectic, and it will be an element of S, constructed from the values of
family (aijk)(i,j)∈J1,2nK2,k∈J1,nK only.

Let us prove the first assertion. Let, for any k ∈ J1, nK, Ok be the unique element of
SO2(R) tel que: LS,ik,k = Okvikk (where S is a particular matrix of S).

The system (A.12) is equivalent to:

(A.15)

{
〈LS,ik,k;Okv〉 = aikjkk
〈Okv;Okv〉 = ajkjkk

which admits exactly two solutions: v+jkk et v−jkk. Hence, for any k ∈ J1, nK:

(A.16) LS,jk,k = Okv
+
jkk

or LS,jk,k = Okv
−
jkk

Let us define the set A by:

(A.17) A = {k ∈ N |LS,jk,k = Okv
+
jkk

}
Since each system (A.13) admit a unique solution, we obtain:

∀(i, k) ∈ J1, 2nK × J1, nK, LS,i,k =

{
Okv

+
ik if k ∈ A

Okv
−
ik if else

= OkLTA,i,k

(A.18)

that is:

(A.19) TA,σ = Sσ




O1

. . .

On




and TA ∈ S by Lemma A.1.
In order to prove the second assertion, let us use following lemma:
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Lemma A.3. For any symplectic matrix B of size 2n, we have:

(A.20) ∀k ∈ J1, nK,

n∑

i=1

det(bi,k) = 1

If A1 and A2 are two parts of J1, nK, we get from (A.14) and relation v−ik = Rkv
+
ik that:

(A.21) ∀(i, k) ∈ J1, 2nK × J1, nK, LTA2 ,i,k
=

{
RkLTA1 ,i,k

if k ∈ A1∆A2

LTA1 ,i,k
if else

where A1∆A2 is the symmetric difference of A1 and A2: A1∆A2 = (A1 \A2) ∪ (A2 \A1).
Hence:

(A.22) ∀k ∈ J1, nK,
n∑

i=1

det ((tA2)i,k) = ǫk

n∑

i=1

det ((tA1)i,k)

where, for k ∈ J1, nK, ǫk = −1 if k ∈ A1∆A2, ǫk = 1 if else. Since A1∆A2 = ∅ if and only
if A1 = A2, there exists at most one part A of J1, nK such TA is symplectic. The second
assertion, hence the second point of Lemma A.3, is proven. �

Proof of Lemma A.3. Since B is a symplectic matrix, matrix Bσ satisfies:

(A.23) tBσJσBσ = Jσ

It is sufficient, for k ∈ J1, nK, to read equality (A.23) at line 2k and column 2k − 1 to
obtain:

(A.24)
n∑

i=1

det(bi,k) = 1

�

Lemma A.4. Let A ∈ Mn(R) be a positive matrix whose eigenvalues are pairwise differ-
ent. Then there exists exactly 2n orthogonal matrices conjugating A to the diagonal matrix
of its ordered eigenvalues, and they are obtained from one another by eventually changing
the sign of their columns.

Proof of Lemma A.4. Let D be the diagonal matrix of the ordered eigenvalues of A. As
A is positive. There exists an orthogonal matrix Q1 such that:

(A.25) Q−1
1 AQ1 = tQ1AQ1 = D

Let Q2 ∈ GLn(R). Then Q2 is orthogonal and satisfies: Q−1
2 AQ2 = D if and only if Q−1

2 Q1

is an orthogonal matrix which commutes to D, that is, because the diagonal elements of
D are pairwise different, if and only if Q−1

2 Q1 is an orthogonal diagonal matrix. Finally,
Q2 is orthogonal and satisfies: Q−1

2 AQ2 = D if and only if Q−1
2 Q1 is diagonal and its

elements belong to {−1, 1}, that is if Q2 is obtained from Q1 by eventually changing the
sign of its columns. �
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[10] C. Hériveaux and T. Paul, in preparation.
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