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Macroscopic behavior of a randomly fibered medium

Gérard Michaille ∗, Azdine Nait-ali† and Stéphane Pagano†

Abstract
By combining variational convergence with ergodic theory of subadditive processes, we study the

macroscopic behavior of a randomly fibered medium. The cross sections of the fibers are randomly
distributed according to a stationary point process, their size is of order ε while the stiffness of the
material in the matrix is of order εp. The variational limit functional energy obtained when ε tends to 0
is deterministic and non local.

Résumé
En combinant convergence variationnelle et théorie ergodique des processus sous-additifs, nous étudions

le comportement macroscopique d’un milieu aléatoirement fibré. Les sections des fibres sont réparties
aléatoirement selon un processus ponctuel stationnaire, leur taille est de l’ordre de ε alors que la rigidité
du matériau dans la matrice est d’ordre εp. La fonctionnelle énergie limite obtenue lorsque ε tend vers 0
est déterministe et non locale.
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1 Introduction

We are interested in the determination of the macroscopic behavior of a randomly fibered mechanical
structure whose reference configuration is the open subset O := �O × (0, h) of R3, with basis �O :=
(0, l1)× (0, l2) ⊂ R2. More precisely for ε = 1

n
we consider the union of fibers Tε(ω) := εD(ω)×R where

D(ω) :=
�

i∈N D(ωi) and D(ωi) are disks distributed at random in R2 following a stochastic point process
ω = (ωi)i∈N of R2 associated with a suitable probability space (Ω,A,P). The random fibered structure
is then given by O = (O \ Tε(ω)) ∪ O ∩ Tε(ω) (see Figure 1 and Figures 3, 4 in Section 2), and

Figure 1: The random fibered structure

we aim to supply a deterministic equivalent variational limit when ε tends to zero, of the sequence of
random integral functionals Hε mapping Ω×Lp(O, R3) into R+∪{+∞}, defined for every ω in (Ω,A,P)
by

Hε(ω, u) =





εp

ˆ
O\Tε(ω)

f(∇u) dx +
ˆ
O∩Tε(ω)

g(∇u) dx if u ∈ W 1,p

Γ0
(O, R3)

+∞ otherwise.

The space W 1,p

Γ0
(O, R3) is made up of the functions u in W 1,p(O, R3) such that u = 0 on Γ0 := �O × {0}

in the trace sense. For more precision on the stochastic point process (ωi)i∈N and for all question of
measurability relating to the considered random maps we refer the reader to the next section. For short
we sometimes write Tε instead of Tε(ω).

We assume that f and g are two quasiconvex functions defined on the set M3×3 of 3×3-matrices and
satisfy the standard growth condition of order p > 1: there exist two positive constants α, β, such that
∀M, M � ∈ M3×3

α|M |p ≤ f(M) ≤ β(1 + |M |p), (1)

idem for g. Note that f satisfies automatically the Lipschitz property

|f(M)− f(M �)| ≤ L|M −M �|(1 + |M |p−1 + |M |p−1) (2)

for some positive constant L, idem for g. Furthermore, we assume that there exists β� > 0, 0 < γ < p and
a p-positively homogeneous function f∞,p (the p-recession function of f) such that for all M ∈ M3×3

|f(M)− f∞,p(M)| ≤ β�(1 + |M |p−γ). (3)

From (3) we infer lim
t→+∞

f(tM)
tp

= f∞,p(M) so that from (1), f∞,p satisfies for all M ∈ M3×3

α|M |p ≤ f∞,p(M) ≤ β|M |p. (4)

and
|f∞,p(M)− f∞,p(M �)| ≤ L|M −M �|(|M |p−1 + |M |p−1) (5)

for all (M,M �) ∈ M3×3 ×M3×3.
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As a consequence of the variational convergences we will provide an equivalent deterministic problem
of

(PHε) inf
�

Hε(ω, u)−
ˆ
O

L.u dx : u ∈ Lp(O, R3)
�

where L ∈ Lq(O, R3), q = p

p−1 .

The functional Hε models the internal energy of a mechanical structure made up of the union Tε of
thin parallel cylinders which represent the rigid fibers and a soft elastic material matrix occupying O\Tε.
We only have a statistical knowledge of the cross sections of the fibers in the sense that their positions
are statistically homogeneous. From the mathematical point of view, this means that they are placed at
random according to a stationary point process. The stiffness of the elastic material occupying O \ Tε

is of order εp. The functions u represent the displacements of the mechanical structure subjected to a
given load L and clamped on the plane Γ0 = [x3 = 0]. We assume large deformations in the matrix and
the fibers so that the strong and soft materials are hyperelastic. Our objective is to analyze the behavior
of (PHε) in a variational way when ε tends to 0 while the fillling ratio of the fibers is kept constant and,
consequently, to provide a simplified but accurate model for the behavior of the slices of the geomaterial
TexSolTM ([12, 14, 15]). It is a soil reinforcement process created in 1984 by Leflaive, Khay and Blivet
from the LCPC (Laboratoire Central des Ponts et Chaussées) which mixes the soil (sand) with a wire.
The obtained reinforced material has a better mechanical resistance than the sand without wire. The
wire is randomly distributed on the free surface and is covered with sand simultaneously to create a
TexSolTM layer. In our simplified model we assume the wire to cut the surface perpendicularly (the size
h is small) so that the thin parallel cylinders, randomly distributed, represent the pieces of the wire which
are perfectly stuck with a hyperelastic matrix which represent the sand (cf. Figure 2).

h

Figure 2: A slice of real material

From the mathematical point of view we reexamine the work of [5, 6, 17] in a stochastic setting and
in the scope of nonlinear elasticity. We establish the almost sure convergence of (PHε) when ε → 0 to
the deterministic and homogeneous problem

(PH) min
�

H(u)−
ˆ
O

L.u dx : v ∈ Lp(O, R3)
�

where the energy functional H is of non local nature. More precisely we establish the almost sure Γ-
convergence of the sequence (Hε)ε>0 to the infimum convolution F0�G0 defined for every u ∈ Lp(O, R3)
by

F0 �G0 (u) := inf
v∈Lp(O,R3)

�
F0(u− v) + G0(v)

�

(Theorem 5.1 and Corollary 5.1) where F0 and G0 are the functionals energy Γ-limits of the functionals
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u �→ εp

ˆ
O\Tε

f(∇u) dx and u �→
ˆ
O∩Tε

g(∇u) dx respectively, which are defined in Lp(O, R3) by

F0(u) =
ˆ
O

f∗∗0 (u) dx,

G0(u) =





θ

ˆ
O

(g⊥)∗∗(
∂u

∂x3
)dx if u ∈ V0

+∞ otherwise,

where V0 :=
�

u ∈ Lp(O, R3) :
∂u

∂x3
∈ Lp(O, R3), u(x̂, 0) = 0 on �O

�
. The densities f0 and g⊥ are defined

by

f0(a) = inf
n∈N∗

�ˆ
Ω

�S[0,n[2(ω, a)
n2

dP(ω)

�
, a ∈ R3,

g⊥(a) := inf
ξ∈M3×2

g (ξ|a) , M3×2 is the set of 3× 2 matrices,

where Â �→ �S
Â

is a suitable discrete subadditive process on subsets of R2, and θ ∈ (0, 1) is the asymptotic
volume fraction

´
Ω |Ŷ ∩D(ω)| dP(ω), Ŷ = (0, 1)2 of the fibers. In our probabilistic model the random

set D(ω) is statistically not too sparse so that θ > 0 (Remark 2.1). In the deterministic case, i.e., when
the fibers are periodically distributed, θ reduces to |Ŷ ∩D|, and the density f∗∗0 to

f∗∗0 (a) = inf
�ˆ

Ŷ

(f∞,p)∗∗(∇̂w, 0) dŷ : w ∈ W 1,p

# (Ŷ , R3),
ˆ

Ŷ

w dŷ = a, w = 0 in D

�

where W 1,p

# (Ŷ , R3) denotes the subset of W 1,p(Ŷ , R3) made up of Ŷ -periodic functions (Corollary 2.1).

2 The probabilistic framework

No difference is made between R3 and the three dimensional euclidean physical space equipped with an
orthogonal basis denoted by (e1, e2, e3). For all x = (x1, x2, x3) of R3, x̂ stands for (x1, x2) and M3×3,
M3×2 denotes the sets of 3× 3 and 3× 2 matrices. We denote by Ŷ the unit cell (0, 1)2 of R2 and by Y
the unit cell (0, 1)3 of R3.

For any δ > 0 and any non empty bounded set Â of R2, we make use of the following notation:
Âδ :=

�
x ∈ Â : d(x, R2 \ Â) > δ

�
. For any bounded Borel set A of R2 or R3, |A| denotes its Lebesgue

measure and #(A) its cardinal when it is finite.
Let d be a given number satisfying 0 < d ≤ 1 and consider the set

Ω =
�
(ωi)i∈N : ωi ∈ R2, |ωi − ωj | ≥ d for i �= j

�

equipped with the trace σ-algebra A of the standard product σ-algebra on Ω. Let B̂d/2(0) be the open ball
of R2 centered at 0 with radius d/2, then for every ω = (ωi)(i)∈N we form the disk D(ωi) := ωi + B̂d/2(0)
and consider D(ω) :=

�
i∈N D(ωi). Therefore ω �→ T (ω) = D(ω) × R is a random set in R3, union of

random cylinders, whose basis is the union of the pairwise disjoint disks D(ωi) of R2 centered at ωi. We
set Tε(ω) := εD(ω)× R.

For every z ∈ Z2 we define the operator τz : Ω → Ω by τzω = ω − z. Note that D(τzω) = D(ω)− z.
Furthermore we assume that there exists a probability measure on (Ω,A) which satisfies the system of
three following axioms:

(A1) Non sparsely distribution: P
� �

ω ∈ Ω : |Ŷ ∩D(ω)| > 0
� �

= 1;

(A2) Stationary condition: ∀z ∈ Z2, τz#P = P where τz#P denotes the probability image of P by τz;
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(A3) Asymptotic mixing property: for all sets E and F of A, lim|z|→+∞P(τzE ∩ F ) = P(E)P(F ).

Remark 2.1. i) It would be more natural to consider stationary condition (A2) with respect to the
continuous group (τt)t∈R2 defined in the same way by τtω = ω − t. Actually the discrete group
(τz)z∈Z2 suffices for the mathematical analysis. The size of the cell Ŷ is chosen in such a way to
fix the generator of the group (τz)z∈Z2 . Condition (A2) then says that every random function X
taking its source in Ω is statistically homogeneous in the sense that X and X ◦ τz have the same law
(i.e. X#P = X ◦ τz#P). Roughly speaking, moving a window Â in R2 following the translations
in R2, the distributions of cross sections in the window are statistically the same.

ii) Condition (A1) together with condition (A2) yield that the random set D(ω) is statistically not too
sparse in R2. Indeed for every Z2-translated Â = Ŷ + z of Ŷ

P
� �

ω : |Â ∩D(ω)| > 0
��

= P
� �

ω : |Ŷ ∩ (D(ω)− z)| > 0
��

= P
� �

ω : |Ŷ ∩ (D(τzω))| > 0
��

= P
� �

ω : |Ŷ ∩ (D(ω))| > 0
��

= 1.

Note that from (A1), the asymptotic volume fraction satisfies
ˆ

Ω
|Ŷ ∩D(ω)| dP(ω) > 0.

iii) Condition (A3) says that the events τzE and F are independent provided that z be large enough.

iv) Consider ω̄ = (ω̄i)i∈N where ω̄i are the centers of the hexagonal close-packing of disks in R2. Then
ω̄ is a “maximal” distribution in the sense that |Ŷ ∩D(ω)| ≤ |Ŷ ∩D(ω̄)| for a.s. ω in Ω.

Figure 3: Random cross sections at scale ε = 1
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A simple specimen of probability space which fulfills all the conditions above is the generalized random
chessboard described below.

Example 2.1 (Random chessboard-like). Given 0 < d < 1, let us consider a countable set of points
Ω0 = {xk : k ∈ N} in Ŷd/2 and set Ω := Πz∈Z2Ωz where Ωz = Ω0 + z for all z ∈ Z2. We equip Ω with
the σ-algebra A generated by the cylinders of Ω. For a given family (αk)k∈N of non negative numbers
satisfying

�
k∈N αk = 1 we consider the probability measure µ0 =

�
k∈N αkδxk on Ω0 and the product

probability measure P = Πz∈Zµz on (Ω,A) where µz = µ0 for all z ∈ Z. Then it is easy to check that P
satisfies axioms (A1)-(A3).

Figure 4: A piece of a random chessboard of cross sections at scale ε = 1 with #(Ω0) = 9

Remark 2.2. All the results of the paper remain valid if we substitute for the disk B̂d/2(0), any connex
compact set of R2 included in B̂d/2(0) and chosen at random.

Let us recall the following general basic notion of discrete subadditive process. We consider a probabil-
ity space (Ω,A,P) and a group (τz)z∈ZN of P-preserving transformations on (Ω,A). The group (τz)z∈ZN

is said to be ergodic if every set E in A, such that τzE = E for every z ∈ ZN , satisfies P(E) = 0 or
P(E) = 1. A sufficient condition to ensure ergodicity of (τz)z∈ZN is the mixing condition (A3): for every
E and F in A

lim
|z|→+∞

P(τzE ∩ F ) = P(E)P(F )

which expresses an asymptotic independence.
Let I denote the set of half open intervals [a, b) of the lattice spanned by (0, 1)N . A discrete subadditive

process with respect to (τz)z∈ZN is a set function S : I −→ L1(Ω,A,P) satisfying

(i) for every I ∈ I such that there exists a finite family (Ij)j∈J of disjoint intervals in I with I =�
j∈J

Ij ,
SI(·) ≤

�

j∈J

SIj (·),

(ii) ∀I ∈ I, ∀z ∈ ZN , SI ◦ τz = Sz+I

A family (In)n∈N of sets in I is called regular if there exists another family (I �
n
)n∈N of sets in I such

that
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(i) In ⊂ I �
n

for all n ∈ N;

(ii) (I �
n
) is non decreasing;

(iii) there exists a constant C > 0 such that 0 < |I �
n
| ≤ C|In| for all n ∈ N,

(iv) RN

+ =
�

I �
n
.

The following subadditive ergodic theorem is due to Ackoglu-Krengel.

Theorem 2.1. Let S be a discrete subadditive process with respect to an ergodic group (τz)z∈ZN satisfying

inf
�ˆ

Ω

SI(ω)
|I| P(dω)I ∈ I, |I| �= 0

�
> −∞

and let (In)n∈N be a regular family of sets in I. Then almost surely

lim
n→∞

SIn

|In|
= lim

n→∞

S[0,n[N

nN

= inf
n∈N∗

�
E
S[0,n[N

nN

�
= lim

n→∞
E
S[0,n[N

nN

where E denotes the expectation operator.

For a proof see [1] and, for some extensions, see [13, 16].

We are going to define the limit density energy associated with the random integral functional u �→´
O\Tε

f(∇u) dx by applying Theorem 2.1 with N = 2 to a suitable set function �S on subsets of I, which
ranges over the space L1(Ω,A,P) governed by axioms (A1)-(A3). More precisely, for all Â ∈ I and all
a ∈ R3 set

�S
Â
(ω, a) := inf

�ˆ
◦
Â×(0,1)

f∞,p(∇w) dx : w ∈ AdmA(ω, a)

�
,

Adm
Â
(ω, a) :=

�
w ∈ W 1,p

0

� ◦

Â ×(0, 1) \ T (ω), R3
�

:
 
◦
Â×(0,1)

w dx = a

�
,

where we still denote by w the extension by zero on T (ω)∩
� ◦

Â ×(0, 1)
�

of every function w in Adm
Â
(ω, a).

Since the Lebesgue measure does not charge the boundary of the elements of I, one can take as I the
set of all open intervals (a, b) of the lattice spanned by Ŷ that we still denote by I. Subsequently the
subadditivity condition (i) becomes: for every I ∈ I such that there exists a finite family (Ij)j∈J of
disjoint intervals in I with |I \

�
j∈J

Ij | = 0,

�SI(·) ≤
�

j∈J

�SIj (·).

It is standard to see that the random functionals defined in the introduction are measurable when
Ω× Lp(O, R3) is equipped with the product σ-algebra A⊗ B where B is the Borel σ-algebra associated
with the normed space Lp(O, R3). Consequently, for all fixed Â in I and all fixed a in R3, the map
ω �→ �S

Â
(ω, a) is measurable. Actually we have

Theorem 2.2. For all fixed a ∈ R3, the map

�S(., a) : I −→ L1(Ω,A,P)

Â �−→ �S
Â
(., a)
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is a subadditive process with respect to the group (τz)z∈Z2 defined by τz(ω) = ω − z. It satisfies for all
a ∈ R3, all Â ∈ I and all δ > 0 small enough

�S
Â
(ω, a) ≤ C(p)

δp

���(Ŷ \D(ω̄))2δ

���
|a|p|Â| (6)

where C(p) is a non negative constant depending only of p.

Therefore for any regular family (In)n∈N of sets in I, the limit lim
n→∞

�SIn(ω, a)
|In|

exists for P almost

every ω ∈ Ω and

lim
n→∞

�SIn(a, ω)
|In|

= lim
n→∞

�S[0,n[2(., a)
n2

= inf
m∈N∗

�
E

�S[0,m[2(., a)
m2

�
.

We denote by f0 the common value above.

Proof. We establish that Adm
Â
(ω, a) is non empty and that �S

Â
∈ L1(Ω,A,P) by establishing (6). The

rest of the proof consists in checking each condition (i) and (ii) and is straightforward. Fix Â ∈ I. For
0 < δ small enough consider φδ = ρδ ∗ 1(Â\D(ω))δ

where ρδ is a standard mollifier. Clearly

φδ(x̂) =

�
1 if x̂ ∈ (Â \D(ω))2δ,

0 if x̂ ∈ R2 \ (Â \D(ω)).

Therefore  
Â

φδ dx̂ ≥

���(Â \D(ω))2δ

���

|Â|
.

Take ω̄ the close-packing distribution in R2 (Remark 2.1). According to (A2), (A3) we infer

 
Â

φδ dx̂ ≥

���
�

z∈Â∩Z2(Ŷ + z \D(ω))2δ

���

|Â|

=

���
�

z∈Â∩Z2(Ŷ \D(τzω))2δ

���

|Â|

≥ #(Â)
|Â|

���(Ŷ \D(ω̄))2δ

��� =
���(Ŷ \D(ω̄))2δ

��� . (7)

Take now θ ∈ C1
0(0, 1) satisfying

´ 1
0 θ(t) dt = 1. The random function defined by wδ(x̂, x3) =

a
φδ(x̂)θ(x3)ffl

A
φδ dx̂

clearly belongs to Adm
Â
(ω, a) (for short we do not indicate the dependance on ω). Moreover

from (7) and the growth condition satisfied by f∞,p,

�S
Â
(ω, a) ≤

ˆ
Â×(0,1)\T (ω)

f∞,p(∇wδ) dx̂

≤ C(p)

δp

���(Ŷ \D(ω̄))2δ

���
|a|p||Â|.

where C(p) is a non negative constant which depends only on p.

We define the elastic density associated with the limit internal energy of the material occupying
O \ Tε(ω) by:

∀a ∈ R3, f∗∗0 (a) =
�

lim
n→∞

�
�S[0,n[2(ω, a)

n2

��∗∗
(a) ω a.s.

=
�

inf
m∈N∗

�
E

�S[0,m[2(., a)
m2

��∗∗
(a)

8



where, for any function h : R3 → R, h∗∗ stands for its convexification, i.e., the greatest convex function
less than h.

In order to provide some flexibility in the proofs of Section 3, it is convenient to introduce a new
subadditive process A �→ SA where now A runs over half open cubes of R3, converging toward the same
limit f0(a). Precisely, let us still denote by I the set of all open intervals (a, b) of the lattice spanned by
Y , we apply Theorem 2.1 with N = 3 to the set function defined for all A ∈ I and all a ∈ R3 by

SA(ω, a) := inf
�ˆ

◦
A

f∞,p(∇w) dx : w ∈ AdmA(ω, a)
�

,

AdmA(ω, a) :=
�

w ∈ W 1,p

0

� ◦

A \T (ω), R3
�

:
 
◦
A

w dx = a

�
.

Theorem 2.3. For all fixed a ∈ R3, the map

S(., a) : I −→ L1(Ω,A,P)
A �−→ SA(., a)

is a subadditive process with respect to the group (τz)z∈Z3 defined by τz(ω) = ω − ẑ where z = (ẑ, z3).

Therefore for any regular family (In)n∈N of sets in I the limit lim
n→∞

SIn(ω, a)
|In|

exists for P almost every

ω ∈ Ω and lim
n→∞

SIn(a, ω)
|In|

= f0(a).

Proof. By repeating the proof of Theorem 2.2 with minor changes, we establish in the same way the

existence of the limit lim
n→∞

SIn(ω, a)
|In|

. Take now In = (0, n2)2× (0, n). Clearly (In)n∈N is a regular family

in I (I �
n

= In is suitable), and a change of scale yields

SIn(ω, a)
|In|

=
S(0,n2)2×(0,n)(ω, a)

n5

=
S(0,n)2×(0,1)(ω, a)

n2

=
�S(0,n)2(ω, a)

n2
,

so that for a.s. ω in Ω, lim
n→∞

SIn(ω, a)
|In|

= f0(a).

Corollary 2.1. Assume that the fibers are periodically distributed, i.e., in the chessboard-like example
above, Ω0 and Ω1 are reduced to a single point, then for all a ∈ R3,

f0(a) = inf
n∈N∗

�S(0,n)2(a)
n2

where

S
Â
(a) := inf

�ˆ
◦
Â×(0,1)

f∞,p(∇w) dx : w ∈ Adm
Â
(a)

�
,

Adm
Â
(a) :=

�
w ∈ W 1,p

0

� ◦

Â ×(0, 1) \ T , R3
�

:
 
◦
Â×(0,1)

w dx = a

�
.

Furthermore f∗∗0 (a) reduces to

f∗∗0 (a) = inf
�ˆ

Ŷ

(f∞,p)∗∗(∇̂w, 0) dŷ : w ∈ W 1,p

# (Ŷ , R3),
ˆ

Ŷ

w dŷ = a, w = 0 in D

�

where W 1,p

# (Ŷ , R3) denotes the subset of W 1,p(Ŷ , R3) made up of Ŷ -periodic functions.
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Proof. Clearly f0(a) = inf
n∈N∗

�S(0,n)2(a)
n2

. Thus for all n ∈ N∗

f∗∗0 (a) ≤
� �S(0,n)2(.)

n2

�∗∗
(a)

so that

f∗∗0 (a) ≤ inf
n∈N∗

� �S(0,n)2(.)
n2

�∗∗
(a).

Since the converse inequality is obviously satisfied, we conclude to

f∗∗0 (a) = inf
n∈N∗

� �S(0,n)2(.)
n2

�∗∗
(a). (8)

But from standard arguments using Fenchel’s Duality,

� �S(0,n)2(.)
n2

�∗∗
(a) =

1
n2

inf

�ˆ
nŶ×(0,1)

(f∞,p)∗∗(∇w) dy : w ∈ Adm
nŶ

(a)

�
. (9)

Let w# be a minimizer of

inf

�ˆ
Y \T

(f∞,p)∗∗(∇w) dy : w ∈ W 1,p

# (Y, R3),
ˆ

Y

w dy = a, w = 0 in T

�
,

extended by Ŷ -periodicity on R2 × (0, 1) and fix n ∈ N∗. Clearly ∂(f∞,p)∗∗(∇w#(x)) is non empty and
for short, we assume that it is single valued. Note that −div∂(f∞,p)∗∗(∇w#) = 0 a.e. in nŶ × (0, 1) and
∂(f∞,p)∗∗(∇w#).ν is anti-periodic, ν denoting the unit normal to the boundary of nŶ × (0, 1). Take any
w ∈ Adm

nŶ
(a). According to the subdifferential inequality we have

ˆ
nY

(f∞,p)∗∗(∇w) dy ≥
ˆ

nŶ×(0,1)
(f∞,p)∗∗(∇w#) dy +

ˆ
nŶ×(0,1)

∂(f∞,p)∗∗(∇w#).∇(w − w#) dy.

Integrating by parts, we infer
ˆ

nŶ×(0,1)
(f∞,p)∗∗(∇w) dy ≥

ˆ
nŶ×(0,1)

(f∞,p)∗∗(∇w#) dy = n2

ˆ
Y

(f∞,p)∗∗(∇w#) dy

so that from (9)

� �S(0,n)2(.)
n2

�∗∗
(a) ≥ inf

�ˆ
Y

(f∞,p)∗∗(∇w) dy : w ∈ W 1,p

# (Y, R3),
ˆ

Y

w dy = a, w = 0 in T

�
.

Thus, from (8) and since the converse inequality clearly holds

f∗∗0 (a) = inf
�ˆ

Y

(f∞,p)∗∗(∇w) dy : w ∈ W 1,p

# (Y, R3),
ˆ

Y

w dy = a, w = 0 in T

�
.

The conclusion then follows by noticing that

inf
�ˆ

Y

(f∞,p)∗∗(∇w) dy : w ∈ W 1,p

# (Y, R3),
ˆ

Y

w dy = a, w = 0 in T

�

is equal to

inf
�ˆ

Ŷ

(f∞,p)∗∗(∇̂w, 0) dŷ : w ∈ W 1,p

# (Ŷ , R3),
ˆ

Ŷ

w dŷ = a, w = 0 in D

�

which is a straightforward consequence of Jensen’s inequality.
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The following proposition is a straightforward consequence of estimate (6).

Proposition 2.1. The function f∗∗0 is a positively homogeneous convex function of degree p, satisfies
the growth conditions (4) with the same constant α, with a constant β possibly different, and satisfies the
Lipschitz condition (5) with a constant L possibly different.

Proof. Clearly, f∗∗0 is positively homogeneous of degree p. The upper bound in (4) follows straightfor-
wardly from (6), and (5) will be deduced by using standard argument of convex analysis provided that
we establish: f∗∗(a) ≥ α |a|p for all a ∈ R3. The assertion follows by noticing that for every function w
in Adm

nŶ
(ω, a) we have

α |a|p = α

�����

 
nŶ×(0,1)

w dx

�����

p

≤ α

 
nŶ×(0,1)

|w|p dx

≤ α

 
nŶ×(0,1)

|∇w|p dx

≤
 

nŶ×(0,1)
f∞,p(∇w) dx

where we have used Poincaré inequality in the second inequality.

We end this section by the following proposition which is a consequence of Theorem 2.1 when S is
additive. It extends the Birkoff ergodic theorem.

Proposition 2.2. Let n ∈ N∗, and ψ : Ω×R2 −→ R be a A⊗B(R2)-measurable function satisfying the
three following conditions:

i) for P-almost every ω ∈ Ω, ŷ �→ ψ(ω, ŷ) belongs to L1
loc

(R2);

ii) for all bounded Borel set Â of R2 the map Â �→
´

Â
ψ(ω, ŷ) dŷ belongs to L1(Ω,A,P);

iii) for all z ∈ nZ2, for all ŷ ∈ R2, ψ(ω, ŷ + z) = ψ(τzω, ŷ) for P-almost every ω ∈ Ω.

Then
ψ(ω,

.

ε
) � x �→ E

 
(0,n)2

ψ(., ŷ) dŷ

for the σ(L1(O), L∞(O)) topology.

Proof. See Theorem 4.2 and Proposition 5.3 in [8].

3 The limit problem associated with the soft material structure

This section is devoted to the asymptotic analysis of the functional F v

ε
(ω, .) : Lp(O, R3) → R+ ∪ {+∞}

F v

ε
(ω, u) =





εp

ˆ
O\Tε

f(∇u) dx if u ∈ W 1,p

Γ0
(O, R3), u = v on O ∩ Tε

+∞ otherwise,

where v is a given function in W 1,p

Γ0
(O, R3). Before to establish the almost sure Γ-convergence of the

functional F v

ε
we start by establishing a compactness result which explains why we equip Lp(O, R3) with

its weak convergence. Note that the choice of the topology is crucial in the Γ-convergence process (see
[2, 3, 9]). All along the paper we denote by → and � the strong and weak convergences in the various
topological spaces, we do not relabel the subsequences and C will denote various nonnegative constants
independent of ε and ω which may vary from line to line.

11



Lemma 3.1 (compactness). Let (uε)ε>0 be a sequence satisfying sup
ε>0 F v

ε
(ω, uε) < +∞ for P a.s.

ω ∈ Ω. Then for P a.s. ω ∈ Ω, there exists a subsequence possibly depending on ω and u ∈ Lp(O, R3)
possibly depending on ω such that uε � u in Lp(O, R3).

Proof. Fix ω ∈ Ω such that (A1) holds and such that sup
ε>0 F v

ε
(ω, uε) < +∞. Consider w ∈ W 1,p(R2, R3).

According to the Poincaré-Wirtinger inequality, there exists a constant C(ω) such that
ˆ

Ŷ

�����w −
 

Ŷ ∩D(ω)
w dŷ

�����

p

dx̂ ≤ C(ω)
ˆ

Ŷ

|∇w|p dx̂

from which we easily deduce
ˆ

εŶ

�����w −
 

εŶ ∩εD(ω)
w dŷ

�����

p

dx̂ ≤ C(ω)
ˆ

εŶ

|ε∇w|p dx̂

and finally ˆ
εŶ

|w|p dx̂ ≤ 2p

�
ε2

 
εŶ ∩εD(ω)

|w|p dx̂ + C(ω)
ˆ

εŶ

|ε∇w|p dx̂
�
. (10)

Applying (10) to the function τεzw defined by τεzw(x̂) := w(x̂ + εz) we inferˆ
ε(Ŷ +z)

|w|p dx̂ =
ˆ

εŶ

|τεzw|p dx̂

≤ 2p

�
ε2

 
εŶ ∩εD(ω)

|τεzw|p dx̂ + C(ω)
ˆ

εŶ

|ε∇τεzw|p dx̂
�

= 2p

�
ε2

 
ε(Ŷ +z)∩εD(τ−zω)

|w|p dx̂ + C(ω)
ˆ

ε(Ŷ +z)
|ε∇w|p dx̂

�
. (11)

Noticing that

�����
�O \

�

z∈Iε

ε(Ŷ + z)

����� = 0 where Iε is a finite subset of Z2 and (Ŷ + z)z∈Z2 are pairwise

disjoint, from (11), and since uε = v on εD(τ−zω)× (0, h), we obtain
ˆ
O

|uε|p dx ≤ 2p

�
ε2

�

z∈Iε

ˆ
h

0

 
ε(Ŷ +z)∩εD(τ−zω)

|v|p dx + C(ω)
ˆ
O

|ε∇uε|p dx
�

= C
� �

z∈Iε

1
|(Ŷ + z) ∩D(τ−zω)|

ˆ
h

0

ˆ
ε(Ŷ +z)∩εD(τ−zω)

|v|p dx + C(ω)
ˆ
O

|ε∇uε|p dx
�

≤ C
� 1
|Ŷ ∩D(ω)|

�v�p

Lp(O,R3) + C(ω)
ˆ
O

|ε∇uε|p dx
�

and the conclusion follows from εp

ˆ
O\Tε

|∇uε|p dx ≤ 1
α

F v

ε
(ω, uε).

Remark 3.1. The same compactness result clearly holds when we substitute any function vε for v provided
that sup

ε>0
�vε�Lp(O∩Tε,R3) < +∞ and sup

ε>0
�∇vε�Lp(O∩Tε,M3×3) < +∞.

Let us define the functional F v

0 : Lp(O, R3) → R+ by

F v

0 (u) =
ˆ
O

f∗∗0 (u− v) dx

where f0 is the function defined in Section 2. The following theorem is a consequence of the two bounds
established in the next two subsections.

Theorem 3.1. The sequence of random functionals (F v

ε
)ε>0 almost surely sequentially Γ-converges to

the deterministic functional F v

0 when Lp(O, R3) is equipped with its weak topology.

12



3.1 The upper bound

Proposition 3.1. There exists a set Ω� ∈ A of full probability such that for all u ∈ Lp(O, R3) and all
ω ∈ Ω� there exists a sequence (uε(ω))ε>0 in Lp(O, R3) satisfying

uε(ω) � u in Lp(O, R3)
F v

0 (u) ≥ lim sup
ε→0 F v

ε
(ω, uε(ω))

or, equivalently, for all ω ∈ Ω�, Γ− lim supF v

ε
(ω, .) ≤ F v

0 .

Proof. We proceed into two steps.
Step 1. For every v ∈ W 1,p(O, R3), let us consider the function F̃ v

0 : Lp(O, R3) → R ∪ {+∞} defined
by

F̃ v

0 (u) =






ˆ
O

f0(u− v) dx if u ∈ C1
c
(O, R3)

+∞ otherwise.

We establish Γ− lim supFε(ω, .) ≤ F̃ v

0 for P a.s. ω ∈ Ω��.
Let η ∈ Q+ intended to go to 0 and let (Qi,η)i∈Iη be a finite family of pairwise disjoint cubes of size

η included in O, such that ������
O \

�

i∈Iη

Qi,η

������
= 0.

Let vδ ∈ C1
c
(O, R3) be a regular approximation of v in Lp(O, R3), i.e., satisfying vδ → v strongly in

Lp(O, R3), set zδ := u− vδ and zδ,η :=
�

i∈Iη

zδ(xi,η)1Qi,η where xi,η is arbitrarily chosen in Qi,η. Since zδ

is a Lipschitz function on O, clearly zδ,η → zδ = u− vδ in Lp(O, R3) when η → 0.
Consider the greater open cube Ci,η,ε in I included in 1

ε
Qi,η and let wi,η,ε ∈ AdmCi,η,ε(ω, zδ(xi,η)) be

a minimizer of SCi,η,ε(ω, zδ(xi,η)) extended by zero outside Ci,η,ε \ T (ω) (for shorten notation, we do not
indicate the dependance on δ). The family (Ci,η,ε)ε is regular. Indeed for every cube Q =]a, b[ in R3, let
denote by Q� the associated cube ]0, b[ and consider the family (C �

i,η,ε
)ε. One has

|Ci,η,ε|
|C �

i,η,ε
| =

|Ci,η,ε|�� 1
ε
Qi,η

�� ×
|Qi,η|��Q�

i,η

�� ×
�� 1
ε
Q�

i,η

��

|C �
i,η,ε

| .

But one can easily check that lim
ε→0

|Ci,η,ε|�� 1
ε
Qi,η

�� = lim
ε→0

|C �
i,η,ε

|�� 1
ε
Q�

i,η

�� = 1 so that, for ε small enough (depending on

fixed η)
|Ci,η,ε|
|C �

i,η,ε
| ≤ 2

|Qi,η|��Q�
i,η

�� . The family (C �
i,η,ε

)ε then clearly satisfies regularity conditions (i)-(iv).

Therefore, according to Theorem 2.3

lim
ε→0

SCi,η,ε(ω, z(xi,δ,η))
|Ci,η,ε|

= lim
ε→0

1
|Ci,η,ε|

ˆ
Ci,η,ε\T (ω)

f∞,p(∇wi,η,ε(ω, y)) dy

= f0(zδ(xi,η)) (12)

for all ω ∈ Ωi,η satisfying P(Ωi,η) = 1. In what follows we denote the set of full probability
�

η∈Q+

�
i∈Iη

Ωi,η

13



by Ω� and we fix ω ∈ Ω�. From (12) we infer
ˆ
O

f0(zδ,η) dx =
�

i∈Iη

ˆ
Qi,η

f0(zδ,η) dx

=
�

i∈Iη

|Qi,η| f0(z(xi,η)) dx

= lim
ε→0

�

i∈Iη

|Qi,η|
1

|Ci,η,ε|

ˆ
Ci,η,ε\T (ω)

f∞,p(∇wi,η,ε(ω, y)) dy

= lim
ε→0

�

i∈Iη

|Qi,η|
1

|εCi,η,ε|

ˆ
εCi,η,ε\εT (ω)

f∞,p(∇wi,η,ε(ω,
y

ε
))dy

= lim
ε→0

�

i∈Iη

�� 1
ε
Qi,η

��
|Ci,η,ε|

ˆ
Qi,η\εT (ω)

f∞,p(∇wi,η,ε(ω,
y

ε
))dy

= lim
ε→0

�

i∈Iη

ˆ
Qi,η\Tε(ω)

f∞,p(∇wi,η,ε(ω,
y

ε
)) dy. (13)

We have used the fact that limε→0
| 1ε Qi,η|
|Ci,η,ε|

= 1 and that wi,η,ε = 0 outside Ci,ε,η \ T (ω).

Let us define the function uδ,η,ε on O by :

uδ,η,ε(ω, x) = v(x) +
�

i∈Iη

wi,η,ε(ω,
x

ε
)1Qi,η (x).

According to the boundary condition satisfied by wi,η,ε, clearly uδ,η,ε ∈ W 1,p

Γ0
(O, R3) and uδ,η,ε = v on

O ∩ Tε(ω). Furthermore, from (13), (5) and (3) we deduce
ˆ
O

f0(zη) dx = lim
ε→0

�

i∈Iη

ˆ
Qi,η\Tε(ω)

f∞,p(ε∇uδ,η,ε) dx

= lim
ε→0

ˆ
O\Tε(ω)

f∞,p(ε∇uδ,η,ε) dx

= lim
ε→0

εp

ˆ
O\Tε(ω)

f(∇uδ,η,ε) dx = lim
ε→0

F v

ε
(ω, uδ,η,ε(ω, .)). (14)

Letting η → 0, then δ → 0 in (14) and since w �→
´
O

f0(w) dx is clearly strongly continuous in Lp(O, R3)
we finally obtain ˆ

O

f0(z) dx = lim
δ→0

lim
η→0

lim
ε→0

F v

ε
(ω, uδ,η,ε(ω, .)). (15)

On the other hand, since wi,η,ε ∈ AdmCi,η,ε(ω, z(xi,η)), one has
 

Qi,η

wi,η,ε(ω,
x

ε
) dx =

1
|Qi,η|

ˆ
εCi,η,ε

wi,η,ε(ω,
x

ε
) dx

=
|Ci,η,ε|�� 1
ε
Qi,η

��

 
εCi,η,ε

wi,η,ε(ω,
x

ε
) dx

=
|Ci,η,ε|�� 1
ε
Qi,η

��

 
Ci,η,ε

wi,η,ε(ω, x) dx

=
|Ci,η,ε|�� 1
ε
Qi,η

��zδ(xi,η)

so that letting successively ε → 0 and η → 0 we easily infer

lim
η→0

lim
ε→0

uδ,η,ε(ω, .) = v + (u− vδ) weakly in Lp(O, R3).

14



Then letting δ → 0,
lim
δ→0

lim
η→0

lim
ε→0

uδ,η,ε(ω, .) = u weakly in Lp(O, R3). (16)

Collecting (15) and (16), a standard diagonalization argument1 furnishes a map ε �→ (δ(ε), η(ε)) such
that

uε(ω, .) := uδ(ε),η(ε),ε(ω, .) � u weakly in Lp(O, R3);
lim
ε→0

F v

ε
(ω, uε(ω, .)) = F̃ v

0 (u)

and the conclusion of step 1 follows straightforwardly.

Step 2. We end the proof by a relaxation argument. According to the first step

Γ− lim supF v

ε
(ω, .) ≤ F̃ v

0 .

Taking the lower semicontinuity envelope of each two members in the space Lp(O, R3) equipped with its
weak topology, we infer

Γ− lim supF v

ε
(ω, .) ≤ (F̃ v

0 )∗∗.

But, from standard relaxation result (F̃ v)∗∗ = F v

0 and the conclusion follows.

3.2 The lower bound

Proposition 3.2. For all uε weakly converging to u in Lp(O, R3) and for P a.s. ω ∈ Ω one has

F v

0 (u) ≤ lim inf
ε→0

F v

ε
(ω, uε).

Proof. From (3) and since uε = v on Tε(ω) ∩ O we easily deduce

lim inf
ε→0

εp

ˆ
O\Tε

f(∇uε)dx = lim inf
ε→0

ˆ
O

f∞,p(ε∇uε)dx.

Fix x0 in O and set Qρ(x0) := Sρ(x̂0)× Iρ(x0,3) (to shorten notation we sometimes do not indicate the
fixed argument x0). By using a blow up argument, it is enough to prove that for a.e. x0 one has

lim
ρ→0

lim inf
ε→0

 
Qρ(x0)

f∞,p(ε∇uε) dx ≥ f∗∗0 (u(x0)− v(x0)).

According to the decomposition lemma (cf [3, 11]), there exists wε in W 1,p

0 (Qρ, R3) such that (|∇wε|p)ε>0

is uniformly integrable and such that the sequences (∇wε)ε>0 and (∇εuε)ε>0 generate the same Young
measure µ (for shorten notation we do not indicate the dependance on ρ for w). Therefore applying
standard lower semicontinuity and continuity properties for Young measures (see Proposition 4.3.4 and
Theorem 4.3.3 in [3]) we infer

lim inf
ε→0

 
Qρ(x0)

f∞,p(∇wε) dx =
ˆ

Qρ(x0)

ˆ
M3×3

S

f∞,p(M) dµx dx ≤ lim inf
ε→0

 
Qρ(x0)

f∞,p(ε∇uε) dx

so that it suffices to establish

lim inf
ρ→0

lim inf
ε→0

 
Qρ(x0)

f∞,p(∇wε) dx ≥ f∗∗0 (u(x0)− v(x0)). (17)

Note that since

εuε � 0 in W 1,p(O, R3)
εuε → 0 in Lp(O, R3)

1One can easily check that uδ,η,ε(ω, .) belongs to a fixed ball B(0, r) of Lp(O, R3). Since the weak topology of Lp(O, R3)

induces a metric on bounded sets, the diagonalization argument holds.
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we infer

wε � 0 in W 1,p(Qρ, R3) (18)
wε → 0 in Lp(Qρ, R3) (19)

when ε → 0.
Let Cε,ρ be the smallest cube in I containing 1

ε
Qρ. Our strategy is to change the function wε in order

to obtain a function in AdmCε,ρ(ω, u(x0)− v(x0)) whose gradient decreases the left hand side of (17).

First change. For η > 0 intended to go to 0 set Âη := (Sρ\εD(ω))η (we do not indicate the dependence
on ε and ω) and wε,η(x) := φε,η(x̂)wε(x) + εv(x0) where φε,η := ρη ∗ 1

Âη
. Note that φε,η satisfies

|grad(φε,η)| ≤ C

η

and

φε,η =

�
0 in ∂(Sρ \ εD(ω)),
1 in Â2η,

thus wε,η := εv(x0) on ∂(Qρ \εT (ω)). We extend wε,η by εv(x0) on the complementary set of Qρ \εT (ω).
Set A2η := Â2η × Iρ. From the growth condition (3) we deduce

ˆ
Qρ

f∞,p(∇wε,η) dx

=
ˆ

A2η

f∞,p(∇wε,η) dx +
ˆ

(Qρ\εT (ω))\A2η

f∞,p(∇wε,η) dx

≤
ˆ

Qρ

f∞,p(∇wε) dx +
ˆ

(Qρ\εT (ω))\A2η

f∞,p(∇wε,η) dx. (20)

On the other hand ˆ
(Qρ\εT (ω))\A2η

f∞,p(∇wε,η) dx

≤ C

ˆ
(Qρ\εT (ω))\A2η

�
||grad φ||p|wε|p + |φε,η|p|∇wε|p

�
dx

≤ C
� 1

ηp

ˆ
(Qρ\εT (ω))\A2η

|wε|pdx + sup
ε

ˆ
(Qρ\εT (ω))\A2η

|∇wε|pdx
�
.

Letting successively ε → 0 and η → 0 and since (|∇wε|p)ε>0 is uniformly integrable we finally deduce

lim sup
η

lim sup
ε

ˆ
(Qρ\εT (ω))\A2η

f∞,p(∇wε,η) dx = 0. (21)

Consequently, combining (20) and (21)

lim inf
η

lim inf
ε

ˆ
Qρ

f∞,p(∇wε,η) dx ≤ lim inf
ε

 
Qρ

f∞,p(∇wε) dx. (22)

Second change. With the function φε,η defined previously, set ψε,η := φε,ηffl
Sρ

φε,η dx̂
and consider the

random function
zε,η := wε,η + ψε,η[εu(x0)−

 
Qρ

wε,η dx].
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The function ψε,η fulfills the following conditions

ψε,η(x̂) =






0 on ∂(Sρ \ εD(ω)),
1ffl

Sρ
φε,η dx̂

on Â2η,

ffl
Sρ

ψε,ρ dx̂ = 1, and |grad(ψε,η)| ≤ 1
C(η)η

where C(η) is a nonnegative constants depending only of ρ

and η (change of scale and argue as in (7) by reasoning on 1
ε
Sρ \D(ω)). Thus






 
Qρ

zε,η dx = εu(x0)

and
zε,η = εv(x0) on ∂(Qρ \ εT (ω)).

From the definition of zε,η we deriveˆ
Qρ

f∞,p(∇zε,η) dx =
ˆ

A2η

f∞,p(∇wε,η) dx + Rε,η,ρ

≤
ˆ

Qρ

f∞,p(∇wε,η) dxdx + Rε,η,ρ (23)

where
Rε,η,ρ :=

ˆ
(Qρ\εT (ω))\A2η

f∞,p(∇zε,η) dx.

From the growth condition (4)

|Rε,η,ρ| ≤
ˆ

(Qρ\εT (ω))\A2η

|∇wε,η|p dx + C
|(Qρ \ εT (ω)) \A2η|p

ηpC(η)p

�
εp|u(x0)|p +

�����

 
Qρ

wε,η dx̂

�����

p �
.

But applying estimate (21) with the function | . |p substituted for f∞,p

lim sup
η→0

lim sup
ε→0

ˆ
(Qρ\εT (ω))\A2η

|∇wε,η|p dx = 0.

On the other hand
�
εp|u(x0)|p +

�����

 
Qρ

wε,η dx̂

�����

p �

clearly tends to 0 when ε → 0 (recall that wε strongly converges to 0 in Lp(Qρ, R3)). Thus, letting
successively ε → 0 and η → 0 in (23) we obtain

lim inf
η→0

lim inf
ε→0

ˆ
Qρ

f∞,p(∇zε,η) dx ≤ lim inf
η→0

lim inf
ε→0

ˆ
Qρ

f∞,p(∇wε,η) dx

and finally from (22)

lim inf
η→0

lim inf
ε→0

ˆ
Qρ

f∞,p(∇zε,η) dx ≤ lim inf
ε

 
Qρ

f∞,p(∇wε) dx. (24)

Let us define the Sobolev function z�
ε,η

on 1
ε
Qρ by z�

ε,η
(y) :=

1
ε
zε,η(εy) which satisfies the following

conditions:

z�
ε,η

(y) = v(x0) on ∂(
1
ε
Qρ\T (ω)), 

Qρ

z�
ε,η

(y)dy =
1
ε

 
1
ε

Qρ

zε,η(εy)dy

=
1
ε

 
Qρ

zε,η(x)dx

= u(x0).
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Extend z�
ε,η

by v(x0) on Cε,ρ \ 1
ε
Qρ, and set

z”ε,η :=
|Cε,η|�� 1
ε
Sρ

��
�
z�
ε,η
− v(x0)

�
.

It is easy to check that z”ε,η belongs to AdmCε,η (u(x0)− v(x0)). Changing of scale at the left hand side

of (24), using the facts that f∞,p is positively p-homogeneous and that lim
ε→0

|Cε,η|�� 1
ε
Qρ

�� = 1, we obtain for P

almost every ω in Ω:

f0(u(x0)− v(x0)) = lim
ε→0

1
|Cε,ρ|

SCε,ρ(ω, u(x0)− v(x0))

≤ lim sup
η→0

lim sup
ε→0

 
Cε,ρ

f∞,p(∇z��
ε,η

) dx

= lim sup
η→0

lim sup
ε→0

 
1
ε Qρ

f∞,p(∇z�
ε,η

) dx

= lim inf
η→0

lim inf
ε→0

 
Qρ

f∞,p(∇zε,η) dx

≤ lim inf
ε

 
Qρ

f∞,p(∇wε) dx.

Therefore f∗∗0 (u(x0)− v(x0)) ≤ lim inf
ε

 
Qρ

f∞,p(∇wε) dx which completes the proof.

Remark 3.2. A carefully analysis of the proof above lead us to the following generalization of the lover
bound: for all uε � u in Lp(O, R3), for all function vε in W 1,p(O, R3) satisfying sup

ε>0 �∇vε)�Lp(O∩Tε,M3×3) <
+∞, and for all function ζ ∈ Lp(O, R3)

F ζ(u) ≤ lim inf
ε→0

F vε
ε

(ω, uε)

where, for every u ∈ Lp(O, R3),

F vε
ε

(ω, u) =






ˆ
O\Tε

f(ε∇u) dx if u ∈ W 1,p

Γ0
(O, R3), u = vε on O ∩ Tε

+∞ otherwise,

F ζ(u) =
ˆ
O

f∗∗0 (u− ζ).

4 The limit problem associated with the fibers

4.1 The limit functional

In the following we denote by a(ω, .) the characteristic function of the random set D(ω) so that 1Dε(ω)(x̂) =
1Dr(ω)( x̂

ε
) := a(ω, x̂

ε
) ∀x̂ ∈ �O. According to this notation we consider the random integral functional

Gε(ω, .) defined in Lp(O, R3) by

Gε(ω, u) =






ˆ
O

a(ω,
x̂

ε
)g(∇u)dx if u�(O\Tε) = 0, u�(O ∩ Tε) ∈ W 1,p

Γ0
(O ∩ Tε,R3)

+∞ otherwise.

According to Proposition 2.2 of Section 2 we have
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Proposition 4.1. There exists a P-mesurable set Ω�� ⊂ Ω, with P (Ω”) = 1 such that

∀ω ∈ Ω��, a(ω,
.

ε
) � E(

ˆ
Ŷ

a(ω, ŷ)dŷ) := θ for the topology σ(L∞, L1).

Now let us consider the function g⊥ : R3 → R defined for every a ∈ R by

g⊥(a) := inf
ξ∈M3×2

g (ξ|a) ,

and we define the deterministic functional �G0 : Lp(O, R3) → R ∪ {+∞} by

�G0(u) =





θ

ˆ
O

(g⊥)∗∗(
1
θ

∂u

∂x3
)dx if u ∈ V0

+∞ otherwise

where V0 :=
�

u ∈ Lp(O, R3) :
∂u

∂x3
∈ Lp(O, R3), u(x̂, 0) = 0 on �O

�
. Note that the function G0 consid-

ered in the introduction is nothing but the function defined by G0(v) = G̃0(θv). In the next sections we
are going to establish

Theorem 4.1. The sequence (Gε)ε>0 almost surely sequentially Γ-converges to the functional �G0 when
Lp(O, R3) is equipped with its weak topology.

The use of the weak topology in Lp(O, R3) comes from the next compactness result.

Lemma 4.1. Let (uε)ε>0 be a sequence satisfying sup
ε

Gε(ω, uε) < +∞ for all ω ∈ Ω”. Then for all

ω ∈ Ω” there exist a subsequence possibly depending on ω and u ∈ V0 possibly depending on ω such that

a(ω,
.

ε
)uε � u in Lp(O, R3) (25)

a(ω,
.

ε
)
∂uε

∂x3
�

∂u

∂x3
in Lp(O, R3). (26)

Proof. From the coercivity of g, and since uε = 0 on Γ0, we infer
ˆ
O∩Tε

|uε(x̂, x3)|pdx ≤ C

ˆ
O∩Tε

����
∂uε

∂x3

����
p

dx

≤ C

α
Gε(ω, uε)

which gives (25). Weak convergence (26) is obvious and u(x̂, 0) = 0 on �O is easily checked. Note that
since V0 ⊂ W 1,p((0, h), Lp(O, R3)) ⊂ C([0, h], Lp(O, R3)) equality u(., 0) = 0 may be understood in a
classical sense.

4.2 The lower bound

Proposition 4.2. For all uε such that a(ω, .

ε
)uε weakly converges to u in Lp(O, R3) and all ω ∈ Ω”

�G0(u) ≤ lim inf
ε→0

Gε(ω, uε)

Proof. Fix ω ∈ Ω” and assume that lim inf
ε→0

Gε(uε) < +∞. From inequalities g ≥ g⊥ ≥ (g⊥)∗∗ and the

Moreau-Rockafellar duality principle we infer that for all φ in Lq(O, R3) where q = p

p−1 is the conjugate
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exponent of p:

lim inf
ε→0

Gε(uε) ≥ lim inf
ε→0

ˆ
O

a(ω,
x̂

ε
)(g⊥)∗∗(

∂uε

∂x3
)dx

≥ lim inf
ε→0

� ˆ
O

a(ω,
x̂

ε
)φ.

∂uε

∂x3
dx−

ˆ
O

a(ω,
x̂

ε
)(g⊥)∗(φ)dx

�

=
ˆ
O

φ.
∂u

∂x3
dx− θ

ˆ
O

(g⊥)∗(φ)dx

= θ

�ˆ
O

1
θ
φ

∂u

∂x3
dx−

ˆ
O

(g⊥)∗(φ)dx

�
.

By taking the the supremum over all functions φ in φ ∈ Lq(O, R3) we finally obtain

lim inf
ε→0

Gε(uε) ≥ θ sup
φ∈Lq(O,R3)

�ˆ
O

1
θ
φ

∂u

∂x3
dx−

ˆ
O

(g⊥)∗(φ)dx

�

= θ

ˆ
O

(g⊥)∗∗(
1
θ

∂u

∂x3
)dx

which completes the proof.

4.3 The upper bound

Proposition 4.3. For all u ∈ V0 and all ω ∈ Ω” there exists a sequence (uε(ω))ε>0 in Lp(O, R3) weakly
converging to u in Lp(O, R3) such that

�G0(u) ≥ lim sup
ε→0

Gε(ω, uε(ω)).

Proof. In all the proof we fix ω in Ω”. We proceed into two steps.

First step. let u ∈ C1(O, R3), with u = 0 on Γ0. We construct a sequence (uε(ω))ε>0 ∈ Lp(O, R3)
such that uε�(O\Tε) = 0, uε�(O ∩ Tε) ∈ W 1,p(O ∩ Tε, R3) and satisfying

a(ω,
.

ε
)uε(ω) � u in Lp(O, R3),

lim
ε→0

Gε(ω, uε(ω)) = θ

ˆ
O

g⊥(
1
θ

∂u

∂x3
)dx.

For η > 0 intended to tend to zero, consider ξη in Lp(O,M3×2) such that

θ

ˆ
O

g⊥(
1
θ

∂u

∂x3
)dx = θ

ˆ
O

inf
ξ∈M3×2

g

�
ξ +

1
θ
∇̂u,

1
θ

∂u

∂x3

�
dx

≥ θ

ˆ
O

g

�
ξη + ∇̂u,

1
θ

∂u

∂x3

�
dx− η. (27)

The measurability of the matrix valued function x �→ ξη(x) comes from the coercivity and the growth
condition fulfilled by g and may be proven thanks to the measurable selection theorem (see [7]). Since
C1

c
(O,M3×2) is dense in Lp(O,M3×2), according to the Lipschitz property of the convex function g one

may assume that ξη ∈ C1
c
(O,M3×2).

Let us consider a random function φ(ω, .) = (φ1(ω, .), φ2(ω, .)) in C1
c
(R2, R2) satisfying φ(ω, ŷ) = ŷ

whenever ŷ ∈ D(ω) and set

uε,η = a(ω,
x̂

ε
)
�1
θ
u(x) + εφ1(ω,

�x
ε
)ξη

1 + εφ2(ω,
�x
ε
)ξη

2

�
. (28)

Clearly uε,η ∈ W 1,p

Γ0
(O ∩ Tε, R3) and uε,η�(O\Tε) = 0. Furthermore, from Proposition 4.1, uε,η(ω) � u

in Lp(O, R3). On the other hand a straightforward calculation yields

∇̂uε,η = 1
θ
∇̂u + ξη + Oη(ε),

∂uε,η

∂x3
= 1

θ

∂u

∂x3
+ Oη(ε)
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on Tε ∩ O, where limε→0 Oη(ε) = 0. From (27) and the Lebesgue dominated convergence theorem we
infer

lim
η→0

lim
ε→0

Gε(uε,η(ω)) = lim
η→0

θ

ˆ
O

g

�
ξη +

1
θ
∇̂u,

1
θ

∂u

∂x3

�
dx

= θ

ˆ
O

(g⊥)(
1
θ

∂u

∂x3
)dx.

By using a standard diagonalization argument, there exists a map ε �→ η(ε), η(ε) → 0 when ε → 0 so
that, setting uε = uε,η(ε) 





uε(ω) � u in Lp(O, R3)

lim
ε→0

Gε(uε(ω)) = θ

ˆ
O

(g⊥)(
1
θ

∂u

∂x3
)dx.

Second step (Relaxation). let u ∈ V0. Thus �G0(u) = θ

ˆ
O

(g⊥)∗∗(
1
θ

∂u

∂x3
) dx. According to standard

relaxation results there exists a sequence (ζn)n∈N in C1
c
(O, R3) weakly converging to

∂u

∂x3
in Lp(O, R3)

such that

lim
n→+∞

ˆ
O

g⊥(
1
θ
ζn) =

ˆ
O

(g⊥)∗∗(
1
θ

∂u

∂x3
)dx. (29)

For all x ∈ O, consider the function vn ∈ V0 defined by

vn(x) :=
ˆ

x3

0
ζn(x̂, s) ds.

Then
∂vn

∂x3
�

∂u

∂x3
in Lp(O, R3) so that vn � u in Lp(O, R3). From (29) we infer that (vn)n∈N is a

sequence of C1(O, R3)-functions in V0 weakly converging to u in Lp(O, R3) and satisfying

lim
n→+∞

θ

ˆ
O

g⊥(
1
θ

∂vn

∂x3
) = �G0(u).

Last step. With the notation of the previous step, according to the first step there exists a sequence
(uε,n(ω))ε>0 satisfying 





uε,n(ω) � vn in Lp(O, R3) when ε → 0,

lim
ε→0

Gε,n(uε,n(ω)) = θ

ˆ
O

(g⊥)(
1
θ

∂vn

∂x3
)dx.

Letting n → +∞ in the two estimates above and using again a standard diagonalization argument, we
deduce that there exists a map ε �→ n(ε) such that

�
uε,n(ε)(ω) � u in Lp(O, R3)
lim
ε→0

Gε(ω, uε,n(ε)(ω)) = �G0(u). (30)

We end the proof by setting uε(ω) := uε,n(ε)(ω).

5 The limit problem associated with the complete structure

Now, we deal with the asymptotic behavior of the complete structure. Let us recall that the functional
energy Hε is defined in Lp(O, R3) by :

Hε(ω, u) =






ˆ
O\Tε

εpf(∇u) dx +
ˆ
O∩Tε

g(∇u) dx if u ∈ W 1,p

Γ0
(O, R3)

+∞ otherwise.
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It is worth noticing that for u in W 1,p

Γ0
(O, R3), one has

Hε(ω, u) = Fu

ε
(ω, u) + Gε(ω, 1Tε∩Ou).

We define in Lp(O, R3) the deterministic functional G0 by G0(v) = �G0(θv), i.e.,

G0(v) =





θ

ˆ
O

(g⊥)∗∗(
∂v

∂x3
)dx if v ∈ V0

+∞ otherwise.

We equip Lp(O, R3) with its weak topology and establish the following main theorem of the paper:

Theorem 5.1. The sequence (Hε)ε>0 almost surely sequentially Γ-converges to the infimum convolution
F0 �G0 defined for every u ∈ Lp(O, R3) by

F0 �G0 (u) := inf
v∈Lp(O,R3)

�
F0(u− v) + G0(v)

�
.

Consequently (Hε + L)ε>0 almost surely sequentially Γ-converges to the functional F0 �G0 + L.

The choice of the weak topology which equips Lp(O, R3) is suggested by the following compactness
result. The proof is very similar to that of Lemma 3.1 and 4.1 and left to the reader (see Remark 3.1).

Lemma 5.1. Let (uε)ε>0 be a sequence in Lp(O, R3) such that sup
ε>0 Hε(ω, uε) < +∞ and set vε =

a(ω, .

ε
)uε. Then, there exist (u, v) in Lp(O, R3) and a subsequence possibly depending on ω such that for

P almost every ω
(uε, vε) � (u, v) in Lp(O, R3)× Lp(O, R3)

∂vε

∂x3
�

∂v

∂x3
in Lp(O, R3).

5.1 The lower bound

In this section, we establish the lower bound in the definition of the Γ-convergence of Hε to H:

Proposition 5.1. For every uε weakly converging to u in Lp(O, R3), and for P-almost every ω in Ω

H(u) ≤ lim inf
ε→0

Hε(ω, uε).

Proof. One may assume lim infε→0 Hε(ω, uε) < +∞, so that, for a non relabeled subsequence,

Hε(ω, u) = Fuε
ε

(ω, uε) + Gε(ω, 1Tε∩Ouε)

and, from Lemma 5.1, there exists v ∈ V0 such that

(uε, vε) � (u, v) in Lp(O, R3)× Lp(O, R3).

According to Proposition 3.2, Remark 3.2 and Proposition 4.2, we infer for P a.s. ω ∈ Ω

lim inf
ε→0

Hε(ω, uε) ≥ F (1/θ)v
0 (u) + �G0(v) = F0(u−

1
θ
v) + G0(

1
θ
v),

thus
lim inf

ε→0
Hε(ω, uε) ≥ inf

w∈Lp(O,R3)

�
F0(u− w) + G0(w)

�

which ends the proof.
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5.2 The upper bound

Now we establish the upper bound in the definition of Γ-convergence:

Proposition 5.2. For every u in Lp(O, R3), there exists a sequence (uε(ω))ε>0 in Lp(O, R3) such that
for P-almost every ω ∈ Ω, uε(ω) � u and

lim sup
ε→0

Hε(ω, uε(ω)) ≤ H(u). (31)

Proof. One may assume H(u) < +∞. For η > 0 intended to go to zero, let vη be a η-minimizer in the
definition of H(u):

H(u) ≥ F
vη

0 (u) + G0(vη)− η.

It is easily seen that one may assume that vη ∈ C(O, R3). According to Propositions 3.1, 3.2 there
exists uη,ε(ω) almost surely weakly converging to u in Lp(O, R3) with 1Tε∩Ouη,ε(ω) = vη, such that for
P-almost every ω in Ω

lim
ε→0

F vη
ε

(ω, uη,ε(ω)) = F
vη

0 (u). (32)

On the other hand combining (28) and (30), there exists vη,ε(ω) in W 1,p

Γ0
(O∩Tε, R3) almost surely weakly

converging to θvη in Lp(O, R3) of the form

vη,ε(ω) = a(ω,
x̂

ε
)
�
vη(x) + εφ1(ω,

�x
ε
)ξη

1 + εφ2(ω,
�x
ε
)ξη

2

�
.

which satisfies for P-almost every ω

lim
ε→0

Gε(ω, vη,ε(ω)) = �G0(θvη) = G0(vη). (33)

From now on, we do not indicate the dependence of the functions uη,ε and vη,ε on ω. Combining (32)
and (33) we infer

F
vη

0 (u) + G0(vη) = lim
ε→0

F vη
ε

(ω, uη,ε) + lim
ε→0

Gε(ω, vη,ε). (34)

let us set
ũη,ε = uη,ε + εφ1(ω,

�x
ε
)ξη

1 + εφ2(ω,
�x
ε
)ξη

2 .

Note that 1Tε∩Oũη,ε = vη,ε and that, from the Lipschitz condition satisfied by f ,

lim
ε→0

F ũη,ε
ε

(ω, ũη,ε) = lim
ε→0

F vη
ε

(ω, uη,ε).

Thus (34) yields

F
vη

0 (u) + G0(vη) = lim
ε→0

�
F ũη,ε

ε
(ω, ũη,ε) + Gε(ω, vη,ε)

�

= lim
ε→0

Hε(ω, ũη,ε) (35)

Clearly ũη,ε � u in Lp(O, R3). We end the proof by letting η → 0 and using a standard diagonalization
argument.

Collecting Lemma 5.1 and Theorem 5.1, and according to the variational nature of the Γ-convergence
we obtain

Corollary 5.1. The problem

(PHε) inf
�

Hε(ω, u)−
ˆ
O

L.u dx : v ∈ Lp(O, R3)
�

almost surely converges to the problem

(PH) min
�

H(u)−
ˆ
O

L.u dx : v ∈ Lp(O, R3)
�

in the sense of the Γ-convergence and, up to a subsequence, every sequence (uε(ω))ε>0 of ε-minimizers
of (PHε) almost surely weakly converges in Lp(O, R3) to a minimizer of (PH).
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10. G. Dal Maso, L. Modica. Non Linear Stochastic Homogenization and Ergodic Theory. J. Reine

Angew. Math., 363:27–43, 1986.
11. I. Fonseca, S. Müller, P. Pedregal. Analysis of concentration and oscillation effects generated by

gradients. Siam J. Math. Anal. 29 (1998), no 3, 736-756.
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