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Abstract. We show that the contributions to the Gutzwiller formula with observable
associated to the iterates of a given elliptic nondegenerate periodic trajectory γ and
to certain families of observables localized near γ determine the quantum Hamiltonian
in a formal neighborhood of the trajectory γ, that is the full Taylor expansion of its
total symbol near γ.

1. Introduction and main results

It is well known that spectral properties of semiclassical Hamiltonians and dynamical
properties of their principal symbols are linked. Even when there is no precise information
“eigenvalue by eigenvalue” of the spectrum, the so-called Gutzwiller trace formula provide
information on averages of the spectrum at scale of the Planck constant. More precisely, let
H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential operator, on a compact
manifold X of dimension n+1, whose symbol, H(x, ξ), is proper (as a map from T ∗X into
R). Let E be a regular value of H and γ a non-degenerate periodic trajectory of period
Tγ lying on the energy surface H = E.

Consider the Gutzwiller trace (see [7])

(1.1)
∑

ψ

(
E − Ei

~

)

where ψ is a C∞ function whose Fourier transform is compactly supported with support
in a small neighborhood of Tγ and is identically one in a still smaller neighborhood. As
shown in [10], [11] (1.1) has an asymptotic expansion

(1.2) ei
Sγ
~

+σγ

∞∑

k=0

ak~
k

In [5] was shown how to compute the terms of this expansion to all orders in terms
of a microlocal Birkhoff canonical form for H in a formal neighborhood of γ, and that
the constants ak,r , κ, r = 0, 1, ... determine the microlocal Birkhoff canonical form for
H in a formal neighborhood of γ (and hence, a fortiori, determine the classical Birkhoff
canonical form). When it is known “a priori” that H(x, ~Dx) is a Schrödinger operator,
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it is known that the normal form determines the potential V [6]. But in the general case
the Gutzwiller formula will determine only the normal form of the Hamiltonian, that is
to say H(x, ~Dx) only modulo unitary operators, and its principal symbol only modulo
symplectomorphisms. Of course it cannot determine more, as the spectrum, and a fortiori
the trace, is insensitive to unitary conjugation. The aim of this paper is to address the
question of determining the true Hamiltonian from more precise spectral data, namely
from the Gutzwiller trace formula with observables.

It is well know that, for any pseudodifferential operator O(x, ~Dx) of symbol O(x, ξ),
there is an equivalent result to (1.2) for the following quantity

(1.3) Tr

(
O(x, ~Dx)

H(x, ~Dx)− E

~

)
=
∑

〈ϕj , O(x, ~Dx)ϕj〉ψ
(
E − Ei

~

)
,

(here ϕj is meant as the eigenvector of eigenvalue Ej) under the form of an asymptotic
expansion of the form

(1.4) ei
Sγ
~

+σγ

∞∑

k=0

aγk(O)~k

where aγk are distribution supported on γ.
Through this article we will assume, without loss of generality, that the period of γ is

equal to 1.

We will show in the present paper that the knowledge of the coefficients aγk(O) for a
family (NOT all) of observables localized near γ is enough to determine the (full Taylor
expansion of) the (total) symbol ofH(x, ~Dx) near γ, or in other wordsH(x, ~Dx) microlo-
cally in a formal neighborhood of γ, when γ is non-degenerate elliptic, which means that
linearized Poincare map has eigenvalues (e±iθi), i = 1, . . . , n, where the rotation angles θi
(i = 1, . . . , n) and π are independent over the rationals. The vector field corresponding to
a basis of eigenvectors of the linearized Poincare map will form a family of local symplectic
coordinates which are tangent to this vector field. Let us define these coordinates more
precisely, out of which follows one of the main result of this article.

Definition 1.1 (Fermi coordinates). We will denote by Fermi coordinates any system of
local coordinates (x, ξ, t, τ) near γ in which the principal symbol H0 of H(x, ~Dx) can be
written as:

(1.5) H0(x, ξ, t, τ) = H0(x, ξ, t, τ) +H2

where

(1.6) H2 = O(|x|3 + |ξ3|+ |xτ |+ |ξτ |)
And

(1.7) H0(x, ξ, t, τ) = E +

n∑

i=1

θi
x2i + ξ2i

2
+ τ

The existence of such local coordinates, guaranteed by the Weinstein tubular neighbor-
hood theorem ([14]), was proved in [5] under the hypothesis of non degeneracy mentioned
earlier.
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Theorem 1.2. Let (x, ξ, t, τ) ∈ T ∗(Rn × S1) be any system of local coordinates near γ,
non degenerate elliptic periodic orbit of the Hamiltonian flow generated by the principal
symbol H0 of H(x, ~Dx) on the energy shell H−1

0 (E).
For (m, d, s, n) ∈ N

n × Z× {0, 1} let us choose any pseudodifferential operators Omnds

whose principal symbols are

(1.8) Omnds(x, ξ, t, τ) = ei2πdtτsΠj(xj + iξj)
mj (xj − iξj)

nj .

Then the knowledge of the coefficients ak(Omnds), k = 0 . . .N in ( (1.3),(1.4) with

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

determines the Taylor expansion near γ of the full symbol of H(x, ~Dx) up to order N in
any Fermi system of coordinates.

Corollary 1.3. If one already determined some Fermi coordinates, then we can recover
from the knowledge of the ak(Omnds) (with order less or equal to N) the Taylor expansion
near γ of the full symbol of H(x, ~Dx) up to order N in the given system of coordinates.

Remark 1.4. It seems reasonable to think that spectral data with observable give enough
information to recover of the full Taylor expansion the Hamiltonian (without the quadratic
part) without the knowledge of the Fermi coordinates, [8].

Remark 1.5. The condition 2 implies that the number of observables (for each Fourier
coefficient in t) needed for determining H(x, ~Dx) up to order N is of order Nn+1 and not
N2n+2, number of all polynomials of order N . The fact that not all observables are needed
can be understood by the fact that we we knows that the Hamiltonian we are looking for
is conjugated to the normal form a unitary operator and not by any operator (see the
discussion after theorem 2.1). At the classical level this is a trace of the fact that we are
looking for at a symplectomorphism, and not any diffeomorphism (see section 4).

Remark 1.6. The asymptotic expansion of the trace (1.3) involves only the microlocaliza-
tion of H(x, ~Dx) in a formal neighborhood of γ. Therefore there is no hope to recover
from spectral data more precise information that the Taylor expansion of its symbol near
γ. The rest of the symbol concerns spectral data of order ~∞

The proof of theorem 1.2 will rely on two other results, expressed in the flat case but
easily extendable to the general setting: proposition 2.14 which shows that the coefficients
of the trace formula determine the matrix elements 〈ϕj , O(x, ~Dx)ϕj〉 where ϕj are the
eigenvectors of the normal form of the Hamiltonian, and proposition 2.15 which states
that the knowledge of the matrix elements of the conjugation of a given known selfadjoint
operator by a unitary one determines, in a certain sense, the latter.

As a byproduct of our main theorem we obtain also a purely classical result, somehow
analog of it: the averages on Birkhoff angles associated to Birkhoff coordinates of the same
classical observables than the ones in Theorem 1.2 determine the Taylor expansion of the
(true) Hamiltonian, Theorem 4.1 below.

The paper is organized as follows. In Section 3 we reduce the problem to the case where
X = Rn × S1, γ = S1. In Section 2 we show that, in the latter case, the ak determine the
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Taylor expansion of the Hamiltonian and in Section 4 we show the classical equivalent of
our quantum formulation.

2. Proof of theorem 2.1

The aim of this section is to prove following theorem in the flat case:

Theorem 2.1. Let H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential
operator on L2(Rn×S1). Let (x, ξ, t, τ) ∈ T ∗(Rn×S1) be the canonical symplectic coordi-
nates near γ = S1, non degenerate elliptic periodic orbit of the Hamiltonian flow generated
by the principal symbol H0 of H(x, ~Dx) on the energy shell H−1

0 (E).
H0 of H(x, ~Dx) can be written in those coordinates as:

(2.1) H0(x, ξ, t, τ) = H0(x, ξ, t, τ) +H2

where

(2.2) H2 = O(|x|3 + |ξ3|+ |xτ |+ |ξτ |)
And H0 is equal to:

(2.3) H0(x, ξ, t, τ) = E +

n∑

i=1

θi
x2i + ξ2i

2
+ τ

For (m, d, s, n) ∈ Nn × Z× {0, 1} let us choose any pseudodifferential operators Ømnds

whose principal symbols are

(2.4) Omnds(x, ξ, t, τ) = ei2πdtτsΠj(xj + iξj)
mj (xj − iξj)

nj .

Then the knowledge of the coefficients ak(Omnds), k = 0 . . .N in ( (1.3),(1.4) with

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

determines the Taylor expansion near γ of the full symbol (in the system of coordinates
(x, ξ, t, τ)) of H(x, ~Dx) up to order N .

The proof of theorem 2.1 will be essentially divided into three steps: first, we will prove
in Proposition 2.2 the existence of the quantum Birkhoff normal form in a form convenient
to our computations, especially concerning the discussion of orders. In proposition 2.14,
we will show that the trace formula with observable O determines the matrix elements of
O in the eigenbasis of the normal form. Finally, in proposition 2.15, we will show that
these matrix elements determines H(x, ~Dx) in a formal neighborhood of x = ξ = τ = 0,
which leads to theorem 2.1.

For i = 1 . . . n, let us consider on L2(Rn × S1) the operators:

• ai =
1√
2
(xi + ~∂xi

)

• a∗i = 1√
2
(xi − ~∂xi

)

• Dt = −i~∂t
• Pi :=

1
2

(
−~∂2xi

+ x2i
)
= a∗i ai +

~

2
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Now for µ ∈ Nn, ν ∈ Z we will denote by |µ, ν〉 a common eigenvector of the Pi’s and Dt,
namely the vectors such that:

Pi|µ, ν〉 = (µi +
1

2
)~|µ, ν〉 and Dt|µ, ν〉 = 2π~|µ, ν〉.

Those vectors can be explicitly constructed as follows:

(2.5) |0, 0〉(x, t) := 1

(π~)
n
4
e

−x2

2~

and for any µ ∈ Nn

(2.6) |µ, ν〉(x, t) := ei2πνt
n∏

i=1

1√
µi!

(a∗i )
µi |0, 0〉(x, t)

Let us recall the following:

(2.7)





ai|µ, ν〉 =
√
µi~|µ1, . . . , µi−1, µi − 1, µi+1, . . . , µn, ν〉

a∗i |µ, ν〉 =
√
(µi + 1)~|µ1, . . . , µi−1, µi + 1, µi+1, . . . , µn, ν〉

[ai, a
∗
j ] = δij~

[ai, aj ] = 0

Also, we will write |µ| :=∑µi, and for i = 1 . . . n, zi =
xi+iξi√

2
, pi =

x2
i+ξ2i
2 .

OpW (a) will be the pseudo differential operator, whose Weyl total symbol is a.

Finally, let us denote by a, a∗ or P the n-tuple of corresponding operators ai, a
∗
i , Pi,

i = 1 . . . n. We’ll also use the usual convention that, if X is a n-tuple of complex numbers
or operators, and j a n-tuple of nonnegative integers, Xj stands for

∏n
i=1X

ji
i .

Our construction of the normal form, inspired by [5], is the following:

Proposition 2.2. Let H(x, ~Dx) be a self-adjoint semiclassical elliptic pseudodifferential
operator on L2(Rn × S1), whose principal symbol is

(2.8) H0(x, ξ, t, τ) = H0(p, τ) +H2

where H0(p, τ) =
∑n

i=1 θipi + τ and H2 vanishes to the third order on x = ξ = τ = 0.

Then for any N ≥ 3, there exists a self-adjoint semiclassical elliptic pseudodifferen-

tial operator W̃≤N and a smooth function h(p1, . . . , pn, τ, ~) such that microlocally in a
neighborhood of x = ξ = τ = 0:

∀M > 0, ∃CN > 0, ∀(µ, ν, ~) ∈ N
n × Z× [0, 1[, |µ~|+ |ν~| < M,

∣∣∣∣
∣∣∣∣
(
e

iW̃≤N

~ He
−iW̃≤N

~ − h(P1, . . . , Pn, Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ ≤ CN (|µ~|+ |ν~|)N+1

2
(2.9)

The operators can be computed recursively in the form:
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(2.10) W̃≤N =W≤N + (|Dt|2 +
n∑

i=1

Pi)
N+1

where

(2.11)




W≤N =

∑
3≤q≤N Wq

Wq :=
∑

2p+|j|+|k|+2m=q

αp,j,k,m(t)~pOpW (zj z̄k)Dm
t

where for any index (p, j, k,m), αp,j,k,m ∈ C∞(S1,C) and for any q ≥ 3, Wq is symmetric.

Remark 2.3. We are only interested in recovering the Hamiltonian in a formal neigh-
borhood of γ: every asymptotic expansion is meant microlocally and we’ll be rewriting
equations such as (2.9) simply as:

∣∣∣∣
∣∣∣∣
(
e

iW̃≤N

~ He
−iW̃≤N

~ − h(P1, . . . , Pn, Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ = O

(
|µ~|+ |ν~|)N+1

2

)

Also, by abuse of notation, we’ll identify any operator with its version microlocalized near
γ.

Remark 2.4. One passes fromW≤N to W̃≤N in order to gain ellipticity and self-adjointness,
like it has been done in lemma 4.5 of [5].

The proof of proposition 2.2 will need several preliminaries:

Definition 2.5. We will say that a pseudodifferential operator A on L2(Rn × S1) is
”polynomial of order r ∈ N” (PO(r)) if there exists βp,j,k,m ∈ C∞(S1,C) such that:

(2.12) A =
∑

2p+|j|+|k|+2m=r

αp,j,k,m(t)~pOpW (zj z̄k)Dm
t

Let us remark that those operators have the following interesting properties:

Proposition 2.6. Let A be a pseudodifferential operator on L2(Rn × S1) Then, there
exists a family of operators Ar, r ∈ N such that for any i ∈ N, Ar is PO(r) and

(2.13) ∀N ∈ N,

∥∥∥∥∥

(
A−

N∑

r=0

Ar

)
|µ, ν〉

∥∥∥∥∥ = O
(
(|µ~|+ |ν~|)

N+1
2

)

Definition 2.7. Let us introduce for any operator A the notations ⌊A⌋r et ⌊A⌋≤N which
represents respectively the terms of order r and of order smaller or equal to N of his
preceding expansion (2.13).
If A and B are two operators, we’ll write that: A ∼ B if for any r ∈ N, ⌊A⌋r = ⌊B⌋r.
Also, if (An)n∈N is a family of operators, we’ll write that:

(2.14) A ∼
+∞∑

n=0

An

if for any N ∈ N, ⌊An⌋≤N is zero for n sufficiently large, and the finite sum:

(2.15)
+∞∑

n=0

⌊An⌋≤N = ⌊A⌋≤N
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Proof. Let a(z, z̄, t, τ) be the total symbol of A, which has the following Taylor expansion
around γ:

∀N ∈ N, a(z, z̄, t, τ) =

N∑

r=0

∑

2p+|j|+|k|+2m=r

αp,j,k,m(t)~pzj z̄kτm+

N+1
2∑

p=0

O
(
~
p(|z|2 + |τ |)N+1

2 −p
)

Now, for any r ∈ N, let us notice that the pseudodifferential operator Ar with symbol∑
2p+|j|+|k|+2m=r αp,j,k,m(t)~pzj z̄kτm is PO(r), and therefore:

∀N ∈ N,

∥∥∥∥∥

(
A−

N∑

r=0

Ar

)
|µ, ν〉

∥∥∥∥∥ =

N+1
2∑

p=0

~
pO
(
(|µ~|+ |ν~|)

N+1
2 −p

)

= O
(
(|µ~|+ |ν~|)

N+1
2

)
(2.16)

which concludes the proof. �

Let us remark the following corollary:

Corollary 2.8. If the expansion (2.13) of an operator A contains no PO(r), r = 0 . . .N ,
then:

‖A|µ, ν〉‖ = O
(
(|µ~|+ |ν~|)

N+1
2

)

It will also be convenient to our calculations to notice that:

Lemma 2.9. Let F and G be PO(r) and PO(r′) respectively then [F,G]
i~ is PO(r+ r′ − 2).

Proof. Our proof will be a direct consequence of the two following lemmas, whose proof
will be given at the end of the proof of lemma 2.9

Lemma 2.10. Any monomial operator of order r, that is of the form α(t)~pb1 . . . blD
m
t ,

where:

• for j = 1 . . . l, bj ∈ {a1, a∗1, . . . , an, a∗n}
• 2p+ l + 2m = r

is PO(r).

Lemma 2.11. If F and G are monomials of order r and r′ respectively, then [F,G]
i~ is

PO(r + r′ − 2)

Indeed, any PO(r) is a finite sum of monomials of the same order, hence if F and G

are PO(r) and PO(r′) respectively, then [F,G]
i~ is a finite sum of quantities of type [F̃ ,G̃]

i~

where F̃ and G̃ are monomials of ordre r and r′ respectively. Any of those quantities
are PO(r + r′ − 2) by lemma 2.11, and a finite sum of PO(r + r′ − 2) is PO(r + r′ − 2).
Therefore, lemma 2.9 is proved. Let us now prove the two lemmas:

Proof of lemma 2.10. Since for any i, j = 1 . . . n, i 6= j, ai and a
∗
i commute with both aj

and a∗j , it is sufficient in order to prove lemma 2.10 the following assertion (Assl) for any
positive integer l: ” any ordered product b1 . . . bl, where for any j = 1 . . . l, bj ∈ {a1, a∗1}
can be written as a finite sum of the quantities ~pOpW (zj1z̄

k
1 ) with 2p + j + k = l and

j − k = l − 2♯{m ∈ {1, . . . , l}, bm = a∗1}” More precisely, let us proceed by induction, and
introduce for any ordered product b1 . . . bl, k(b1 . . . bl) = ♯{m ∈ {1, . . . , l}, bm = a∗1}
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• If l = 1, there is nothing to prove since a1 = OpW (z1) and a
∗
1 = OpW (z̄1).

• If l = 2,




a21 = OpW (z21)

a∗21 = OpW (z̄21)

a1a
∗
1 = P1 +

~

2 = OpW (z1z̄1) +
~

2

a∗1a1 = OpW (z1z̄1)− ~

2

and therefore, the assertion is proved for l = 2.
• Now, let l be a positive integer, let us assume (Assk) up to order k = l, and let
B = b1 . . . bl+1 be an ordered product, where for any j = 1 . . . l + 1, bj ∈ {a1, a∗1}.
If for any j = 1 . . . l, bj = bj+1, then B = OpW (zl+1

1 ) or B = OpW (z̄l+1
1 ).

Otherwise, the proof of the symmetric case being identical, let us can assume that
b1 = a1, and set j0 = max{j ∈ {1, . . . , l + 1}, bj = a1}. Let us remark that:

1 ≤ j0 ≤ l and [aj01 , a
∗
1] = j0~a

j0−1
1 , so that:

(2.17) b1 . . . bl+1 = aj01 a
∗
1bj0+2 . . . bl+1 = a∗1a

j0
1 bj0+2 . . . bl+1 + ~j0a

j0−1
1 bj0+2 . . . bl+1

Hence if one sets k := k(b1 . . . bl+1)
(
l+ 1

k

)
b1 . . . bl+1 =

(
l

k

)
aj01 a

∗
1bj0+2 . . . bl+1 +

(
l

k − 1

)
a∗1a

j0
1 bj0+2 . . . bl+1

+ ~

(
l

kb − 1

)
j0a

j0−1
1 bj0+2 . . . bl+1

Now, because we assumed (Assl−1):

(l − 1)− 2k(aj0−1
1 bj0+2 . . . bl+1) = (l + 1)− 2k(b1 . . . bl+1)

we only need to observe that the
(
l+1
k

)
ordered monomials in the sumOpW (zl+1−kz̄k)

can be divided in two parts: the
(
l
k

)
ones whose first term is a1, whose sum is(

l
k

)
a1Op

W (zl−kz̄k) and the
(

l
k−1

)
who forms

(
l

k−1

)
a∗1Op

W (zl+1−kz̄k−1), and since:

(
l + 1

k

)
OpW (zl+1−kz̄k) =

(
l

k

)
a1Op

W (zl−kz̄k) +

(
l

k − 1

)
a∗1Op

W (zl+1−kz̄k−1)

the assumption of (Assl) will be enough to conclude our proof by induction.

�

Proof of lemma 2.11. It is now sufficient in order to prove lemma 2.11 that if F and G
are of the form:

F = α(t)b1 . . . blD
m
t and G = β(t)b′1 . . . b

′
l′D

m′

t

where:

• α and β are smooth
• l + 2m = r, l′ + 2m′ = r′

• For j = 1 . . . l, for j′ = 1 . . . l′, bj , b′j′ ∈ {a1, a∗1}

then [F,G]
i~ is a finite sum of monomials of order r + r′ − 2 since, by lemma 2.10, each of

them is PO(r + r′ − 2). �
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With those assumptions on F and G, we get:

[F,G]

i~
=
[α(t)b1 . . . blD

m
t , β(t)b

′
1 . . . b

′
l′D

m′

t ]

i~

=α(t)β(t)
[b1 . . . bl, b

′
1 . . . b

′
l′ ]

i~
Dm+m′

t + α(t)b1 . . . bl
[Dm

t , β(t)]

i~
b′1 . . . b

′
l′D

m′

t

−β(t)b′1 . . . b′l′
[Dm′

t , α(t)]

i~
b1 . . . blD

m
t

(2.18)

Therefore it is sufficient to prove that
[b1...bl,b

′
1...b

′
l′
]

i~ ,
[Dm

t ,β(t)]
i~ and

[Dm′

t ,α(t)]
i~ are respectively:

PO(l+ l′−2), PO(2m−2) and PO(2m′−2) (with the convention that a PO(j) with j < 0
is 0).
For the two last, it is quite obvious, since:

(2.19)
[Dm

t , β(t)]

i~
=

m−1∑

k=0

(
m

k

)
(i~)m−k−1β(m−k)(t)Dk

t

Now, for j = 1 . . . l′, let us set ǫj = 1 if b′j = a∗1, otherwise ǫj = −1. Since [a1, a
∗
1] = ~, we

get:

b1 . . . blb
′
1 . . . b

′
l′ = b′1b1 . . . blb

′
2 . . . b

′
l′ +

ǫ1 + 1

2
~

l∑

k=1
bk=a1

b1 . . . bk−1bk+1 . . . blb
′
2 . . . b

′
l′

+
ǫ1 − 1

2
~

l∑

j=1
bk=a∗

1

b1 . . . bk−1bk+1 . . . blb
′
2 . . . b

′
l′

Hence by induction on j = 1 . . . l′:

[b1 . . . bl, b
′
1 . . . b

′
l′ ]

i~
=− i

l′∑

j=1

ǫj + 1

2

l∑

k=1
bk=a1

b′1 . . . b
′
j−1b1 . . . bk−1bk+1 . . . blb

′
j+1 . . . b

′
l′

− i
l′∑

j=1

ǫj − 1

2

l∑

k=1
bk=a∗

1

b′1 . . . b
′
j−1b1 . . . bk−1bk+1 . . . blb

′
j+1 . . . b

′
l′

(2.20)

The right-hand side of (2.20) is a finite sum of monomials of order l + l′ − 2, hence
PO(l+ l′ − 2) by lemma 2.10, hence lemma 2.11 is proved.

�

Lemma 2.12. Let G be PO(r).
Then there exists F an operator PO(r), and G1 = G1(P1, . . . , Pn, Dt, ~) such that:

(2.21)
[H0(P,Dt), F ]

i~
= G+G1

where if G is symmetric, F is also symmetric, if r is odd, G1 = 0, and if r is even G1 is
an homogenous polynomial function of total order r

2 .
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Remark 2.13. If F =
∑

2p+|j|+|k|+2m=r αp,j,k,m(t)~pOpW (zj z̄k)Dm
t , one can choose:

(2.22)

∫

S1

αp,j,j,m(t)dt = 0

Indeed, any OpW (zj z̄j)Dm
t commutes with H0(P,Dt, ~)

Proof of lemma 2.12. Let us first assume thatG is a monomial of order r: G = β(t)b1 . . . blD
m
t

where:

• α is smooth
• l + 2m = r
• For j = 1 . . . l, bj ∈ {a1, a∗1, . . . , an, a∗n}

and let us look for F under the form: F = α(t)b1 . . . blD
m
t We have:

[H0, F ]

i~
=
[H0, α(t)b1 . . . blD

m
t ]

i~

=α(t)

n∑

i=1

θi
[Pi, b1 . . . bl]

i~
Dm

t +
[Dt, α(t)]

i~
b1 . . . blD

m
t

=α(t)

n∑

i=1

θi
[Pi, b1 . . . bl]

i~
Dm

t + α′(t)b1 . . . blD
m
t

(2.23)

If for i = 1 . . . n, ki = ♯{m ∈ {1, . . . , l}, bm = a∗i } and ji = ♯{m ∈ {1, . . . , l}, bm = ai}, we
deduce from (2.20) that:

(2.24)
[Pi, b1 . . . bl]

i~
=

√
−1(ji − ki)b1 . . . bl

Hence:

(2.25)
[H0, F ]√

−1~
=

√
−1

n∑

i=1

θi(ji − ki)α(t)b1 . . . blD
m
t + α′(t)b1 . . . blD

m
t

The problem: [H0,F ]√
−1~

= G admits a solution if there exists α such that:

(2.26)
√
−1

n∑

i=1

θi(ji − ki)α(t) + α′(t) = β(t)

If cp(α) and cp(β) are the Fourier coefficients of α and β, it is sufficient for the cp(α) to
be solution of:

(2.27)
√
−1

(
n∑

i=1

θi(ji − ki) + 2πp

)
cp(α) = cp(β)

and

(2.28) cp(α) =
p→+∞

O

(
1

|p|∞
)

If the n-tuples j and k are different, the non-degeneracy condition on the θi’s together

with the fact that cp(β) =
p→+∞

O
(

1
|p|∞

)
(because β is smooth), gives the existence of

cp(α) satisfying (2.27) and (2.28).
If r is odd, j and k can’t be equal, hence lemma 2.12 is proved in this case (r odd and G
monomial)
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If r is even, and j = k, there exists a family (cp(α))p∈Z∗ satisfying (2.27) and (2.28).
Hence, if α is the smooth function with Fourier coefficients cp(α) for p 6= 0 and c0(α) = 0,
we get:

(2.29)
[H0, F ]√

−1~
= G+ c0(β)b1 . . . blD

m
t

And from the proof of lemma 2.10, we know that c0(β)b1 . . . blD
m
t that is a linear combi-

nation of G1(P,Dt, ~) := c0(β)
∑

2p+2|k|=l ap,k~
pP kDm

t , and lemma 2.12 is proved in the

case where r is even and G is monomial.
The general case is easily deduced from the case where G is monomial, since G is a finite
sum of monomials of the same order.
Also, the form of F allows us to conclude immediately that F is symmetric if G is so. �

Now we have everything we need for the proof by induction of proposition 2.2.

Proof of proposition 2.2. Microlocally near x = ξ = τ = 0, H(x, ~Dx) satisfies

(2.30) H := H(x, ~Dx) ∼ H0(P1, . . . , Pn, ~Dt) +
∑

q≥3

Hq

where:

(2.31) Hq := ⌊H(x, ~Dx)⌋q

Let us look for W̃≤3 under the form predicted in proposition 2.2, that is:

(2.32) W̃≤3 =W3 + (|Dt|2 +
n∑

i=1

Pi)
4

where W3 is PO(3).

e
iW̃≤3

~ H(x, ~Dx)e
−iW̃≤3

~ ∼ H(x, ~Dx) +
i

~
[W̃≤3, H ] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤3, . . . , W̃≤3, H ]

∼ H0 +H3 +
i

~
[W3, H

0]

+
i

~
[W3, H −H0] +

i

~
[W̃≤3 −W3, H(x, ~Dx)]

+
∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤3, . . . , W̃≤3, H(x, ~Dx)] +

∑

q≥4

Hq

Since H3 is polynomial of order 3, let us choose W3, as in lemma 2.12, such that:

(2.33) H3 +
i

~
[W3, H

0] = H1(P1, . . . , Pn, Dt, ~) ≡ 0

Since W3 is PO(3) and the expansion of H − H0 in PO(r) contains no PO(r) of order

less or equal to 2, the expansion of W̃≤3 −W3 no term order less or equal to 3, and the
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one of H(x, ~Dx) no term of order less or equal to 1, we know from lemma 2.11 that the
expansion of:

(2.34)
i

~
[W3, H −H0] +

i

~
[W̃≤3 −W3, H ] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤3, . . . , W̃≤3, H ] +

∑

q≥4

Hq

contains no term of order less or equal to 3.
Therefore, corollary 2.8 gives us:

(2.35)

∣∣∣∣
∣∣∣∣
(
e

iW̃≤3
~ He

−iW̃≤3
~ −H0(P,Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ = O

(
|µ~|+ |ν~|)2

)

We can construct by induction (Wq)q≥3 and (Hq)q≥1, such that:

• for q ≥ 3,Wq is PO(q) and for Hq−2 is zero if q is odd, an homogenous polynomial
function of total order q

2 if q is even.
•

(2.36) H3 +
i

~
[W3, H

0] = H1(P,Dt, ~)

• and for any q ≥ 4:

i

~
[Wq, H

0]+Hq+

 i
~
[W≤q−1, H −H0] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W≤q−1, . . . ,W≤q−1, H ]


q

= Hq−2(P,Dt, ~)

Let us now set: W̃≤N :=
∑N

q=3Wq + (|Dt|2 +
∑n

i=1 Pi)
N+1

2 . Also, as for any q ≥ 0,

H2q is an homogenous polynomial function of total order q + 1, we can choose by Borel’s
lemma a smooth function h such that for any N ≥ 1, in a neighborhood of p = τ = 0.

(2.37)

∣∣∣∣∣h(p, τ, ~)−
N−1∑

q=0

H2q(p, τ, ~)

∣∣∣∣∣ = O
(
(|p|+ |τ |+ |~|)N+1

)

Now, let us write, for any N ≥ 4

e
iW̃≤N

~ He
−iW̃≤N

~ ∼ H +
i

~
[W̃≤N , H ] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]

∼ H +
i

~
[W≤N , H

0] +
i

~
[W≤N , H −H0] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]

+
i

~
[W̃≤N −W≤N , H ]

Let us also observe that lemma 2.9 gives us for q ≤ N :

(2.38)





⌊
i
~
[W≤N , H −H0]

⌋
q
= ⌊ i

~
[W≤q−1, H −H0]⌋q

∑
l≥2

il

~ll! [

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H ]


q

=

∑
l≥2

il

~ll! [

l times︷ ︸︸ ︷
W≤q−1, . . . ,W≤q−1, H ]


q
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Therefore for any q ≤ N :

(2.39)

⌊
e

iW̃≤N
~ He

−iW̃≤N
~

⌋

q

= Hq−2(P,Dt, ~) = ⌊h(P,Dt, ~)⌋q

And corollary 2.8 gives us:

(2.40)

∣∣∣∣
∣∣∣∣
(
e

iW̃≤N

~ He
−iW̃≤N

~ − h(P,Dt, ~)

)
|µ, ν〉

∣∣∣∣
∣∣∣∣ = O

(
|µ~|+ |ν~|)N+1

2

)

which concludes the proof. �

The next result is the first inverse result needed for the proof of our main result.

Proposition 2.14. Let O be a pseudodifferential operator, whose principal symbol van-
ishes on γ.

(1) There exists a smooth function f vanishing at (0, 0, 0) such that for any N ≥ 3:

(2.41) 〈µ, ν|e
iW̃≤N

~ Oe
−iW̃≤N

~ |µ, ν〉 = f

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N

2

)

Moreover let, for any integer l, φl be a Schwartz function whose Fourier trans-
form is compactly supported in (l−1, l+1) and let (alj(O))l≥0 provided by the trace
formula:

(2.42) Tr

(
Oφl

(
H − E

~

))
∼

+∞∑

j=0

alj(O)~
j

(2) The Taylor expansion of f up to order N is entirely determined by the family
(alj(O)), 0 ≤ j ≤ N , l ∈ N.

Proof. Let us first prove point 1.
Let us consider a monomial G = α(t)b1 . . . blD

m
t where:

• α is smooth
• l + 2m = r
• For j = 1 . . . l, bj ∈ {a1, a∗1, . . . , an, a∗n}

Let us set for i = 1 . . . n, ki = ♯{m ∈ {1, . . . , l}, bm = a∗i }
and ji = ♯{m ∈ {1, . . . , l}, bm = ai}.

If j 6= k or α /∈ C, then: 〈µ, ν|G|µ, ν〉 = 0 for any (µ, ν) ∈ Nn × Z.

If now j = k and α ∈ C, then there exists complex numbers αl (0 ≤ li ≤ ji for
i = 1 . . . n), such that:

(2.43) G =
∑

0≤li≤ji

αl~
|l|P j1−l1

1 . . . P jn−ln
n Dm

t

and: α0 = α.
Therefore for any (µ, ν) ∈ Nn × Z:

(2.44) 〈µ, ν|G|µ, ν〉 =
∑

0≤li≤ji

αl~
|l|
((

µ+
1

2

)
~

)j−l

(2πν~)m
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Hence, if G is PO(r), then for any (µ, ν) ∈ Nn × Z:

• 〈µ, ν|G|µ, ν〉 = 0 if r is odd.
• If r is even, there exists an homogenous polynomial function g of order r

2 such
that:

(2.45) 〈µ, ν|G|µ, ν〉 = g

(
(µ+

1

2
)~, 2πν~, ~

)

From proposition 2.6, corollary 2.8 and Borel’s lemma, we get that that for any operator
A, there exists a function g such that for any (µ, ν) ∈ Nn × Z:

(2.46) 〈µ, ν|A|µ, ν〉 = g

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N+1

2

)

Hence, the only point remaining to prove, is that function f in point 1 does not depend
on N . It is therefore sufficient to prove that for any q ≤ N − 1,

(2.47)

⌊
e

iW̃≤N

~ Oe
−iW̃≤N

~

⌋

q

=

⌊
e

iW̃≤q+1
~ Oe

−iW̃≤q+1
~

⌋

q

But (2.47) is a direct consequence of lemma 2.9. Indeed,

(2.48) e
iW̃≤N

~ Oe
−iW̃≤N

~ ∼ O +
∑

l≥1

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , O]

and since the principal symbol of O vanishes on γ, lemma 2.9 gives us for any l ≥ 1 and
any q ≤ N − 1:

(2.49)


il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , O]


q

=


il

~ll!
[

l times︷ ︸︸ ︷
W̃≤q+1, . . . , W̃≤q+1, O]


q

Let us now move on to the proof of point 2

Since φ̂l is supported near a single period of the flow, we know from the general theory
of Fourier integral operators that one can microlocalize the trace formula with observables
near γ:

(2.50) Tr

(
Oφl

(
H − E

~

))
= Tr

(
O

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eitH−E
~ dt

)
+O(~∞)

where ρ ∈ C∞
0 (R) is compactly supported and ρ = 1 in a neighborhood of p = τ = 0.

Therefore we can conjugate (2.50) by the microlocally unitary operator e
iW̃≤N

~ :

Tr

(
Oφl

(
H − E

~

))
=

= Tr


(e

iW̃≤N

~ Oe
−iW̃≤N

~

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit e

iW̃≤N
~ He

−iW̃≤N
~ −E

~ dt


+O(~∞)
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Thanks to proposition 2.2, we can lighten the r.h.s. for any (µ, ν) ∈ Nn × Z

∫

R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit e

iW̃≤N
~ He

−iW̃≤N
~ −E

~ dt|µ, ν〉

=

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉

(2.51)

As φ̂l is smooth and compactly supported, together with the non-degeneracy condition
on the θi’s, we can assure that if we choose a sufficiently small support for ρ, we have for
any η > 0:

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉

=

(∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~η

)
eit

h((µ+ 1
2
)~,ν~,~)−E+O(|µ~|+|ν~|)

N+1
2 )

~ dt

)
|µ, ν〉+O(~∞)

Hence, choosing η < 1
2 :

Tr

(
Oφl

(
H − E

~

))
+O(~∞)

=
∑

µ,ν

〈µ, ν|e
iW̃≤N

~ Oe
−iW̃≤N

~ |µ, ν〉 ×
∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |ν|)~η

)
eit(2πν+θ.(µ+ 1

2 )) . . .

. . . exp


 it

~

∑

1≤q≤N−2

Hq

(
(µ+

1

2
)~, ν~, ~

)
+O

(
(|µ|+ |ν|)N+1

2 ~
N−1

2

)

 dt

=
∑

µ,ν

∫

R

φ̂l(t)ρ
(
(|µ|+ n

2
+ |2πν|)~η

)
eit(2πν+θ.(µ+ 1

2 ))


1 +

N−1
2∑

i≥1

~
iQi(µ+

1

2
, ν, t)


×

N+1
2∑

p≥1

∑

|k|+m≤p

bk,m,p−|k|−m(µ+
1

2
)k(2πν)m~

pdt+O(~
N+1

2 )

where for any i ≤ N−1
2 , Qi is a determined polynomial function, of degree in

(
µ+ 1

2 , ν
)

less or equal to i+1, which depends on the Hq’s and the Taylor expansion of exp, and the
bk,m,s ((k,m, s) ∈ Nn+2\{0}) come from the Taylor expansion at (0, 0, 0) of the function
f defined in the first point of proposition 2.14, i.e. for any N ≥ 1:

(2.52) f(x, y, z) =
∑

1≤|k|+m+s≤N

bk,m,sx
kymzs +O

(
|x|+ |y|+ |z|)N+1

)

Now, let us set:

(2.53) ∀t ∈ R
∗, ∀α ∈ (R\2π

t
Z)n, g(t, α) :=

ei
t
2 (α1+···+αn)

∏
i(1− eitαi)

By the non-degeneracy condition on the θi’s, g is well defined on the compact support of

φ̂l around a single period, which is precisely l. It also implies that θi.µ is bounded below
by C|µ| (where C > 0) as |µ| goes to ∞.
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Therefore we get from the Poisson formula and the Riemann-Lebesgue lemma that the
following quantity Xp(l) can be computed recursively on p ≤ N+1

2 from the alj(O), j =
0, . . . , p:

Xp(l) =
∑

|k|+m≤p

bk,m,p−|k|−m

[(
−i ∂
∂t

)m
(
φ̂l(t)

(−i
t

)k
∂kg

∂αk
(t, α)

)]
(l, θ)

=
∑

|k|+m≤p

bk,m,p−|k|−m

[(
−i ∂
∂t

)m(
−i ∂
t∂α

)k

g

]
(l, θ)

(2.54)

since φ̂l is identically 1 around l.

Now, let us set, for any i ∈ {1, . . . , n}, any t ∈ R and any α ∈ (R\ 2π
t Z)

n, xi(t, α) = ei
tαi
2 .

and also define holomorphic function h on C\{−1, 1} by h(z) = z
1−z2 for z ∈ C\{−1, 1}.

We have for any k ∈ Nn :

(2.55)

(
−i ∂
t∂α

)k

g =
n∏

i=1

(
−i ∂

t∂αi

)ki

(h ◦ xi)

For any i ∈ {1, . . . , n}, an easy induction on ki ∈ N leads to the following, since for any

z ∈ C\{−1, 1}, h(z) = 1
2

(
1

1−z − 1
1+z

)
, and −i ∂xi

t∂αi
= 1

2xi:

(2.56)

(
−i ∂

t∂αi

)ki

(h ◦ xi) =
ki!

2ki+1

(
xi

(1− xi)ki+1
+

xi
(1 + xi)ki+1

)

Now, since −i∂xi

∂t = αi

2 xi, an induction on si ∈ N shows that:
(2.57)(

−i ∂
∂t

)si (
−i ∂

t∂αi

)ki

(h ◦ xi) =
(ki + si)!α

si
i

2ki+si+1

(
xi

(1 − xi)ki+si+1
+

xi
(1 + xi)ki+si+1

)

Let us now introduce for any n-tuple s such that |s| = m, the multinomial coefficient:
(
m

s

)
=

m!

s1! . . . sn!

We have:

(2.58)

(
−i ∂
∂t

)m(
−i ∂
t∂α

)k

g =
∑

|s|=m

(
m

s

) n∏

i=1

(
−i ∂
∂t

)si (
−i ∂

t∂αi

)ki

(h ◦ xi)

Let us use Kronecker theorem, whose hypothesis is precisely the non-degeneracy condition
on the θi’s : for any n-tuple (x1, . . . , xn) ∈ S

n
1 , one can find a sequence of integers (lp)p∈Z,

such that:

∀j ∈ {1, . . . , n}, xj(lp, θ) −→
p→+∞

xj

Therefore, if one sets, for any (x1, . . . , xn) ∈ (S1\{−1, 1})n and (k,m) ∈ Nn+1:

u(k,m) =
∑

|s|=m

(
m

s

) n∏

i=1

(ki + si)!θ
si
i

2ki+si+1

(
xi

(1− xi)ki+si+1
+

xi
(1 + xi)ki+si+1

)
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Then (2.54), (2.57) and (2.58) together with Kronecker theorem allows us to conclude
that the following quantity is determined by the alj(O), j = 0, . . . , p:

(2.59) Xp =
∑

|k|+m≤p

bk,m,p−|k|−mu
(k,m)

Hence, the only thing remaining to prove is that, if one chooses the xi’s tending to 1 in a
way convenient to us, the |u(k,m)|’s will tend to ∞ to different orders.
Let us be more precise:

Let the xi’s tend to 1 in a way such that:

(2.60) ∀i ∈ {1, . . . , n− 1}, |1− xi| ≪ |1− xi+1|p

If ≃ means that two functions are equivalent, as the xi’s tend to 1 as in (2.60), up a
multiplicative constant, we have for any (k,m) ∈ Nn+1:

(2.61) (1− x1)
mu(k,m) ≃

n∏

i=1

1

(1− xi)ki+1

Hence, if one sets m̃ = (m, 0, . . . , 0):

(2.62) u(k,m) ≪ u(k
′,m′) si k + m̃ < k′ + m̃′

where < is the lexicographical order on Nn. Therefore, for any p ∈ N and for any (k,m) ∈
Nn+1 such that |k0|+m0 ≤ p, the following quantity can be recursively determined from
Xp:

(2.63) Xk0,m0 =
∑

k′+m̃′=k+m̃

bk,m,p−|k|−mu
(k,m)

Reversing for example the roles of i = 1 and i = 2 in (2.60), and observing that k2 +m 6=
k′2 +m′ if k+ m̃ = k′ + m̃′ and (k,m) 6= (k′,m′), one determines bk,m,p−|k|−m from (2.63)

recursively on m. Finally, each bk,m,s with |k| +m + s ≤ N is determined by the alj(O),
with j = 0 . . .N and l ∈ N and the point 2 is proved, which ends the proof of proposition
2.14.

�

Our next result shows how the knowledge of the matrix elements of the conjugation of a
given known selfadjoint operator by a unitary one determines the latter (in the framework
of asymptotic expansions).
For any (m,n, d, s) ∈ N2n × Z2, and any (x, ξ, t, τ) ∈ T ∗(Rn × S1), let us define:

(2.64) Omnds(x, ξ, t, τ) = ei2πdtτs
n∏

j=1

(xj + iξj)
mj (xj − iξj)

nj .

and let Omnds be a pseudodifferential operator whose Weyl principal symbol is Omnds.
By proposition 2.14, there exists a smooth function fmnds vanishing at (0, 0, 0) such

that for any N ≥ 3:
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(2.65)

〈µ, ν|e
iW̃≤N

~ Omndse
−iW̃≤N

~ |µ, ν〉 = fmnds

(
(µ+

1

2
)~, 2πν~, ~

)
+O

(
(|µ~|+ |ν~|)N

2

)

Theorem 2.1 will now be a direct consequence of proposition 2.14 and following propo-
sition:

Proposition 2.15. Let N ≥ 3. The Taylor expansion of fmnds up to order N − 1 for any
(m,n, d, s) ∈ N2n × Z2 satisfying conditions

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

determines completely W≤N

Remark 2.16. Let us remark, like it will be seen in the proof of proposition 2.15, that the

only relevant information is the asymptotic expansion of 〈µ, ν|e
iW̃≤N

~ Omndse
−iW̃≤N

~ |µ, ν〉
as ~ tends to 0 and µ, ν go to ∞ slower than any negative power of ~.

Proof of proposition 2.15. LetN ≥ 3 and (m,n, d, s) ∈ (Nn)2×Z×{0, 1} satisfy conditions
(1), (2) and (3).
Then, we have:

e
iW̃≤N

~ Omndse
−iW̃≤N

~ ∼ Omnds +
i

~
[W̃≤N , Omnds] +

∑

l≥2

il

~ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , Omnds]

Therefore:

〈µ, ν|e
iW̃≤N

~ Omndse
−iW̃≤N

~ |µ, ν〉 − 〈µ, ν|Omnds|µ, ν〉

=
i

~
〈µ, ν|[W̃≤N ,Omnds]|µ, ν〉+

∑

l≥2

il

~ll!
〈µ, ν|[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , Omnds]|µ, ν〉+O ((|µ~|+ |ν~|)∞)

(2.66)

Now, since W̃≤N is a sum of polynomial operators of order greater that 3, we get from
proposition 2.9 that for any l ≥ 2

(2.67)
il

~l
〈µ, ν|[

l−1 times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , ·]

maps a PO(r) into a sum of polynomial operators of order strictly larger than r. Therefore,
if A is a PO(r), we have:

(2.68)
∑

l≥2

il

~ll!
〈µ, ν|[

l−1 times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , A]|µ, ν〉 = O

(
(|µ~|+ |ν~|) 1

2

)
〈µ, ν|A|µ, ν〉
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Finally, let us recall that:

WN =
∑

2p+|j|+|k|+2q=N

αp,j,k,q(t)~
pOpW (zj z̄k)Dq

t

:=
∑

2p+|j|+|k|+2q=N

∑

r∈Z

αp,j,k,q,r~
pe−i2πrtOpW (zj z̄k)Dq

t

(2.69)

Let us also state the following lemma, whose proof will be given after the end of the
present proof.

Lemma 2.17.

(2.70) 〈µ, ν|[e−i2πdtOpW (zj z̄k)Dq
t , Omnds]|µ, ν〉 = ~gjkqrmnds

((
µ+

1

2

)
~, ν~

)
+O(~2)

where, if j +m = k + n and r = d:
(2.71)

gjkqrmnds

((
µ+

1

2

)
~, ν~

)
= (2πν~)q+s(µ~)max(j,k)




n∑

i=1
|ji|+|ki|>0

jini − kimi

µi~
+
d(q + s)

ν~




and if j +m 6= k + n or r 6= d, gjkqrmnds ≡ 0

Let us now proceed by induction on N ≥ 3, and first assume N = 3.
Equation (2.65) gives us that the Taylor expansion up to order 2 of function fmnds

determines modulo O
(
(|µ~|+ |ν~|)3

)
:

(2.72) 〈µ, ν|e
iW̃≤6

~ Omndse
−iW̃≤6

~ |µ, ν〉 − 〈µ, ν|Omnds|µ, ν〉

Thanks to (2.68), (2.72) is equal, modulo O
(
(|µ~|+ |ν~|) 2+|m|+|n|+2s

2

)
, to:

(2.73)∑

2p+|j|+|k|+2q=3

∑

r∈Z

αp,j,k,q,r~
p
(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
〈µ, ν| i

~
[e−i2πrtOpW (zj z̄k)Dq

t , Omnds]|µ, ν〉

and with the lemma’s notations modulo O
(
(|µ~|+ |ν~|) 2+|m|+|n|+2s

2

)
+O(~) to:

(2.74)
∑

|j|+|k|+2q=3
j+m=k+n

iα0,j,k,q,d

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
gjkqdmnds

((
µ+

1

2

)
~, ν~

)

Let us assume we already proved (assertion (⋆)) that quantity (2.74) determines coef-
ficients α0,j,k,q,d (|j|+ |k|+ 2q = 3, j +m = k + n).
We’ll have determined every function α0,j,k,q (|j| + |k| + 2q = 3). Indeed, for any
(j, k, q) ∈ N2n+1 such that |j|+ |k|+ 2q = 3, and for any i ∈ {1, . . . , n}, let us choose:
(2.75) ni = max(ji − ki, 0) and mi = max(ki − ji, 0)

d ∈ Z∗ and s = 1 if m = n = 0, d ∈ Z and s = 0 otherwise.
We have for any i ∈ {1, . . . , n}, mi = 0 or ni = 0, and

|m|+ |n| =
n∑

i=1

|ji − ki| ≤ |j|+ |k| ≤ 3
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Therefore, (m,n, d, s) verifies the three assumptions (1), (2), and (3): (2.74) will hence
determine α0,j,k,q,d and letting d describe Z if j 6= k, Z∗ if j = k, we will have determined
functions α0,j,k,q (thanks to remark 2.13 for the case j = k)

Let us prove assertion (⋆) in the two cases : m 6= n and m = n.
Let us also define the set Γ of (j, k, q) such that: |j|+ |k|+ 2q = 3 and j +m = k + n.
Let us first assume that m 6= n, and choose µ1(~), . . . µn(~), ν(~) such that, as ~ tends to
0:

(2.76) 1 ≪ µ1, µ
2N
n ≪ ν, and ∀i ∈ {1, . . . , n− 1}, µ2N

i ≪ µi+1

Let us also define i0 := min{i ∈ {1, . . . , n},mi 6= ni}. We have, for (j, k, q) ∈ Γ:

(2.77) gjkqdmnds

((
µ+

1

2

)
~, ν~

)
∼

~→0

ji0ni0 − ki0mi0

µi0~
(2πν~)q

n∏

i=1

(µi~)
max(ji,ki)

and ji0ni0 − ki0mi0 never vanishes.
Also, (2.76) in additition to (2.77) gives us that :

(2.78) gjkqdmnds

((
µ+

1

2

)
~, ν~

)
≪ gj′k′q′dmnds

((
µ+

1

2

)
~, ν~

)

if (j, k, q) < (j′, k′, q′), where < is a strict total order on Γ defined by the lexicographical
order of (max(j1, k1), . . . ,max(jn, kn), q). It is indeed asymmetric since for i = 1 . . . n, the
sign of mi − ni determines whether max(ji, ki) is equal to ji or ki.

Therefore, making additional assumption on function µ1(~) that: ~ = O(µ1(~)
3~3), we

get that qunatity (2.74) is determined modulo O
(
(|µ~|+ |ν~|) 2+|m|+|n|+2s

2

)
and assertion

(⋆) easily follows by induction on (Γ, <) in the case m 6= n.
If now m = n, we may assume that d 6= 0 like seen before. Also, s = 1, thus for any q,

(q + s)d 6= 0.
Hence,

(2.79) gjjqdmnds

((
µ+

1

2

)
~, ν~

)
= (2πν~)q(q + 1)d

n∏

i=1

(µi~)
ji

and assertion (⋆) is proved just as before.
Finally, all functions α0,j,k,q are determined for (j, k, q) satisfying |j|+ |k|+2q = 3. Let

(m,n, d, s) satisfy conditions (1), (2), and (3) with N = 1.
Therefore, we obtain from (2.73), that the Taylor expansion of fmnds up to order 2 also

determines, modulo O((|µ~| + |ν~|) 2+|m|+|n|+2s
2 ):

(2.80)∑

|j|+|k|+2q=1

∑

r∈Z

α1,j,k,q,r~

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
〈µ, ν| i

~
[e−i2πrtOpW (zj z̄k)Dq

t , Omnds]|µ, ν〉

Just as before, with assumptions (2.76) and |µ~|+ |ν~| ≪ ~
2
3 , we can determine every

α1,j,k,q,d with |j|+ |k|+2q = 1 and j+m = k+n (there is actually just one corresponding
to q = 0, and (j, k) = (n,m)), and finally, every function α1,j,k,q with |j|+ |k|+ 2q = 1 )
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This prove the statement for N = 3.
Let us now assume that we already every αp,j,k,q up to order 2p+ |j|+ |k|+2q = N ≥ 3.

Let (m,n, d, s) conditions (1) (with N + 1), (2), and (3).
The Taylor expansion up to orderN of function fmnds determines moduloO

(
(|µ~|+ |ν~|)N+1

)
:

(2.81) 〈µ, ν|e
iW̃≤2N+2

~ Omndse
−iW̃≤2N+2

~ |µ, ν〉 − 〈µ, ν|Omnds|µ, ν〉

which is equal, thanks to (2.68) and lemma 2.17 modulo O
(
(|µ~|+ |ν~|)N+|m|+|n|+2s

2

)
+

O(~), to:

∑

|j|+|k|+2q≤N+1
j+m=k+n

iα0,j,k,q,d

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
gjkqdmnds

((
µ+

1

2

)
~, ν~

)

and by induction hypothesis, the following quantity is determined modulo

O
(
(|µ~|+ |ν~|)N+|m|+|n|+2s

2

)
+O(~):

(2.82)
∑

|j|+|k|+2q=N+1
j+m=k+n

iα0,j,k,q,d

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
gjkqdmnds

((
µ+

1

2

)
~, ν~

)

Now, making assumptions (2.76) and ~ = O
(
(|µ~|+ |ν~|)N

)
, we determine every

α0,j,k,q,d with |j|+ |k|+2q = N +1 and j+m = k+n, and like before, letting (m,n, d, s)
run over all possible values (under conditions (1), (2), and (3)), we determine every func-
tion α0,j,k,q.

Functions αp,j,k,q (2p+ |j|+ |k|+ 2q = N + 1) will now be determined by induction on

p. Let 0 ≤ p0 ≤ N−1
2 and let us assume we determined functions αp,j,k,q (0 ≤ p ≤ p0 and

|j|+ |k|+ 2q = N + 1− 2p).
Let (m,n, d, s) satisfy conditions (1) (with N+1−2(p0+1)), (2), and (3). Thus, the Taylor

expansion of fminds up to order N determines modulo O
(
(|µ~|+ |ν~|)N+|m|+|n|+2s

2

)
+

O(~p0+2)

(2.83)
∑

2p0+2+|j|+|k|+2q=N+1
j+m=k+n

iαp,j,k,q,d~
p0+1

(
1 +O

(
(|µ~|+ |ν~|) 1

2

))
gjkqdmnds

((
µ+

1

2

)
~, ν~

)

And with assumptions (2.76) and |µ~| + |ν~| ≪ ~
2(p0+1)
2p0+3 , heredity can be proved just as

before, which concludes the proof.
�

Proof of lemma 2.17. The principal symbol of 1
i~ [e

−i2πdtOpW zj z̄kDq
t , Omnds] is:

(2.84) σjkdq(z, z̄, t, τ) =
{
e−i2πdtzj z̄kτq ,Omnds

}
=
{
e−i2πdtzj z̄kτq , ei2πdtzmz̄nτs

}

where e−i2πdtzj z̄kτq is meant for the function (z, z̄, t, τ) 7→ e−i2πdtzj z̄kτq .
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Hence

σjkdq(z, z̄, t, τ) =− i

n∑

i=1

∂

∂zi
(e−i2πdtzj z̄kτq)

∂

∂z̄i
(ei2πdtzmz̄nτs)

+ i

n∑

i=1

∂

∂z̄i
(e−i2πdtzj z̄kτq)

∂

∂zi
(ei2πdtzmz̄nτs)

+
∂

∂t
(e−i2πdtzj z̄kτq)

∂

∂τ
(ei2πdtzmz̄nτs)− ∂

∂τ
(e−i2πdtzj z̄kτq)

∂

∂t
(ei2πdtzmz̄nτs)

= −izz̄|max(j,k)|τq+s

(
n∑

i=1

jini − kimi

ziz̄i
+ 2π

d(s+ q)

τ

)

(2.85)

Which means that:

1

~
[e−i2πdtOpW zj z̄kDq

t , Omnds] =D
q+s
t

n∑

i=1
|ji|+|ki|>0

(jini − kimi)P
max(ji,ki)−1
i

n∏

i=1
i′ 6=i

P
max(ji′ ,ki′ )
i′

+ 2π(q + s)Dq+s−1
t Pmax(j,k) +O(~)

(2.86)

Hence,

1

~
〈µ, ν|[e−i2πdtOpW zj z̄kDq

t , Omnds]|µ, ν〉 =(2πν~)q+s(µ~)max(j,k)
n∑

i=1
|ji|+|ki|>0

jini − kimi

µi~

+ 2π(q + s)(2πν~)q+s−1(µ~)max(j,k) +O(~)

(2.87)

�

3. Reduction to the flat case

The aim of this section is to prove that Theorem 1.2 is a consequence of his analog in
the flat case: Theorem 2.1.

Let H(x, ~Dx) be as in theorem 1.2: a self-adjoint semiclassical elliptic pseudodiffer-
ential operator, on a compact manifold X of dimension n + 1, whose symbol, H(x, ξ), is
proper (as a map from T ∗X into R). Let E be a regular value of H and γ a non-degenerate
periodic trajectory of period Tγ lying on the energy surface H = E.

As in [5], thanks to [14], there exists a symplectomorphism φ from a neighborhood of
S1 in T ∗(Rn × S1) in a neighborhood of γ in T ∗(X) such that in the standard symplectic
coordinates of T ∗(S1 × Rn)

(3.1) H0 ◦ φ(x, ξ, t, τ) = H0 +H2 and φ ◦ γ(t) = (0, 0, t, 0)

where H0 is defined as in (2.3):

H0(x, ξ, t, τ) = E +

n∑

i=1

θi
x2i + ξ2i

2
+ τ



RECOVERING HAMILTONIANS 23

and H2 satisfies condition (2.2):

H2 = O(|x|3 + |ξ3|+ |xτ |+ |ξτ |)
Moreover, one can assume that:

(3.2) φ(t, τ, z, z̄) = (t, τ, (z, z̄)A(t))

where zi = xi + iξi for i = 1 . . . n and A(t) is a complex symplectic matrix of size 2n,
which also satisfies

(3.3) ∀t ∈ S1, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . n},
{
Ai+n,j+n(t) = Āij(t)
Ai,j+n(t) = Āi+n,j(t)

Expressing our original symplectic coordinates in some Fermi normal coordinates (t, τ, x, ξ)
on T ∗(X), that is, coordinates in which the principal Hamiltonian can be written H0+H2

as before ((2.2) and (2.3)), determines matrix A satisfying the conditions above. Hence,
identifying those Fermi coordinates with the canonical symplectic coordinates of T ∗(Rn ×
S1), one can assume that X = R

n×S1 and it is sufficient to prove that Theorem 2.1 holds
for operators Omnds whose principal Omnds can be written as in (2.4) in some symplectic
coordinates:

Omnds(x, ξ, t, τ) = ei2πdtτsΠj(xj + iξj)
mj (xj − iξj)

nj .

with, given N ≥ 3, conditions (1), (2) and (3) on the index:

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

Let us therefore consider any symplectic coordinates on T ∗(Rn × S1), operators Omnds

satisfying conditions above for a given N ≥ 3 and a microlocally unitary Fourier integral
operator Aφ : C∞

0 (Rn × S1) → C∞(Rn × S1) implementing symplectomorphism φ.
Let us finally assume that the coefficients intervening in the trace formula associated

to our Hamiltonian H(x, ~Dx) and the Omnds are known up to order N , or equiva-

lently, the coefficients of the trace formula associated to A−1
φ H(x, ~Dx)Aφ and Ômnds =

A−1
φ OmndsAφ.

According to proposition 2.14, one can determine the asymptotic expansion up to order
N of following matrix elements:

(3.4) 〈µ, ν|e
iW̃≤N

~ Ômndse
−iW̃≤N

~ |µ, ν〉

where W̃≤N is defined in proposition 2.2: e
iW̃≤N

~ A−1
φ H(x, ~Dx)Aφe

−iW̃≤N

~ and the quan-

tum Birkhoff normal form have the same expansion in PO (2.13) up to order N . And
thanks to proposition 2.15, it is enough to determine the asymptotic expansion up to
order N of following matrix elements:

(3.5) 〈µ, ν|e
iW̃≤N

~ Õmndse
−iW̃≤N

~ |µ, ν〉
for operators Õmnds whose principal symbol in the standard symplectic coordinates are
precisely functions Omnds (with conditions (1), (2) and (3) on the index) in order to

determine W̃≤N , and hence conclude the proof.

Now it is enough to remark that the principal symbol of Ômnds in the standard sym-
plectic coordinates is Omnds ◦φ. Therefore, the linearized form we have chose for φ allows
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to conclude that Omnds can be expressed as a infinite (due to Fourier coefficients of ma-
trix A) sum of functions Om′n′d′s′ ◦ φ times polynomials in the ziz̄i, i = 1 . . . n, where

|m′|+ |n′| ≤ |m|+ |n|. Since the Pi’s each commute with e
iW̃≤N

~ , we determined

(3.6) 〈µ, ν|e
iW̃≤N

~ Õmndse
−iW̃≤N

~ |µ, ν〉
for operators Õmnds satisfying the conditions above, which leads to the conclusion of the
proof.

4. A classical analog

In this section we want to prove a classical analog to proposition 2.15. It is well known
that matrix elements of quantum observables between eigenvectors of integrable Hamilto-
nians are given at the classical limit by Fourier coefficients in action-angle variables of the
classical Hamiltonian. More precisely in the case of diagonal matrix elements the result
states that, with the notation of section 2, for any bounded pseudodifferential operator O
on L2(Rn × S1),

(4.1) 〈µ, ν|O|µ, ν〉 ∼
∫

Tn×S1

O′(µ~, ν~;ϕ, s)dϕds,

where O′(p, τ : ϕ, s) is the principal symbol of O expressed in the action angles variables
(pi, ϕi) such that xl + iξl =

√
ple

iϕl . Therefore it is natural to ask if angle-averages of
observables expressed in Birkhoff coordinates determine the original Hamiltonian. Our
result is the following.

Theorem 4.1. Let (x, ξ, t, τ) ∈ T ∗(Rn × S1) be any system of local coordinates near γ,
non degenerate elliptic periodic orbit of the Hamiltonian flow generated by the Hamiltonian
H. Let us define, for (m, d, s, n) ∈ Nn × Z× {0, 1} the functions

(4.2) Omnds(x, ξ; s, τ) := ei2πdtτsΠj(xj + iξj)
mj (xj − iξj)

nj .

Let us denote by Φ : T ∗(Rn × S1) → T ∗X the formal (unknown a priori) symplectomor-
phism which leads to the Birkhoff normal form and (p, ϕ; τ0, s) the corresponding Birkhoff
coordinates. Let us define

(4.3) O0
mnds(p, τ0) :=

∫

Tn×S1

O ◦ Φ(p, τ0;ϕ, s)dϕds.

Then the knowledge of the Taylor expansion of the averages O0
mnds for

(1) |m|+ |n| ≤ N
(2) ∀j = 1 . . . n, mj = 0 or nj = 0
(3) s = 1 if m = n = 0, otherwise s = 0

determines the Taylor expansion of Φ near γ up to order N . Therefore the knowledge
of these quantities together with the normal form up to order N determine the Taylor
expansion of the “true” Hamiltonian H up to the same order.

Proof. We saw in the preceding sections that the diagonal matrix elements of the quantum
observables Omnds determine the full semiclassical expansion of the Taylor expansion of
the total symbol of the Hamiltonian. What’s left to be done is, roughly speaking, to check
that the classical limit of the matrix elements determine the one of the symbol. We will
need the following lemma (see [12] for a proof)
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Lemma 4.2. Let O be an pseudodifferential operator on L2(Rn×S1) whose Weyl symbol,
expressed in polar and cylindrical coordinates is the function O(p, τ ;ϕ, s). Then

(4.4) 〈µ, ν|O|µ, ν〉 =
∫

Tn×S1

O(µ~, ν~;ϕ, s)dϕds +O(~).

Let Omnds be the pseudodifferential operator on L
2(Rn×S1) whose Weyl symbol is the

function Omnds. In order to prove theorem 4.1, it is enough to see that one can recover
from the Taylor expansion of the averages O0

mnds up to order N the principal symbol of

W̃≤N up to order N . We will proceed by induction on N just as in the proof of proposition
2.15.

Let us first remark that the principal symbols of e
iW̃≤N

~ Omndse
−iW̃≤N

~ , and Omnds ◦Φ have
the same Taylor expansion up to order N .

Hence, using Lemma 4.2 we get:

O0
mnds(µ~, ν~) = 〈µ, ν|e

iW̃≤N+1
~ Omndse

−iW̃≤N+1
~ |µ, ν〉+O

(
(|µ|+ |ν|)~)N/2+1

)
+O(~)

=
i

~
〈µ, ν|[W̃≤N+1, Omnds]|µ, ν〉+

∑

l≥2

il

~ll!
〈µ, ν|[

l times︷ ︸︸ ︷
W̃≤N+1, . . . , W̃≤N+1, Omnds]|µ, ν〉

+O
(
(|µ|+ |ν|)~)N/2+1

)
+O(~)

=
∑

|j|+|k|+2q=N+1
j+m=k+n

α0,j,k,q,di~
−1〈µ, ν|[e−i2πdtaj(a∗)kDq

t , Omnds]|µ, ν〉

+
i

~
〈µ, ν|[W≤N , Omnds]|µ, ν〉+

∑

l≥2

il

~ll!
〈µ, ν|[

l times︷ ︸︸ ︷
W≤N , . . . ,W≤N , Omnds]|µ, ν〉

+O
(
(|µ|+ |ν|)~)N/2+1

)
+O(~)

We now remark that the Taylor expansion of the principal symbol σN (z, z̄, tτ) of W̃≤N up

to order N is exactly σN (z, z̄, t, τ) =
∑

|j|+|k|+2q≤N

α0,j,k,q(t)z
j z̄kτq up to (|z|2 + |τ |)N+1

2 .

We therefore have the

Lemma 4.3.

(4.5)
i

~
〈µ, ν|[W≤N , Omnds]|µ, ν〉+

∑

l≥2

il

~ll!
〈µ, ν|[

l times︷ ︸︸ ︷
W≤N , . . . ,W≤N , Omnds]|µ, ν〉

depends only on α0,j,k,q(t), |j|+ |k|+ 2q ≤ N, up to O
(
(|µ|+ |ν|)~)N/2+1

)
+O(~).

For N = 2 we have that W≤N = 0. Therefore

O0
mnds(µ~, ν~) =

∑

|j|+|k|+2q=3
j+m=k+n

α0,j,k,q,di~
−1〈µ, ν|[e−i2πdtaj(a∗)kDq

t , Omnds]|µ, ν〉

+O
(
(|µ|+ |ν|)~)2

)
+O(~).
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So the same argument that the one in the proof of proposition 2.15, in particular using
lemma 2.17, allows to conclude the case N = 2.

Moreover lemma 4.3 shows clearly that we can conclude by induction again just like in
proposition 2.15.

�

Let us remark to finish this section that theorem 4.1, though probably provable by
strictly classical methods, was naturally derived and proved out of quantum considerations.
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