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Effect of the overall rotation on the cis–trans isomerization of HONO
induced by an external field

Matthieu Sala,a Fabien Gatti,*a David Lauvergnatb and Hans-Dieter Meyerc

Rovibrational eigenenergies of HONO are computed and compared to experimental energies available in the literature. For their
computation, we use a previously developed potential energy surface (PES) and a newly derived exact kinetic energy operator
(KEO) including the overall rotation for a tetra-atomic molecule in non-orthogonal coordinates. In addition, we use the
Heidelberg Multi-Configuration Time-Dependent Hartree (MCTDH) package. We compare the experimental rovibrational
eigenvalues of HONO available in the literature with those obtained with MCTDH and a previously developed potential energy
surface (PES) [F. Richter et al., J. Chem. Phys., 2004, 120, 1306.] for the cis geometry. The effect of the overall rotation on the
process studied in our previous work on HONO [F. Richter et al., J. Chem. Phys., 2007, 127, 164315.] leading to the cis - trans
isomerization of HONO is investigated. This effect on this process is found to be weak.

I. Introduction

The typical time scale of the nuclear motion involved in

chemical phenomena is of the order of tens to hundreds of

femtoseconds. Using so-called ‘‘ultrafast’’ laser pulses that are

similar in duration to these processes allows experimentalists

to follow dynamical processes in molecules as they happen.1–3

This technique opens new possibilities to induce selective

chemistry with laser pulses and for the understanding of

fundamental phenomena involving the conversion of light into

mechanical motion such as the elementary steps of vision,

photosynthesis, protein dynamics, and electron and proton

transport in DNA.4 However, as stated by A. Zewail during

his Nobel lecture, the control of chemical reactions by laser

pulses could ‘‘not be made without knowing and controlling

the time scales of intramolecular vibrational energy redistribution

(IVR) in molecules’’ (page 56 in ref. 4). Consequently, general

strategies must be developed to provide a complete theoretical

description of the energy redistribution that happens before

chemical transformations.5–7 Unfortunately, describing the

kinetics of primary reaction steps in polyatomic molecules by

investigation of the underlying full-dimensional quantum

dynamics is still a formidable challenge. This is due to the

complex structure of vibrational eigenstates, which can be

quite dense, and to the presence of vibronic couplings when

excited electronic states are to be considered. Advanced

quantum dynamics techniques allow us to treat molecules in

full dimensionality with up to a maximum of seven atoms

typically.

In previous papers, it was demonstrated that the Heidelberg

package8 of the Multi-Configuration Time Dependent Hartree

(MCTDH) algorithm9–12 is an efficient tool to investigate IVR

in relatively large systems such as toluene13 (reduced to 9

degrees of freedom) and fluoroform (9 degrees of freedom),14

HFCO,15 DFCO,16 and H2CS.
17 Besides these systems, we

have studied the cis - trans isomerization of nitrous acid

(HONO) in full dimensionality.18–20

In this work, we focus again on the cis - trans isomerization

of nitrous acid (HONO). Apart from being an important source

of OH radicals in atmospheric chemistry, HONO is one of the

smallest molecules, which shows a cis–trans conformational

equilibrium. Its corresponding isomerization exhibits a strong

mode selectivity and this molecule constitutes an ideal prototype

for theoreticians to investigate selective IVR leading to a

chemical process. Consequently, since HONO is a molecule of

high environmental and fundamental interest, it has spurred

numerous experimental and theoretical works.21–38

In a previous paper on HONO,20 we have triggered the

cis - trans isomerization via a laser field. We have simulated

the dynamics with MCTDH in the presence of a laser pulse

with a carrier frequency of 850 cm�1, a field strength of

0.0035 a.u. (4.3 � 1011 Watt cm�2), and an irradiation duration

of 500 fs. We have predicted that HONO isomerizes in the gas

phase with a yield of about 10 percent when the suggested
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parameters for the pulse are used. This result is remarkable

given the fact that it is not the reaction coordinate that is excited

by the laser pulse but mainly the central ON stretching mode of

vibration. As discussed in ref. 20, an excitation with a carrier

frequency near 850 cm�1 seems to be very efficient to promote

isomerization. On the other hand, exciting the O–H stretching

mode leads to almost no isomerization because in a free

molecule the O–H stretching vibration is almost uncoupled

from the other modes. There are several experiments that show

isomerization after excitation of the O–H stretch. However,

these experiments were performed with HONO in noble gas

matrices, where cage effects play a major role.

In ref. 20, the overall rotation of the molecule was neglected.

In the present paper, we allow the molecules to rotate. In other

words, the process is studied for a given J a 0, J being the

total angular momentum. We still do not take into account the

rotational transitions by absorption of light, i.e. J remains a

good quantum number and we do not allow transitions from J

to J0, with J0 a J. We will investigate these rotational

transitions in future works but in the present paper we focus

on another important aspect of dynamics: we now include the

fact that the molecules can rotate and that the mode specificity

for the process studied in ref. 20 can be influenced by rotation.

In particular, whether rotational degrees of freedom couple

sufficiently to the vibrational degrees of freedom to mediate

the isomerization of HONO in the process studied in ref. 20 or

not remains to be investigated, which is the purpose of the

present study.

The outline of this paper is as follows. Section II presents

the theoretical background. Sections III and IV are devoted to

the calculation of the rovibrational eigenstates and to the

comparison of the eigenvalues with the experimental data.

The following section deals with the effect of the overall

rotation on the dynamics. The paper concludes presenting

perspectives for the future.

II. Theory

A. Coordinates and kinetic energy operator

As in ref. 19, we represent the geometry of HONO with three

valence vectors ~R1 ¼ OH
��!

, ~R2 ¼ ON
��!

(double bond), and ~R3 ¼

ON
��!

(single bond). The three vectors are in turn parametrized by

six ‘‘polyspherical’’ coordinates: three distances, R1, R2, R3, two

planar angles y1, y2, and one dihedral angle t as depicted in

Fig. 1. As in ref. 19, we use u1=cosy1 and u2=cosy2 instead of

y1 and y2. The orientation of the Body-Fixed (BF) frame with

respect to the Space-fixed (SF) frame is determined by three

Euler angles: a, b, g. The Euler angles are chosen such that the

BF frame is oriented in a way that
-

ezBF is parallel to the vector
-

R3

and that
-

R2,
-

exBF and
-

ezBF lie in the same half-plane (see Fig. 1).

It has been shown elsewhere39–42 that polyspherical coordi-

nates lead to general and compact forms of kinetic energy

operators. The explicit expression of the present kinetic energy

operator (KEO) is given in Appendix A. The correctness of its

derivation was checked by comparing it with numerical results

provided by the program TNUM.43 The KEO can be formally

written as T̂ = (1/2)
P

ijqiGij(q)qj + Vextra(q). TNUM computes

G and Vextra numerically on a grid. We have checked that the

numerical values of all the functions Gij(q) andVextra(q) at several

non-symmetrical grid points, q, agree with those provided by the

program TNUM.43 The implementation of this KEO, including

the overall rotation for a tetra-atomic molecule in non-orthogo-

nal coordinates, in the Heidelberg MCTDH package is an

important result of the present work, since this operator could

be useful for many systems in the future.

B. Model

As in ref. 20, we use a time-dependent Hamiltonian. In

particular, we use the Loudon44 presentation that describes

the molecule quantum mechanically, the electric field classically

and their interaction by first order perturbation theory, i.e.

Ĥtot(t) = Ĥo + ĥ(t), (1)

Ĥo is the Hamiltonian of HONO without external field.

Ĥo = T̂ + V̂, (2)

where T̂ is the exact kinetic energy operator including the

overall rotation and Coriolis couplings given in Appendix A.

V̂ is the six dimensional potential energy surface calculated in

ref. 18. ĥ(t) denotes the interaction of the molecule with a

classical external laser field E(t),44 i.e.

ĥðtÞ ¼ �~̂m � ~EðtÞ; ð3Þ

where ~̂m is the dipole moment operator calculated in ref. 20. As

in ref. 20, we adopt the following form for the external field:

-

E(t) = E0 cos(ot)sin
2(pt/tp)Y(t)Y(tp � t)

-

e, (4)

where E0 is the field strength, o the field frequency, Y(t) the

Heavyside’s step function, tp the pulse duration, and
-

e the unit

vector in the polarization direction.

In ref. 20, the six-dimensional Dipole Moment Surface (DMS)

was generated by ab initio calculations using the density functional

theory approach with the B97-1 functional45 implemented in

CADPAC.46 The components of the dipole moment vector have

been fitted to the following form:

mxðR1;R2;R3; y1; y2; tÞ ¼
X

ijklmn

cxijklmnR
i
1R

j
2R

k
3y

l
1y

m
2 cosðntÞ ð5Þ

with restriction given in ref. 20.

In ref. 20, we have determined an efficient selective

IVR-pathway leading to the cis - trans isomerization. This

path corresponds to a simultaneous increase of the (middle)

ON stretch and of the ONO bending. We have observed that

the selective IVR-pathway corresponds to an excitation of theFig. 1 Valence polyspherical coordinates for the HONO molecule.
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010a00/000(a + 2)00 series of eigenstates (see ref. 20 for the

definition of the normal and local modes). We have simulated

the dynamics with MCTDH and in the presence of a laser

pulse with a carrier frequency of 850 cm�1, an intensity of

0.0035 a.u., and an irradiation duration of 500 fs. We have

predicted that HONO isomerizes in the gas phase with a yield

of about 10 percent when the suggested parameters for the

pulse are used. Higher yields are likely if higher intensities or

longer irradiation times are used.

In ref. 20, the initial wave function was the vibrational

ground state (for J= 0). In the present work, we take the same

parameters for the pulse but use the rovibrational eigenstates

calculated in Chapter 3 to define the initial wave functions.

This allows us to focus on the effect of the rotation on the

isomerization described in ref. 20. In addition, the field is

oriented parallel to the zBF axis, i.e. we consider the effect of a

projection of the external field onto this axis only. Indeed, as

discussed in ref. 20, we found no isomerization for x and

y polarizations and a laser pulse with a carrier frequency of

850 cm�1 and a field strength of 0.0035 a.u. (4.3 � 1011

Watt cm�2). An orientation of 451 between the x and z axes

yielded about half of the final isomerization in the z polarized

case. Thus, assuming isotropic orientation during the laser

irradiation, we concluded that only one third of the calculated

isomerization would be observed. Now, choosing an external

field parallel to the ON bond in the simulations amounts to

focusing on the action of the projection of an external field

parallel to a laboratory fixed axis onto the zBF axis of the

molecule only. In a future work, we will investigate the direct

excitation of the overall rotation (i.e. transitions between J and

J0 with J0 a J) by the laser pulse by starting from an external

field parallel to a Laboratory-Fixed frame and including the

Euler rotation matrix in the scalar product, �~̂m � ~EðtÞ. This will

allow transitions between J and J0 with J0a J. But it is not the

topic of the present work where we focus on the robustness of

the chemical process studied20 with respect to overall rotation.

As in our former studies, the Heidelberg package8 of

the Multi-Configuration Time Dependent Hartree (MCTDH)

algorithm9,10,12 is employed to simulate the dynamics.

The parameters of the grids used are provided in Table 1

and the sizes of the single-particle functions basis sets are given

in Table 2.

III. Rovibrational eigenfunctions

In the present section, we calculate the 7D rovibrational

eigenstates corresponding to the vibrational ground state

and for the cis geometry. These eigenstates will be used as

initial wave functions for the dynamics of HONO in Section V.

The corresponding eigenvalues are compared with the

experimental data given in ref. 27. We used the ‘‘improved

relaxation’’ method11,17,48 to obtain the 7D vibrational eigen-

energies and eigenfunctions of Ĥ0. Some of the eigenvalues for

the vibrational ground state with J = 5, 10, 15, and 22 are

given in Tables 3–5. The experimental values taken from

ref. 27 are also provided.

In order to label the rovibrational eigenstates, we use a

rigid rotor approximation as a zero-order description of the

rotation of the system. One knows that an asymmetric rigid

body can be characterized by the three eigenvalues of the

moment of inertia tensor, which are real-valued and positive

numbers (Ia, Ib, Ic), known as principal moments of inertia.

The corresponding kinetic energy operator reads49

Ĥrot = AJ2a + BJ2b + CJ2c, (6)

where A, B and C are the principal rotational constants:

A ¼
1

2Ia
; B ¼

1

2Ib
; C ¼

1

2Ic
; ð7Þ

with A 4 B 4 C. The convention �h = 1 is used everywhere in

the present paper. Ja, Jb, and Jc are the projections of the total

angular momentum onto the principal axes of inertia, a, b, c.

We use the notation ka, kb and kc for the corresponding

quantum number. In the case of a prolate symmetric rotor,

we have

Ic = Ib 4 Ia, i.e. A 4 B = C, (8)

with

Ĥ = BĴ2 + (A � B)Ĵ2a. (9)

The corresponding eigenvalues are given as

EJ,ka
= BJ(J + 1) + (A � B)k2a. (10)

In the case of an oblate symmetric rotor Ic 4 Ib = Ia, we have

Ĥ = BĴ2 + (C � B)Ĵ2c, (11)

with

EJ,kc
= BJ(J + 1) + (C � B)k2c. (12)

Table 1 Parameters for the primitive basis set employed for all the calculations. HO denotes a harmonic oscillator (Hermite) discrete variable
representation (DVR)

Primitive basis

(R1, t) (R3, cos y2) (R2, cos y1) k

HO-DVR exp-DVR HO-DVR HO-DVR HO-DVR HO-DVR k

Basis 20 69 45 30 20 35 2J + 1
Grid length/a.u. [1.3,2.5] [0,2p] [1.5,4.0] [�0.9,0.1] [1.8,2.7] [�0.95,0.4] [�J, +J]

Table 2 Number of SPFs used for the four modes in the MCTDH
calculations. Four modes (MCTDH particles) are defined in the
MCTDH-calculations: (R1, j), (R3, cos y2), (R2, cos y1), and k, where
the brackets indicate the mode combinations. The spf basis set for
the ‘‘Pulse (15 0 15)’’ is the one used for the dynamics starting from the
eigenstate denoted (15 0 15) in Table 5. The spf basis set for the
Relaxation (5 5 0) is the one used to converge the eigenstate denoted
(5 5 0) in Table 3

(R1, j) (R3, cos y2) (R2, cos y1) k

Pulse (15 0 15) 35 45 35 20
Relaxation (5 5 0) 40 45 40 11
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In the particular case of HONO in its cis geometry, we

obtained in ref. 18:

A = 2.792 cm�1, B = 0.438 cm�1, C = 0.378 cm�1. (13)

Since the ‘‘asymmetry parameter’’,

kR ¼
2B� A� C

A� C
; ð14Þ

is equal to �0.950 for HONO, i.e. close to �1, we can

describe the rotation of HONO, in a first order description,

by a prolate symmetric rotor, i.e. in the low energy domain

ka is almost a good quantum number but kc is not. However,

kc is linked to the parity of the eigenstates. The values k0a

and k0c given in Tables 3–5 are the values of hĴai and hĴci

proposed by the experimentalists27 to label their measured

eigenvalues.

Tables 3–5 reveal an excellent agreement with the experi-

mental values taken from Guilmot et al.,27 which confirms the

high quality of the potential surface and the reliability of the

approach adopted in the present study. This is an important

result of the present work: in ref. 20, the comparison with the

experimental vibrational eigenvalues and the transition

moments was also excellent. In addition, Fig. 2–4 show the

one-dimensional densities of eigenstates of several rovibrational

eigenstates along k, where k denotes the quantum number

associated with the projection of the total angular momentum

onto the zBF axis, ĴzBF. For these eigenstates, the total angular

momentum, J, is set to 1, 5, or 10.

Fig. 2–4 reveal a very complex structure: almost all the

values of k are populated. It must be emphasized that k is

different from ka because we are not using an Eckart frame

(ref. 47) and that the distribution along k is much more

complex than the one along ka.

Finally, in order to estimate the relative populations of the

HONO molecules occupying the rovibrational states at a

temperature T, we used the Boltzmann distribution law, which

states that these relative populations are given as

popi ¼
Ni

N0

¼
gi

g0
exp

�DEi

kBT

� �

; ð15Þ

Table 3 Comparison of calculated and experimental rovibrational
eigenvalues in cm�1 for J= 1, 5 in the cis geometry. popi is the relative
population with respect to the ground state given by eqn (15). k0a and
k0c are the quantum numbers proposed by the experimentalists27 to

label the eigenstates. Sym. denotes the symmetry A0 or A0 0 of the 7D
eigenstates

ðJ k0a k
0
cÞ obs.a EMCTDH

b Sym.
100popi
popJ

ð298 KÞc 100popi
popJ

ð10 KÞc

1 0 1 0.82 0.81 A0 33.6 41.4
1 1 1 3.18 3.17 A0 33.2 29.4
1 1 0 3.24 3.23 A0 0 33.2 29.2

5 0 5 12.24 12.18 A0 10.2 33.2
5 1 5 14.21 14.15 A0 10.1 25.0
5 1 4 15.11 15.05 A0 0 10.0 21.9
5 2 4 21.85 21.76 A0 0 9.69 8.35
5 2 3 21.89 21.80 A0 9.69 8.31
5 3 3 33.84 33.70 A0 9.15 1.50
5 3 2 33.84 33.70 A0 0 9.15 1.50
5 4 2 50.60 50.39 A0 0 8.44 0.14
5 4 1 50.60 50.39 A0 8.44 0.14
5 5 1 72.14 71.84 A0 7.61 0.01
5 5 0 72.14 71.84 A0 0 7.61 0.01

a Experimental excitation energies taken from ref. 27. b This work

using the improved relaxation method. c Relative population of the ith

state with respect to the ground state evaluated with eqn (15).

Table 4 Comparison of calculated and experimental rovibrational
eigenvalues in cm�1 for J = 10 and the cis geometry. popi is the
relative population with respect to the ground state given by eqn (15).
k0a and k0c are the quantum numbers given by the experimentalists27 to

label the eigenstates. Sym. denotes the symmetry A0 or A0 0 of the 7D
eigenstates

ðJ k0a k
0
cÞ obs.a EMCTDH

b Sym.
100popi
popJ

ð298 KÞc 100popi
popJ

ð10 KÞc

10 0 10 44.47 44.28 A0 6.82 34.2
10 1 10 45.62 45.43 A0 6.79 29.0
10 1 9 48.91 48.70 A0 0 6.68 18.1
10 2 9 54.51 54.28 A0 0 6.50 8.11
10 2 8 55.04 54.81 A0 6.49 7.51
10 3 8 66.63 66.35 A0 6.13 1.43
10 3 7 66.65 66.37 A0 0 6.13 1.43
10 4 7 83.37 83.02 A0 0 5.66 0.13
10 4 6 83.37 83.02 A0 5.66 0.13
10 5 6 104.9 104.46 A0 5.10 0.01
10 5 5 104.9 104.46 A0 0 5.10 0.01
10 6 5 131.2 130.68 A0 0 4.50 0
10 6 4 131.2 130.68 A0 4.50 0
10 7 4 162.27 161.63 A0 3.87 0
10 7 3 162.27 161.63 A0 0 3.87 0
10 8 3 198.1 197.31 A0 0 3.26 0
10 8 2 198.1 197.31 A0 3.26 0
10 9 2 238.67 237.71 A0 2.68 0
10 9 1 238.67 237.71 A0 0 2.68 0
10 10 1 283.97 282.83 A0 0 2.16 0
10 10 0 283.97 282.83 A0 2.16 0

a Experimental excitation energies taken from ref. 27. b This work

using the improved relaxation method. c Relative population of the ith

state with respect to the ground state evaluated with eqn (15).

Table 5 Comparison of selected, calculated and experimental
rovibrational eigenvalues in cm�1 for J = 12, 15, 22 in the cis
geometry. popi is the relative population with respect to the ground
state given by eqn (15). k0a and k0c are the quantum numbers given by
the experimentalists27 to label the eigenstates. Sym. denotes the
symmetry A0 or A0 0 of the 7D eigenstates.

ðJ k0a k
0
cÞ obs.a EMCTDH

b Sym.
100popi
popJ

ð298 KÞc 100popi
popJ

ð10 KÞc

12 0 12 62.78 62.49 A0 6.45 35.2
12 1 12 63.63 63.33 A0 6.43 31.2
12 1 11 68.25 67.94 A0 0 6.29 16.0
12 2 11 73.23 72.92 A0 0 6.14 7.87
12 2 10 74.26 73.95 A0 6.11 6.79
12 12 1 407.53 405.86 A0 0 1.22 0
12 12 0 407.53 405.86 A0 1.22 0
15 0 15 95.93 95.52 A0 6.23 37.3
15 1 15 96.42 96.00 A0 6.22 34.8
15 15 1 634.07 631.46 A0 0.46 0
15 15 0 634.07 631.46 A0 0 0.46 0
22 0 22 199.57 198.72 A0 6.27 43.2
22 1 22 199.68 198.83 A0 6.27 42.6
22 1 21 212.97 212.07 A0 0 5.88 6.30
22 22 1 — 1346.40 A0 0 0.02 0
22 22 0 — 1346.40 A0 0.02 0

a Experimental excitation energies taken from ref. 27. b This work

using the improved relaxation method. c Relative population of the ith

state with respect to the ground state evaluated with eqn (15).
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where Ni andN0 are the number of molecules in the ith and the

ground states, respectively. DEi = Ei � E0, with Ei and E0

being the energies of these states. kB is Boltzmann’s constant

and gi and g0 are the degeneracies of the ith and the ground

states, respectively. Here, we have gi = (2J+1) since there are

2J + 1 values of the projection of the total angular momentum

onto the zSF axis and g0 = 1. We took T = 10 and 298 Kelvin.

100*popi/popJ is provided for all the calculated eigenstates in

Tables 3–5. The population for a given J, popJ, is given as

popJ ¼
X

ka¼�J;...;þJ

Nka

N0

¼
X

ka¼�J;...;þJ

ð2J þ 1Þ exp
�DEka

kBT

� �

; ð16Þ

where ka runs over the (2J + 1) eigenstates associated with

quantum number J. According to our calculations, the maximum

of popJ is reached for J=16 at room temperature and for J=3

at T = 10 K.

It must be stressed that the reference to the rigid rotor of

HONO is important only to label the initial eigenstates that we

will use for the dynamics of HONO and for the comparison

with the experimental eigenvalues. As explained in ref. 20, the

laser pulse we use creates a superposition of many eigenstates

(see Fig. 4 of ref. 20). Those that lead to the isomerization lie

4000 cm�1 above the zero point energy.

IV. Symmetry considerations

For floppy systems exhibiting several minima, it is necessary to

work with the complete nuclear-permutation-inversion

(CNPI) group (as opposed to the point group of symmetry

of any given geometry).50 In the case of HONO, the exchange

of oxygen atoms is considered unfeasible. Thus, in the process

studied here, the nuclear-permutation-inversion group turns

into the Cs(M) group (see Table A-2, page 670 in ref. 50).

Cs(M) contains identity and inversion only.

The effect of the inversion operation, E*, on the polyspherical

coordinates is given by

E�

a

b

g

t

2

6
6
4

3

7
7
5
¼

pþ a

p� b

�g

�t

2

6
6
4

3

7
7
5
: ð17Þ

The other coordinates are not affected. The angular basis set that

describes the overall rotation, parametrized by three Euler

angles, reads51

DJ
Mk

*(a,b,g) = eiMadJMO(b)e
ikg, (18)

where DJ
Mk

*(a,b,g) and dJMk(b) denote the Wigner matrix

elements and the Jacobi functions, respectively. M is the

projection of the total angular momentum onto the zSF axis.

In addition, eqn (3.67), (3.68) and (3.75) of ref. 51 yield:

dJMk(p � b) = (�1)k+JdJM�k(�b)

= (�1)k+J(�1)k+MdJM�k(b)

= (�1)J+MdJM�k(b). (19)

Now, starting from the following basis set for the three Euler

angles and t

DJ
Mk*(a,b,g)e

int, (20)

we have

DJ
Mk*(p + a,p � b, �g)e�int = (�1)J(DJ

M�k*(a,b,g)e
�int),

(21)

The A1
0 symmetrized basis set is thus given by

(DJ
Mk*(a,b,g)e

int) + (�1)J(DJ
M�k*(a,b,g)e

�int), (22)

and the A1
0 0 symmetrized basis set is given by

(DJ
Mk*(a,b,g)e

int) � (�1)J(DJ
M�k*(a,b,g)e

�int). (23)

As usual with MCTDH, we do not take into account this

symmetry explicitly when building the primitive basis. However,

the previous equations are very important to determine the

symmetry of the eigenstates converged with MCTDH. For

Fig. 2 One-dimensional probability distributions of k for eigenstates

(1,0,1), (1,1,1), and (1,1,0) (see Table 3). k is the projection of the total

angular momentum onto the zBF axis as defined in Fig. 1 and not the

projection, ka, onto the principal axis. The one-dimensional probability

distribution is obtained by integrating the square of the wave function

over the six internal degrees of freedom. This probability is independent

of temperature.
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non-degenerate eigenstates, the improved relaxation approach

used in Section III always yields the eigenstates with correct

symmetry. The A0 and A0 0 character of the eigenstates can then

be determined by visual inspection of the corresponding wave

functions: since for n = 0, the distribution in the quantum

number n is symmetric, one just has to look at the even or odd

character of the distribution in k.

However, for HONO and n = 0, some eigenstates are

structurally degenerate. For those eigenstates, we have observed

that the improved relaxation does not provide the two eigenstates

with the A0 and A0 0 symmetries but rather their sum and their

difference. We have thus resymmetrized the two eigenvectors by

taking their sum and their difference. The symmetry of the

eigenstates used as initial wave functions for the propagations

is provided in Tables 3–5. In these tables, we also give the labels

of the eigenstates given by the experimentalists. Their labels are

based on the rigid rotor description detailed in Section III: k0a and

k0c are the projections of the total angular momentum onto the

a and c principal axes. Again, we stress that k0a is different

from our k since k corresponds to the projection of the total

angular momentum onto zBF with the definition of the BF frame

given in Section IIA. When using a rigid rotor description, the

parity of the rotational states is given by ð�1ÞJ�k0c . However, it

must be emphasized that the symmetry conditions used here

are given by eqn (22) and (23) and do not involve k0a and k0c
since our conditions are valid for any distorted geometry and

not for the rigid rotor only. As explained in ref. 50, the use of

the nuclear-permutation-inversion (CNPI) group is the only

way to generalize the point group of symmetry for vibrations

around the equilibrium geometry (see also ref. 52 and 53 for

a systematic combination of polyspherical coordinates and

nuclear-permutation-inversion group).

V. Influence of the overall rotation on the

excitation of HONO by a laser pulse

The kinetics of the isomerization is governed by the time

evolution of the population of the trans isomer, Ptrans. Its time

evolution is obtained by projecting the time dependent wave

packet onto the interval p/2 r t r 3p/2

Ptrans = hC|Y(t � p/2)Y(3p/2 � t)|Ci (24)

Fig. 3 Similar to Fig. 2 but k for eigenstates (5,0,5), (5,2,3), (5,3,3), (5,3,2), (5,5,1) and (5,5,0) (see Table 3).
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Fig. 5 shows the comparison of Ptrans obtained with J=0 with

the three initial states corresponding to the three eigenstates

for J = 1.

The dynamics starting from (1,1,0), (1,0,1), and (1,1,1)

shows a little bit more isomerization than for the case with

J = 0 even during the pulse excitation (here, we use the

notation ðk0a; k
0
b; k

0
cÞ to label the eigenstates). The shape of

the time evolution of Ptrans does not change much. Even

though (1,0,1) and (1,1,1) have almost the same energy, the

shapes of the time evolution of Ptrans when starting from these

two initial states are slightly different due to the fact that they

have a different symmetry (A0 for (1,1,1) and A0 0 for (1,1,0)).

Indeed, for each value of J, except for the first initial eigenstate

(J,0,J), all the eigenstates can be associated by groups of two

states: one with the A0 symmetry, the other with the A0 0

symmetry. When k0a is small, the two corresponding eigenvalues

are close to one another. When k0a increases, the two eigenstates

structurally accidentally degenerate. In addition, when k0a

Fig. 4 Similar to Fig. 2 but k for eigenstates (10,0,10), (10,4,6), (10,5,5), (10,6,4), (10,6,5), (10,10,1) and (10,10,0) (see Table 5).
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increases for a given J, the time evolutions of Ptrans starting

from the two eigenstates become closer and closer. For

instance, the shapes of the time evolutions of Ptrans of (5,3,3)

and (5,3,2) in Fig. 6 are very similar. The time evolutions of

Ptrans of (5,5,0) and (5,5,1) in Fig. 6 and of (10,10,0) and

(10,10,1) in Fig. 7 are almost indistinguishable.

The dynamics for J = 5 shown in Fig. 6 displays similar

trends: we do not see any strong effect of overall rotation. The

shapes of Ptrans with k0a and k0c vary a little bit but the final

values of the trans isomer are not very different from what is

observed with J = 0. The situation is similar when J increases

as shown in Fig. 7 and 8. The increase of Ptrans becomes rather

substantial only for J and k0a large: see for instance (10,10,0)

and (15,15,1) in Fig. 7 and 8. But these eigenstates are not

strongly populated, even at room temperature.

To conclude, the isomerization rates do not differ much.

The effect of the Coriolis coupling is small and does not

increase the isomerization rate appreciably for the process

we are investigating. This result is interesting since it had been

suggested by experimentalists that the isomerization of HONO

could have been enhanced by overall rotation. Our simulations

show that it is not the case. It is also an important result

since it proves that the process described in ref. 20 is robust.

In ref. 20, we had already checked the robustness of the

mechanism by changing the values of the frequency of the

pulse. We had also performed a simulation with a chirped

pulse where the carrier frequency varies from 889 cm�1 to

850 cm�1. We have noticed that the same mechanism was

induced and that similar isomerization ratios were obtained.

The present work shows that the excitation process is robust

against initial rotational excitations. We can predict that the

process varies little with temperature for temperatures low

enough that thermal excitation of the torsional mode is

negligible.

In the present work, we have not taken into account the

transitions from J to J0 with J0 a J upon photon absorption.

With the parameters used for our pulse, not many but some of

them may occur, in particular those corresponding to a change

of J by 1 and a |Dka| = 1 selection rule. It will result in

different superpositions of the same eigenstates in the energy

domain where the isomerization occurs (between 4000 and

6000 cm�1) but since they all do not increase the isomerization

sensibly as shown by our simulations, it is highly probable that

we will not see more isomerization if we include these transi-

tions explicitly. However, it could be interesting to add these

transitions in the future in our methodology, not to increase

the isomerization of HONO, but to study the alignment of

molecules by laser pluses in a systematic way.

VI. Conclusions and outlook

We have implemented an exact form of the kinetic energy

operator including overall rotation for a tetra-atomic molecule

in non-orthogonal coordinates in the Heidelberg MCTDH

package. This operator could be useful for many systems in

the future. We have compared the experimental rovibrational

eigenvalues available in the literature with those obtained with

our PES: the agreement is excellent as for the comparison with

the experimental vibrational eigenvalues published in ref. 20.

The effects of the Coriolis coupling are weak on the process

studied in ref. 20. This process leads to the cis - trans

Fig. 5 Time evolution (during and after excitation) of Ptrans

(see eqn (24) in the text). The pulse is on during the interval 0–500 fs:

see eqn (4). The solid line denotes the time evolution for J = 0 (taken

from ref. 20). Dashed lines correspond to the time evolutions of Ptrans

starting from the three rovibrational eigenstates for J= 1 with the labels

of Table 3.

Fig. 6 Similar to Fig. 5 but for J = 5 with the labels of Table 3.

Fig. 7 Similar to Fig. 5 but for J = 10 with the labels of Table 4.

Fig. 8 Similar to Fig. 5 but for J = 15 with the labels of Table 5.
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isomerization of HONO. The excitation process is robust

against variations of the excitation energy and we predict that

the isomerization rate varies little with temperature.

In the present work, HONO was considered in the gas

phase. Since the intrinsic rotational averaging that occurs

when molecules freely rotate decreases the efficiency of the

process, one efficient way to improve selectivity could be

molecular orientation by laser alignment. Molecular orienta-

tion is a very active field of current research.54–59 In this

context, it should be noticed that, in the present work, we

have not taken into account the transitions from J to J0 with

J0 a J upon photon absorption. For this, it will be necessary to

start from a laser pulse parallel to a Laboratory-Fixed frame and

to implement the Euler matrices in the scalar product �~̂m � ~EðtÞ.

It will be then possible to mimic the experimental molecular

orientation by laser ‘‘adiabatic’’ alignment with a longer laser

pulse and to trigger the isomerization with a second laser pulse

identical to the one used in the present work as in the experiments

of Stapelfeldt and coworkers.60–62

Appendix A: kinetic energy operator

Here, we report the kinetic energy operator (KEO). As in

ref. 19, we use the polyspherical approach to derive the kinetic

energy operator. The polyspherical approach is a general

method for deriving kinetic energy operators.39–42 This form-

alism, which is based on a polyspherical parametrization of a

N-atom system, can be applied whatever the number of atoms

and whatever the set of vectors: Jacobi, Radau, valence, etc.

As aforementioned, we choose here for HONO three valence

vectors ~R1 ¼ OH
��!

, ~R2 ¼ ON
��!

(double bond), and ~R3 ¼ ON
��!

(single bond) as depicted in Fig. 1. The three vectors are in

turn parametrized by six polyspherical coordinates as shown

in Fig. 1 of ref. 20. We use the same conventions as defined in

Appendix A of ref. 19: i.e. S1 = 1, S2 = �1, ynew2 = p � y2,

x1 = cos(y1) and x2 = cos(ynew2 ). In the present work, we

include for the first time the overall rotation and the Coriolis

coupling. Eqn (102), (C.4), (C.5), and (C.6) of ref. 42 lead to

the following vibrational kinetic energy operator:

T̂ = T̂vib + T̂rot + T̂cor; (A1)

with

T̂vib ¼ �
X3

i¼1

Mii

2
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i
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� ð1� x2i Þ
@
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þ

@

@xi
ð1� x2i Þ
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1� x2i

q

cos t
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q
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ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2i

q
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q
@2
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sin t

� �

þ
X2
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M33xi

2R2
3
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sin t
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�
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!

�
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@t2
þ
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R3Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2j
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q

0

B
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�
M33x2x1

R2
3
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1� x22
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1� x21

q

1

C
A

@
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cos t
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; ðA2Þ

T̂ rot ¼
1

1� x22
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2R2
2

þ
M23x2

R2R3

þ
M33x

2
2

2R2
3
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q
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and

T̂ cor ¼ �
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The matrix elements Mij are given as

M ¼

1
mH

þ 1
mO

0 1
mO

0 1
mO

þ 1
mN

� 1
mN

1
mO

� 1
mN

1
mO

þ 1
mN

0

B
@

1

C
A: ðA5Þ

The Body-Fixed (BF) frame is defined such that the zBF axis is

parallel to ~R3 ¼ ON
��!

(see Fig. 1) and such that
-

R2 is parallel to

the ((xBFGzBF), xBF 4 0) half-plane. It should be emphasized

that the BF-axes are different from the principal axes of

inertia.

Jz acts on the third Euler angles and becomes formally in the

kinetic energy operator (KEO) the multiplicative operator k,

the projection of
-

J onto the zBF axis. JxBF and JyBF operate on

the variable k, with

JxBF = (J+ + J�)/2,

JyBF = (J+ � J�)/(2i) (A6)

and J� gives k - k � 1.
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