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ABSTRACT. We show that the contributions to the Gutzwiller formula with observable
associated to the iterates of a given elliptic nondegenerate periodic trajectory v and
to certain families of observables localized near vy determine the quantum Hamiltonian
in a formal neighborhood of the trajectory -, that is the full Taylor expansion of its
total symbol near v. We also treat the “bottom of a well” case both for general and
Schrédinger operators.

1. INTRODUCTION AND MAIN RESULTS

It is well known that spectral properties of semiclassical Hamiltonians and dynamical
properties of their principal symbols are linked. Even when there is no precise information
“eigenvalue by eigenvalue” of the spectrum, the so-called Gutzwiller trace formula provide
information on averages of the spectrum at scale of the Planck constant. More precisely, let
H(xz,hD,) be a self-adjoint semiclassical elliptic pseudodifferential operator on a compact
manifold X of dimension n + 1, whose symbol H (z,¢) is proper (as a map from 7*X into
R). We will denote by o = o(H (z, iD,)) the spectrum of H(x, hD,).

Let E be a regular value of H and vy a non-degenerate periodic trajectory of period 7,
lying on the energy surface H = F.

Consider the Gutzwiller trace (see [9])

(1) (o (HtD - EY) :;w(E;LEi)

where v is a C'°° function whose Fourier transform is compactly supported with support
in a small enough neighborhood of 7', and is identically one in a still smaller neighborhood
containing 7',. As shown in [12], [13] (1.1) has an asymptotic expansion

S, ad
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k=—n
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In [6] was shown how to compute the terms of this expansion to all orders in terms of
a microlocal Birkhoff canonical form for H in a formal neighborhood of v, and that the
constants ay ,, k,7 = 0,1, ... determine the microlocal Birkhoff canonical form for H in a
formal neighborhood of v (and hence, a fortiori, determine the classical Birkhoff canonical
form). When it is known “a priori” that H(z, hD,) is a Schrédinger operator, it is known
that the normal form near the bottom of a well determines part of the potential V' [8].
But in the general case the Gutzwiller formula will determine only the normal form of the
Hamiltonian, that is to say H(x,iD,) only modulo unitary operators, and its principal
symbol only modulo symplectomorphisms. Of course it cannot determine more, as the
spectrum, and a fortiori the trace, is insensitive to unitary conjugation. The aim of this
paper is to address the question of determining the true Hamiltonian from more precise
spectral data, namely from the Gutzwiller trace formula with observables.

It is well know that, for any pseudodifferential operator O(x, AiD,) of symbol O(z,£),
there is an equivalent result to (1.2) for the following quantity

3 (0 an, e (FEEEZEY) = S 0w nnaen (£,

o

(here ¢, is meant as the eigenvector of eigenvalue E;) under the form of an asymptotic
expansion of the form

(1.4) TS 0l ()R
k=0

where a] are distribution supported on 7.
Through this article we will assume, without loss of generality, that the period of v is
equal to 1.

We will show in the present paper that the knowledge of the coefficients a} (O) for a
family (NOT all) of observables localized near v is enough to determine the (full Taylor
expansion of) the (total) symbol of H(z, D, ) near v, in other words H (x, iD,) microlo-
cally in a formal neighborhood of «, when 7 is non-degenerate elliptic in the following
sense.

Definition 1.1. A periodic trajectory of the Hamiltonian flow generated by H(z,§) is
said to be non-degenerate elliptic if its linearized Poincaré map has eigenvalues (e*%:),
i=1,...,n,0; € R, and the rotation angles 6; (i =1,...,n) and 7 are independent over

Q.

Definition 1.2 (Fermi coordinates). We will denote by “Fermi coordinates” any system
of local coordinates of T* M near v, (z,£,t,7) € R* x R™ x S x R, such that v = {x =
¢ =7 =0} and on which the principal symbol Hy of H(x, iD,) can be written as:

(1.5) Ho(x,&,t,7) = H(2,,t,7) + Hy
where

(1.6) Hy = O(|z* +1€°| + |a] + [€71)
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And
n 2 2
(1.7) Ho(z,é,t,T):EJrZ@i%Jr
1=1

The existence of such local coordinates, guaranteed by the Weinstein tubular neighbor-
hood Theorem ([16]), was proved in [6] under the hypothesis of non-degeneracy mentioned
earlier.

Our main result is the following.

Theorem 1.3. Let v be a non-degenerate elliptic periodic trajectory of the Hamiltonian
flow generated by the principal symbol Hy of H(x,hD,) on the energy shell Hgl(E), and
let (x,&,t,7) be any system of local coordinates near v such that v = {x =& =7 =0}.

For (m,n,d,s) € N*" x Z x {0,1}, let Opnas be any pseudodifferential operator whose
principal symbols Opnas satisfies in a neighborhood of ~y

(1.8) Omnds (@, &, t,7) = e [ [ (w; +i&;)™ (w5 — i)™
J

Then the knowledge of the coefficients ar(Omnas) in (1.3)-(1.4) for k < N and m,n,d, s
satisfying

(1) |m|+[n| <N

(2)Vj=1...n, mj=0o0rn; =0

(3) s=11ifm=n=0, otherwise s =0

4) deZ
determines the Taylor expansion near v of the full symbol of H(x,hD;) up to order N in
any Fermi system of coordinates.

Corollary 1.4. If one already determined some Fermi coordinates, then the knowledge of
the ar(Omnds) with k,m,n,d, s as in Theorem 1.3 determines the Taylor expansion near
v of the full symbol of H(x,hD,) up to order N in the coordinates (x,&,t,T).

Remark 1.5. It seems reasonable to think that spectral data with observable give enough
information to recover the full Taylor expansion the Hamiltonian (without the quadratic
part) without the knowledge of the Fermi coordinates, [10]. We will see below that this is
true in the “bottom of a well” case.

Remark 1.6. Condition 2 implies that the number of observables (for each Fourier coef-
ficient in ¢) needed for determining H(x,AD,) up to order N is of order N"*! and not
N27+2 number of all polynomials of order N. The fact that not all observables are needed
can be understood by the fact that we we know that the Hamiltonian we are looking for
is conjugated to the normal form a unitary operator and not by any operator (see the
discussion after Theorem 2.1). At the classical level this is a trace of the fact that we are
looking for a symplectomorphism, and not any diffeomorphism (see section 5).

Remark 1.7. The asymptotic expansion of the trace (1.3) involves only the microlocaliza-
tion of H(x,hD,) in a formal neighborhood of «. Therefore there is no hope to recover
from spectral data more precise information that the Taylor expansion of its symbol near
~. The rest of the symbol concerns spectral data of order A>°.
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In the case where v is reduced to one point, namely the “bottom of a well” case, the
result is more complete.

Let us assume that the principal symbol Hy of H(xz,hD,) has a global minimum at
20 € T*M, and let d* Hy(zo) be the Hessian of H at zy. Let us define matrix  defined by
d>Ho(20)(+,+) =: ws, (-, Q1) where w,, (-, -) is the canonical symplectic form of 7% M at zo.
2’s eigenvalues are purely imaginary, let us denote them by +if; with §; >0, j=1...n.
Let us assume that 0;,j = 1...n are rationally independent.

Theorem 1.8. [Bottom of a well]
Let (x,€) € T*R™ be any system of local coordinates centered at z.
For (m,n) € N> and 1 <i,5 <n, k=1,2,3, let Opmn, ij be any pseudodifferential

operator whose principal symbol O, ij satisfies in a neighborhood of zg
(1.9) Omn(@,€) = [ [ (aj +i&;)™ (27 — i&;)™,
j=1
Qii(x,&) = @&
(1.10) QF(x,8) = wix;

Q?j (.Z', 6) = gz{j‘

Then, for all € > 0, the knowledge of the spectrum of H(x,hD,) in [Hy(z0), Ho(20) + €]
and the diagonal matriz elements of Oy and ij between the corresponding eigenvectors,
with

(1) [m|+n| <N

(2) ¥Vj=1...n, mj=0o0rn; =0,
determines the Taylor expansion up to order N of the full symbol of H(x,hD,) at zy in
the coordinates (x,§).

Let us notice that Remark 1.5 also holds in this case.

Remark 1.9. Although we will not prove it here, let us remark that Theorem 1.8 (and also
Theorem 1.3) is also valid in the framework of quantization of Kélherian manifolds.

Remark 1.10. As it will be clear in the proof of Theorem 1.8, it is in fact enough, in

order to get the same result, to know the matrix elements of the ijs for eigenvectors

corresponding to eigenvalues of H(x,hD,) in [Ho(20), Ho(z0) + (_mlax 0; + 5 + ¢)h] for
j=1l..n

some € > 0.

In the case where H (x, hD,,) is a Schrodinger operator, it is known, [8], that the (actually
classical) normal form determines the Taylor expansion of the potential in the case where
the latter is invariant, for each ¢ = 1...n, by the symmetry z; — —z;. Same result holds
without the symmetry assumption in the case n = 1, with assumption V"/(0) # 0, as it
has been shown in [3].

Our next result shows that the matrix elements of only a finite number of observables
are necessary to recover the full Taylor expansion of the potential in the general case.

Theorem 1.11. Let H = —h?A +V be a Schrédinger operator and qo be a global non-
degenerate minimum of V. Let us assume that the square-roots of the eigenvalues of
d*V (qo) are linearly independent over the rationals. Let x € R™ be any local system
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of coordinates centered at qo, and (x,§) € T*R™ the corresponding Darboux coordinates
centered at (qo,0).

Then, for all € > 0, the knowledge of the spectrum of H(x,hD,) in [V (qo),V(qo) + €
and the diagonal matriz elements between the corresponding eigenvectors of the 2™ — 1
observables Opmo, m = (M1, ...,my,) € {0,1}"\ {0}, ij, 1,7 = 1...n, defined in Theorem
1.8 determines the Taylor expansion of V' at qo in the coordinates x.

Remark 1.12. Note that since we are dealing with observables localized near the bot-
toms of the wells, the hypothesis saying that zy in Theorem 1.8 and gy in Theorem 1.11
are global minima can be released and the corresponding results can be formulated in a
straightforward way.

Let us notice that Remark 1.10 holds also for Theorem 1.11.

The proof of Theorem 1.3 relies on two results having their own interest per se: Propo-
sition 2.14 which shows that the coefficients of the trace formula determine the matrix
elements (p;, O(z, D, )g;) where ¢; are the eigenvectors of the normal form of the Hamil-
tonian, and Proposition 2.15 which states that the knowledge of the matrix elements of
the conjugation of a given known selfadjoint operator by a unitary one determines, in a
certain sense, the latter.

As a byproduct of Proposition 2.15 we obtain also a purely classical result, somehow
analog of it: the averages on Birkhoff angles associated to Birkhoff coordinates of the same
classical observables than the ones in Theorem 1.3 determine the Taylor expansion of the
(true) Hamiltonian. This is the content of Theorem 5.1 below.

The paper is organized as follows. In Section 2 we show that, in the case where X =
R™ x 81, v = S!, the aj determine the Taylor expansion of the Hamiltonian. In Section 3
we reduce the general situation to the case where X = R" x S!, v = S!. In Section 5 we
show the classical equivalent of our quantum formulation. The “bottom of a well” case is
treated in Section 4.

Through the whole paper [I, m], | < m, will stand for the set of integers {l,..., m}.

2. THE R™ x S! cASE

The aim of this section is to prove following theorem in the flat case:

Theorem 2.1. Let H(x,hD,) be a self-adjoint semiclassical elliptic pseudodifferential
operator on L*(R™ x SY). Let (x,&,t,7) € U C T*(R™ x S') be the canonical symplectic
coordinates near v = S', non degenerate elliptic periodic orbit of the Hamiltonian flow
generated by the principal symbol Hy of H(x,hD,) on the energy shell HO_I(E).

Hy of H(x,hD,) can be written in those coordinates as:

(2.1) Ho(z, &, t,7) = H(z,&,t,7) + Ha
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where
(2:2) Hy = O(|z’ + €| + o] + |€7])
And H° is equal to:

2.3 H° t,7)=F f;—t——=t
(23) (2.6,t,7) +; ST

For (m,d,s,n) € N?" x Z x {0,1} let us choose any pseudodifferential operators O,nas
whose principal symbols are

(2.4) Omnds (T, &,t,7) = 2 WL (5 4 i&;)™ (25 — i&5)™ .
Then the knowledge of the coefficients ar(Omnas), k =0... N in ((1.3),(1.4) with
(1) |m|+In| <N
(2)Vj=1...n, mj=0o0rn; =0
(3) s=11ifm=n=0, otherwise s =0
determines the Taylor expansion near 7 of the full symbol (in the system of coordinates
(x,&,t,7)) of H(x,hD;) up to order N.

The proof of Theorem 2.1 will be essentially divided into three steps: first, we will prove
in Proposition 2.2 the existence of the quantum Birkhoff normal form in a form convenient
to our computations, especially concerning the discussion of orders. In Proposition 2.14,
we will show that the trace formula with observable O determines the matrix elements of
O in the eigenbasis of the normal form. Finally, in Proposition 2.15, we will show that
these matrix elements determines H(x,hiD,) in a formal neighborhood of x = £ = 7 = 0,
which leads to Theorem 2.1.

For i = 1...n, let us consider on L?(R"™ x S') the operators:

e a; = %(mz + h@zl)
o 4 = L (i —ho,)
L] Dt = 7'Lhat

o D=1 (-hd? +27) =aja; + 1
Now for p € N*, v € Z we will denote by |u, v) a common eigenvector of the P;’s and Dy,
namely the vectors such that:

1
Pl v) = (i + 3)hlps,v) and Dylu,v) = 2xhl, ).

Those vectors can be explicitly constructed as follows:

1 _ 2
(mh)

(2.5) 10,0)(x, ) :=

ISH]

and for any p € N™

i)

(2.6) |, V) (, 1) = 2™ 0,0)(x,t)

=l
7
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Let us recall the following:

ailp, vy = Vpihlp, o i1y s — 1, i1, - e, V)
a:'/j/) V> =V (:u’l + 1)h|/j/1) ey Hi—15 M + 1’/1/1'-‘1-1’" .,,U/n,l/>

2.7
( ) [ai, a*] = (SUFL
=0

J
[aiv aj]

. 2 2
Also, we will write |u| := > pi, and for i =1...n, z; = I"\%&, p; = %

OpW (a) will be the pseudo differential operator, whose Weyl total symbol is a.

Finally, let us denote by a, a* or P the n-tuple of corresponding operators a;, aj, P;

i=1...n. We'll also use the usual convention that, if X is a n-tuple of complex numbers
or operators, and j a n-tuple of nonnegative integers, X7 stands for [, X7".

Our construction of the normal form, inspired by [6], is the following:

Proposition 2.2. Let H(xz,hD,) be a self-adjoint semiclassical elliptic pseudodifferential
operator on L?(R™ x S'), whose principal symbol is

(2.8) Ho(z,&,t,7) = HO(p,7) + Hy
where H(p,7) = Z?:1 O;p; + 7 and Hy vanishes to the third order on x = & =7 = 0.

Then for any N > 3, there exists a self-adjoint semiclassical elliptic pseudodifferen-
tial operator W<y and a smooth function h(pi,...,pn,7,h) such that microlocally in a
neighborhood of x =& =7 =0:

VM >0, 3Cn > 0,V(u, v, h) € N" x Z x [0, 1], |uh| + |vh| < M,
(2.9)

N+1

]s O (] + |vh)™

iWe —iWo N
(e o He & —h(Pl,...,Pn,Dt,h)) |, v)

The operators can be computed recursively in the form:

(2.10) WSN = Wen + (ID:f* + Z PNt
i=1
where
Wen = Z3§q§N Wy )
(2.11) W, = D p jm()RP OpW (27 2F) D
2p+1jl+[k[+2m=q
where for any index (p,j,k,m), ap jx.m € C®(SY,C) and for any q > 3, W, is symmetric.

Remark 2.3. We are only interested in recovering the Hamiltonian in a formal neigh-
borhood of v: every asymptotic expansion is meant microlocally and we’ll be rewriting
equations such as (2.9) simply as:

( iWen —iWen

e+ He a h’(Plv"'aPn;Dtvh)) |IU‘7V>

=0 (lunl+ )+
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Also, by abuse of notation, we’ll identify any operator with its version microlocalized near
5.

Remark 2.4. One passes from W<y to WS ~ in order to gain ellipticity and self-adjointness,
like it has been done in Lemma 4.5 of [6].

The proof of Proposition 2.2 will need several preliminaries:

Definition 2.5. We will say that a pseudodifferential operator A on L?(R"™ x S') is
"polynomial of order r € N” (PO(r)) if there exists 3, j x.m € C*(S!, C) such that:

(2.12) A= > e (H)RPOPY (2928 DI
2p+|j|+|k|+2m=r
Let us remark that those operators have the following interesting properties:

Proposition 2.6. Let A be a pseudodifferential operator on L*(R™ x S') Then, there
exists a family of operators A, r € N such that for any i € N, A, is PO(r) and

(434 )

Definition 2.7. Let us introduce for any operator A the notations |A], et | A|<y which
represents respectively the terms of order r and of order smaller or equal to N of his
preceding expansion (2.13).

If A and B are two operators, we’ll write that: A ~ B if for any r € N, |A], = | B|,.
Also, if (A,)nen is a family of operators, we’ll write that:

(2.13) VN €N, -0 ((mm + |yﬁ|)¥)

+oo
(2.14) A~ Z A,
n=0

if for any N € N, | A, |<n is zero for n sufficiently large, and the finite sum:
—+oo

(2.15) > 1Anl<n = |Al<n

n=0

Proof. Let a(z, z,t,7) be the total symbol of A, which has the following Taylor expansion
around 7:

N+1
2
VN eN, a(z,z,t,7) = Z Z apﬁjykym(t)ﬁpszkijLZ O (hp(|,z|2 + |T|)N2+17p)
7=0 2p+|j|+|k|+2m=r p=0

Now, for any r € N, let us notice that the pseudodifferential operator A, with symbol
D 0pt ||+ k|+2mer Qp. e ()P 27 ZE7™ is PO(r), and therefore:

(50

N+1
2

)| =X w0 ((unl+ ) =)

p=0
= O ((luhl + lvA) =)

which concludes the proof. O

VN €N,

(2.16)
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Let us remark the following corollary:

Corollary 2.8. If the expansion (2.13) of an operator A contains no PO(r), r=0...N,
then:

N+1
Al )| = O ((luhl + wrl) =)
It will also be convenient to our calculations to notice that:

Lemma 2.9. Let F and G be PO(r) and PO(r") respectively then [IZ’hG] is PO(r+r'—2).

Proof. Our proof will be a direct consequence of the two following lemmas, whose proof
will be given at the end of the proof of Lemma 2.9

Lemma 2.10. Any monomial operator of order r, that is of the form «(t)hPb; ... b D},
where:

o forj=1...1,b; € {a1,a},...,an,a}}
e 2p+Il+2m=r
is PO(r).

Lemma 2.11. If F and G are monomials of order r and r' respectively, then [IZ’hG] 18

PO(r+1"-2)

Indeed, any PO(r) is a finite sum of monomials of the same order, hence if /' and G

are PO(r) and PO(r') respectively, then [IZ’hG] is a finite sum of quantities of type [}Z’EG]

where F and G are monomials of order r and r’ respectively. Any of those quantities are
PO(r 4+ 7/ — 2) by Lemma 2.11, and a finite sum of PO(r + ' — 2) is PO(r + 1/ — 2).
Therefore, Lemma 2.9 is proved. Let us now prove the two lemmas:

Proof of Lemma 2.10. Since for any i,j = 1...n, % # j, a; and a] commute with both a;
and a7, it is sufficient in order to prove Lemma 2.10 the following assertion (Ass;) for any
positive integer I: 7 any ordered product by ...b;, where for any j = 1...1, b; € {a1,a}}
can be written as a finite sum of the quantities F”?OpW (2JzF) with 2p +j + k = | and
j—k=1-28{m € [1,1],b,, = ai}” More precisely, let us proceed by induction, and
introduce for any ordered product by ...b;, k(b1 ...b) = #{m € [1,1], by, = aj}
e If [ = 1, there is nothing to prove since a; = Op" (z1) and a} = Op" (z1).
o Ifl =2,
ai = Op" (+7)
ai® = Op" (27)
alaf == P1 + % == OpW(lel) + %
aiay = OpW(z71) — &
and therefore, the assertion is proved for [ = 2.
e Now, let [ be a positive integer, let us assume (Assg) up to order k = [, and let
B = by ...bj41 be an ordered product, where for any j=1...14+1, b; € {ay,at}.
If for any j = 1...1, bj = bj41, then B = Op" (z171) or B = Op" (z2411).
Otherwise, the proof of the symmetric case being identical, let us can assume that
b1 = a1, and set jo = max{j € [1,I+1],b; = a1}. Let us remark that: 1 < j, <I
and [a?®, a%] = johal® ™", so that:

(217) b1 e bl+1 == a{oaibjoJrg N bl+1 = aia]l-objOJrg e bl+1 —+ hjoa{oilbjOJFQ N bl+1
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Hence if one sets k := k(b1 ...bj4+1)

I+1 I\ iy s l . i
< k >b1 . bl+1 <kj> ajloalbjUJrg RPN bl+1 + (k . 1> alajlobjUJrQ . bl+1
l o=
+ h(k}b . 1)joa310 lbj0+2 . bl+1
Now, because we assumed (Ass;_1):

(1—1) = 2k(al® "bjosn.. . b)) = (I +1) = 2k(by...bis1)
we only need to observe that the (lzl) ordered monomials in the sum op" (!+1=*z%)

can be divided in two parts: the (,i) ones whose first term is a1, whose sum is

(1)a10p" (21=%2%) and the (,.',) who forms (,',)a;Op" (z/F17*2*~1), and since:

1
(l-i]; )OpW(ZlJrlkzk) _ (li)mopw(zlkzk) n (k i 1) atOpW (21+1-k k1)

the assumption of (Ass;) will be enough to conclude our proof by induction.
O

Proof of Lemma 2.11. Tt is now sufficient in order to prove Lemma 2.11 that if F' and G
are of the form:

F=a(t)by...0yD and G = B(t)b, ... b}, D"
where:

e « and (3 are smooth
e [+2m=r,1'"+2m' =1/
e Forj=1...1,for 5/ =1...1, bj,b;-, € {a1,a3}

then % is a finite sum of monomials of order r 4+ 7/ — 2 since, by Lemma 2.10, each of
them is PO(r + ' — 2). O

With those assumptions on F' and G, we get:
[F,G]  [a(t)by ... 0D B4, ... b, D]

ih ih
bio bbb D, B(t o
(2.18) :a(t)ﬁ(t)[ ! lml Z]Dt + +a(t)b1...bl%b’l...b;/Dt
Dm/,a t
—B)b ... ;,%bl b D

Therefore it is sufficient to prove that [bl"'bli’b;"'b;/] , [D?Z.’B(t)] and [D?i’a(t)] are respectively:
PO(l+1"—2), PO(2m —2) and PO(2m' — 2) (with the convention that a PO(j) with j < 0

is 0).
For the two last, it is quite obvious, since:
m—1
D, B(t
(2.19) 1D, )] ti’hﬁ( 1 _ > (Z‘) (ih)m~k=1pm=h) (1) DF

k=0
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Now, for j =1...7, let us set ¢; = 1 if b, = aj, otherwise ¢; = —1. Since [a1, a]] = h, we
get:
€1+ 1 !
by ... bbb, =biby .. bbb+ 12 B> by beabig .. bbb,
b;ljilgd
€ 1 !
|-
- ho " biebgabggr .. biby b
j=1
bk:a’{
Hence by induction on j =1...1"
i 1
br...bb, ... b e 1
ml L=ei) 32 I AT S TR R RN
j=1 Jh=1
k=a1
(2.20) . o
6
_ZZ J2 Z bll...b;_lbl...bk_lbk+1...blb;+1...b;,
j=1 k=1
by=aj

The right-hand side of (2.20) is a finite sum of monomials of order [ + I" — 2, hence
PO(l+ 1" — 2) by Lemma 2.10, hence Lemma 2.11 is proved.
0

Lemma 2.12. Let G be PO(r).
Then there exists F' an operator PO(r), and G1 = G1(P1,. .., Py, D¢, h) such that:

[HO(P’ Dt)’ F]

(2.21) =

=G+ Gy

where if G is symmetric, F' is also symmetric, if r is odd, Gy = 0, and if r is even Gy is
an homogeneous polynomial function of total order 3.

Remark 2.13. If F'= 30 04 k4 2mer p ik (t)RPOPY (27 2¥) DI, one can choose:

(2.22) / Ckp,jd‘,m(t)dt =0
st

Indeed, any Op" (2927) D™ commutes with H°(P, Dy, h)

Proof of Lemma 2.12. Let us first assume that G is a monomial of order r: G = B(t)by ... b D)™
where:

e « is smooth
e [+2m=r
e Forj=1...1,b; € {a1,a},....an,a}}
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and let us look for F under the form: F' = «a(t)by ...b;D}* We have:
[H°, F] [H° a(t)by ...b0D}"]
ih h

" [P,by...b
(2.23) Za“@@i[ i :

(D, a(?)]
ih

Dy + by ... b D"

B ~[Pbi b m

=a(t) ;HiTDt +a/(t)by ... by D]
Iffori=1...n, k =t{m e [L,I],bn, = al} and j; = t{m € [1,1], by, = a;}, we deduce
from (2.20) that:

(2.24) w =V —=1(j; — ki)by ... by

Hence:

(2.25) [50_’11;] = \/—_12n: 0;(ji — ki)a(t)br ... oD + o/ (t)by ... by D}
i=1

The problem: [H2F] G admits a solution if there exists « such that:
p V—1n

(2.26) VLY 00— kalt) +a'(t) = ()

If ¢,(«) and ¢,(B) are the Fourier coefficients of « and f, it is sufficient for the ¢,(a) to
be solution of:

(2.27) V-1 (Z 0i(ji — ki) + 27719) cp(a) = cp(B)

and

(2.28) () = O (ﬁ)

If the n-tuples j and k are different, the non-degeneracy condition on the 6;’s together
i — 1
with the fact that ¢,(8) e 0 (‘p‘m (

¢p(ar) satistying (2.27) and (2.28).

If r is odd, j and k can’t be equal, hence Lemma 2.12 is proved in this case (r odd and G
monomial)

If r is even, and j = k, there exists a family (cp(a))pez- satisfying (2.27) and (2.28).
Hence, if « is the smooth function with Fourier coefficients ¢, () for p # 0 and ¢o(a) = 0,
we get:

because  is smooth), gives the existence of

[H°, F
v—1h
And from the proof of Lemma 2.10, we know that ¢o(3)b; ...b D} that is a linear combi-
nation of G1(P, Dy, h) := co(B) 3 o105 ap hP PED and Lemma 2.12 is proved in the
case where r is even and G is monomial.

The general case is easily deduced from the case where G is monomial, since G is a finite

(2.29)

=G+ CO(B)bl .o DY



RECOVERING HAMILTONIANS 13

sum of monomials of the same order.
Also, the form of F' allows us to conclude immediately that F' is symmetric if G is so. [

Now we have everything we need for the proof by induction of Proposition 2.2.

Proof of Proposition 2.2. Microlocally near x = £ =7 =0, H(x, hD,,) satisfies

(2.30) H := H(x,hD,) ~ H(Py,..., Py hDy) + Y H,
q=>3

where:

(2.31) H, := |H(z,hD,)],

Let us look for ng under the form predicted in Proposition 2.2, that is:

(2.32) Wes = Wy + (ID,> + Y P)*
=1
where W3 is PO(3).
! times
Wes —iW<s e it = —
e H(x,hDy)e ™7 ~ H(x,hDq) + +[W<s, H] + > oy (Wes, ., We, H]

1>2

1
NHOJngﬁLﬁ

+ %[W3,H ~H %[ng — Wi, H(z,hD,)]

“@%,}{%

! times
i =
£ 30 W, Wes, Hiw, D) + 3 H,
1>2 =

Since Hj is polynomial of order 3, let us choose W3, as in Lemma 2.12, such that:

(2.33) Hg—i—%[Wg,HO] — HY(Py,..., Py, Dy, ) =0

Since W3 is PO(3) and the expansion of H — H® in PO(r) contains no PO(r) of order
less or equal to 2, the expansion of ng — W3 no term order less or equal to 3, and the
one of H(xz,hD,) no term of order less or equal to 1, we know from Lemma 2.11 that the
expansion of:

I times
i i~ i
(2.34) ﬁ[W3,H—HO]+ﬁ[W§3—W3,H]+ZW[WS3,...,WS3,H]+ZHq
1>2 ’ >4

contains no term of order less or equal to 3.
Therefore, Corollary 2.8 gives us:

W<s —iW<s

(7 1T - P D)) )

(2.35)

= O (1l + )

We can construct by induction (W,)g>3 and (H7)>1, such that:
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e for g > 3, W, is PO(q) and for H92 is zero if ¢ is odd, an homogeneous polynomial
function of total order £ if ¢ is even.
[ ]

(236) H3+ [W37 ] Hl(Pv Dtah)

h
e and for any ¢ > 4:

| times
[W<q Loy Weq 1, Hl| = H72(P, Dy, h)

q

)
— (W, H |+ Hy+

0
- Wegr H— B+ -

1>2

FL[ RH!

Let us now set: WgN = Zévzg W+ (|De)* + 301, P)"3. Also, as for any ¢ > 0,
H?4 is an homogeneous polynomial function of total order g+ 1, we can choose by Borel’s
lemma a smooth function h such that for any N > 1, in a neighborhood of p = 7 = 0.

(2.37) h(p, T, h) — Z H*(p,7,h)| = O ((Ipl + 7] + [R)V )

Now, let us write, for any N 2 4

! times
ZW<N —iWen it —_—
He 7 NH+h[W<N, ]-i—zm[WSN,...,WSN,H]
1>2
! times
i = =
~H 4% + —~[Wen,H — H° — [Wen,...,Wen, H
+h[ <Na ] FL[ <N, ]+Z>Z2hll|[ <N, ) <N, ]
i~
+ 2 Wan = Wen, H]
Let us also observe that Lemma 2.9 gives us for ¢ < N:
£ Wen, H = H| = [§[W<q1, H — H°]],
! times ! times
(2.38) —_
Zl>2h [W<N7"'7W§N7H] == Zl>2h [W<q 1""5WS¢]*17H]

q
Therefore for any ¢ < N:

L WoN —iWenN

He h J :Hq72(P,Dt,h): Lh(P;Dtvh)Jq
q

(2.39)

And Corollary 2.8 gives us:
ZW<N —iWen
’( He —h(P,Dt,h)) |u,u>‘=0(

which concludes the proof. 0

(2.40)

The next result is the first inverse result needed for the proof of our main result.

Proposition 2.14. Let O be a pseudodifferential operator, whose principal symbol van-
ishes on 7.
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(1) There exists a smooth function f vanishing at (0,0,0) such that for any N > 3:

iWe N

< —iWo N 1 N
(241)  (urle T O |uv) = f ((u+ 52w, n) +0 ((unl + lva) #)

Moreover let, for any integer 1, ¢; be a Schwartz function whose Fourier trans-
form is compactly supported in (I—1,141) and let (aé (0))i>0 provided by the trace
formula:

(2.42) Tr (Oqﬁl (H ; E)) ~ i:ag(o)nj

(2) The Taylor expansion of f up to order N is entirely determined by the family
(a}(0), 0<j <N, leN.

Proof. Let us first prove point 1.
Let us consider a monomial G = a(t)by ...bD}* where:

e « is smooth

e [+2m=r

e Forj=1...1,b; €{a1,a},....an,a}}
Let us set for i =1...n, k; = #{m € [1,1], b, = a}'}
and jz :ﬁ{me Hl,lﬂ,bm :ai}.

If j # k or a ¢ C, then: (u,v|G|u,v) =0 for any (u,v) € N* x Z.

If now j = k and o € C, then there exists complex numbers «; (0 < I; < j; for
1 =1...n), such that:

(2.43) G = Z apllpii=h | pin=iapm
0<1;<j;

and: ag = a.
Therefore for any (u,v) € N x Z:

(2.44) (V|G vy = Y alhl|<<u+%> h>j_l (2mvh)™

0<l;<j;
Hence, if G is PO(r), then for any (p,v) € N x Z:
o (u,v|Glu, vy =0if r is odd.
e If r is even, there exists an homogeneous polynomial function g of order
that:

(2.45) (u,v|Glp,v)y =g ((u + %)h, 2nvh, h)

r

5 such

From Proposition 2.6, Corollary 2.8 and Borel’s lemma, we get that that for any operator
A, there exists a function ¢ such that for any (u,v) € N x Z:

(2.46) (u, v|Alp,v) =g ((u + %)h, 27vh, h) +0 ((mm + |yﬁ|)N2“)
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Hence, the only point remaining to prove, is that function f in point 1 does not depend
on N. It is therefore sufficient to prove that for any ¢ < N — 1,

wan e
q q

But (2.47) is a direct consequence of Lemma 2.9. Indeed,

I times
iWe —iWepn o= -
(2.48) e n Qe & ~ 0+ E W[WSN,...,WSN,O]

1>1

and since the principal symbol of O vanishes on v, Lemma 2.9 gives us for any [ > 1 and
any ¢ < N — 1:

I times ! times
it = — it = —
(249) W[WSN’7W§N’O] - m[WSQ"Fl""’WSqJFl’O]
q q

Let us now move on to the proof of point 2

Since ¢; is supported near a single period of the flow, we know from the general theory
of Fourier integral operators that one can microlocalize the trace formula with observables
near +y:

(2.50) Tr <o¢l <H - E)) —7r (O/Rél(t)p(Pl bt Pt |§|)e“HﬁEdt) +O(h)

where p € C§°(R) is compactly supported and p = 1 in a neighborhood of p = 7 = 0.
iWSN

Therefore we can conjugate (2.50) by the microlocally unitary operator e =

o (on(152)

— — iWen —iWen
W< N —iW<onN ~ i He

=Tr{ (e 7 Ocm /aﬁz(t)p(Pl+---+Pn+|<|>e“e T dt | +0(h™)
R

Thanks to Proposition 2.2, we can lighten the r.h.s. for any (pu,v) € N* x Z

Wen  ZiW<nN
He R —

~ e h E
[ au0p(Pr 4 P gD T )
R
. n Z.th((w%)ﬁ,vh,h)—mmmm+\vh\>%)
- / Su(e)p ((ul + 5 + [2m])h) e : dt | )

As (51 is smooth and compactly supported, together with the non-degeneracy condition
on the 6,’s, we can assure that if we choose a sufficiently small support for p, we have for
any 1 > 0O:

(2.51)
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N+1

Pt HRvh R BHO(uRIHIVAD 2 )
[ 6o (ul-+ 5 + 2mohi) e n dt ) |, )

N+1
h((ut+3)R,vh,R) = E+O(luh|+|vh]) "2 )

</ ot IulﬁL +|27TV|)h”) Z )Iu, v) +O(h™)

. 1.
Hence, choosing n < 3:

r (o@ (H - E>) +O()

iW ; 1
=S T 0T T ) [ e (Ul + 5 + i) enCrrnn )
v

. . .
..exp % 3 Hq<(u+§)h,yh,h)+O((|M|+|u|)Nz“h”zl) dt

1<q<N-2

= Z/¢l (|l + +|27v)) h") it@Tr+0. (1))

N+1
. N+1
2<> S bt bmrraon
i>1 p>1 ‘k‘+m<p

where for any i < &=L, is a determined polynomial function, of degree in (u —|— )
less or equal to i+ 1, Wthh depends on the H?’s and the Taylor expansion of exp, and the
bk,m,s ((k,m,s) € N"+2\{0}) come from the Taylor expansion at (0,0,0) of the function
f defined in the first point of Proposition 2.14, i.e. for any N > 1:

(2.52) f(z,y,2) = > bim,s2"y™ 2 + O (|z| + |y + |2[)V )
1<|k|+m+s<N

Now, let us set:
eis (a1t tan)

Hi(l - eimi)

By the non-degeneracy condition on the 6;’s, ¢ is well defined on the compact support of
(51 around a single period, which is precisely [. It also implies that 6;.u is bounded below
by C|u| (where C > 0) as || goes to oo.

Therefore we get from the Poisson formula and the Riemann-Lebesgue lemma that the
following quantity X, (I) can be computed recursively on p < % from the aé (0), j =

0,....p:
> b [(—%)m (@(t) () %(m)ﬂ 1.6)

[k|+m<p

Y bkmpik-m [(—i%)m (—l%)kg] (1,9)

[k|+m<p

2
(2.53) Vt € R*,Va € (R\%Z)",g(t, a) =

(2.54)
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since qgl is identically 1 around (.

Now, let us set, for any ¢ € [1,n], any t € R and any « € (R\QT’TZ)", xi(t,a) = ¢ and
also define holomorphic function » on C\{—1,1} by h(z) = == for z € C\{—1,1}. We
have for any k € N":

(2.55) (i%y g= ]i (itaaa)ki (how)

For any i € [1,n], an easy induction on k; € N leads to the following, since for any
2 € C\{~1,1}, h(z) = ( L1 ) and —i22 = Lo,

1—2z 1+z )’ tO0a;
(2.56) 9 \" (how)— ! v w
) —i ow;) =
t@ai ! 2ki+1 (1 — xi)kiJrl (1 —+ xi)kiJrl
Now, since 71-661; = Sx;, an induction on s; € N shows that:

(2.57)

0 5 .0 ki (k/’l + sl)'afl x; €
(_’E) (_’taai) (howi) = = (1 — z)ki+sitl + (1 + zq)fitoitl

Let us now introduce for any n-tuple s such that |s| = m, the multinomial coefficient:

m\ m!
s) s1)...sp!
We have:

o () () TR () wen

|s|=m i=1

Let us use Kronecker theorem, whose hypothesis is precisely the non-degeneracy condition
on the 6,’s: for any n-tuple (x1,...,2,) € ST, one can find a sequence of integers (I,)pez,
such that:

Vie[l,n], z;({,,0) — =z,

p——+o00

Therefore, if one sets, for any (z1,...,2,) € (S1\{—1,1})" and (k,m) € N**1

(ham) _ m\ 77 (ki + 50)!6;" zi zi
u - Z (5) H okit+si+1 (1 B xi)kiJrSiJrl + (1 T zi)kiJrSiJrl

|s|=m i=1

Then (2.54), (2.57) and (2.58) together with Kronecker theorem allows us to conclude
that the following quantity is determined by the aé- (0),7=0,...,p:

(2.59) Xp= > bpmppl-mu®™
|k|+m<p

Hence, the only thing remaining to prove is that, if one chooses the x;’s tending to 1 in a
way convenient to us, the |u*™)|’s will tend to oo to different orders.
Let us be more precise:

Let the x;’s tend to 1 in a way such that:

(260) V’LE [[1,7L71]],|17$Z|<<|171'Z+1p
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If ~ means that two functions are equivalent, as the z;’s tend to 1 as in (2.60), up a
multiplicative constant, we have for any (k,m) € N*+1:

_ wFm) ~
(2.61) (1—ax)™ H (ErsrE
Hence, if one sets m = (m,0,...,0):
(2.62) u®™ < ) ik m < K 4w

where < is the lexicographical order on N™. Therefore, for any p € N and for any (k,m) €
N"*+1 such that |ko| + mo < p, the following quantity can be recursively determined from
Xy
(2.63) Xegmo = D brmp—pj—mt®™
K +m'=k+m

Reversing for example the roles of i = 1 and ¢ = 2 in (2.60), and observing that ko +m #
Ky +m' if k+m =k +m/ and (k,m) # (k',m’), one determines b, p—|k|—m from (2.63)
recursively on m. Finally, each by, s with [k[ +m + s < N is determined by the a’(0),
with 7 =0...N and [ € N and the point 2 is proved, which ends the proof of Proposition
2.14.

O

Our next result shows how the knowledge of the matrix elements of the conjugation of a
given known selfadjoint operator by a unitary one determines the latter (in the framework
of asymptotic expansions).

For any (m,n,d,s) € N** x Z? and any (x,&,t,7) € T*(R"™ x S1), let us define:

(2.64) Opnas(x, &, ,7) = €275 H xj + &)™ (x5 — i&5)"™

and let O,n4s be a pseudodifferential operator whose Weyl principal symbol is O,,n4s-
By Proposition 2.14, there exists a smooth function f,nq4s vanishing at (0,0,0) such
that for any N > 3:

(2.65)
iVT/SN *inVgN 1 N

Theorem 2.1 will now be a direct consequence of Proposition 2.14 and following propo-
sition:
Proposition 2.15. Let N > 3. The Taylor expansion of fmnas up to order N —1 for any
(m,n,d,s) € N> x 7?2 satisfying conditions
(1) |m|+In| <N
(2)Vj=1...n, mj=0o0rn; =0
(3) s=11ifm=n=0, otherwise s =0

determines completely W<
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Remark 2.16. Let us remark, like it will be seen in the proof of Proposition 2. 15 that the

iW. —
only relevant information is the asymptotic expansion of {(u,v|e = Omnds€ | 8%
as h tends to 0 and pu, v go to oo slower than any negative power of h.

Proof of Proposition 2.15. Let N > 3 and (m,n,d,s) € (N")?2xZx{0, 1} satisfy conditions
(1), (2) and (3).

Then, we have:

I times
—iWepn 1 i

1 . (3 el
—[W<n, Omnds — [W<n, .o, Wen, Omnds
+ 5 Wan, d]+;hll![ <N <N ds]

iWSN <
e n Omndse n ~ Omnds

Therefore:
iWSN —iVT/SN
<,U/al/|€ n Omndse n |Ma V> - <,U/al/|0mnds|ua V>
l times
i — it —_"
= ﬁ<:U/aV|[W§N;Omnds]|Ma V> + Z W(Ma V|[W§Na s 7W§N30mnds]|,u/ay>

1>2

(2.66)

O (([uhl + [vh[)™)

Now, since Wg ~ is a sum of polynomial operators of order greater that 3, we get from
Proposition 2.9 that for any [ > 2
l—1 times
. —_—
it ~ —~

(267) ﬁ<M,V|[W§N,.- '7W§N7']

maps a PO(r) into a sum of polynomial operators of order strictly larger than r. Therefore,
if Ais a PO(r), we have:

l—1 times

il —— |
(268) D =l Wen o Wen, Al v) = O (il + [vh)F ) (. v|Als,v)
[>2

Finally, let us recall that:

Wy = Z p,jhq (T )hPOp™ (27 k)Dg
2p+|jl+1kl+2¢=N

= Z Zap,L kg e 2T OpW (29 27) DY

2p+|j|+|k|+2¢=N reZ

(2.69)

Let us also state the following lemma, whose proof will be given after the end of the
present proof.

Lemma 2.17.

(2.70) (, ™2 " Op™ (275 DY, Opas 1) = higjharmmnas <<u+ )n h> o)
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where, if j+m =k+n and r =d:
(2.71)

1 , ax(i N gini—kimi | d(g+s)
‘ 1 — (2 q+s max(j,k)
9jkgrmnds ((M + 2) h’ Vh) ( ﬂ-yh) (uh) ; Mz‘h + vh

[Fil+]ki[>0
and ij+m7ék+n OTT#CL 9jkgrmnds =0
Let us now proceed by induction on N > 3, and first assume N = 3.

Equation (2.65) gives us that the Taylor expansion up to order 2 of function f,nds
determines modulo O ((|uh| + [vR])?):
iWeg

<6 —iWeg
(272) <:U/al/|€ h Omndse h |Ma V> - <,U/3V|Omnds|,u/ay>

Thanks to (2.68), (2.72) is equal, modulo O ((|uh| + |vh)) to:

(2.73) _

5 Lo —i2nr | =
> apiwart?” (10 (bl + wh)?) ) vl [e™ 27 0pY (/2) DY, O] 1. v)
2p+lj| r€Z

+lk|+2q
=3

2+\m\+\n\+2s)
2
)

and with the lemma’s notations modulo O ((|uh| + |Vh|)w)

+ O(h) to:

(2.74) Z 100, k,q.d (1 +0 ((|,uh| + |Z/FL|)%)) Jjkqdmnds ((M + %) h, uh)
|7]+1k]+2q=3
Jjtm=k+n
Let us assume we already proved (assertion (x)) that quantity (2.74) determines coef-
ficients oo j k.q,a (7] + k| +2¢=3, j+m=Ek+n).
We'll have determined every function g kg (|7 + |k] + 2¢ = 3). Indeed, for any
(4,k,q) € N**1 such that |j| + |k| + 2¢ = 3, and for any i € [1,n], let us choose:

(2.75) n; = max(j; — k;,0) and m; = max(k; — j;,0)

deZ* and s=1if m=n=0,de Z and s = 0 otherwise.
We have for any i € [1,n], m; =0 or n; =0, and

ml + |nf = 37 15 — kil < lj] + k] < 3
i=1
Therefore, (m,n,d,s) verifies the three assumptions (1), (2), and (3): (2.74) will hence
determine a j k.q,d and letting d describe Z if j # k, ZZ* if j = k, we will have determined
functions ag,jk,q (thanks to remark 2.13 for the case j = k)

Let us prove assertion (%) in the two cases: m # n and m = n.
Let us also define the set T" of (j, k, ¢) such that: |j| + |k|+2¢ =3 and j +m =k + n.
Let us first assume that m # n, and choose 1 (h), ... un(R), v(R) such that, as i tends to
0:

(2.76) 1<y, p2VN < v, and Vi€ [1,n — 1}, @2V < i
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Let us also define i := min{i € [1,n], m; # n;}. We have, for (j, k,q) € T:

- kio Mg

S (27w h)1 H(Mh)maxo‘i,ki)
i0

1 jionio
(277) 9jikqdmnds ((M + 2) h’ Vh) h—0 i=1

and j;,ni, — ki,m;, never vanishes.
Also, (2.76) in additition to (2.77) gives us that:

1 1
(278) 9jikqdmnds ((M + 5) ha Vh) < 9j'k' ¢’ dmnds ((,U/ + 5) ha Vh)

if (j,k,q) < (4',K',¢'), where < is a strict total order on I defined by the lexicographical
order of (max(ji, k1), ..., max(jn, kn),q). It is indeed asymmetric since for i = 1...n, the
sign of m; — n; determines whether max(j;, k;) is equal to j; or k;.

Therefore, making additional assumption on function p1(h) that: h = O(u1(h)3h3), we
get that qunatity (2.74) is determined modulo O ((|uh| + |l/h|)2+‘m‘+2w+23)

(%) easily follows by induction on (I", <) in the case m # n.

If now m = n, we may assume that d # 0 like seen before. Also, s = 1, thus for any ¢,
(g + s)d # 0.
Hence,

and assertion

1 - .
(2.79) g (14 ) hov) = mome(a + D[
i=1

and assertion (x) is proved just as before.

Finally, all functions «y j 1,4 are determined for (j, k, ¢) satisfying ||+ |k| +2¢ = 3. Let
(m,n,d,s) satisfy conditions (1), (2), and (3) with N = 1.
Therefore, we obtain from (2.73), that the Taylor expansion of f,,,4s up to order 2 also
determines, modulo O((|uh] + |Vﬁ|)w)

(2.80)

> 3 vt (140 (bl + i) ) (vl [ 2 O0p™ (=7 25) DY, Opunas]las)
|i|+|k| r€Z
+2g=1
Just as before, with assumptions (2.76) and |ph| + [vh| < k3, we can determine every
a1 k,q.d With |j|+ |k|+2¢ = 1 and j+m = k+n (there is actually just one corresponding
to ¢ =0, and (j, k) = (n,m)), and finally, every function oy j, with |j| + |k| +2¢=1)
This prove the statement for N = 3.
Let us now assume that we already every ay, j r,q up to order 2p+|j|+|k|+2¢ = N > 3.
Let (m,n,d,s) conditions (1) (with N + 1), (2), and (3).
The Taylor expansion up to order N of function f,,,qs determines modulo o ((| uh| + [vB)N +1):

iW<oN+2 —iW<aN42

(281) <:U/al/|€ h Omndse h |Ma V> - <,U/al/|0mnds|ua V>

which is equal, thanks to (2.68) and Lemma 2.17 modulo O ((|,uh| + |vh))
O(h), to:

N+\m\+\n\+zs)
2



RECOVERING HAMILTONIANS 23

Z 100, 5k, q,d (1 +0 ((|Mh| + |uh|)%)) Gjkqdmnds <<,u + %) h, uh>

71+ k| +2¢<N+1
jt+m=k+n

and by induction hypothesis, the following quantity is determined modulo
N+|m|+|n|+2s
O ((|uh| + |whl) =52 + O(n):

(2.82) > icogmaa (140 (bl + 1wA)?) ) gikgdmnas ((M )h uh)

7]+ |k[+2g=N+1
J+m=k+n

Now, making assumptions (2.76) and h = O ((|uh| + [vh|)Y), we determine every
a0 j.k,q.d With 7]+ |k| +2¢ = N+ 1 and j+m = k +n, and like before, letting (m,n,d, s)
run over all possible values (under conditions (1), (2), and (3)), we determine every func-
tion Q0,j,k,q-

Functions ay, j k,q (2p+ |j| + |k| +2¢ = N + 1) will now be determined by induction on

p. Let 0 < pg < % and let us assume we determined functions cy, jr.q (0 < p < py and

7| + k| +2¢ = N +1—2p).
Let (m,n,d, s) satisfy conditions (1) (with N+1—2(pp+1)), (2), and (3). Thus, the Taylor

expansion of finings up to order N determines modulo O( |uh| + [vh|) M)

O(hp0+2>

(2.83)

S apgnaat® (140 (el + 10D2)) g (104 ) o)

2po+2+|j+|k|+2¢g=N+1
Jjt+m=k+n

And with assumptions (2.76) and |uh| + [vh| < h2P0+5 ot , heredity can be proved just as
before, which concludes the proof.
(|

Proof of Lemma 2.17. The principal symbol of %[e‘i%dtOszjZkDf, Ornnds) 18

(2.84) Ojkdg(2, Z,t,T) = {e_ﬂ”dtzjikTq, Omnds} = {e_i%dtzjéqu, eiQ’Tdtsz”Ts}

where e #2749t 2J zF14 is meant for the function (z, z,t,7) +— e 1274 2i ZFrq,
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Hence
Oikdq(2, 2,1, 7) = —ii 4 (eii%dtszkTq)i(ei%dtsz"TS)
JRAGAT T ] 0z; 07;
. - 0 —i2ndt ,j sk, _q 0 27dt ,mzn,__s
+z;azi(e 2 Z8r?) Zi(e 2"z
0 ) ) o .
(285) + &(eszﬂdthszq)E(ezZﬂdtzmznTS)
0 ) . o .
o E(eszﬂdtZ]2k7q>§(ezQﬂdtzmznTS)
— izl max(Gk)] qts (Z Jini —]ﬂmi n 27Td(5 + Q)>
im1 ZiZg T
Which means that:
(2.86)
1 n

ﬁ[efiQﬂdtOpWZjZkDg, Omnds] :DEJFS Z (]Znz . kimi)ﬂmax(jmki)—l H ]Dirlnax(ji/,ki/)

i=1 i=1
|74+ ki|>0 i’ #i
+ 27(q 4 s) DI pmaxGk) L O(h)

Hence,
(2.87)
1 —i27 i = s max(j - jing — kymy
™00 22D, Oyt ) (b (e
i=1 ¢
s+ ki |>0
+2m(g + 8) (2nvh) T (uh) "I+ O(h)

O

3. REDUCTION TO THE R"™ x S! cASE

The aim of this section is to prove that Theorem 1.3 is a consequence of his analog in
the flat case: Theorem 2.1.

Let H(x,hD,) be as in Theorem 1.3: a self-adjoint semiclassical elliptic pseudodiffer-
ential operator, on a compact manifold X of dimension n + 1, whose symbol, H(x,¢), is
proper (as a map from T*X into R). Let E be a regular value of H and 7 a non-degenerate
periodic trajectory of period T, lying on the energy surface H = E.

As in [6], thanks to [16], there exists a symplectomorphism ¢ from a neighborhood of
St in T*(R™ x S1) in a neighborhood of « in 7*(X) such that in the standard symplectic
coordinates of T*(S! x R™)

(31) HO o d)(xvga th) = HO + H2 and ¢) © ’Y(t) = (05 Ovta 0)
where HY is defined as in (2.3):

2
x5+

2
25“”

HO($,€,t,T) = E+Zez
i=1
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and Ho satisfies condition (2.2):
Hy = O(|z* +1€°| + |ar] + [€71)
Moreover, one can assume that:

(3.2) o(t,1,2,2) = (t,7,(2,2)A(t))

where z; = x; +1i& for i = 1...n and A(t) is a complex symplectic matrix of size 2n.
Expressing our original symplectic coordinates in some Fermi coordinates (¢,7,z,§)
on T*(X) (in which the principal Hamiltonian can be written H° 4+ Hy as before ((2.2)
and (2.3))) determines the matrix A satisfying the conditions above. Hence, identifying
those Fermi coordinates with the canonical symplectic coordinates of T*(R™ x S1), one can
assume that X = R™ x S! and it is sufficient to prove that Theorem 2.1 holds for operators
Onds whose principal O,,,4s can be written as in (2.4) in some symplectic coordinates:

(3.3) Omnas(,&,t,7) = e U7 (a; + i&5)™ (x5 — i&;)™
where, given N > 3, we assume again

(1) [m|+n| <N

(2) ¥Vj=1...n, mj=00rn; =0

(3) s=1if m =n =0, otherwise s = 0.

Let us therefore consider any symplectic coordinates on T*(R™ x S1), operators O,,nds
satisfying conditions above for a given N > 3 and a microlocally unitary Fourier integral
operator Ay : C§°(R™ x S1) — C°(R" x S') implementing symplectomorphism ¢.

Let us finally assume that the coefficients intervening in the trace formula associated
to our Hamiltonian H(z,hD,) and the Oj,nq4s are known up to order N, or equiva-
lently, the coefficients of the trace formula associated to A;lH (x,hDy) Ay and Oppas =
AL OmpasAg.

According to Proposition 2.14, one can determine the asymptotic expansion up to order
N of following matrix elements:

IWaN A~ —iWen

(3.4) (wvle™ 7 Omnase™ 7 |, v)

—_ , " Wen —iWen
where W< is defined in Proposition 2.2: e™# ~ A" H(x,hD;)Age—#  and the quan-
tum Birkhoff normal form have the same expansion in PO (2.13) up to order N. And
thanks to Proposition 2.15, it is enough to determine the asymptotic expansion up to
order N of following matrix elements:

iIWen ~ —iWen

(3.5) (u,vle™ " Omnase & |p,v)

for operators 6mnd5 whose principal symbol in the standard symplectic coordinates are
precisely functions O,unas (with conditions (1), (2) and (3) on the index) in order to
determine WS ~, and hence conclude the proof.

Now it is enough to remark that the principal symbol of émnds in the standard sym-
plectic coordinates is Opngs © ¢. Therefore, the linearized form we have chosen for ¢
allows to conclude that O,,n4s can be expressed as a infinite (due to Fourier coefficients of
matrix A) sum of functions O,,rq7s © ¢ times polynomials in the z;z;, i = 1...n, where
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iWe N

/ ’ . S . .
— . 3 Y
|m’| + |n| < |m| + |n|. Since the P;’s each commute with e~ 7 , we determined

iW ~ —iWe N

(3.6) (vle™  Omnase™ * |, v)

for operators 5mnd8 satisfying the conditions above, which leads to the conclusion of the
proof.

4. THE “BOTTOM OF A WELL” CASE

In this section we prove Theorems 1.8 and 1.11.
The proof of Theorem 1.8 is essentially a consequence of lemmas on linear and bilinear
algebra, which are stated and proven in the appendix: Lemmas A.1, A.2, and A.4.

Proof of Theorem 1.8. Let (x,§) € U C T*(R™) be a system of Darboux coordinates
centered at 2o d?Hp(2o) is a positive bilinear form on T, (T* M), therefore, by lemma A.1,
one can find a symplectomorphism ¢, defined on a neighborhood of z such that ¢(z9) = 2o

n i +€7
and linear once read in the charts, such that : ¢*Ho(z,&) = Ho(z0) + Y ;1 91% +

O((@,£)°)-

Let us prove that the diagonal matrix elements of the family of pseudodifferential op-
erators (ij)1§i7j§n,1§k§3 in the system of eigenvectors corresponding to eigenvalues of
H(z,hD,) in [Hoy(20), Ho(20) + (1Iéla<X 0; + 5 + €).h] (for some € > 0) allow the explicit

<j<n
construction of such a symplectomorphism ¢. The remaining part of the Theorem is then

very similar the proof of Theorem 1.3.
Let S be the matrix of d¢,, in the basis (

(i,4) € [1,n]? and s € {1,2,3}.

61’- 9 6)

o
BaTr BT Be BE)- Then, we have for

¢ Qi ;(x,&) = (Z Sis ok—1% + Si5,2k€k> (Z Sjs ok—12k + S‘S,2k€k>
=1

k=1

n n
= g Sis ok—15js 2k 1T Thr + E Sis 21555 2k —1ERTh
k=1 k=1

n n
+ g Sis 2k—15s 2k T + g Sis o1Sjs 20:EREk!
ek —1 keki—1

= Z [Sie 26—15j5 2k—1 + Si= 255 2k] 22k + - - .
=1
2i—1 ifse{l,2} . [ 2 if s € {1,3}
2i ifs=3  *ndJ _{211 if 5 =2
and ... stands for a linear combination of the terms zyzp ((k, k") € [1,n]) and zjZx
((k, k) € [L,n], k # k).
Therefore, if My is the metaplectic representation of d¢.,, then for p € N™:

where for (i, j) € [1,n]?, i* = {

n

1
(4.2)  (uIMyQ5 ;M ) = Z [Sis,2k-15= 26—1 + Sis 2= 2k] (Mk + 5) i+ O(h|ph|)
k=1

Therefore, we only need eigenvectors corresponding to uy € {0,1} for k € [1,n] to deter-
mine, for (’L,]) S [[1,271]]2 and k € [[1,71]] the values of : Si12k715j72k71 + Siyngjygk. By
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Lemma A.2, it is enough to determine a possible choice d¢.,, hence for ¢ defined on a
neighborhood of zy with ¢(zp) and the condition that ¢ is linear once read in the charts.
O

Let us now move on to the proof of Theorem 1.11.

Proof of Theorem 1.11. Let (z,£) € U C T*(R™) be a system of Darboux coordinates
centered at zg = (go,0) € T*M d?V(qo) is a positive bilinear form on T,, M. Hence,
by Lemma A.4, there exists a fonction u defined on a neighborhood of ¢y, such that
u(qo) = qo, linear one read in the charts, du(qp) is an orthogonal matrix U written in the
basis (52—, ..., %), and:

Oy’ ) Dz,
1 arr 3
(4.3) Vou(r) =5 Zlo z? + O(2%)
where the 07’s are the eigenvalues of d>V (qp).
Let us define a symplectomorphism ¢ by : ¢(z0) = 2o, ¢ is linear once read in the charts
and do,, = (du, (du*)™1), i.e. ¢(x,&) = (Uz,UE). If ¢ is the symplectomorphism that
sends (z,€) to (\%—1, c \%l—n, V011, .. V/0:€,), then:

n

(1.4) (60 60) H(z,6) = V(go) + >0

=1

2 2
€T3 ;ng 4 O(:CS)

Just as in proof of Theorem 1.8, the diagonal matrix elements of the family of pseudodif-
ferential operators (ng)léi, j<n in the system of eigenvectors corresponding to eigenvalues

of H(xz,hD,) in [Hy(z0), Ho(zo)—i—(lr?jaé(n 0+ % +¢€).h] (for some € > 0) determine the family

(UirUjk)1<i,j,k<n. Therefore, one can determine, for any k € [1,n], an index i € [1,n],
such that U;,, # 0. The choice of the sign of U, determines the sign of every other
coefficient of the k-column. And this n choices do not change property (4.4) by Lemma
A .4. Therefore one can construct explicitely from those matrix elements a suitable matrix
U, hence a suitable symplectomorphism ¢.

Hence, in order to prove Theorem 1.11, one can now assume that:

(15) (@€ = Vi) + 3 0248

i=1

+ R(x)

where R(z) = O(x?) and prove that the knowledge of the spectrum of H(z,hD,) in
[0,€], € > 0 and the diagonal matrix elements of the finite (2" — 1) number of observables

n
whose principal symbols in this system of local coordinates are: [] (z; +14&;)", where for
j=1

any j =1...n, m; € {0,1} determine the Taylor expansion near gy of R.

Let Hy be the function defined by Ho(x, &) = S, ;ZE5E
Let us state the following lemma, classical analog of Lemma 2.12, and which uses the
hypothesis of rational independance of the 6;’s.
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Lemma 4.1. Let G € C=(T*(R"),R) be an homogeneous polynomial of degree k > 3.
There exists a unique couple of functions G; € C*°(R™,R) and F € C=(T*(R"),R) satis-
fying :
(4.6) V(z, &) € T*(R™), {Ho, F}(z,§) = G(x,&) — G1(p)
and F is polynomial with no diagonal term when written as a function of (z,z) (i.e. of
the form z'z')

Moreover :

(1) F is an homogeneous polynomial of degree k and is entierely determined by the
extradiagonal termes of G, i.e. of the form z'z™ (1 #m)

(2) Gi is an homogeneous polynomial of degree % if k is even, zero if else. Moreover,
G1(22) is equal to the sum of the diagonal terms of G.

Just like in the proof of proposition 2.2, one shows recursively the existence of a family
of real numbers oy, )i men such that for any I > 0, a;; = 0, such that if the functions
(Fn)n>3 are defined for N > 3 by :

(4.7) Fy(z2) = > ampz'z"

U]+ |m|=N

there exists homogeneous polynomials of degree i denoted by H® € C*°(R", R) satisfy-
ing, for N > 3:

_
vl
i

(4.8) (expxroy) H(z, &) =) H'(p) +O((z, V)

1=1

2 2
where p = p(z,€) = (5 JQFE Ji<i<n, and F<ny = Zszl Fy, and xF_, is the vector field :

28F<N aFSN o}

) R S O TR T

If Hy ~ j_:olo H', then (x,&) — Hi(p) is the classical Birkhoff normal form of H (defined
modulo a flat function), which is equal to the principal symbol to the quantum one.

Let us also define for k € N", |k| >3 : aj, = 66‘,2,32(0)
Let &k € N". Let us observe that :

(410 () -7, 2 M)

,m)EN™ j=1
I+m=k

Let us define K = {k € N, |k| > 3} \ 2N", and let k € N”, |k| > 3. By lemma 4.1, there
exists an homogeneous polynomial of degree |k| with no diagnonal terms, such that :

. o 2k iftkek
(4.11) {Ho, L} (,€) = 3 gn _ 2 I ((5,) 2F if ke e
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Functions (Fy)n>3 and (H');>1 are constructed recursively as follows : let N > 2 and
let us assume we already constructed F3, ..., Fy (Fy = 0), and Hy, ... ,HL%J (Hy(p) =
Yo, 0:pi), and let us set :

5]

(4.12) Gr1(@,€) = (expxrey ) H(w,§) — H'(p) + O(||(z,&)II"*)

vz

K2

Gni1(x,€) - if N is even

Gnii(x,§) — H = (p) if N is odd

(4.13) {Ho, Fn41}(z,8) = {

Let us remark that, in our case, Gy41(z,&) — Z\k\:NH arz® is a sum of terms that
depends only on Fcp, (Hi)lgz'g[%] and (ax)g<n. Therefore, Fiyi1 and HY if N s

odd depend only on (a)|zj<n+1-
More precisely,

FN+1 :Z|k|:N+1aka+...
(4.14) gyt — as TP (205 N odd
T (p) = Nymagp st I () o+ (V 0dd)
where ... stands for terms that depend only on (ax)jk<n-

Now, let us denote by A the set {0,1}™\{0}. Let us also set, for k € N, (I, my) € N?"
as follows : for any i € [1,n], (Ix); = [ & ], (mr)i =k — [&]. k+— (lk,my) is a biunique
correspondance between K and the set A = {(I,m) € N*" | m —1 € A,|l| + |m| > 3}.

Moreover, for any k € K, the coefficient of I} is m (well defined by the ra-
tional independance of the 0;’s. Therefore, the family (a)jx—n+41 can be determined
recursively from the Taylor expansion from the classical Birkhoff normal form and family
(tymy,)k|=N+1- The Taylor expansion the Taylor expansion from the classical Birkhoff
normal form is determined by the spectrum of H(z, hD,) in [V (qo),V(qo) + €], € > 0 as
it is already known. Now, let N > 2, and s € A.

(4.15)

(€Xp XFeop 1) (w\—;;f) = (v +14€)° + {Fe<nt1,2°} + O((2, )N Tlel

= — Z Ozlkmk|z|2mk Z (m.Tgi N O((x7§)N+|s\)

- = |z
|k|=N+1 i=1
mp—Ilp=s
where ... stands for terms depending only on (ax)kj<n (hence already determined by

induction hypothesis) or extradiagonal terms. Therefore, the diagonal matrix elements of
an observable whose principal symbol is z°, s € A will be equal modulo O(h) and for any
N >3 to:

n

(4.16) 5 cum (™ 32 SO+ O+ O(un )
[k|=N+1 i=1

mkflk:s

which, just in like the proof of Theorem 2.1 determines (o, m, )k|=n+1. Therefore the
Taylor expansion of R, hence of V' near qq is completely determined, which concludes the
proof. O
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5. CLASSICAL ANALOGS

In this section we want to prove a classical analog to Proposition 2.15. It is well known
that matrix elements of quantum observables between eigenvectors of integrable Hamilto-
nians are given at the classical limit by Fourier coefficients in action-angle variables of the
classical Hamiltonian. More precisely in the case of diagonal matrix elements the result
states that, with the notation of section 2, for any bounded pseudodifferential operator O
on L?(R" x S1),

(5.1) s v/Olpst) ~ [ Ot o, 5)dipds,

T xSt
where O'(p, 7 : ¢, s) is the principal symbol of O expressed in the action angles variables
(pi, ¢i) such that x; + i§ = \/p_le“”. Therefore it is natural to ask if angle-averages of
observables expressed in Birkhoff coordinates determine the original Hamiltonian. Our
result is the following.

Theorem 5.1. Let v be a non-degenerate elliptic periodic trajectory of the Hamiltonian
flow generated by a proper Hamiltonian function H. Let (z,&,t,7) be any system of local
coordinates near vy such that v = {x =§ =7 = 0}.

For (m,n,d,s) € N*® x Z x {0,1} let Opmnas be functions satisfying in a neighborhood
of y:

(5.2) Omnds(z,&;8,7) = ei%dtT‘SH]—(zj +3&5) M (g — &)™

Let ® be the formal (unknown a priori) symplectomorphism which leads to the Birkhoff
normal form near v and (p, @;To, S) the corresponding Birkhoff coordinates such that v =
{p=7=0}. Let us define near p =1 =0 the following “average” quantities

(53) Omnds(p; TO) = / Omnds o (I)(pa T05 P, S)ngdS
Tn xSt

Then the knowledge of the Taylor expansion at p =1 =0 up to order N of Omnas for

(1) [m[+ n[ <N

(2)Vj=1...n, mj=0o0rn; =0

(3) s=11ifm=n=0, otherwise s =0
(4) deZ

determines the Taylor expansion of ® near v up to order N. Therefore the knowledge
of these expansions together with the normal form up to order N determine the Taylor
expansion of the “true” Hamiltonian H up to the same order.

Remark 5.2. A Corollary of Theorem 5.1 in the line of Corollary 1.4 (??) can be obtained
in a straightforward way. We omit it here.

Proof. We saw in the preceding sections that the diagonal matrix elements of the quantum
observables O,,,4s determine the full semiclassical expansion of the Taylor expansion of
the total symbol of the Hamiltonian. What’s left to be done is, roughly speaking, to check
that the classical limit of the matrix elements determine the one of the symbol. We will
need the following lemma (see [14] for a proof)
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Lemma 5.3. Let O be an pseudodifferential operator on L?(R™ x S1) whose Weyl symbol,
expressed in polar and cylindrical coordinates is the function O(p,T;p,s). Then

(5.4) 1Oy = [ O, p,)deds + O(h).
Tn xSt
Let Opnnas be the pseudodifferential operator on L?(R™ x S1) whose Weyl symbol is the
function O,,pgs- In order to prove Theorem 5.1, it is enough to see that one can recover

from the Taylor expansion of the averages OY . up to order N the principal symbol of

Wg ~ up to order N. We will proceed by induction on N just as in the proof of Proposition

2.15.

. . iﬁ/SN *‘iVT/SN
Let us first remark that the principal symbols of e =% Opnase ™ 7, and Oppnas 0 P have
the same Taylor expansion up to order N.

Hence, using Lemma 5.3 we get:

N1 —iW

iW <N+1
O nas(Bh,vh) = (uvle™ " Ompase™ + |, v) + O ((|u| + |u|)h)N/2+1) +O(h)

| times

. .l
i —~ i — —
= ;L<,ua VI[Wen i1, Omnasl |t v) + Wwa VI[Wans1, -, Want1, Omnas| i, v)
1>2

+0 ((ul + Whm241) + o)

= > 0, kq.aih” ", v|[e”™ " al (a*)* DY, O] |1, v)
|7+ k|+2g=N+1

Jjtm=k+n
| times
b AW, Ol + 3 A ol T W2, O] )
I ) <N, ) hll' ) <N, ) <N, )

1>2

+ 0 ((ul + [hmN/21) + o)

We now remark that the Taylor expansion of the principal symbol o (z, Z,t7) of Wg N up

to order N is exactly on(z,2,t,7) = > Q0,j.kq(1)27 2879 up to (|2 + 7)) "5
71+ k] +2q<N
We therefore have the
Lemma 5.4.
. g I times
(5.5) (s V| [We v, Oanas] 11 v) + Z el W, o Wen, O] [, 1)
h = Al < <

1>2
depends only on ag j.q(t), 7]+ k| +2¢ < N, up to O ((Jju| + [v])R)N/**1) + O(h).
For N = 2 we have that W<y = 0. Therefore

Opnas(phovh) = Y aogigaih™ (uvle” ™ () D, Omnasl I, v)

|7]+1k]+2g=3
j+m=k+4n

+0 ((Iul + [v)h)?) + O(h).
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So the same argument that the one in the proof of Proposition 2.15, in particular using
Lemma 2.17, allows to conclude the case N = 2.
Moreover Lemma 5.4 shows clearly that we can conclude by induction again just like
in Proposition 2.15.
O

The last result of this paper will be the classical analog of Theorems 1.8 1.11.

Let us remind, [8], that in the case where H(z,&) = &% 4+ V(z) the classical normal
form determines the Taylor expansion of the potential when the latter is invariant, for
each i = 1...n by the symmetry x; — —z;, In the general case the Taylor expansion of
the averages, in the sense of (5.3), of a finite number of classical observables are necessary
to recover the full potential.

Let us assume H € C°°(T*M,R) has a global minimum at zo € T*M, and let d? Hy(2¢)
be the Hessian of H at zy. Let us define matrix Q defined by d?Hy(z0)(-, ) =: wa, (-, Q71)
where w,, (-, ) is the canonical symplectic form of T* M at z5. Qs eigenvalues are purely
imaginary, let us denote them by +i6; with 6; > 0, j = 1...n. Let us assume that
0;,j = 1...n are rationally independent.

Theorem 5.5. Let (x,£) € T*R™ be any system of local coordinates centered at z.
For (m,n) € N> 1 <i,5 <n and k € {1,2,3}, let Oppn, ij be functions satisfying
in a neighborhood of zy:

(5.6) Oin(@,8) = [ [ (2 +i&)™ (2 — i&)™,
j=1

Qzlj(‘rﬂg) = ;¢
(5.7) Q?j(x,f) = zz;

Q?j(x7§> = 515]
Let us denote by ® the formal (unknown a priori) symplectomorphism which leads to the
Birkhoff normal form near zo and (p,p) the corresponding Birkhoff coordinates such that
{20} = {p = 0}. Then the knowledge of the Taylor expansion at p =0 up to order N >3
of the (finite number) “average” quantities

/ Omn © ®(p, @)de,

with
(1) |m|+|n| <N
(2) ¥je[l,n], mj=0o0rn; =0
and the Taylor expansion up to order 2 of the quantities
k - 2
T Qij © q)(pv @)d% (Zv.]) € [[lanﬂ ’ ke {17253}7
together with the Bikhoff normal form itself, determines the Taylor expansion up to order

N of H at zy in the system of coordinates (x,§).

Let us now enunciate the classical of Theorem 1.11 in the case of a Schrodinger operator
with potential V' € C*°(M,R):
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Theorem 5.6. Let qo be a global non-degenerate minimum of V-on M. Let us assume that
the square roots of the eigenvalues of d*V (qo) are linearly independent over the rationnals.
Let x €C R™ be any system of local coordinates centered at qo, and (x,€) the corre-
sponding Darbouzx coordinates centered at (qo,0).
Let us denote by ® the formal (unknown a priori) symplectomorphism which leads to
the Birkhoff normal form near (qo,0) and (p, ) the corresponding Birkhoff coordinates.
With the notations of Theorem 5.5, the knowledge of the Taylor expansion at p =0 up
to order N > 3 of the (finite number) “average” quantities

/n O 0 B(p,P)dp,  m = (ma, ..., mn) € {0,1}7\ {0}

and the Taylor expansion up to order 2 of the quantities

/T Q% o B(p, )i, (ivj) € [1,m]2,

together with the Bikhoff normal form itself, determines the Taylor expansion up to order
N of V at qo in the system of coordinates x.

In the line of the proof of Theorem 5.1 the proofs of Theorem 5.6 and 5.5 are easy
adaptations of the proofs of Theorem 1.11 and 1.8. We omit them here.

APPENDIX A. LEMMAS ON LINEAR AND BILINEAR ALGEBRA

Lemma A.1l. Let q be a positive quadratic form on R*™. Then there exists a canonical
endomorphism ¢ on R?"™, and a n-tuple of positive real numbers (A1, ..., \,), defined as the
imaginary part of the eigenvalues of positive imaginary part of the endomorphism defined

by:
(A.1) (sa())q = w(:-)

where (;-)4 be the scalar product associated to q and w the canonical form on R*", and
such that:

(A.2) V(x,€) € R™, q(¢(x,€)) = > _ iz} +&)

i=1

Moreover, if the real numbers A1, ..., \, are pairwise different, and ¢ is an endomorphism
of R?™. Then ¢' is canonical and satisfies (A.2) if and only there exists an orthogonal
isomophism u on R?™ whose restriction to the plane spanned by (%, %) (for any i €
[1,n]) is a rotation, such that ¢ = ¢ o wu.

Proof of Lemma A.1. a is antisymmetric respective to ¢, and therefore there exists a ¢-

orthonormal basis of R?" (u1,...,Un,v1,...,v,) and a n-tuple of positive real numbers
(A1,...,An) such that, for j € [1,n]:
(A.3) Aja(u;) = —v;j and Aja(v;) = u;

Now let us set, for j € [1,n]:

(A4) ’l]j = 1/ Aju]' and ’LN)]' = 1/ Aj’Uj
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Then, (iy,...,%n, 71, .,0,) is a g-orthogonal basis of R?" satisfying, for j € [1,n],
q(@;) = Aj and ¢(?;) = A;, and the preceeding properties together with (A.2) implies that
it is also a symplectic basis, which concludes the proof of the first part of Lemma A.1.

To prove the second part of Lemma A.1, let us consider another symplectic and or-

thogonal basis (uy,...,u,,vy,...,v;,) where, for j € [1,n], the g-norm of u/; and v/ is A;.
Then, by (A.2), for any j € [1,n], a(u]) is orthogonal to any vector of the basis but v’
and (v}, a(uf)), = w(v;,u;) = —1, therefore Aja(u}) = —v}, and by the same argument,

Aja(vy) = uf.

Therefore, the plane spanned by (u;,v;) and the plane by (u;,v}) both are the kernel
of a® + )\? (2-dimensional since we made the additional assumption the \;’s are pairwise
different). Therefore, if ¢ and ¢’ are the endomorphisms which send the canonical basis
of R?" to basis (11, .., n,,01,...,0,) and basis (u},...,ul,, v}, ... v}) respectively, then
one can considerer the restriction to any plane spanned by (a%i, 6%7;) (for any i € [1,n])

is an orthogonal symplectomorphism from the plane to itself, that is a rotation.
O

Let o be the permutation of [1,2n] defined by:

) . 2i —1 sii<n
(A.5) Vi e [1,2n], o(i) { 2i—mn) sii>ntl

and M, be the associated permutation matrix (i.e. for any (i,j) € [1,2n]?, (M,);; =
Oo(i).j-
Now, let us set, for any matrix S € Ma,(R), S, = M;1SM,.
Let us also, for (i,k) € [1,2n] x [1,n], denote by Lg ;; the vector of R? defined by
Lsik = ( Eg"%mk_l ) € R2. Then, for (i,k) € [1,n]?, Six will be the matrix of size 2
o)i,2k

whose first line is *Lg 2;—1 k and second line *Lg 9; k.

Lemma A.2. Let A be a positive matriz of size 2n. Let S be the (non-empty by lemma
A.1) set of symplectic matrices satisfying

D 0

t _ A

(A.6) SAS = ( 0 1 Dx )

where Dy is the diagonal matriz with (A1, ..., A\,) as n-tuple of positive diagonal elements,

which we assume pairwise different. Then:

(1) Family ((Ls,ik; Ls,j.k))ij)e1,2n])?.ke[1,n] 95 independant of matriz S € S.
(2) Once the preceeding invariants of S given, one can construct explicitely a particular
matriz of S (hence all of them by Lemma A.1).

Proof of Lemma A.2. Let us first prove the first point. Let (S,7) € S2. By Lemma A.1,
there exists n matrices belonging to SO2(R) and denoted by Oq, ..., O,, such that:

O1 51101 -+ 51,0,
(A.7) T, =5, = : :
O, Sn101 o+ SpnOy
and (A.7) is equivalent to :
(A.8) V(i,k) € [1,2n] x [1,n], Lr,ix = "OxLs,;k
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Hence ((Ls,ik; Ls,jk))ij)e[1,2n]?,ke[1,n] does not depend of matrix S € S and the first
point of Lemma A.2 is proven.
Now, let S € S, and let (aijx)(i,j)e[1,2n]2,ke[1,n] Pe the family defined by:

(A.9) V(i,j) € [1,2n]?, Vk € [1,n], aijr = (Ls,ik; Ls,jk)

Let us assume that this family is given. Two vectors u and v of R? are independant iif:
(u;v)? < (uju){v;v). Since matrix S is invertible, on can choose, for any k € [1,n], a
couple of indices (i, jx) € [1,2n]? such that:

2
(A.10) Wik < gk ik

Let k € [1,n] Let us choose a vector wv;,j, whose norm is ,/a;;,x > 0. The following
system of equations with unknown v € R?:

(A.11) { (Vink; V) = Qigjuk
(v;0) =k
admits exactly two solutions (by (A.10)), denoted by U;:- . €t v, obtained from one another
by orthogonal symmetry Ry of axis the line spanned by v;, .
Let us set v; , = v;:k = v;, k. Since families (v;rkk,v;;k) et (v, x.vj,5) are basis of R?
for any ¢ € [1,2n] \ {éx, jr }, each one of the two systems:

(A.12) {<”ikk?”> = Giik 4 {(Uikk;v> = Qiyik

<”;‘;k5”> = Qjyik <’U_j7kk;v> = Qjyik

admits exactly one solution denoted respectively by ’U;]; and v, , and satisfying relation
Uy = Rkv;,;.
We are now able to construct 2™ matrices (T'4) acp([1,n) defined, for A € P([1,n]), by:

vl if ke A

(A.13) V(i k) € [1,2n] x [1,n], Lz, .in = { X lee

In order to prove the second point of Lemma A.2, it is sufficient to prove following
assertions:

(1) There exists at least one set A € P([1,n]), such that: T4 € S.
(2) There is at most one set A € P([1,n]), such that T4 is symplectic (and A is
determined by family (aijr) @, j)e1,2n]2, ke1,n])

Indeed, one those two assertions proven, there will be exactly one set A € P([1,n])
such that T4 is symplectic, and it will be an element of S, constructed from the values of
family (az‘jk)(i,j)e{[1,2n]]2,ke[[1,n]] only.

Let us prove the first assertion. Let, for any k € [1,n], Ok be the unique element of
SO2(R) tel que: Lg, k = Ok, (where S is a particular matrix of S).

The system (A.11) is equivalent to:

L i N O ’U> = Q;, ;
A.14 < Syik,ks Yk ieikk
( ) { <Ok’U;Okv> = Qj jpk

which admits exactly two solutions: U;; g €6V k- Hence, for any k € [1,n]:

(A.15) Ls k= Ok'U;;k or Lgj, 1= Okvj_kk
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Let us define the set A by:
(A.16) A={keN|Lg r= Ok'U;;k}

Since each system (A.12) admit a unique solution, we obtain:

+
V(i, k) € [1,2n] x [1,n], Ls,i :{ Opvjj, if ke A

(A.17) Opvy;, if else
= OkLr, ik
that is:
04
(A.18) Tyo =15,
On

and Ty € S by Lemma A.1.
In order to prove the second assertion, let us use following lemma:

Lemma A.3. For any symplectic matriz B of size 2n, we have:

(A.19) Vk € [1,n], > det(Bix) =1
i=1
If Ay and As are two parts of [1,n], we get from (A.13) and relation v, = Ryvj; that:
. _ RkLTAl,i,k if ke A{AA,
(A.20) V(i, k) € [1,2n] x [1,n], L1, ik = { Lry it  olse

where A1 AAs is the symmetric difference of A; and As: A1 AAy = (Ar \ Aa) U (A2 \ Ay).
Hence:

(A.21) Vk € [1,n], idet (Tay)ik) = €k idet (Tay)ik)

i=1 i=1
where, for k € [1,n], ¢z = —1if k € A1 AAy, ¢ = 1 if else. Since AjAAy = ) if and only
if Ay = A, there exists at most one part A of [1,n] such T4 is symplectic. The second
assertion, hence the second point of Lemma A.3, is proven. g
Proof of Lemma A.3. Since B is a symplectic matrix, matrix B, satisfies:
(A22) tBoJaBa = Jo

It is sufficient, for k € [1,n], to read equality (A.22) at line 2k and 2k — 1 to obtain:

(A.23) i det(Bix) =1

O

Lemma A.4. Let A € M, (R) be a positive matriz whose eigenvalues are pairwise differ-
ent. Then there exists exactly 2™ orthogonal matrices conjugating A to the diagonal matrix
of its ordered eigenvalues, and they are obtained from one another by eventually changing
the sign of their columns.
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Proof of Lemma A.4. Let D be the diagonal matrix of the ordered eigenvalues of A. As
A is positive. There exists an orthogonal matrix @7 such that:

(A.24) Q7'AQ1 = 'Q1AQ, =D
Let Qs € GL,(R). Then Q- is orthogonal and satisfies : Q;'AQy = D if and only
if Q5 '@Q1 is an orthogonal matrix which commutes to D, that is, because the diagonal

elements of D are pairwise different, if and only if Q5 1@, is an orthogonal diagonal matrix.
Finally, Q5 is orthogonal and satisfies : Q5 *AQ, = D if and only if @, *Q; is diagonal and

its

elements belong to {—1,1}, that is if Q2 is obtained from Q; by eventually changing

the sign of its columns. O
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