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Université Grenoble 1 & CNRS, LPMMC (UMR 5493),
B.P. 166, 38 042 Grenoble, France

Email: nicolas.rougerie@grenoble.cnrs.fr

November 14, 2012

We consider a multi-polaron model obtained by coupling the many-body Schrödinger equation for N

interacting electrons with the energy functional of a mean-field crystal with a localized defect, obtaining

a highly non linear many-body problem. The physical picture is that the electrons constitute a charge

defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility

to form a bound state of electrons via their interaction with the polarizable background. We prove first

that a single polaron always binds, i.e. the energy functional has a minimizer for N = 1. Then we discuss

the case of multi-polarons containing N ≥ 2 electrons. We show that their existence is guaranteed when

certain quantized binding inequalities of HVZ type are satisfied.

c© 2012 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
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1. Introduction

A quantum electron in a crystal may form a bound state by using the deformation of the medium

which is generated by its own charge [1]. The resulting quasi-particle, composed of the electron

and its polarization cloud, is called a polaron in the physics literature. Likewise, a multi-polaron

or N -polaron is the system formed by the interaction of N electrons with a crystal.
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That a polaron can be in a bound state is a rather simple physical mechanism. When the

(negatively charged) electron is added to the medium, it locally repels (respectively attracts) the

other electrons (respectively the positively charged nuclei) of the crystal. A local deformation is

thus generated in the crystal, and it is itself felt by the added particle. In other words the additional

electron carries a “polarization cloud” with it. It is therefore often useful to think of the polaron

as a dressed particle, that is a single (composite) particle with new physical properties: effective

mass, effective charge, etc. For an N -polaron the situation is a bit more involved. Since the effective

polarization has to overcome the natural Coulomb repulsion between the particles, bound states

do not always exist.

The question of what model to use to describe the polaron is an important and non trivial

one. In the Born-Oppenheimer approximation, a quantum crystal is a very complicated object,

made of infinitely many classical nuclei and delocalized electrons. The accurate description of such

a system is a very delicate issue and, for this reason, simple effective models are often considered.

They should remain mathematically tractable while still capturing as much of the physics of the

system as possible.

A famous example is the model of Fröhlich [8, 9] dating back from 1937, in which the crystal

is described as an homogeneous quantized polarization field with which the electrons interact. In

the limit of strong coupling between the electrons and the field, the model reduces to Pekar’s

theory [21, 22, 23, 17, 20]. There the crystal is a classical continuous polarizable model, leading to

an effective attractive Coulomb interaction in the energy functional of the theory:

EP
εM [ψ] =

1

2

∫

R3

|∇ψ(x)|2 dx+
(εM)−1 − 1

2

∫

R3

∫

R3

|ψ(x)|2|ψ(y)|2
|x− y| dx dy. (1.1)

Here ψ is the wave-function of the electron, εM > 1 is the static dielectric constant of the crystal

and we work in atomic units. The variational equation corresponding to (1.1) is sometimes called

the Schrödinger-Newton or Choquard equation.

It is the attractive Coulomb term in (1.1) that leads to the existence of bound states of elec-

trons, i.e. minimizers (or ground states) of the energy functional. Whereas the energy functional

for electrons in vacuum has no minimizer, Lieb [15] proved the existence and uniqueness (up to

translations) of a ground state for Pekar’s functional (1.1).

The same nonlinear attractive term is obtained in Pekar’s model for the N -polaron. Then, as we

have already mentioned, depending on the strength of the attractive Coulomb term as compared

to the natural repulsion between the electrons, one can get binding or not. It is an important issue

to determine in which parameter range binding occurs [10, 6, 7, 13].

The approximations made in the construction of Fröhlich’s and Pekar’s models reduce their

applicability to situations where the N -polaron is spread over a region of space much larger than

the characteristic size of the underlying crystal. One then speaks of large polarons. In [14] we have

introduced a new polaron model by coupling the energy functional for electrons in the vacuum to

a microscopic model of quantum crystals with defects introduced in [2, 3]. Unlike in Fröhlich and

Pekar theories we take the crystal explicitly into account and make no assumption on the size of

the electron. Our approach thus qualifies for the description of both small and large polarons. The

model takes the following form (for one electron):

Eeff [ψ] =
1

2

∫

R3

|∇ψ(x)|2 dx+

∫

R3

V 0
per(x)|ψ(x)|2 dx+ Fcrys

[
|ψ|2

]
. (1.2)

Here V 0
per is the (periodic) electric potential generated by the unperturbed crystal, which is felt by

any particle added to the system. The nonlinear effective energy Fcrys represents the interaction

energy between the electrons and the crystal. It is defined using a reduced Hartree-Fock theory

for the response of the electrons of the crystal to a charge defect. The state of the Fermi sea of

the perturbed crystal is given by a one-body density matrix γ, that is a non-negative self-adjoint
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operator on L2(R3). As in [2, 3], we write

γ = γ0per +Q (1.3)

where γ0per is the density matrix of the periodic unperturbed crystal and Q is the local deformation

induced by the charge defect |ψ|2. The effective energy Fcrys then takes the form

Fcrys

[
|ψ|2

]
= inf

−γ0
per≤Q≤1−γ0

per

(∫

R3

∫

R3

ρQ(x)|ψ(y)|2
|x− y| dx dy + Fcrys[Q]

)
. (1.4)

Three main ingredients enter in (1.4):

• Electrons are fermions and must thus satisfy the Pauli exclusion principle, which gives in

the formalism of density matrices the constraint 0 ≤ γ ≤ 1 as operators. This justifies the

constraint on admissible perturbations Q imposed in (1.4).

• The electrons forming the polaron interact with the perturbation they induce in the Fermi

sea. This is taken into account by the first term in (1.4) where ρQ is the charge density

associated with Q, given formally by ρQ(x) = Q(x, x) (we use the same notation for the

operator Q and its kernel).

• Generating a deformation of the Fermi sea has an energetic cost, represented by the func-

tional Fcrys in (1.4). The somewhat complicated definition of this functional will be recalled

below. It was derived in [2].

More details on how we arrived at the form above can be found in the introduction of [14]. Let us

mention that this model only takes into account the displacement of the electrons of the crystal

and neglects that of the nuclei. This is arguably an important restriction, but our model already

captures important physical properties of the polaron, and on the other hand this is all we can

treat from a mathematical point of view at present.

In this paper we will show that a (single) polaron described by the energy functional (1.4) always

binds. The case of N -polarons is more sophisticated, as now the effective attraction resulting from

the polarization of the crystal has to overcome the electronic repulsion. The energy functional

corresponding to (1.2) in the case of the N -polaron is given by

Eeff [Ψ] =

∫

R3N


1

2

N∑

j=1

∣∣∇xjΨ(x1, ..., xN )
∣∣2 +

∑

1≤k<ℓ≤N

|Ψ(x1, ..., xN )|2
|xk − xℓ|


 dx1 · · · dxN

+

∫

R3

V 0
perρΨ + Fcrys[ρΨ] (1.5)

where ρΨ is the usual density of charge associated with the many-body wave function Ψ whose

definition is recalled in (2.16) below.

In fact, our model (1.2) is closely related to Pekar’s functional. We proved in [14] that Pekar’s

theory can be recovered from (1.2) in a macroscopic limit where the characteristic size of the

underlying crystal goes to 0. Let us emphasize that our macroscopic limit is completely different

from the strong coupling limit of the Fröhlich polaron, which leads to the same Pekar energy [17].

It is also associated with a somewhat different physics. In the Fröhlich model, the crystal is polar

and it is the deformation of the lattice that binds the polaron, whereas in our case the crystal is

initially non polar and only the delocalized Fermi sea gets polarized. The nuclear lattice is not

allowed to be deformed in our simplified model.

In addition to clarifying the physics entering the Pekar model, the macroscopic limit argument

also gives some interesting insight on the model (1.2), in particular, regarding the question of

the existence of binding. Indeed, it is known [13] that Pekar’s functional has a ground state in

some range of parameters. We deduced in [14] that sequences of approximate minimizers for (1.5)

converge in the macroscopic limit to a ground state of the Pekar functional, thus showing that our

model at least accounts for the binding of large polarons in this regime. In this paper, we want to
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derive conditions ensuring that there is binding in the case of small polarons where the macroscopic

limit argument and the link to Pekar’s theory are irrelevant.

Quite generally, for many-body quantum systems, the existence of bound states of N particles

depends on the validity of so-called binding inequalities. If E(N) denotes the infimum energy of

some physical system containing N particles, a ground state containing N particles exists when

E(N) < min
k=1...N

E(N − k) + E∞(k) (1.6)

where E∞(N) denotes the energy of the same N particle system, but with all particles ‘sent to

infinity’. For example, for atoms or molecules comprising N electrons, E(N) includes the contri-

bution of the electric potential generated by the fixed nuclei, while E∞(N) does not. Particles ‘at

infinity’ no longer see the attraction of the nuclei. Note the formal similarity between inequalities

(1.6) and those appearing in Lions’ concentration compactness principle [18, 19], an important

mathematical tool used in nonlinear analysis. The major difference is that the former are quan-

tized and thus more difficult to relate to one another. See [13] for a more precise discussion of this

connection.

It is not difficult to discuss on physical grounds why inequalities (1.6) are sufficient for the

existence of bound states. Indeed, (1.6) says that sending particles to infinity is not favorable

from an energetic point of view. In mathematical terms, the inequalities (1.6) avoid the lack of

compactness at infinity of minimizing sequences. The existence of a ground state then follows from

the local compactness of the model under consideration. Nevertheless, the mathematical proof that

inequalities of the type (1.6) are sufficient for the existence of bound states of N -particles is highly

non-trivial because the problems E(N), E(N − k) and E∞(k) are set in different Hilbert spaces.

In the case of atoms and molecules, the fact that inequalities of the form (1.6) imply the existence

of bound states is the content of the famous HVZ theorem, first proved independently in [12, 27,

28].

In this paper we prove an HVZ-type theorem for our polaron functional (1.5) when N ≥ 2. We

have to face two difficulties. First the functional is invariant under the action of arbitrarily large

translations (those leaving invariant the periodic lattice of the crystal), so the energy functional

does not change when particles are sent to infinity. The correct binding inequalities therefore take

the form

E(N) < min
k=1...N−1

E(N − k) + E(k). (1.7)

Second, the energy contains the highly nonlinear term Fcrys[ρΨ]. We are thus faced with the com-

bination of the difficulties associated with many-body theory and those inherent to nonlinear

problems. A general technique has been introduced in [13] to tackle these questions. Our purpose

in this paper is to explain how one can deal with the model (1.5) using the method of [13]. Our

main task will be to control the behavior of the (highly nonlinear) effective polarization energy

Fcrys.

In this paper we are not able to show the validity of the binding inequalities (1.7) in full

generality for N ≥ 2, as this will highly depend on the microscopic structure of the crystal and of

the number N of electrons. It should be noticed that, when it occurs, binding is presumably only

due to a correlation effect, since in general the effective attraction is weaker than the Coulomb

repulsion (see Lemma 1.1 in [14]). In the Pekar case, this was explained using Van Der Waals forces

in Section 5.3 of [13].

Acknowledgement. The research leading to these results has received funding from the European

Research Council under the European Community’s Seventh Framework Programme (FP7/2007–

2013 Grant Agreement MNIQS no. 258023). We thank Salma Lahbabi for having mentioned to us

a mistake in a former version.
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2. Statement of the main results

2.1. The mean-field crystal

We begin by recalling the precise definition of the crystal functional entering in (1.2). More details

can be found in [2, 3, 14].

We fix an L -periodic density of charge µ0
per for the classical nuclei of the crystal, with L

a discrete subgroup of R
3. It is enough for our purpose to assume that µ0

per is a locally-finite

non-negative measure, such that
∫
Γ
µ0
per = Z ∈ N, where Γ = R3/L is the unit cell.

In reduced Hartree-Fock theory, the state of the electrons in the crystal is described by a one-

particle density matrix, which is a self-adjoint operator γ : L2(R3) → L2(R3) such that 0 ≤ γ ≤ 1

(in the sense of operators). When no external field is applied to the system, the electrons arrange

in a periodic configuration γ = γ0per, which is a solution of the reduced Hartree-Fock equations1





γ0per = 1(−∞,εF)

(
−∆/2 + V 0

per

)
,

−∆V 0
per = 4π

(
ργ0

per
− µ0

per

)
,

∫

Γ

ργ0
per

=

∫

Γ

µ0
per = Z.

(2.1)

Here ρA denotes the density of the operator A which is formally given by ρA(x) = A(x, x) when

A is locally trace-class. Also, 1(−∞,εF)(H) denotes the spectral projector of H onto the interval

(−∞, εF). The real number εF in (2.1) is called the Fermi level. It is also the Lagrange multiplier

used to impose the constraint that the system must be locally neutral (third equation in (2.1)). The

unique solution to the self-consistent equation (2.1) is found by minimizing the so-called reduced

Hartree-Fock energy functional [5, 2].

We are working in atomic units with the mass m and the charge e of the electrons of the crystal

set to m = e = 1. Also we neglect their spin for simplicity (reinserting the spin in our model is

straightforward).

By Bloch-Floquet theory (see Chapter XIII, Section 16 of [25]), the spectrum of the L -periodic

Schrödinger operator

H0
per = −1

2
∆ + V 0

per(x)

is composed of bands. When there is a gap between the Zth and the (Z + 1)st bands, the crystal

is an insulator and εF can be any arbitrary number in the gap. As in [2], in the whole paper we

will assume that the host crystal is an insulator.

Asumption 2.1 (The host crystal is an insulator).

The periodic Schrödinger operator H0
per has a gap between its Zth and (Z + 1)st bands, and we fix

any chemical potential εF in the corresponding gap.

When the quantum crystal is submitted to an external field, the Fermi sea polarizes. The

method used in [2] to define the energetic cost of such a polarization relies on the following idea.

The energetic cost to move the electrons from γ0per to γ is defined as the (formal) difference between

the (infinite) reduced Hartree-Fock energies of γ and of γ0per. Denoting by

D(f, g) :=

∫∫

R3×R3

f(x)g(y)

|x− y| dxdy = 4π

∫

R3

f̂(k)ĝ(k)

|k|2 dk (2.2)

the Coulomb interaction (where f̂ denotes the Fourier transform of f), one arrives at the functional

Fcrys[Q] := Tr0
(
(H0

per − εF)Q
)
+

1

2
D(ρQ, ρQ) (2.3)

1Sometimes called Hartree equations in the physics literature.
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where Tr0 denotes a generalized trace, see (2.6) and (2.9) below. For convenience we also denote

Fcrys[ρ,Q] := Tr0
(
(H0

per − εF)Q
)
+

1

2
D(ρQ, ρQ) +D(ρ, ρQ). (2.4)

The functional setting in which the terms of these equations make sense is defined as follows. Any

operator Q satisfying the constraint

− γ0per ≤ Q ≤ 1− γ0per (2.5)

is decomposed as

Q = Q−− +Q−+ +Q++ +Q+− (2.6)

where Q−− = γ0perQγ
0
per, Q

−+ = γ0perQ
(
1− γ0per

)
, and so on. It is proved in [2] that for Q satisfying

(2.5) and ν ∈ L1(R3) ∩ L2(R3), Fcrys[ν,Q] is finite if and only if Q is in the function space

Q =
{
Q ∈ S2

∣∣∣Q = Q∗, |∇|Q ∈ S2, Q++, Q−− ∈ S1, |∇|Q++|∇|, |∇|Q−−|∇| ∈ S1
}

(2.7)

that we equip with its natural norm

‖Q‖Q = ‖Q‖S2 + ‖Q++‖S1 + ‖Q−−‖S1 + ‖|∇|Q‖S2 + ‖|∇|Q++|∇|‖S1 + ‖|∇|Q−−|∇|‖S1 . (2.8)

The symbols S1 and S2 denote the Schatten classes of trace-class and Hilbert-Schmidt operators

on L2(R3) respectively (see [26] and [24], Chapter 6, Section 6). For operators in Q, the kinetic

energy in (2.3) is defined as

Tr0(H
0
per − εF)Q = Tr

(
|H0

per − εF|1/2
(
Q++ −Q−−

)
|H0

per − εF|1/2
)
, (2.9)

see [2]. More generally, one can define the generalized trace as

Tr0Q = TrQ++ +TrQ−− (2.10)

when Q++ and Q−− are trace-class. Note that Tr0 differs from the usual trace Tr, the operators

in Q not being trace-class in general. They nevertheless have an unambiguously defined density

ρQ ∈ L1
loc(R

3) (see [2], Proposition 1). It belongs to L2(R3) and to the Coulomb space

C =
{
ρ
∣∣∣D(ρ, ρ)1/2 <∞

}
(2.11)

and it holds by definition

Tr0(V Q) =

∫

R3

V ρQ (2.12)

for any V ∈ C′.

Having defined in (2.3) the total energetic cost to go from γ0per to γ
0
per+Q, we can give a sense

to the energetic response of the crystal to an external density ν. The state of the Fermi sea is

obtained by solving the following minimization problem

Fcrys[ν] = inf
−γ0

per≤Q≤1−γ0
per

(
D(ν, ρQ) + Fcrys[Q]

)
. (2.13)

As shown in [2], for any ν ∈ L1(R3) ∩L2(R3), this minimization problem has at least one solution

in Q. The corresponding density ρQ is in L2(R3) but in general it has long range oscillations which

are not integrable at infinity [4].
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2.2. The small polaron

To our crystal we now add N quantum particles, which are by assumption distinguishable from

those of the crystal. In reality they are electrons having the same mass m = 1 as those of the

crystal, but we want to keep m arbitrary to emphasize that in our model the additional particles

behave differently from those of the crystal. This will also allow us to compare with the results we

have obtained in [14].

The total energy of the system now includes the term Fcrys[ν] with ν = |ψ|2 (polaron) or ν = ρΨ
(N -polaron). For the single polaron, the energy is given by

E [ψ] =
∫

R3

(
1

2m
|∇ψ(x)|2 + V 0

per(x)|ψ(x)|2
)
dx+ Fcrys

[
|ψ|2

]
. (2.14)

For the N -polaron with N ≥ 2 it reads

E [Ψ] =

∫

R3N


 1

2m

N∑

j=1

∣∣∇xjΨ(x1, ..., xN )
∣∣2 +

∑

1≤k<ℓ≤N

|Ψ(x1, ..., xN )|2
|xk − xℓ|


 dx1 · · · dxN

+

∫

R3

V 0
per(x)ρΨ(x) dx + Fcrys[ρΨ]. (2.15)

As we think that there is no possible confusion, we do not emphasize the particle number N in our

notation of the energy E . The density ρΨ is defined as

ρΨ(x) = N

∫

R3(N−1)

|Ψ(x, x2, . . . , xN )|2 dx2 . . . dxN . (2.16)

The corresponding ground state energies read

E(1) := inf

{
E [ψ], ψ ∈ H1(R3),

∫

R3

|ψ|2 = 1

}
(2.17)

and

E(N) := inf

{
E [Ψ], Ψ ∈ H1(R3N ), Ψ fermionic,

∫

R3N

|Ψ|2 = 1

}
. (2.18)

Here by ‘fermionic’ we mean antisymmetric under particle exchange:

Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = −Ψ(x1, . . . , xj , . . . , xi, . . . , xN ) for any i 6= j (2.19)

as is appropriate for electrons. Recall that we have neglected the spin for simplicity.

We now state our main results. In the single polaron case we are able to show the existence of

a bound state.

Theorem 2.1 (Existence of small polarons).

For N = 1, we have

E(1) < Eper := inf σ

(
− 1

2m
∆+ V 0

per

)
. (2.20)

There are always minimizers for E(1) and all the minimizing sequences converge to a minimizer

for E(1) strongly in H1(R3), up to extraction of a subsequence and up to translations.

Inequality (2.20) expresses the fact that binding is energetically favorable : the right-hand side

is the energy an electron would have in absence of binding.

In the N -polaron case we can give necessary and sufficient conditions for the compactness of

minimizing sequences.

Theorem 2.2 (HVZ for small N-polarons).

For N ≥ 2, the following assertions are equivalent:



8

(1) One has

E(N) < E(N − k) + E(k) for all k = 1, . . . , N − 1. (2.21)

(2) Up to translation and extraction of a subsequence, all the minimizing sequences for E(N)

converge to a minimizer for E(N) strongly in H1(R3N ).

Remark 2.1. For this result, the fermionic nature of the particles inserted into the crystal is

not essential. The same theorem holds if they are replaced by bosons , i.e. the wave function Ψ is

supposed to be symmetric under particle exchange.

As discussed in the introduction, this theorem is rather natural from a physical point of view. It

is not expected that the conditions (2.21) hold in general. As in Pekar’s theory, one should expect

the existence of minimizers to depend on the choice of parameters entering the functional (in our

case only the periodic distribution µ0
per of the nuclei). Testing the validity of these inequalities is

a challenging task that would require more knowledge on the properties of the crystal model than

we presently have. In particular, the decay at infinity of the minimizers of the crystal model should

be investigated.

In [14] we have considered a macroscopic regime where the mass m of the polarons tend to

zero. In this limit m → 0 the ground state energy Em(N) converges to Pekar’s energy involving

the macroscopic dielectric constant εM of the crystal defined in [4] (up to a simple oscillatory factor,

see [14] for details). It was shown in [13] that the binding inequalities are satisfied in Pekar’s theory

when εM is large enough. We conclude that in this case they will also be satisfied form small enough

and therefore minimizers do exist in this case.

The rest of the paper is devoted to the proof of Theorem 2.2. One of us has considered in

Section 5 of [13] a general class of nonlinear many-body problems of the form

∫

R3N


1

2

N∑

j=1

∣∣∇xjΨ(x1, ..., xN )
∣∣2 +

∑

1≤k<ℓ≤N

|Ψ(x1, ..., xN )|2W (xk − xl)


 dx1 · · · dxN + F [ρΨ]

and provided sufficient assumptions on the interaction potential W and the non linearity F under

which a HVZ type result similar to Theorem 2.2 holds. The assumptions onW include the Coulomb

interaction we are concerned with in this paper but, unfortunately, our crystal functional Fcrys

does not seem to satisfy all the properties imposed on F in [13]. Also the presence of the periodic

potential V 0
per adds a new difficulty. Nevertheless the general strategy of [13] still applies and our

goal in this paper is to explain how to overcome the difficulties associated with Fcrys.

Section 3 gathers some important properties of the crystal functional that are to be used in the

proofs of Theorems 2.1 and 2.2, presented in Sections 4 and 5 respectively.

3. Properties of the crystal energy

In this section we roughly speaking prove that Fcrys satisfies Assumptions (A1) to (A5) of [13],

Section 5. We are only able to prove a little less, but the properties we do prove are sufficient for

the proof of Theorem 2.2 as we explain in Section 5.

We start in Section 3.1 with almost immediate consequences of the definition of Fcrys, and

devote Section 3.3 to the more involved fact that our crystal functional satisfies a ‘decoupling at

infinity’ property. The proof of this property requires some facts about localization operators that

we gather in Section 3.2.

3.1. Concavity, subcriticality and translation invariance

The following is the equivalent of Assumptions (A4) and (A5) in [13], Section 5.

Lemma 3.1 (Concavity).
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Fcrys is concave on {ρ ∈ C, ρ ≥ 0}. Moreover it is strictly concave at the origin:

Fcrys[tρ] > tFcrys[ρ] (3.1)

for all ρ ∈ C \ {0}, ρ ≥ 0 and all 0 < t < 1.

Proof. The functional Fcrys[ρ,Q] defined in (2.4) is linear in ρ. As by definition

Fcrys[ρ] = inf
{
Fcrys[ρ,Q],−γ0per ≤ Q ≤ 1− γ0per

}
,

it is clearly a concave functional of ρ. As for the strict concavity we note that

Fcrys[tρ,Q] = Tr0
((
H0

per − εF
)
Q
)
+

1

2
D(ρQ, ρQ) + tD(ρ, ρQ) > tFcrys[ρ,Q] ≥ tFcrys[ρ]

for all 0 < t < 1 by positivity of the kinetic and Coulomb energies. Taking for Q the minimizer

corresponding to tρ which is known to exist by [2, 4] proves (3.1).

The next lemma will be useful to prove that minimizing sequences for our polaron model are

bounded in H1(R3N ). It is the equivalent of Assumption (A3) in [13], Section 5.

Lemma 3.2 (Subcriticality).

The functional Fcrys is locally uniformly continuous on L6/5. More precisely, we have
∣∣Fcrys[ρ]− Fcrys[ρ

′]
∣∣ ≤ C ‖ρ− ρ′‖2L6/5 (3.2)

for a universal constant C > 0. Moreover, for every ε > 0, we have

0 > Fcrys[|ϕ|2] ≥ −ε
∫

R3

|∇ϕ|2 − C

ε

(∫

R3

|ϕ|2
)3

(3.3)

for all ϕ ∈ H1(R3).

Proof. For any ρ ∈ L6/5 and any Q ∈ Q we can complete the square in the electrostatic terms of

Fcrys[ρ,Q] and obtain

Fcrys[ρ,Q] = Tr0
((
H0

per − εF
)
Q
)
+

1

2
D(ρQ + ρ, ρQ + ρ)− 1

2
D(ρ, ρ) ≥ −1

2
D(ρ, ρ).

Taking the infimum with respect to Q and applying this with ρ = |ϕ|2 immediately yields

Fcrys[|ϕ|2] ≥ −1

2
D(|ϕ|2, |ϕ|2) ≥ −C ||ϕ||4L12/5

by the Hardy-Littlewood-Sobolev inequality ([16], Theorem 4.3). Using now the Sobolev and Hölder

inequalities we get as stated

||ϕ||4L12/5 ≤ ||ϕ||L6 ||ϕ||3L2 ≤ ε

∫

R3

|∇ϕ|2 + C

ε

(∫

R3

|ϕ|2
)3

.

Then, replacing ρ by ρ− ρ′ we also have

Fcrys[ρ− ρ′, Q] ≥ −1

2
D(ρ− ρ′, ρ− ρ′).

Choosing now for Q a minimizer of Fcrys[ρ,Q] we deduce

Fcrys[ρ]− Fcrys[ρ
′] ≥ −1

2
D(ρ− ρ′, ρ− ρ′).

Without loss of generality we can assume that the left-hand side is negative. We conclude that

there exists a constant such that
∣∣Fcrys[ρ]− Fcrys[ρ

′]
∣∣ ≤ C ‖ρ− ρ′‖2L6/5

using the Hardy-Littlewood-Sobolev inequality again.
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Finally, we note that our functional is invariant under the action of the translations of the

periodic lattice L . Note that in [13], full translation invariance is assumed (see Assumption (A2)).

However, what is really used in the proof of the results there is the invariance under the action of

arbitrarily large translations.

Lemma 3.3 (Translation invariance).

For any ρ ∈ L6/5 and any translation ~τ ∈ L of the periodic lattice,

Fcrys[ρ (·+ ~τ )] = Fcrys[ρ]. (3.4)

Proof. We denote by Q a minimizer of Fcrys[ρ,Q]. Clearly ρQ(· + ~τ ) = ρU∗
~τ
QU~τ

where U~τ is the

unitary translation operator acting on L2(R3) and defined by U~τf = f(· − ~τ). We deduce

Fcrys[ρ(·+ ~τ )] ≤ Fcrys[ρ(·+ ~τ ), ~τ∗Q~τ ] = Tr0
(
~τ
(
H0

per − εF
)
~τ∗Q

)
+

1

2
D(ρ, ρQ)−D(ρ, ρQ) = Fcrys[ρ]

by translation invariance of the Coulomb interaction and the fact that H0
per commutes with the

translations of the lattice L . Exchanging the roles of ρ(·+~τ ) and ρ and applying the same argument

proves that there must be equality.

3.2. Some localization properties

In order to prove that the crystal energy of two distant clusters of mass decouples we will need a

localization procedure. Due to the constraint (2.5), it is convenient to use a specific localization

method for Qn, as noted first in [11, 2]. We here provide several new facts about this procedure

that will be useful in the next section.

We introduce a smooth partition of unity χ2 + η2 = 1 such that χ = 1 on the ball B(0, 1)

and χ = 0 outside of the ball B(0, 2). Similarly, η = 1 on R3 \ B(0, 2) and η = 0 on B(0, 1). We

also require that ∇χ and ∇η are bounded functions. Then we introduce χR(x) := χ(x/R) and

ηR(x) = η(x/R). We define the two localization operators

XR = γ0perχRγ
0
per +

(
γ0per

)⊥
χR

(
γ0per

)⊥

YR = γ0perηRγ
0
per +

(
γ0per

)⊥
ηR

(
γ0per

)⊥
(3.5)

that have the virtue of commuting with the spectral projectors γ0per and
(
γ0per

)⊥
= 1− γ0per. Note

that in [2], the choice XR =
√

1− Y 2
R is made. Here we change a bit the strategy and we only have

X2
R + Y 2

R ≤ 1.

The following lemma, whose lengthy proof shall be detailed in the Appendix, says that X2
R+Y

2
R ≈ 1

for large R, in a sufficiently strong sense for our practical purposes, see Section 3.3.

Lemma 3.4 (Properties of the localization operators XR and YR).

There exists a universal constant C > 0 such that

||XRQXR||Q + ||YRQYR||Q + ||ρXRQXR ||L2∩C
+ ||ρYRQYR ||L2∩C

≤ C ||Q||Q , (3.6)

∣∣∣Tr0(H0
per − εF)Q− Tr0(H

0
per − εF)XRQXR − Tr0(H

0
per − εF)YRQYR

∣∣∣ ≤ C

R2
||Q||Q , (3.7)

and

||ρQ − ρXRQXR − ρYRQYR ||L2∩C
≤ C

R
||Q||Q (3.8)

for all Q ∈ Q and all R ≥ 1.

Remark that the IMS formula implies

H0
per − εF = χR

(
H0

per − εF
)
χR + ηR

(
H0

per − εF
)
ηR − 1

2
|∇χR|2 −

1

2
|∇ηR|2
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where the last two error terms can be estimated in the operator norm by R−2(||∇χ||2L∞+||∇η||2L∞)/2.

Our bound (3.7) is a similar estimate valid for the modified localization operators XR and YR. In

the same spirit, remark that

ρQ = χ2
RρQ + η2RρQ = ρχRQχR + ρηRQηR

and therefore the estimate (3.8) on the density quantifies the error when the localization operators

XR and YR are used in place of χR and ηR.

As noticed first in [11], the main advantage of the localization operators XR and YR is that

they preserve the constraint (2.5). Simply, using that

XRγ
0
perXR = γ0perχRγ

0
perχRγ

0
per ≤ γ0per(χR)

2γ0per ≤ γ0per

and the similar estimate XR

(
γ0per

)⊥
XR ≤

(
γ0per

)⊥
, we see that when −γ0per ≤ Q ≤ 1− γ0per, then

− γ0per ≤ −XRγ
0
perXR ≤ XRQXR ≤ XR

(
γ0per

)⊥
XR ≤

(
γ0per

)⊥
(3.9)

and the same is true for YRQYR.

This is in fact a particular case of an algebraic property which does not seem to have been

noticed before, that we state as Lemma 3.5 below. It will be very useful when constructing trial

states for the crystal functional.

Lemma 3.5 (Adding states using localization).

Let Π be an orthogonal projector on a Hilbert space H, and χ, η two self-adjoint operators on H

such that χ2 + η2 ≤ 1. We introduce the corresponding localization operators

X = ΠχΠ+ (1−Π)χ(1 −Π) and Y = ΠηΠ+ (1 −Π)η(1 −Π).

Let Q,Q′ two self-adjoint operators such that −Π ≤ Q,Q′ ≤ 1−Π. Then we have

−Π ≤ XQX + Y Q′Y ≤ 1−Π (3.10)

as well.

Proof. Since X and Y are self-adjoint we have

−XΠX − YΠY ≤ XQX + Y Q′Y ≤ X(1−Π)X + Y (1−Π)Y.

The lemma follows from the estimate

XΠX + Y ΠY = ΠχΠχΠ+ΠηΠηΠ ≤ Π
(
χ2 + η2

)
Π ≤ Π

and the equivalent one with Π replaced by 1−Π. In the last line we have used that Π ≤ 1 and χ, η

are self-adjoint to get ΠχΠχΠ ≤ Πχ2Π and ΠηΠηΠ ≤ Πη2Π.

It will be important in the sequel to know that weak convergence of a sequence (Qn) inQ implies

strong local compactness, that is strong compactness of (XQnX) where X is defined similarly as

above, starting from a compactly supported function χ.

Lemma 3.6 (Strong local compactness for bounded sequences in Q).

Let (Qn) be a bounded sequence in Q such that Qn ⇀ Q weakly in Q. Then χQnχ→ χQχ strongly

in the trace-class S1, for every function χ ∈ L∞(R3) of compact support. In particular, ρQn → ρQ
weakly in L2 ∩ C and strongly in L1

loc.

Writing X = γ0perχγ
0
per + (1 − γ0per)χ(1 − γ0per), we also have XQnX → XQX strongly in S1 and

thus ρXQnX → ρXQX strongly in L1.

We will use the following local compactness criterion in Schatten classes. Its standard proof is

omitted.

Lemma 3.7 (Local compactness in Schatten spaces).

Let Sp be the class of compact operators A of some Hilbert space H such that (Tr(|A|p))1/p < +∞,

with the convention that S∞ denotes the class of compact operators.
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• If An ⇀ A weakly-∗ in S1 and K,K ′ ∈ S∞ then KAnK
′ → KAK ′ strongly in S1.

• If An ⇀ A weakly in Sr, K ∈ Sp and K ′ ∈ Sq then KAnK
′ → KAK ′ strongly in Ss with

1/s = 1/p+ 1/q + 1/r.

Proof of Lemma 3.6 We know from Proposition 1 in [2] that ρQn ⇀ ρQ weakly in L2 ∩C. Only the

strong local convergence is new. We write as usual

Qn = Q++
n +Q−+

n +Q+−
n +Q−−

n (3.11)

and consider only the first two terms, the other two being dealt with in a similar way. We have

χQ++
n χ =

{
χ (−∆+ 1)

−1/2
}{

(−∆+ 1)
1/2

Q++
n (−∆+ 1)

1/2
}{

(−∆+ 1)
−1/2

χ
}
.

The operator χ(−∆ + 1)−1/2 is compact and (−∆ + 1)1/2Q++
n (−∆ + 1)1/2 converges towards

(−∆ + 1)1/2Q++(−∆ + 1)1/2 weakly-∗ in S1 by assumption. By Lemma 3.7 we deduce that

χQ++
n χ→ χQ++χ strongly in S1.

We argue similarly for the off diagonal terms, writing this time

χQ+−
n χ =

{
χ (−∆+ 1)

−1/2
}{

(−∆+ 1)
1/2

Q+−
n

}{
γ0perχ

}
.

Again the operator χ(−∆+ 1)−1/2 is compact and we can write

γ0perχ = γ0per(H
0
per + µ) (H0

per + µ)−1 (1−∆) (1 −∆)−1χ.

Here µ is a large enough constant such that H0
per ≥ −µ/2. The operator γ0per(H0

per+µ) is bounded

by the functional calculus. Also, (H0
per + µ)−1 (1 − ∆) is bounded by Lemma 1 in [2]. Finally,

(1−∆)−1χ ∈ S2. Thus γ0perχ ∈ S2. Since (−∆+ 1)1/2Q+−
n ⇀ (−∆+ 1)1/2Q+− weakly in S2 by

assumption, we deduce by Lemma 3.7 again, that χQ+−
n χ→ χQ+−χ strongly in S1.

We have proved that χQnχ → χQχ strongly in S1, but ρχQnχ = χ2ρQn , so we deduce that

ρQn → ρQ strongly in L1
loc.

For the second part of the statement we simply write

XQnX=

(
γ0per

)⊥
χQ++

n χ
(
γ0per

)⊥
+ γ0perχQ

−−
n χγ0per +

(
γ0per

)⊥
χQ+−

n χγ0per + γ0perχQ
−+
n χ

(
γ0per

)⊥

and use the strong convergence of each term shown above.

One can prove that if ρ ∈ C then χ2
Rρ → ρ strongly in C when R → ∞. In the same spirit, we

have

Lemma 3.8 (Approximation using localization).

With XR and YR defined as above and Q ∈ Q,

XRQXR → Q, YRQYR → 0 strongly in Q when R → ∞. (3.12)

In particular ρXRQXR → ρQ and ρYRQYR → 0 strongly in L2 ∩ C.

Proof. Using (3.6) and an ε/2 argument, it suffices to prove this for a finite rank operator Q

(such operators are known to be dense in Q, see Corollary 3 in [2]). In this case the statement just

follows from the facts that XR → 1 and YR → 0 strongly, which is a consequence of the convergence

χR → 1 and ηR → 0. The convergence of ρXRQXR and ρYRQYR follows by continuity of the map

Q ∈ Q 7→ ρQ ∈ L2 ∩ C.
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3.3. Decoupling at infinity

Here we provide the most crucial ingredient of the proof of Theorem 2.2, namely the fact that the

crystal energy of the sum of two distant pieces of mass is almost the sum of the energies of these

pieces. This is the content of the following proposition, which is the equivalent of assumption (A3)

in [13]. Note however that we prove much less than what is stated there. Fortunately, the proof of

Theorem 25 in [13] does not actually require such a strong assumption as (A3), as we will show in

Section 5 below.

Proposition 3.1 (Decoupling at infinity).

Let (ρn) be a bounded sequence in the Coulomb space C such that ρn ⇀ ρ weakly. Then

lim
n→∞

(
Fcrys[ρn]− Fcrys[ρ]− Fcrys[ρn − ρ]

)
= 0. (3.13)

In the above, one should think of ρn as being constituted of two clusters of mass, ρ and ρn − ρ,

whose “supports” are infinitely far away in the limit n→ ∞. This is mathematically materialized

by the weak convergence to 0 of ρn− ρ. The proposition then says that the total energy is the sum

of the energy of the pieces, up to a small error. Proving (3.13) is a difficult task because of the

long range behavior of the response of the crystal : it is known [4] that the polarization ρQ of the

Fermi sea has long range oscillations that are not integrable at infinity. The oscillations generated

by ρ are seen by ρn − ρ (and conversely) but, fortunately, they contribute a small amount to the

total energy, which is controlled by the Coulomb norm and not the L1 norm.

Assumption (A3) in [13] is a little different from (3.13). There it was assumed that ρn = ρ1n+ρ
2
n

where ρ1n and ρ2n are bounded in L6/5 and that the distance between their supports goes to infinity,

with no assumption on the size of these supports. In Proposition 3.1 it is implicit that one of the

two clusters of mass has a support of bounded size and is approximated by its weak limit ρ. This

additional assumption is harmless for our purpose because we are dealing with a locally compact

problem.

In the course of the proof of Proposition 3.1 we will establish the following, which we believe

is of independent interest. It gives the weak continuity of the (a priori multi-valued) map ρn 7→
Qn = argmin Fcrys[ρn, ·].

Corollary 3.1 (A weak continuity result for Fcrys).

Let (ρn) be a bounded sequence in the Coulomb space C such that ρn ⇀ ρ weakly and Qn be any

minimizer of Fcrys[ρn, ·]. Then, up to extraction of a subsequence, Qn ⇀ Q weakly in Q where Q

minimizes Fcrys[ρ, ·].
We now present the

Proof of Proposition 3.1. We begin with the difficult part, that is the proof of the lower bound

corresponding to (3.13).

Step 1: Lower bound. We denote by Qn a minimizer for Q 7→ Fcrys[ρn, Q]. Corollary 2 in [2] states

that the energy functional Fcrys[ρn, Q] controls the norm ‖Q‖Q:

0 ≥ Fcrys[ρn, Qn] ≥ C ‖Qn‖Q − 1

2
D(ρn, ρn).

The upper bound is obtained by taking a trial state Q ≡ 0. Using that ρn is bounded in C, hence
that D(ρn, ρn) is bounded, we deduce that the sequence (Qn) is bounded in Q. Up to extraction of

a subsequence, we can assume that Qn ⇀ Q and, by Lemma 3.6, that ρQn → ρQ weakly in L2 ∩ C
and strongly in L1

loc.

We now consider localization operators XR and YR as described in the preceding section and

use them to write the energy as the sum of the energy of XRQnXR and that of YRQnYR, modulo

errors terms. In our proof R is fixed and will go to infinity only in the end, after we have taken the

limit n→ ∞.
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Using that ρn and ρQn are bounded in C and that Qn is bounded in Q, we get from the

estimate (3.8)

D(ρQn , ρn) = D(ρQn , ρ) +D(ρQn , ρn − ρ)

= D(ρQ, ρ) +D(ρQn − ρQ, ρ) +D(ρXRQnXR , ρn − ρ) +D(ρYRQnYR , ρn − ρ) + εn(R)

= D(ρQ, ρ) +D(ρXRQnXR , ρn − ρ) +D(ρYRQnYR , ρn − ρ) + o(1) + εn(R)

where we have used that ρQn ⇀ ρQ weakly in C and where εn(R) denotes a generic quantity

satisfying

lim sup
n→∞

|εn(R)| ≤
C

R
. (3.14)

Also o(1) goes to 0 when n→ ∞ and R stays fixed. Since ρXRQnXR → ρXRQXR strongly in L1(R3)

by Lemma 3.6, and it is a bounded sequence in L2(R3) by (3.6), it must converge strongly in C by

the Hardy-Littlewood-Sobolev inequality. So we conclude that D(ρXRQnXR , ρn−ρ) → 0 as n→ ∞,

hence that

D(ρQn , ρn) = D(ρQ, ρ) +D(ρYRQnYR , ρn − ρ) + o(1) + εn(R). (3.15)

Arguing exactly the same, we can conclude that

D(ρQn , ρQn) = D(ρXRQnXR + ρYRQnYR , ρXRQnXR + ρYRQnYR) + εn(R)

= D(ρXRQXR , ρXRQXR) + 2D(ρXRQXR , ρYRQYR) +D(ρYRQnYR , ρYRQnYR) + o(1) + εn(R).

If we use these estimates on the electrostatic terms and (3.7) to deal with the kinetic energy,

we arrive at

Fcrys[ρn] = Fcrys[ρn, Qn]

= Tr0(H
0
per − εF)XRQnXR +Tr0(H

0
per − εF)YRQnYR +D(ρQ, ρ) +D(ρYRQnYR , ρn − ρ)

+
1

2
D(ρXRQXR , ρXRQXR) +D(ρXRQXR , ρYRQYR) +

1

2
D(ρYRQnYR , ρYRQnYR) + εn(R) + o(1)

≥ Tr0(H
0
per − εF)XRQnXR + Fcrys[ρn − ρ] +D(ρQ, ρ)

+
1

2
D(ρXRQXR , ρXRQXR) +D(ρXRQXR , ρYRQYR) + εn(R) + o(1)

where we have used that YRQnYR is an admissible trial state for Fcrys[ρn − ρ,Q] by Lemma 3.5.

Passing to the liminf and using Fatou’s lemma yields

lim inf
n→∞

(Fcrys[ρn]− Fcrys[ρn − ρ]) ≥ Tr0(H
0
per − εF)XRQXR +D(ρQ, ρ)

+
1

2
D(ρXRQXR , ρXRQXR) +D(ρXRQXR , ρYRQYR)−

C

R
.

We have ρXRQXR → ρQ and ρYRQYR → 0 strongly in C ∩ L2, as R → ∞ by Lemma 3.8. So, using

Fatou’s lemma again for the kinetic energy term and taking the limit R → ∞, we arrive at the

result

lim inf
n→∞

(Fcrys[ρn]− Fcrys[ρn − ρ]) ≥ Tr0(H
0
per − εF)Q+D(ρQ, ρ) +

1

2
D(ρQ, ρQ) ≥ Fcrys[ρ], (3.16)

which is the lower bound corresponding to (3.13).

Step 2 : proof of Corollary 3.1 with ρ ≡ 0.

We pick a sequence ρn ⇀ 0 and denote by (Qn) the corresponding sequence of minimizers.

Since (ρn) is bounded in C, (Qn) is bounded in Q and, up to extraction, converges weakly to some

Q ∈ Q, which implies that ρQn ⇀ ρQ weakly in C. We prove here that Q ≡ 0.

Thanks to the lower bound part of (3.13) we have just proved, we write

−1

2
D(ρQ, ρQ)+Fcrys[ρn]+o(1) ≤ Fcrys[−ρQ]+Fcrys[ρn]+o(1) ≤ Fcrys[ρn−ρQ] ≤ Fcrys[ρn]−D(ρQ, ρQn),
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using Qn as a trial state for Fcrys[ρn − ρQ] and the simple lower bound Fcrys[ν,Q] ≥ − 1
2D(ν, ν).

Taking the limit n→ ∞ we therefore obtain D(ρQ, ρQ) = 0, which implies Q = 0 by (3.16).

Step 3: Upper bound. We now construct a trial state for Fcrys[ρn] to obtain the upper bound part

of (3.13). In previous works [11, 2], the special structure of the set of admissible states was used

(see the Appendix of [11]). We propose here a new method based on Lemma 3.5.

Let Q and Qn be two minimizers for, respectively, the problems Fcrys[ρ] and Fcrys[ρn−ρ]. Recall
that they must satisfy the constraint −γ0per ≤ Q,Qn ≤ 1 − γ0per and that, using Step 2, Qn ⇀ 0.

Let χR be a localization function of compact support as before, and ηR =
√
1− χ2

R. Consider the

trial state (we use the notation of Lemma 3.8 with Π = γ0per)

Qn,R := XRQXR + YRQnYR.

We have −γ0per ≤ Qn,R ≤ 1− γ0per, by Lemma 3.5, and thus

Fcrys[ρn] ≤ Fcrys[ρn, Qn,R].

We use that XRQnXR and YRQYR both satisfy the constraint (2.5), hence that their kinetic energy

is non-negative

Tr0
((
H0

per − εF
)
XRQnXR

)
≥ 0.

So we have for instance

Tr0
((
H0

per − εF
)
YRQnYR

)
≤ Tr0

((
H0

per − εF
)
XRQnXR

)
+Tr0

((
H0

per − εF
)
YRQnYR

)

≤ Tr0
((
H0

per − εF
)
Qn

)
+

C

R2

by (3.7). We thus get

Tr0
((
H0

per − εF
)
Qn,R

)
≤ Tr0

((
H0

per − εF
)
Qn

)
+Tr0

((
H0

per − εF
)
Q
)
+

C

R2
.

For the electrostatic terms we argue as in Step 1, using that ρXRQnXR → 0 strongly in C and

ρYRQnYR ⇀ 0 weakly in C as n→ ∞, for fixed R:

D(ρn, ρQn,R) = D(ρ, ρXRQXR) +D(ρn − ρ, ρYRQnYR) +D(ρn − ρ, ρXRQXR) +D(ρ, ρYRQnYR)

= D(ρ, ρXRQXR) +D(ρn − ρ, ρQn)−D(ρn − ρ, ρXRQnXR) + o(1) + εn(R)

= D(ρ, ρXRQXR) +D(ρn − ρ, ρQn) + o(1) + εn(R)

where we have used (3.8) again. Similarly

D(ρQn,R , ρQn,R) = D(ρXRQXR , ρXRQXR) +D(ρYRQnYR , ρYRQnYR) + 2D(ρXRQXR , ρYRQnYR)

= D(ρXRQXR , ρXRQXR) +D(ρQn , ρQn) + o(1) + εn(R)

since Qn ⇀ 0 and

D(ρYRQnYR , ρYRQnYR) = D(ρQn , ρQn)− 2D(ρXRQnXR , ρQn) +D(ρXRQnXR , ρXRQnXR) + εn(R)

= D(ρQn , ρQn) + o(1) + εn(R).

Recalling that ρXRQXR → ρQ strongly in C when R → ∞, we can finally take first the limit

n→ ∞ and then the limit R→ ∞ to conclude

lim sup
n→∞

(Fcrys[ρn]− Fcrys[ρ]− Fcrys[ρn − ρ]) ≤ 0

and the proof of Proposition 3.1 is complete.

Step 4: End of the proof of Corollary 3.1. Let (ρn) be any sequence such that ρn ⇀ ρ weakly in

C, and Qn be any associated sequence of minimizers for Fcrys[ρn, ·]. Extracting a subsequence we
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may assume that Qn ⇀ Q in Q. Coming back to the lower bound (3.16) obtained in Step 1 and

using (3.13), we see that

Fcrys[ρ] = lim
n→∞

(
Fcrys[ρn]− Fcrys[ρn − ρ]

)
≥ Fcrys[ρ,Q] ≥ Fcrys[ρ].

This shows that Q minimizes Fcrys[ρ, ·] and concludes the proof of Corollary 3.1.

4. Existence of polarons: Proof of Theorem 2.1

Before turning to the more complicated case of N particles for which we have to adapt Theorem

25 in [13], we deal with the simpler one-particle case. The proof that a minimizer always exists for

one particle follows from usual techniques of nonlinear analysis. In this context the most difficult

is to verify the one-particle binding inequality (2.20), which we do first.

Step 1. Proof of the one-particle binding inequality

The aim of this first step is to prove the following important

Lemma 4.1 (One-particle binding).

We have

E(1) < Eper := inf σ

(
− ∆

2m
+ V 0

per

)
. (4.1)

Proof. Let uper denote the first L -periodic eigenfunction of −∆/(2m)+V 0
per, which is a solution

of (
− ∆

2m
+ V 0

per

)
uper = Eper uper. (4.2)

We assume that uper is normalized,
∫
Γ |uper|2 = 1 where Γ is the unit cell of L . Since uper ∈

H2
per(Γ), we have also νper := |uper|2 ∈ H2

per(Γ). The Fourier coefficients (ν̂per(k))k∈L ∗ thus satisfy

(|k|2ν̂per(k))k∈L ∗ ∈ ℓ2(L ∗) and consequently belong to ℓ1(L ∗) :
∑

k∈L ∗

|ν̂per(k)| <∞. (4.3)

Here L ∗ is the dual lattice of L , whose unit cell will be denoted by Γ∗. We can write

|uper(x)|2 =
1

|Γ∗|
∑

k∈L ∗

ν̂per(k) e
ik·x

Consider now a fixed function χ ∈ C∞
c (R3) such that

∫
|χ|2 = 1, and define the following test

function for the variational problem E(1):

ψλ := uper(x)χλ(x), with χλ(x) := λ−3/2χ
(x
λ

)
. (4.4)

The corresponding density is

|ψλ(x)|2 := |uper(x)|2 |χλ(x)|2 =
1

|Γ∗|
∑

k∈L ∗

ν̂per(k) e
ik·x |χλ(x)|2 . (4.5)

Remark that

D
(
|χλ|2eik·, |χλ|2eik·

)
= 4πλ−3

∫

R3

∣∣∣|̂χ|2(p)
∣∣∣
2

|p/λ+ k|2 dp ∼
λ→∞

4π

λ3|k|2
∫

R3

∣∣∣|̂χ|2(p)
∣∣∣
2

dp

for any k ∈ L ∗ \ {0}. Using (4.3) and the fact that uper is normalized, we deduce that

∣∣∣∣|ψλ|2 − |χλ|2
∣∣∣∣
C
= O

(
1

λ3/2

)
.
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Similarly, the normalization factor is

∫

R3

|uper(x)|2|χλ(x)|2 dx =
1

(2π)3/2

∑

k∈L ∗

ν̂per(k) |̂χ|2(λk) = 1 +O

(
1

λp

)

for all p ∈ N. Of course, we have by scaling

D
(
|χλ|2, |χλ|2

)
=

1

λ
D

(
|χ|2, |χ|2

)
.

We deduce from all this that

Fcrys

[ |ψλ|2∫
R3 |ψλ|2

]
= Fcrys

[
|χλ|2

]
+O

(
1

λ3/2

)

by (3.2). In Theorem 1.4 of [14] we have studied in detail the behavior of the crystal energy when

the external density is very spread out. We have proved that

Fcrys

[
|χλ|2

]
= Fcrys

[
λ−3|χ(·/λ)|2

]
=

1

λ
FP
εM

[
|χ|2

]
+ o

(
1

λ

)
(4.6)

where FP
εM is Pekar’s effective interaction energy

FP
εM [ρ] := 2π

∫

R3

|ρ̂(p)|2
(

1

pT εMp
− 1

|p|2
)
dp.

Since εM > 1, we have FP
εM [ρ] < 0 for all ρ. So the exact (first order) behavior of the crystal energy

for our trial state is

Fcrys

[ |ψλ|2∫
R3 |ψλ|2

]
=
FP
εM

[
|χ|2

]

λ
+ oλ→∞

(
1

λ

)
.

The two other terms in the energy E are easier to handle. A simple computation based on the

equation (4.2) of uper shows that

∫

R3

1

2m
|∇ψλ|2 + V 0

per|ψλ|2 = Eper

∫

R3

|ψλ|2 +
1

2m

∫

R3

|uper|2|∇χλ|2

(see Lemma 2.2 in [14]). Of course,

∫

R3

|uper|2|∇χλ|2 ≤ C

∫

R3

|∇χλ|2 =
C

λ2

∫

R3

|∇χ|2

since uper ∈ H2
per ⊂ L∞(R3). As a conclusion we have shown that

E


 ψλ√∫

R3 |ψλ|2


 = Eper +

FP
εM

[
|χ|2

]

λ
+ oλ→∞

(
1

λ

)
.

Since FP
εM

[
|χ|2

]
< 0, the inequality (4.1) follows.

Remark 4.1. Note that the proof of the above lemma actually uses a construction reminiscent of a

large polaron: the trial state (4.4) describes a particle extended over a region much larger than the

lattice spacing, in the spirit of [14]. This is of course only a trial state argument, and the ground

state, when it exists, lives itself on a smaller scale.
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Step 2. Compactness of minimizing sequences and existence of a minimizer for N = 1

We now turn to the proof of the other statements in Theorem 2.2 dealing with the one-particle

case E(1).

Let (ψn) be a minimizing sequence for E(1). Since 0 ≥ Fcrys[|ψ|2] ≥ −D(|ψ|2, |ψ|2)/2, it is easy
to see that (ψn) is bounded in H1(R3). We define the largest mass that subsequences can have up

to translations by

M := sup

{∫

R3

|ψ|2 : ∃(xk) ⊂ R
3, ψnk

(· − xk)⇀ ψ weakly in H1(R3)

}
.

We know [18] that M = 0 if and only if ψn → 0 strongly in Lp(R3) for all 2 < p < 6, a

phenomenon that is usually called vanishing. But if this is the case, we get
∣∣∣∣|ψn|2

∣∣∣∣
C

→ 0 by

the Hardy-Littlewood-Sobolev inequality, and therefore Fcrys[|ψn|2] → 0 by (3.2). We then get

E(1) ≥ Eper := inf σ(H0
per) which is impossible by Lemma 4.1. Thus M > 0.

SinceM > 0 we can find a subsequence (denoted the same for simplicity), such that ψn(·−xn)⇀
ψ 6= 0. We can of course write xn = kn + yn where kn ∈ L and yn ∈ Γ. Extracting subsequences

again we get yn → y ∈ Γ, the unit cell of the lattice L . Therefore ψn(·− kn)⇀ ψ(·+ y) 6= 0. Since

our energy functional is invariant under the translations of L , the new sequence ψn(·−kn) is again
a minimizing sequence. Without loss of generality we can thus assume that ψn ⇀ ψ 6= 0. Now, if we

can prove that
∫
R3 |ψ|2 = 1, we will get strong convergence in L2 and it is then standard to upgrade

this to strong convergence in H1. We argue by contradiction and assume that 0 <
∫
R3 |ψ|2 < 1.

We will now show that the energy decouples into two pieces. Since ψn ⇀ ψ in H1(R3) we may

assume that |ψn|2 ⇀ |ψ|2 in C. We then use that, by (3.13) in Proposition 3.1,

Fcrys[|ψn|2] ≥ Fcrys[|ψ|2] + Fcrys[|ψn|2 − |ψ|2] + o(1).

Note that

|ψn|2 − |ψ|2 − |ψn − ψ|2 = 2ℜψ(ψn − ψ) → 0

strongly in L1(R3) (we use here that ψn → ψ strongly in L2
loc and an ε/2 argument), hence in

L6/5(R3) by interpolation. Thus

lim
n→∞

∣∣∣∣Fcrys[|ψn|2 − |ψ|2]− Fcrys[|ψn − ψ|2]
∣∣∣∣ = 0

by (3.2) in Lemma 3.2, and we arrive at

Fcrys[|ψn|2] ≥ Fcrys[|ψ|2] + Fcrys[|ψn − ψ|2] + o(1).

On the other hand, it is clear from the weak convergence ψn ⇀ ψ in H1(R3) (and from the fact

that the form domain of −∆/(2m) + V 0
per is H

1(R3)), that
〈
ψn,

(
− ∆

2m
+ V 0

per

)
ψn

〉
=

〈
ψ,

(
− ∆

2m
+ V 0

per

)
ψ

〉
+

〈
(ψn − ψ),

(
− ∆

2m
+ V 0

per

)
(ψn − ψ)

〉
+o(1).

Hence we have shown that

E [ψn] ≥ E [ψ] + E [ψn − ψ] + o(1).

Now we use that Fcrys is concave to infer

Fcrys

[
|ψn − ψ|2

]
≥

(∫

R3

|ψn − ψ|2
)
Fcrys

[ |ψn − ψ|2∫
R3 |ψn − ψ|2

]
,

leading to

E [ψn] ≥ E [ψ] +
(∫

R3

|ψn − ψ|2
)
E


 ψn − ψ√∫

R3 |ψn − ψ|2


+ o(1)

≥ E [ψ] +
(∫

R3

|ψn − ψ|2
)
E(1) + o(1).
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Passing to the limit n→ ∞, we find

E(1) ≥ E [ψ] +
(
1−

∫

R3

|ψ|2
)
E(1).

It is now time to use the strict concavity at the origin (3.1)

Fcrys

[
|ψ|2

]
>

(∫

R3

|ψ|2
)
Fcrys

[ |ψ|2∫
R3 |ψ|2

]
,

which yields

E [ψ] >
(∫

R3

|ψ|2
)
E


 ψ√∫

R3 |ψ|2


 ≥

(∫

R3

|ψ|2
)
E(1).

Therefore we have proved that E(1) > E(1) which is a contradiction, unless
∫
R3 |ψ|2 = 1. This

concludes the proof in the case of one particle.

5. Binding of N-polarons: Proof of Theorem 2.2

We now turn to the case of N ≥ 2. With the input of Section 3, the proof more or less follows that

of Theorem 25 in [13]. We nevertheless sketch the main steps for the convenience of the reader.

We will denote

H(N) :=

N∑

j=1

(
−∆j

2m
+ V 0

per(xj)

)
+
∑

i<j

1

|xi − xj |
.

In order to relate problems with different particle numbers to one another, it is crucial to introduce

the antisymmetric truncated Fock space

F≤N =

N⊕

n=0

n∧

i=1

L2(R3)

where
∧

is the antisymmetric tensor product and we use the convention
∧0

i=1 L
2(R3) = C. A state

on F≤N is an operator Γ ∈ S1(F≤N ) with Tr(Γ) = 1. In the sequel we restrict ourselves to states

commuting with the number operator

N =

N⊕

n=0

n.

This means (see [13], Remark 7) that they take the form

Γ = G00 ⊕ . . .⊕GNN (5.1)

with Gii ∈ S1
(∧n

i=1 L
2(R3)

)
. We denote by

H =

N⊕

n=0

H(n)

the many-body second-quantized Hamiltonian. To any state Γ are associated a density ρΓ ∈ L1(R3),

one-body density matrix [Γ]1,1 ∈ S1(L2(R3)) and two-body density matrix [Γ]2,2 ∈ S1(L2(R3) ×
L2(R3)) (see [13], Section 1). We can extend the energy to Fock space as

E [Γ] = TrF≤N (HΓ) + Fcrys[ρΓ]

= TrL2(R3)

((
−∆+ V 0

per

)
[Γ]1,1

)
+TrL2(R3)×L2(R3)

(
W [Γ]2,2

)
+ Fcrys[ρΓ]

where W acts on L2(R3) × L2(R3) as the multiplication by |x − y|−1. For a pure state Γ =

0⊕ . . .⊕ |Ψ〉 〈Ψ| with Ψ ∈ L2(R3N ) one can check that E [Γ] = E [Ψ]. More generally, for a state of

the form (5.1), we have

E [Γ] =
N∑

n=1

Tr∧n
1 L2(R3) (H(n)Gnn) + Fcrys

[
N∑

n=1

ρGnn

]
.
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Step 1. Large binding inequality.

We claim that

E(N) ≤ E(N − k) + E(k) for all k = 1, . . . , N − 1. (5.2)

To see this, we consider the following trial state:

ΨN
R := ΨN−k ∧Ψk (.−R~τ) (5.3)

where (ΨN−k) and (Ψk) are compactly supported fixed trial states for E(N − k) and E(k) respec-

tively, ~τ ∈ L is a lattice translation and R ∈ N is large enough for ρΨN−k and ρΨk (.−R~τ) to have

disjoint supports. The symbol ∧ denotes the antisymmetric tensor product. We first take the limit

R → ∞ to obtain

E(N) ≤ E [ΨN−k] + E [Ψk]. (5.4)

Optimizing then with respect to ΨN−k and Ψk concludes the proof of (5.2). To see that (5.4) holds,

we note that by construction

ρΨN
R
= ρΨN−k + ρΨk (.−R~τ )

for large enough R, thus we can use Proposition 3.1 and take the limit R → ∞ with R ∈ N to

obtain

lim
R→∞

Fcrys[ρΨN
R
] = Fcrys[ρΨN−k ] + Fcrys[ρΨk ].

The other terms in the energy can be treated as usual to obtain (5.4).

Note that the argument here also proves by contradiction that Item (2) of Theorem 2.2 implies

Item (1). If there is equality in (5.2), we can choose ΨN−k
n and Ψk

n minimizing sequences for

E(N − k) and E(k) respectively and, taking Rn → ∞ very fast, we obtain a minimizing sequence

for E(N) that is not precompact, even up to translations because some mass is lost at infinity.

Step 2. Absence of vanishing.

We consider a minimizing sequence (Ψn) for E(N) and denote by Γn = 0⊕ . . . . . .⊕ |Ψn〉 〈Ψn| the
associated state in the truncated antisymmetric Fock space. It is easy to see, using in particular

Lemma 3.2 that (Ψn) is bounded in H1(R3N ). As in the one-body case treated before, we define a

criterion for the vanishing of the minimizing sequence. We use the concept of geometric convergence

(see Section 2 in [13] for the definition). We look at the the mass of the possible geometric limits,

up to translations and extraction, of (Γn)

M := sup
{
Tr (NΓ) , ∃~vk ⊂ R

3, ~vkΓnk
~v∗k ⇀g Γ

}

where we recall that N is the number operator in Fock space. As explained in [13], Lemma 24,

if M = 0 then ρΨn → 0 strongly in Lp(R3) for all 1 < p < 3. Using then Lemma 3.2 we obtain

Fcrys[ρΨn ] → 0 and therefore

E(N) = lim
n→∞

E [Ψn] ≥ inf σ
(
H̃(N)

)
= NEper

where

H̃(N) :=
N∑

j=1

(
−∆j

2m
+ V 0

per(xj)

)
=

N∑

j=1

(
H0

per

)
xi
. (5.5)

Note that, by induction on N , (5.2) implies E(N) ≤ NE(1). We have already seen in (4.1) above

that E(1) < inf σ
(
H0

per

)
. Hence we reach a contradiction and conclude that M > 0.
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Step 3. Decoupling via localization

SinceM > 0 (and arguing as in the previous section) we have, up to the extraction of a subsequence,

~vnΓn~v
∗
n ⇀g Γ with Tr(NΓ) > 0 and where (~vn) ⊂ L is a sequence of lattice translations. Using the

invariance of the energy, Lemma 3.3, we can thus assume that our minimizing sequence satisfies

Γn ⇀g Γ (5.6)

with Tr(NΓ) > 0. Also we have
√
ρΓn ⇀

√
ρΓ weakly in H1(R3) and strongly in L2

loc. Also

ρΓn ⇀ ρΓ in the Coulomb space C and we immediately deduce by (3.13) that

Fcrys[ρΓn ] ≥ Fcrys[ρΓ] + Fcrys[ρΓn − ρΓ] + o(1).

We now pick a sequence of radii Rn → ∞ and define smooth localization functions χRn and

ηRn such that χ2
Rn

+ η2Rn
= 1, supp(χRn) ⊂ B(0, 2Rn) and supp(χRn) ⊂ R3 \ B(0, 3Rn). For

any bounded operator B (in particular the multiplication by a function χ) on L2(R3) such that

0 ≤ BB∗ ≤ 1 we will denote by (Γ)B the B-localization of a state Γ, as defined in [13], Section 3.

Of importance to us will be the following properties of localization:

ρΓχ = χ2ρΓ

[Γχ]
1,1 = χ[Γ]1,1χ

[Γχ]
2,2 = χ⊗ χ [Γ]2,2χ⊗ χ. (5.7)

Also, for a state of the form (5.1), writing

(Γ)χRn
= G

χRn

0 ⊕ . . .⊕G
χRn

N , (Γ)ηRn
= G

ηRn

0 ⊕ . . .⊕G
ηRn

N ,

the condition χ2
Rn

+ η2Rn
= 1 implies the relation

Tr
(
G

χRn

j

)
= Tr

(
G

ηRn

N−j

)
. (5.8)

Using concentration functions as in Step 4 of the proof of [13], Theorem 25 we have, extracting

a further subsequence if necessary

(Γn)χRn
→ Γ strongly in S

1
(
F≤N

)
(5.9)

and

(χRn)
2ρΓn → ρΓ strongly in Lp(R3) for all 2 ≤ p < 3. (5.10)

Using (3.2), this can be used to prove that

Fcrys [ρΓn − ρΓ] = Fcrys

[
(ηRn)

2ρΓn

]
+ o(1).

Thus

Fcrys [ρΓn ] ≥ Fcrys [ρΓ] + Fcrys

[
ρ(Γn)ηRn

]
+ o(1).

We have seen that the nonlinear energy Fcrys decouples. The other terms are treated follow-

ing [13]. For the one-particle part we use the IMS formula

∆ = χRn∆χRn + ηRn∆ηRn + |∇χRn |2 + |∇ηRn |2

to obtain (we use (5.7))

Tr

((
− ∆

2m
+ V 0

per

)
[Γn]

(1,1)

)

≥ Tr

(
χRn

(
− ∆

2m
+ V 0

per

)
χRn [Γn]

(1,1)

)
+Tr

(
ηRn

(
− ∆

2m
+ V 0

per

)
ηRn [Γn]

(1,1)

)
− CN

R2
n

= Tr

((
− ∆

2m
+ V 0

per

)
[(Γn)χRn

](1,1)
)
+Tr

((
− ∆

2m
+ V 0

per

)
[(Γn)ηRn

](1,1)
)
− CN

R2
n

.
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The Coulomb interaction is treated exactly as in [13] and we conclude

〈Ψn, H(N)Ψn〉 ≥ Tr
(
H(Γn)χRn

)
+Tr

(
H(Γn)ηRn

)
+ o(1).

Using Fatou’s lemma as well as the strong convergence of (χRn)
2ρΓn , we finally get

E [Ψn] ≥ E [Γ] + E
[
(Γn)ηRn

]
+ o(1). (5.11)

which is the desired decoupling of the energy.

Step 4. Conclusion.

The rest of the argument follows exactly [13]. Writing the geometric limit of Γn

Γ = G00 ⊕ . . .⊕GNN ,

and using the concavity of Fcrys, the fundamental relation (5.8) as well as the convergence (5.9),

we arrive at

E(N) ≥
N∑

j=0

Tr(Gjj) (E(j) + E(N − j)) .

Assuming the strict binding inequalities (2.21), this is possible only when G11 = . . . = GN−1N−1 =

0. Hence we necessarily have GNN 6= 0, otherwise we would obtain a contradiction with the fact

that Tr(NΓ) > 0.

To conclude, it is then enough to prove that G00 = 0, which is an easy consequence of the strict

concavity (3.1) of Fcrys (see Step 5 of the proof of Theorem 25 in [13] for details). We deduce that

Tr(GNN ) = 1 = Tr(|Ψn〉 〈Ψn|), hence that the weak-∗ convergence of |Ψn〉 〈Ψn| in S1(L2(R3))to

GNN is actually strong because no mass is lost in the weak limit. As GNN = |Ψ〉 〈Ψ| where Ψ is

the weak limit of Ψn, we conclude that Ψn converges to Ψ strongly in L2(R3). The convergence in

H1(R3) follows by standard arguments.

Appendix. Proof of Lemma 3.4

We follow ideas of [2]. In the sequel we assume that Q is finite rank, very smooth and decays fast

enough, in order to justify the calculations. The conclusions for general Q then follow by density,

using Lemma 2 and Corollary 3 in [2].

Proof of (3.6): uniform bounds in Q
The argument is the same for the terms involving XR and those involving YR, we thus discuss only

the former. Recalling the definition (2.7) of the spaceQ and the fact that |H0
per−εF|−1/2 (1−∆)1/2

is uniformly bounded in operator norm (Lemma 1 in [2]), our task is to estimate the terms(
XRQXR)

±∓|H0
per − εF|1/2 in the Hilbert-Schmidt norm and |H0

per − εF|1/2
(
XRQXR)

±±|H0
per −

εF|1/2 in the trace norm. We write
(
XRQXR)

+−|H0
per − εF|1/2 =

(
γ0per

)⊥
χRQ

+−χRγ
0
per|H0

per − εF|1/2

=
(
γ0per

)⊥
χRQ

+−|H0
per − εF|1/2χRγ

0
per

+
(
γ0per

)⊥
χRQ

+−|H0
per − εF|1/2|H0

per − εF|−1/2
[
χR, |H0

per − εF|1/2
]
γ0per

and deduce ∣∣∣
∣∣∣(XRQXR)

+−|H0
per − εF|1/2

∣∣∣
∣∣∣
S2

≤ C
∣∣∣
∣∣∣Q+−|H0

per − εF|1/2
∣∣∣
∣∣∣
S2

≤ C ||Q||Q
using that ||χR||L∞ = 1 and that

∣∣∣
∣∣∣|H0

per − εF|−1/2
[
χR, |H0

per − εF|1/2
]∣∣∣
∣∣∣ = O(R−1)
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as shown in the proof of Lemma 11 in [2]. With similar computations, using that |H0
per −

εF|1/2Q++|H0
per − εF|1/2 ∈ S1 we obtain

∣∣∣
∣∣∣|H0

per − εF|1/2
(
XRQXR)

++|H0
per − εF|1/2

∣∣∣
∣∣∣
S1

≤ C ||Q||Q .

The terms involving (XRQXR)
++ and (XRQXR)

−+ are estimated in exactly the same way. Finally,

it was shown in Proposition 1 of [2] that the map Q ∈ Q 7→ ρQ ∈ L2 ∩ C is continuous, hence the

estimates on ρXRQXR and ρYRQYR also follow.

Proof of (3.8): localization of the density

We argue by duality, noting that
∫

R3

(
ρQ − ρXRQXR − ρYRQYR

)
V = Tr

(
Q(V −XRV XR − YRV YR)

)
.

Inspired by the IMS formula, we now use that

V =
1

2
(1−X2

R − Y 2
R)V +

1

2
V (1−X2

R − Y 2
R) +

X2
R + Y 2

R

2
V + V

X2
R + Y 2

R

2

=
1

2
(1−X2

R − Y 2
R)V +

1

2
V (1−X2

R − Y 2
R) +XRV XR + YRV YR +

1

2
[XR, [XR, V ]] +

1

2
[YR, [YR, V ]].

(5.12)

The idea here is that X2
R + Y 2

R ≃ χ2
R + η2R = 1 which, unfortunately, is only true in the operator

norm.

We start with the estimate on Tr(Q(1 −X2
R − Y 2

R)V ) (the second term is treated in the same

way). We write as usual Q = Q+++Q−−+Q−++Q+− and estimate each term separately. Recall

that XR and YR commute with γ0per, so we get for instance

Tr(Q+−(1−X2
R−Y 2

R)V ) = Tr(Q+−(1−X2
R−Y 2

R)γ
0
perV

(
γ0per

)⊥
) = Tr(Q+−(1−X2

R−Y 2
R)[γ

0
per, V ]).

A bound from Lemma 5 in [2] tells us that, if V = V1 + V2 with V1 ∈ Ḣ1(R3) and V2 ∈ L2(R3),
∣∣∣∣[γ0per, V ]

∣∣∣∣
S2 ≤ C(||∇V1||L2 + ||V2||L2).

We thus get

|Tr(Q+−(1−X2
R − Y 2

R)V )| ≤ C
∣∣∣∣1−X2

R − Y 2
R

∣∣∣∣ ∣∣∣∣Q+−
∣∣∣∣
S2 (||∇V1||L2 + ||V2||L2).

Finally recall that
∣∣∣∣1−X2

R − Y 2
R

∣∣∣∣ =
∣∣∣∣χ2

R −X2
R + η2R − Y 2

R

∣∣∣∣ ≤
∣∣∣∣χ2

R −X2
R

∣∣∣∣+
∣∣∣∣η2R − Y 2

R

∣∣∣∣ ≤ CR−1

because

χ2
R −X2

R = χ2
R − γ0perχRγ

0
perχRγ

0
per − (γ0per)

⊥χR(γ
0
per)

⊥χR(γ
0
per)

⊥

and the commutator [γ0per, χR] is known to be of order O(R−1) in operator norm by Lemma 10

in [2]. The term involving YR and ηR is treated in the same way. Therefore we have proved that

|Tr(Q+−(1−X2
R − Y 2

R)V )| ≤ CR−1
∣∣∣∣Q+−

∣∣∣∣
S2 (||∇V1||L2 + ||V2||L2).

For Q−−, we do not have a commutator but we can use the trace-class norm. We write

Tr(Q−−(1−X2
R − Y 2

R)V ) = Tr(Q−−(1 −X2
R − Y 2

R)γ
0
perV γ

0
per)

and estimate
∣∣∣∣γ0perV γ0per

∣∣∣∣ ≤
∣∣∣∣γ0per|H0

per − εF|
∣∣∣∣ ∣∣∣∣|H0

per − εF|−1(1−∆)
∣∣∣∣ ∣∣∣∣(1 −∆)−1V

∣∣∣∣
≤ C

∣∣∣∣(1−∆)−1V
∣∣∣∣ ≤ C(||V1||L6 + ||V1||L2).
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We have used the fact that γ0per|H0
per − εF| is a bounded operator : H0

per is bounded from below

and γ0per = 1(−∞,εF)(H
0
per). That

∣∣γ0per − εF
∣∣−1

(1−∆) is also bounded is shown in [2], Lemma 1.

For the last step we used the Kato-Seiler-Simon inequality (Theorem 4.1 in [26])

‖f(−i∇)g(x)‖
Sp ≤ (2π)−3/p ‖f‖Lp ‖g‖Lp (5.13)

for p ≥ 2. We thus obtain

|Tr(Q−−(1−X2
R − Y 2

R)V )| ≤ CR−1
∣∣∣∣Q−−

∣∣∣∣
S1 (||∇V1||L2 + ||V2||L2)

as expected. In all these estimates the kinetic energy was not useful. For Q++ we have to use it.

We start with

|Tr(Q++(1 −X2
R − Y 2

R)V1)| ≤
∣∣∣
∣∣∣|H0

per − εF|1/2Q++
∣∣∣
∣∣∣
S1

∣∣∣∣1−X2
R − Y 2

R

∣∣∣∣
∣∣∣
∣∣∣V1|H0

per − εF|−1/2
∣∣∣
∣∣∣

≤ CR−1
∣∣∣
∣∣∣|H0

per − εF|1/2Q++
∣∣∣
∣∣∣
S1

||∇V1||L2 .

This time we have used that, by Lemma 1 in [2] and (5.13) again,
∣∣∣
∣∣∣V1|H0

per − εF|−1/2
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣V1(1−∆)−1/2

∣∣∣
∣∣∣
S6

∣∣∣
∣∣∣(1 −∆)1/2|H0

per − εF|−1/2
∣∣∣
∣∣∣ ≤ C ||V1||L6 ≤ C ||∇V1||L2 .

The last bound is the Sobolev inequality. For V2 we have to use the full kinetic energy:

Tr(Q++(1−X2
R − Y 2

R)V2)

= Tr(|H0
per − εF|1/2Q++|H0

per − εF|1/2(1 −X2
R − Y 2

R)|H0
per − εF|−1/2V2|H0

per − εF|−1/2)

− Tr(|H0
per − εF|1/2Q++|H0

per − εF|1/2
[
|H0

per − εF|−1/2, X2
R + Y 2

R

]
V2|H0

per − εF|−1/2)

The first term is treated exactly like for V1 whereas for the second term one has to use that

∣∣∣
∣∣∣
[
|H0

per − εF|−1/2, X2
R + Y 2

R

]
|H0

per − εF|1/2
∣∣∣
∣∣∣

=
∣∣∣
∣∣∣|H0

per − εF|−1/2
[
|H0

per − εF|1/2, X2
R + Y 2

R

]∣∣∣
∣∣∣ = O(R−1)

which is proved as in [2], Lemma 11.

Let us now turn to the double commutators in (5.12). We claim that

||[XR, [XR, V ]]||
S2 ≤ CR−1(||∇V1||L2 + ||V2||L2).

To see this we use that γ0per +
(
γ0per

)⊥
= 1 and [V, χR] = 0 to compute

[XR, V ] = γ0perχR[γ
0
per, V ] + [γ0per, V ]χRγ

0
per − (γ0per)

⊥χR[γ
0
per, V ]− [γ0per, V ]χR(γ

0
per)

⊥.

We can then write

γ0perχR[γ
0
per, V ] = γ0perχRγ

0
per[γ

0
per, V ] + [γ0per, χR](γ

0
per)

⊥[γ0per, V ].

Noting that γ0perχRγ
0
per commutes with XR, we get

[XR, [XR, V ]] = γ0perχRγ
0
per

[
XR, [γ

0
per, V ]

]
+
[
XR, [γ

0
per, χR](γ

0
per)

⊥[γ0per, V ]
]
+ similar terms.

In the second term of the right side the last commutator is not useful and we can simply bound
∣∣∣∣[XR, [γ

0
per, χR](γ

0
per)

⊥[γ0per, V ]
]∣∣∣∣

S2 ≤ 2 ||XR||
∣∣∣∣[γ0per, χR]

∣∣∣∣ ∣∣∣∣[γ0per, V ]
∣∣∣∣
S2 ≤ CR−1

∣∣∣∣[γ0per, V ]
∣∣∣∣
S2

where we have used ||XR|| ≤ 1 and
∣∣∣
∣∣∣
(
γ0per

)⊥∣∣∣
∣∣∣ ≤ 1. So our last task is to show that

∣∣∣∣[XR, [γ
0
per, V ]

]∣∣∣∣
S2 ≤ CR−1(||∇V1||L2 + ||V2||L2).

To prove this estimate we express the double commutator as
[
XR, [γ

0
per, V ]

]
= γ0per

[
[χR, γ

0
per], V

]
(γ0per)

⊥ + (γ0per)
⊥
[
[χR, γ

0
per], V

]
γ0per. (5.14)
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To see that (5.14) holds, note that since XR commutes with γ0per,

γ0per
[
XR, [γ

0
per, V ]

]
γ0per =

[
XR, γ

0
per[γ

0
per, V ]γ0per

]
= 0

because γ0per[γ
0
per, V ]γ0per = (γ0per)

2V γ0per − γ0perV (γ0per)
2 = 0. The argument is the same for

(γ0per)
⊥
[
XR, [γ

0
per, V ]

]
(γ0per)

⊥. We deduce that the double commutator is purely off-diagonal,
[
XR, [γ

0
per, V ]

]
= γ0per

[
XR, [γ

0
per, V ]

]
(γ0per)

⊥ + (γ0per)
⊥
[
XR, [γ

0
per, V ]

]
γ0per.

Now we compute (using again that [XR, γ
0
per] = 0 and γ0per +

(
γ0per

)⊥
= 1)

γ0per
[
XR, [γ

0
per, V ]

]
(γ0per)

⊥ = γ0per
[
XR, γ

0
per[γ

0
per, V ](γ0per)

⊥
]
(γ0per)

⊥

= γ0per
[
XR, γ

0
perV (γ0per)

⊥
]
(γ0per)

⊥

= γ0per
[
XR, V

]
(γ0per)

⊥

= γ0perχRγ
0
perV (γ0per)

⊥ − γ0perV (γ0per)
⊥χR(γ

0
per)

⊥

= γ0per[χR, γ
0
per]V (γ0per)

⊥ − γ0perV [(γ0per)
⊥, χR](γ

0
per)

⊥

= γ0per[χR, γ
0
per]V (γ0per)

⊥ − γ0perV [χR, γ
0
per](γ

0
per)

⊥

= γ0per
[
[χR, γ

0
per], V

]
(γ0per)

⊥.

This proves (5.14).

Now
[
[χR, γ

0
per], V

]
is estimated as usual by expressing γ0per using Cauchy’s formula:

γ0per = − 1

2iπ

∮

C

dz

H0
per − z

where C is a curve enclosing the spectrum of H0
per below εF. The formula

[
(z − A)−1, B

]
= (z −A)−1[A,B](z −A)−1 (5.15)

then leads to (with the standard notation p = −i∇)

[χR, γ
0
per] =

1

2π

∮
dz

1

H0
per − z

(
p · ∇χR +∇χR · p

) 1

H0
per − z

.

So we get for instance

[χR, γ
0
per]V2 =

1

2π

∮
dz

1

H0
per − z

(
2p · ∇χR + i∆χR

) 1

H0
per − z

V2.

Using (5.13) and the fact that ‖∇χR‖L∞ = O(R−1) and ‖∆χR‖L∞ = O(R−2), we easily get
∣∣∣∣[χR, γ

0
per]V2

∣∣∣∣
S2 ≤ CR−1 ||V2||L2 .

We argue the same when V2 is on the left.

For V1 we need the commutator:

[
[χR, γ

0
per], V1

]
=

1

2π

∮
dz

1

H0
per − z

(
p · ∇χR +∇χR · p

) [ 1

H0
per − z

, V1

]

− i

π

∮
dz

1

H0
per − z

∇χR · ∇V1
1

H0
per − z

+
1

2π

∮
dz

[
1

H0
per − z

, V1

] (
p · ∇χR +∇χR · p

) 1

H0
per − z

and we argue as before. For the commutator on the last line we use (5.15) to write
[

1

H0
per − z

, V1

]
=

1

H0
per − z

[−∆, V1]
1

H0
per − z

and follow arguments from [2], Lemma 5.

All in all, we have shown that for V = V1 + V2

|Tr
(
Q(V −XRV XR − YRV YR)

)
| ≤ CR−1 ||Q||Q

(
||∇V1||L2 + ||V2||L2

)

which, by duality, precisely proves (3.8).
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Proof of (3.7): localization of the kinetic energy

We first remark that

(χ2
R)

−− = γ0perχR

(
γ0per + (γ0per)

⊥
)
χRγ

0
per = (X2

R)
−− + [γ0per, χR](γ

0
per)

⊥[χR, γ
0
per]

and a similar equality for (χ2
R)

++. Since by construction

X2
R =

(
X2

R

)++
+
(
X2

R

)−−

this yields

(χ2
R)

−− + (χ2
R)

++ = X2
R − [γ0per, χR]

2 and (η2R)
−− + (η2R)

++ = Y 2
R − [γ0per, ηR]

2.

From this we deduce that

Tr0(H
0
per − εF)Q = Tr(H0

per − εF)(Q
++ +Q−−)

= Tr
(χ2

R + η2R)(H
0
per − εF) + (H0

per − εF)(χ
2
R + η2R)

2
(Q++ +Q−−)

= Tr
(X2

R + Y 2
R)(H

0
per − εF) + (H0

per − εF)(X
2
R + Y 2

R)

2
(Q++ +Q−−)

− Tr
[γ0per, χR]

2(H0
per − εF) + (H0

per − εF)[γ
0
per, χR]

2

2
(Q++ +Q−−)

− Tr
[γ0per, ηR]

2(H0
per − εF) + (H0

per − εF)[γ
0
per, ηR]

2

2
(Q++ +Q−−)

hence that

Tr0(H
0
per − εF)Q− Tr0(H

0
per − εF)XRQXR − Tr0(H

0
per − εF)YRQYR

=
1

2
Tr

(
[XR, [XR, H

0
per]] + [YR, [YR, H

0
per]]

)
(Q++ +Q−−)

− 1

2
Tr

(
[γ0per, χR]

2(H0
per − εF) + (H0

per − εF)[γ
0
per, χR]

2
)
(Q++ +Q−−)

− 1

2
Tr

(
[γ0per, ηR]

2(H0
per − εF) + (H0

per − εF)[γ
0
per, ηR]

2
)
(Q++ +Q−−).

We conclude that

∣∣Tr0(H0
per − εF)Q− Tr0(H

0
per − εF)XRQXR − Tr0(H

0
per − εF)YRQYR

∣∣

≤ C ||Q||Q
( ∣∣∣

∣∣∣|H0
per − εF|−1/2[XR, [XR, H

0
per]]|H0

per − εF|−1/2
∣∣∣
∣∣∣

+
∣∣∣
∣∣∣|H0

per − εF|−1/2[YR, [YR, H
0
per]]|H0

per − εF|−1/2
∣∣∣
∣∣∣

+
∣∣∣
∣∣∣[γ0per, χR]

2|H0
per − εF|1/2

∣∣∣
∣∣∣ +

∣∣∣
∣∣∣[γ0per, ηR]2|H0

per − εF|1/2
∣∣∣
∣∣∣
)
.

For the last term we recall from [2], Lemma 10, that
∣∣∣∣[γ0per, ηR]

∣∣∣∣ ≤ CR−1

and note that the same proof can be employed to show that
∣∣∣
∣∣∣[γ0per, ηR]|H0

per − εF|1/2
∣∣∣
∣∣∣ ≤ CR−1.

The second to last term is treated similarly. For the double commutators, a computation shows

that

[XR, [XR, H
0
per]] = (γ0per)

⊥
(
[χR, γ

0
per] [χR,∆] + [χR,∆] [χR, γ

0
per] + |∇χR|2

)
(γ0per)

⊥

− γ0per

(
[χR, γ

0
per] [χR,∆] + [χR,∆] [χR, γ

0
per] + |∇χR|2

)
γ0per.
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We have [χR,∆] = (∆χR) + 2i∇χ · p with p = −i∇. Using then that p|H0
per − εF|−1/2 is bounded

and the fact that
∣∣∣∣[χR, γ

0
per]

∣∣∣∣ = O(R−1), we conclude similarly as before that

∣∣∣
∣∣∣|H0

per − εF|−1/2[XR, [XR, H
0
per]]|H0

per − εF|−1/2
∣∣∣
∣∣∣ = O

(
1

R2

)
.

The term involving YR is treated similarly. This ends the proof of Lemma 3.4.
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