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Macroscopic behavior of a randomly fibered medium

Gérard Michaille *, Azdine Nait-alif and Stéphane Pagano!

Abstract

By combining variational convergence with ergodic theory of subadditive processes, we study the
macroscopic behavior of a randomly fibered medium. The cross sections of the fibers are randomly
distributed according to a stationary point process, their size is of order € while the stiffness of the
material in the matrix is of order eP. The variational limit functional energy obtained when ¢ tends to 0
is deterministic and non local.

Résumé

En combinant convergence variationnelle et théorie ergodique des processus sous-additifs, nous étudions
le comportement macroscopique d’un milieu aléatoirement fibré. Les sections des fibres sont réparties
aléatoirement selon un processus ponctuel stationnaire, leur taille est de 'ordre de ¢ alors que la rigidité
du matériau dans la matrice est d’ordre €P. La fonctionnelle énergie limite obtenue lorsque € tend vers 0
est déterministe et non locale.
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1 Introduction

We are interested in the determination of the macroscopic behavior of a randomly fibered mechanical
structure whose reference configuration is the open subset O := O x (0,h) of R3, with basis O =
(0,11) x (0,12) C R2. More precisely for ¢ = 1 we consider the union of fibers 7. (w) := eD(w) x R where
D(w) := U;en D(w;) and D(w;) are disks distributed at random in R? following a stochastic point process
w = (w;)ien of R? associated with a suitable probability space (€2, .4, P). The random fibered structure
is then given by O = (O \ T (w)) U O N T.(w) (see Figure 1 and Figures 3, 4 in Section 2), and

Figure 1: The random fibered structure

we aim to supply a deterministic equivalent variational limit when ¢ tends to zero, of the sequence of
random integral functionals H. mapping Q x LP(O,R?) into RT U{+0c}, defined for every w in (€2, A, P)
by
Ep/ f(Vu) dz —l—/ g(Vu) dx if u € er(’)p((’)7R3)
H (w,u) = O\T: (w) ONT: (w)

400 otherwise.

The space Wll(’)p((’),]R?’) is made up of the functions u in W1?(0O,R3) such that u = 0 on Ty := O x {0}
in the trace sense. For more precision on the stochastic point process (w;);eny and for all question of
measurability relating to the considered random maps we refer the reader to the next section. For short
we sometimes write T instead of T¢(w).

We assume that f and ¢ are two quasiconvex functions defined on the set M3*3 of 3 x 3-matrices and
satisfy the standard growth condition of order p > 1: there exist two positive constants «, 3, such that
VM, M' € M3*3

oM < F(M) < B(L+ |MP), &

idem for g. Note that f satisfies automatically the Lipschitz property
[f(M) = f(M')| < LIM — M'|[(1+ [M[P~! + [M[P~T) (2)

for some positive constant L, idem for g. Furthermore, we assume that there exists 8 > 0, 0 < v < p and
a p-positively homogeneous function 7 (the p-recession function of f) such that for all M € M3*3

|f(M) = [P (M)] < B'(1+|MP77). (3)
From (3) we infer | lim_ @ = (M) so that from (1), > satisfies for all M € M3*3
alMP < foP(M) < B|M]P. (4)
and
[P (M) = [P (M")| < LIM — M'|(|M[P~1 + |M[P~1) (5)

for all (M, M') € M3*3 x M3,



As a consequence of the variational convergences we will provide an equivalent deterministic problem
of

(Pu.) inf{HE(w,u) —/Oﬁ.u dr:u € L”(O,R3)}

where £ € L1(O,R?), ¢ = r—

The functional H. models the internal energy of a mechanical structure made up of the union 7, of
thin parallel cylinders which represent the rigid fibers and a soft elastic material matrix occupying O\ Tx.
We only have a statistical knowledge of the cross sections of the fibers in the sense that their positions
are statistically homogeneous. From the mathematical point of view, this means that they are placed at
random according to a stationary point process. The stiffness of the elastic material occupying O \ T
is of order €P. The functions u represent the displacements of the mechanical structure subjected to a
given load £ and clamped on the plane I'g = [z3 = 0]. We assume large deformations in the matrix and
the fibers so that the strong and soft materials are hyperelastic. Our objective is to analyze the behavior
of (Pp.) in a variational way when € tends to 0 while the fillling ratio of the fibers is kept constant and,
consequently, to provide a simplified but accurate model for the behavior of the slices of the geomaterial
TexSolT™ ([12, 14, 15]). It is a soil reinforcement process created in 1984 by Leflaive, Khay and Blivet
from the LCPC (Laboratoire Central des Ponts et Chaussées) which mixes the soil (sand) with a wire.
The obtained reinforced material has a better mechanical resistance than the sand without wire. The
wire is randomly distributed on the free surface and is covered with sand simultaneously to create a
TexSol”™ layer. In our simplified model we assume the wire to cut the surface perpendicularly (the size
h is small) so that the thin parallel cylinders, randomly distributed, represent the pieces of the wire which
are perfectly stuck with a hyperelastic matrix which represent the sand (cf. Figure 2).

Figure 2: A slice of real material

From the mathematical point of view we reexamine the work of [5, 6, 17] in a stochastic setting and
in the scope of nonlinear elasticity. We establish the almost sure convergence of (Py_) when € — 0 to
the deterministic and homogeneous problem

(Pw) min {H(u) - /Oﬁ.u dr v € L”(O,RB)}

where the energy functional H is of non local nature. More precisely we establish the almost sure I'-
convergence of the sequence (H.).¢ to the infimum convolution Fyy 57 Gy defined for every u € LP(O, R3)
by

Fyv Go (u) :=  inf (Fo(u —v)+ Go(v))

1
veLP(O,R3)

(Theorem 5.1 and Corollary 5.1) where Fy and Gy are the functionals energy I'-limits of the functionals



U — 5”/ f(Vu) dz and u — g(Vu) dz respectively, which are defined in LP(O,R3) by
O\T. oNT.

Fy(u) = /Off)‘*(u) dx,

ou
R .
9/0(9 ) (—axg)dm it uely

+o00 otherwise,

Go (u) =

o ~
where Vj := {u € LP(O,R?) : —8; € LP(0O,R?), u(#,0) =0 on (’)} . The densities fp and g are defined
3
by

. S\‘[O,nP (w, a) 3

fola) = nléll\fl* {/Q TdP(w) , a €R?,

gt(a) ;= inf g(&la), M>*? is the set of 3 x 2 matrices,
£€M3X2

where A — S 4 is a suitable discrete subadditive process on subsets of R2, and 6 € (0,1) is the asymptotic
volume fraction [, Y N D(w)| dP(w), Y = (0,1)? of the fibers. In our probabilistic model the random
set D(w) is statistically not too sparse so that § > 0 (Remark 2.1). In the deterministic case, i.e., when
the fibers are periodically distributed, # reduces to |Y N D|, and the density fi* to

@ =it { [ (10 (Fw.0) agswe W R, [

w dy = a, w=01nD}
v

where W;’p (Y, R?) denotes the subset of W(Y, R3) made up of Y-periodic functions (Corollary 2.1).

2 The probabilistic framework

No difference is made between R? and the three dimensional euclidean physical space equipped with an
orthogonal basis denoted by (eg, ez, e3). For all & = (x1, 12, 23) of R3, & stands for (z1,x5) and M3*3,
M3*2 denotes the sets of 3 x 3 and 3 x 2 matrices. We denote by Y the unit cell (0,1)2 of R? and by Y/
the unit cell (0,1)3 of R?.

For any § > 0 and any non empty bounded set A of R?, we make use of the following notation:

As = {x € A:d(z,R?\ A) > 6}. For any bounded Borel set A of R? or R?, |A| denotes its Lebesgue
measure and #(A) its cardinal when it is finite.

Let d be a given number satisfying 0 < d < 1 and consider the set
Q= {(wi)ien:wi € R?, |w; —wj| > d for i # i}

equipped with the trace o-algebra A of the standard product o-algebra on 2. Let Ed /2(0) be the open ball
of R? centered at 0 with radius d/2, then for every w = (w;)(;)en We form the disk D(w;) := w; + Bd/Q(O)
and consider D(w) := J;ey D(w;). Therefore w — T(w) = D(w) x R is a random set in R?, union of
random cylinders, whose basis is the union of the pairwise disjoint disks D(w;) of R? centered at w;. We
set T.(w) :==eD(w) x R.

For every z € Z? we define the operator 7, : Q — Q by T.w = w — z. Note that D(r.w) = D(w) — 2.
Furthermore we assume that there exists a probability measure on (£2,.4) which satisfies the system of
three following axioms:

(A1) Non sparsely distribution: P( {w cN: |Y N D(w)| > O}) =1;

(Ay) Stationary condition: Vz € Z2, 7.,#4P = P where 7.#P denotes the probability image of P by 7.;



(Az) Asymptotic mizing property: for all sets £ and F of A, lim|,| 4 P(T.ENF) = P(E)P(F).

Remark 2.1. i) It would be more natural to consider stationary condition (Ag) with respect to the
continuous group (7¢)ierz defined in the same way by 1w = w — t. Actually the discrete group
(72)2ez2 suffices for the mathematical analysis. The size of the cell Y is chosen in such a way to
fix the generator of the group (7).czz. Condition (As) then says that every random function X
taking its source in §2 is statistically homogeneous in the sense that X and X oT, have the same law
(i.e. X#P = X o1, #P). Roughly speaking, moving a window A in R? following the translations
in R2, the distributions of cross sections in the window are statistically the same.

ii) Condition (A1) together with condition (Asz) yield that the random set D(w) is statistically not too
sparse in R2. Indeed for every Z2-translated A=Y + z of Y

P({w:|AmD(w)\>o}) P({w:|Yﬂ(D(w)—z)\>O})

= P({u: P n (D)) > 0})

= P({w:|Yﬂ(D(w))| >o}) =1

Note that from (A1), the asymptotic volume fraction satisfies / |Y N D(w)| dP(w) > 0.
Q

iti) Condition (As) says that the events T, E and F are independent provided that z be large enough.

iv) Consider © = (&;);en where @; are the centers of the hexagonal close-packing of disks in R?. Then
w is a “maximal” distribution in the sense that |[Y N D(w)| < |Y N D(®)| for a.s. w in Q.

R O
@@Eg O
oY O
<><>(O,1)2<> O
0 Q{00

Figure 3: Random cross sections at scale € = 1



A simple specimen of probability space which fulfills all the conditions above is the generalized random
chessboard described below.

Example 2.1 (Random chessboard-like). Given 0 < d < 1, let us consider a countable set of points
Oy = {2 : keN}in Yd/z and set Q := I1,cz2Q, where Q, = Qg + z for all z € Z2. We equip Q with
the o-algebra A generated by the cylinders of 2. For a given family (aj)ren of non negative numbers
satisfying ZkeN ar = 1 we consider the probability measure pg = ZkeN adz, on Qo and the product
probability measure P = Il czu, on (€2, A) where pu, = pg for all z € Z. Then it is easy to check that P
satisfies axioms (Aq)-(As).

oL 1Yol o
O ToT 5

Dl o | do

O
O
G
@

Figure 4: A piece of a random chessboard of cross sections at scale ¢ = 1 with #(Qy) =9

Remark 2.2. All the results of the paper remain valid if we substitute for the disk Bd/g (0), any connex
compact set of R? included in Ed/g(O) and chosen at random.

Let us recall the following general basic notion of discrete subadditive process. We consider a probabil-
ity space (2,4, P) and a group (7 ),cz~ of P-preserving transformations on (€2, 4). The group (7,),cz~
is said to be ergodic if every set F in A, such that 7.FE = E for every z € Z", satisfies P(E) = 0 or
P(E) = 1. A sufficient condition to ensure ergodicity of (7,),cz~ is the mixing condition (A4s): for every
E and Fin A

Jfim P(r.ENF) = P(E)P(F)
which expresses an asymptotic independence.

Let Z denote the set of half open intervals [a, b) of the lattice spanned by (0,1). A discrete subadditive
process with respect to (7.),cz~ is a set function S : Z — L1(Q, A, P) satisfying

(i) for every I € Z such that there exists a finite family (I;);ecs of disjoint intervals in Z with I =
UjeJ Ij’
SI() < Z‘Slj(')v
jed
(i) VIEZ, V2 € ZN, Sro1, = S.t

A family (I,)nen of sets in 7 is called regular if there exists another family (I),)nen of sets in Z such
that



(i) I, C I}, for all n € N;
(if) (1) is non decreasing;
(iii) there exists a constant C' > 0 such that 0 < |I]| < C|I,| for all n € N,
(iV) R-&A-[ = UI':L
The following subadditive ergodic theorem is due to Ackoglu-Krengel.

Theorem 2.1. Let S be a discrete subadditive process with respect to an ergodic group (7;),ezn Ssatisfying

inf{/ﬂ S’é"") P(dw) € T, |I| # 0} > —00

and let (I,)nen be a reqular family of sets in Z. Then almost surely

S S n
im 2 = i 200
n—oo |In| n—oo n
_ . [O,n[N [O,’n[N
o n1é1§* {E nN } nleooE nN

where E denotes the expectation operator.

For a proof see [1] and, for some extensions, see [13, 16].

We are going to define the limit density energy associated with the random integral functional u —
fO\T f(Vu) dz by applying Theorem 2.1 with N = 2 to a suitable set function S on subsets of Z, which

ranges over the space L!(Q, A, P) governed by axioms (A;)-(As). More precisely, for all A € 7 and all
a € R3 set

gA(w,a) = inf {/O fOP(Vw) dx:w € AdmA(w,a)} )

Ax(0,1)

Adm 4 (w,a) := {w € Wolp(fl x(0,1)\ T(w),R?) :]éi o 1)w dr = a},
x(0,

where we still denote by w the extension by zero on T'(w)N ( A x(0, 1)) of every function w in Adm 4(w, a).
Since the Lebesgue measure does not charge the boundary of the elements of Z, one can take as Z the
set of all open intervals (a,b) of the lattice spanned by Y that we still denote by Z. Subsequently the
subadditivity condition (i) becomes: for every I € Z such that there exists a finite family (I;);cs of
disjoint intervals in Z with [I'\ U;c; I;| = 0,

Si() <> 85().

jeJ

It is standard to see that the random functionals defined in the introduction are measurable when
Q) x LP(O,R?) is equipped with the product o-algebra A ® B where B is the Borel o-algebra associated
with the normed space LP(O,R3). Consequently, for all fixed A in Z and all fixed a in R3, the map

w8 i(w,a) is measurable. Actually we have

Theorem 2.2. For all fized a € R3, the map

S(,a): I — LYQ,AP)
Ar— §;(.,a)



is a subadditive process with respect to the group (7.).czz defined by 7.(w) = w — z. It satisfies for all
a€R3, all A€ T and all § > 0 small enough

gA(w,a) < - Cp)
7 |(V\ D(@))as|

jaf”|A] (6)

where C(p) is a non negative constant depending only of p.

S
Therefore for any regular family (I,)nen of sets in Z, the limit lim M exists for P almost

n—oo ||
S Sjounf2 (- Soump (-
lim M = lim M = inf EM )

We denote by fo the common value above.

Proof. We establish that Adm 4(w, a) is non empty and that §A € L'(92, A, P) by establishing (6). The

rest of the proof consists in checking each condition (i) and (ii) and is straightforward. Fix A € Z. For
0 < § small enough consider ¢s = ps * 1 (A\D(w))s where ps is a standard mollifier. Clearly

o() = 1if & € (A\ D(w))as,
° 0if & € R2\ (A\ D(w)).

every w € Q and

Therefore
Forw (AN D(w))as]
s AT > ————.
A A
Take & the close-packing distribution in R? (Remark 2.1). According to (Az), (A3) we infer
| Zecanma 2\ D))
][ o5 dx > =
A |A]
5. ez (V\ D(m20))s|
4]
#(A) | o o N
> FE2 |0\ @] = |7\ D@ @
Take now 6 € Cj(0,1) satisfying fol 0(t) dt = 1. The random function defined by ws(Z,x3) =
an clearly belongs to Adm j(w, a) (for short we do not indicate the dependance on w). Moreover
A P AT

from (7) and the growth condition satisfied by f>P,

~

Silw,a) < / foOP(Vws) di
Ax(0,1\T(w)

C(p)
(Y \ D(@))2s

where C(p) is a non negative constant which depends only on p. O

jal’[A].
P

We define the elastic density associated with the limit internal energy of the material occupying
O\ T.(w) by:

Va € R3, f3*(a) = [lim {W}r*(a)wa.s.

I
L—
Zo
25,

*
——
&=

=)
o
3
35
J@
S~—"
——
*
*
&



where, for any function h : R — R, h** stands for its convexification, i.e., the greatest convex function
less than h.

In order to provide some flexibility in the proofs of Section 3, it is convenient to introduce a new
subadditive process A — S, where now A runs over half open cubes of R3, converging toward the same
limit fo(a). Precisely, let us still denote by Z the set of all open intervals (a,b) of the lattice spanned by
Y, we apply Theorem 2.1 with N = 3 to the set function defined for all A € 7 and all a € R3 by

Sa(w,a) :=inf {/o fOP(Vw) dz:w € AdmA(w,a)} )
A

Admy(w,a) == {w € WEP( A\T(w),R?) : ]{‘w do = a} .

Theorem 2.3. For all fited a € R3, the map

S(,a): TIT-— LYQAP)
Ar— SA(.7(1)

is a subadditive process with respect to the group (7.).czs defined by 7,(w) = w — 2 where z = (2, 23).

Therefore for any reqular family (I,)nen of sets in I the limit lim Sl"ljw{a) exists for P almost every
S
w € Q and lim L]E_a,w) = fola).

Proof. By repeating the proof of Theorem 2.2 with minor changes, we establish in the same way the

St (w,a
existence of the limit lim M

in Z (I}, = I, is suitable), and a change of scale yields

. Take now I,, = (0,n2)2 x (0,n). Clearly (I,)nen is a regular family

Sr,(w,a)  Sonxom (W, a)
Ll n’
~ Some2xn(w,a)
n2

§(O,n)2 (w, a)

)
n2

S
so that for a.s. win Q, lim S, (w,a)
n—oo  |I|

= fo(a). O

Corollary 2.1. Assume that the fibers are periodically distributed, i.e., in the chessboard-like example
above, Qg and Q1 are reduced to a single point, then for all a € R3,

where

Ax(0,1)

Sj4(a) == inf /3 P (Vw) de:w € AdmA(a)} ,
Admj(a) == wEWOI’p(Ax(O,l)\T,R?’):]Q wdx:a}.
Ax(0,1)

Furthermore f3*(a) reduces to

@ =it { [ (o0 (0.0) agswe Wi, |

w dy = a, szinD}
v

where W#p(f/,Rg) denotes the subset of WHP(Y | R3) made up of Y -periodic functions.



. Thus for all n € N*

-~

(@ < (et

so that

“(q) < inf (g(o’")?('))**(a).

neN* n?
Since the converse inequality is obviously satisfied, we conclude to

~

*% . S(O,Tl)z(') o
o= g, () 0
But from standard arguments using Fenchel’s Duality,
( (©.n) ) (a) = — inf / ()™ (Vw) dy w € Adm g (a) ¢ 9)
n n nY x(0,1)

Let w4 be a minimizer of

inf {/Y\T(foo’p)**(Vw) dy :w € W;&’p(}’,ﬂ@)7 /

wdy=a, w=0inT p,
Y

extended by Y-periodicity on R? x (0,1) and fix n € N*. Clearly 8(f>P)**(Vwy(z)) is non empty and
for short, we assume that it is single valued. Note that —divd(f>?)**(Vwy) = 0 a.e. in nY x (0,1) and
A(f°P)** (Vwy).v is anti-periodic, v denoting the unit normal to the boundary of n¥ x (0,1). Take any
w € Adm, ¢ (a). According to the subdifferential inequality we have

[ o=@y [ Fug) dy [ () (V) T - wy) dy
ny nY x(0,1)

nY x(0,1)

Integrating by parts, we infer

/ (o) (V) dy > / () (V) dy = n? / (fP)™ (Twy) dy
nY x(0,1) n¥Y x(0,1) Y

so that from (9)

(‘W)**w > inf {fxfoo»p)**(w) dyiwe WER), [

w dy = a, wOinT}.
n Y

Thus, from (8) and since the converse inequality clearly holds

@ =int{ [ (o0 () dysw e W), [

w dy = a, szinT}.
Y

The conclusion then follows by noticing that

inf{/ (fP) " (Vw) dy:wEW;’p(Y,R‘g), /wdy:a7 w =0 in T}
Y

Y
is equal to
inf {/ (f°P)™ (Vw,0) djj : w € W#p(f/,ﬂ@), / wdj=a, w=0Iin D}
v v
which is a straightforward consequence of Jensen’s inequality. O

10



The following proposition is a straightforward consequence of estimate (6).

Proposition 2.1. The function f§* is a positively homogeneous convex function of degree p, satisfies
the growth conditions (4) with the same constant o, with a constant 3 possibly different, and satisfies the
Lipschitz condition (5) with a constant L possibly different.

Proof. Clearly, fi* is positively homogeneous of degree p. The upper bound in (4) follows straightfor-
wardly from (6), and (5) will be deduced by using standard argument of convex analysis provided that
we establish: f**(a) > a|a|” for all @ € R3. The assertion follows by noticing that for every function w

in Adm,,y (w, a) we have
][ w dx
nY x(0,1)

a][ |w|?P dx
nY x(0,1)

04][ [Vw|P dx
nY x(0,1)

< f (VW de
nY x(0,1)

P
ala/ = «

IN

IN

where we have used Poincaré inequality in the second inequality. O

We end this section by the following proposition which is a consequence of Theorem 2.1 when S is
additive. It extends the Birkoff ergodic theorem.

Proposition 2.2. Letn € N*, and ¢ : Q x R?2 — R be a A ® B(R?)-measurable function satisfying the
three following conditions:

i) for P-almost every w € Q, § — (w, ) belongs to L}, .(R?);
it) for all bounded Borel set A of R? the map A — Ji(w,9) dy belongs to LY(Q, A P);
iii) for all z € nZ?, for all § € R?, (w,§ + 2) = (1w, §) for P-almost every w € .

Then
vw ) ~eoBf o) dg
£ (0,n)2
for the o(L*(0), L>(0)) topology.

Proof. See Theorem 4.2 and Proposition 5.3 in [8]. O

3 The limit problem associated with the soft material structure

This section is devoted to the asymptotic analysis of the functional F¥(w,.) : LP(O,R3) — R* U {+00}

ap/ f(Vu) dz ifuerl(’)p(O,R3), u=von ONT,
Fo(w,u) = O\T

400 otherwise,

where v is a given function in Wll[’)p (O,R3). Before to establish the almost sure I'-convergence of the
functional F¥ we start by establishing a compactness result which explains why we equip LP(O,R?) with
its weak convergence. Note that the choice of the topology is crucial in the I'-convergence process (see
[2, 3, 9]). All along the paper we denote by — and — the strong and weak convergences in the various
topological spaces, we do not relabel the subsequences and C' will denote various nonnegative constants
independent of € and w which may vary from line to line.

11



Lemma 3.1 (compactness). Let (u:)e>0 be a sequence satisfying sup.so FY(w,us) < +o0o for P a.s.
w € Q. Then for P a.s. w € Q, there erists a subsequence possibly depending on w and u € LP(O,R3)
possibly depending on w such that u. — u in LP(O,R3).

Proof. Fixw € Q such that (A;) holds and such that sup,. o F(w, u:) < +oco. Consider w € WP (R? R3).
According to the Poincaré-Wirtinger inequality, there exists a constant C'(w) such that

/ w — ][ w dy
g YND(w)

P
di < C(w)[ IVl di
Y

from which we easily deduce

I

/ lwl? di < 21’(52][ wl? di + C’(w)/ |5Vw\pdi“>. (10)
eY eYNeD(w) Y

€

p
w 7][ wdy| di < C’(w)/ leVw|? dz
eYNeD(w) ey

and finally

Applying (10) to the function 7.,w defined by 7.,w(Z) := w(Z + €z) we infer

/ WP di = / el di
e(Y+z) ey

2P (EQ]L: |Tew|? dE + C(w)/A eV w|” dfc)
eYNeD(w) Y

€

- 21’(52][ w|P d + C(w)/ |5Vw|”d:%). (11)
e(Y4+2)NeD(1_.w) e(Y+z)

O\ |J (v +2)
zel,
disjoint, from (11), and since u. = v on eD(7_,w) x (0, h), we obtain

/|us|pdm < 2p 522/ ][ |v|pdx+C(w)/ |€Vus|pdm)
O e(Y+2)NeD(1_.w) O

z€Il

C // vpdac+Cw/ eVue|F dx
(Z Y+Z ﬂD(T,zw| (Y+z YNeD(T— zw)‘ | ( ) O| | )

z€Il
1

< Cl—=———1Iv)¥, 3+Cw/sVu€pdx
(Tl + @) | 19l do)

IN

Noticing that = 0 where I. is a finite subset of Z? and (f’ + 2).,ez2 are pairwise

1
and the conclusion follows from &” / |Vu. | dor < EF: (w, ue). O
O\T.

Remark 3.1. The same compactness result clearly holds when we substitute any function v. for v provided
that sup |[ve|| Lr(onT. ®3) < +00 and sup ||Vve| ront. M3x3) < +00.
e>0 e>0

Let us define the functional F : LP(O,R3) — R* by

/f u—v)

where fj is the function defined in Section 2. The following theorem is a consequence of the two bounds
established in the next two subsections.

Theorem 3.1. The sequence of random functionals (FY)e>o almost surely sequentially T'-converges to
the deterministic functional FY when LP(O,R?) is equipped with its weak topology.

12



3.1 The upper bound

Proposition 3.1. There exists a set Q' € A of full probability such that for all u € LP(O,R3) and all
w € Y there exists a sequence (uc(w))eso in LP(O,R3) satisfying

ue(w) — u in LP(O,R3?)
FY(u) > limsup,_,o FY(w, us (w))

or, equivalently, for allw € ¥, T' — limsup FY (w,.) < FY.

Proof. We proceed into two steps. B
Step 1. For every v € WHP(O,R3), let us consider the function FyY : LP(O,R3) — R U {+o0} defined
by
. / folu —v) dz if u € C1(O,R?)
Fg(u) =4 Jo
400 otherwise.
We establish T' — lim sup F.(w,.) < Fé’ for P a.s. we Q.
Let 7 € QT intended to go to 0 and let (Q; ,)ies, be a finite family of pairwise disjoint cubes of size
71 included in O, such that

O\ |J Qin|=0.

iel,

Let vs € C1(O,R3) be a regular approximation of v in LP(O,R3), i.e., satisfying vs — v strongly in
LP(O,R3), set z5 := u—vs and z5,, = Z z5(xim)1q,, where x;, is arbitrarily chosen in Q;,. Since z;
i€,
is a Lipschitz function on O, clearly z5, — 25 = u — vs in LP(O,R?) when n — 0.
Consider the greater open cube Cj , . in Z included in %Qim and let w; . € Admg, , _(w, z5(2i,y)) be
a minimizer of S¢, , _(w, z5(xi,,)) extended by zero outside C; ;. \ T'(w) (for shorten notation, we do not
indicate the dependance on d). The family (C;, ). is regular. Indeed for every cube Q =]a, b in R?, let
denote by Q' the associated cube ]0, b[ and consider the family (C; , .)e. One has
1
Cimel _ Cinel | |Qinl H
‘Cz{,n,€| |%Qiﬂi| ’Q;n| |Cz{,n,€|

C; Ci
But one can easily check that lim ‘1 inel _ lim |1 ”7’6|
=0 [2Qin| =0 [2Q0,]
C ,
fixed n) | l/’n’sl <2 IQ:’”' . The family (C;, .
|Ci,n,8| }Qi,n| w

Therefore, according to Theorem 2.3

= 1 so that, for € small enough (depending on

)e then clearly satisfies regularity conditions (i)-(iv).

Sc,, . (w,z(xis5y)) 1 /
lim —=1< 2 = lim fOP(Vw;pe(w,y)) dy
£—0 |Cime| e—0 |Cj el Cim.e\T(w) e

= fo(zs(win)) (12)

forallw € Q; ,, satisfying P(€2; ;) = 1. In what follows we denote the set of full probability (), cq+ mieln Q0

13



by " and we fix w € . From (12) we infer

/OfO(Zé,n) dr =

= Z 1Qinl Fol2(wiy)) du

i€l

= hm Z |Qin
= hm Z Qi

_ i S 2@
=N

7”75

lel L n \TE

10,
We have used the fact that lim._¢ ||a n:‘ =1 and that w;, . = 0 outside C; ., \ T(w).

Let us define the function us, . on O by :

| CZ??5|/ Ci e \eT(w)

P (Vw; e (w d
|CW/W\T £ (T o (w,9)) dy

Qin\eT'(w)

oo Yy
f P(Vw; pe(w, 5)) dy.

U5n5(wlﬂ +szns ]qun( )

iel,

[ p(vwl,n, (

) Y
f ’p<vwi,n,s (w, g))dy

According to the boundary condition satisfied by w; ., clearly us, . € W;;p(O,R‘?) and us, . = v on
O NT.(w). Furthermore, from (13), (5) and (3) we deduce

fo(zp) dxr = lim / fP(eVus,e) dx
[peas = i3 [ e,

icly,

= lim [P (eVusy,e) dx

=0 JoNT. (w)

e—0

= lim Ep/ f(Vuspe) de=lim F2 (w, us e (w,.)).
O\T: (w) e—0

Letting 7 — 0, then § — 0 in (14) and since w — [, fo(w)

we finally obtain

/ fo(2) dz = lim lim lim F?(w, us5 5. (w,.)).

§—0n—0e—0

On the other hand, since w; ;. € Admg, , _(w, 2(2;)), one has

x
][‘ Wj e (W, g) der =

M

x
—-)d
|Qz7}|/lnE zne E) .

|Cinel T
- Wi.pe(w, =) dx
|%Qi,n| eCin,e PP e
C,
|1 e Wi e (w, ) do
‘EQiJ}‘ Ci,n,s
|Ci,77,6|
25(Tin)
|%Qi7n| ’

so that letting successively € — 0 and 1 — 0 we easily infer

lim lim LU, (w,.) = v+ (u—vs) weakly in LP(O,R?).

n—0e—

14

(14)

da is clearly strongly continuous in LP (O, R3)

(15)



Then letting 6 — 0,

lim lim lim s, . (w,.) = v weakly in LP(O,R?). (16)
6—0n—0e—0

Collecting (15) and (16), a standard diagonalization argument! furnishes a map e — (§(¢),n(¢)) such

that
Ue(w,.) = u5(8)7n(5)78(u~), .) — u weakly in LP(O,R3);

lim F2 (@, ue(w,.) = F ()
and the conclusion of step 1 follows straightforwardly.

Step 2. We end the proof by a relaxation argument. According to the first step

I' — limsup F’(w,.) < F,

Taking the lower semicontinuity envelope of each two members in the space LP(O,R3) equipped with its

weak topology, we infer ~
I' —limsup FY (w,.) < (Fy)™™.

*k

But, from standard relaxation result (1:" v)** = F{ and the conclusion follows. O

3.2 The lower bound

Proposition 3.2. For all u. weakly converging to u in LP(O,R?) and for P a.s. w € Q one has

F§(u) < limiglf FY (w,ue).
e—

Proof. From (3) and since u. = v on T.(w) N O we easily deduce

e—0

liminfz-:p/ f(Vue) :thmlnf/ fP(eVue)d
O\T.

Fix zp in O and set Q,(xo) := S,(20) x I,(20,3) (to shorten notation we sometimes do not indicate the
fixed argument (). By using a blow up argument, it is enough to prove that for a.e. xy one has

lim lim inf][ fooP(eVue) dax > fi™ (u(xo) — v(xo)).
Qp (o)

p—0 e—0

According to the decomposition lemma (cf 3, 11]), there exists w. in Wy?(Q,, R?) such that (|Vw.|P).~0
is uniformly integrable and such that the sequences (Vw.).>o and (Veu,)c>o generate the same Young
measure g (for shorten notation we do not indicate the dependance on p for w). Therefore applying
standard lower semicontinuity and continuity properties for Young measures (see Proposition 4.3.4 and
Theorem 4.3.3 in [3]) we infer

lim inf][ P (Vw,) doe = / / fOP(M) duy de < lim 1nf][ fP(eVue) dx
=70 JQ,(0) (o) MY <70 JQu(x0)

so that it suffices to establish

liminfliminf]é ( )foo’p(VwE) dr > fi™ (u(zo) — v(xo)). (17)

p—0 e—0
Note that since

ue — 0 in WHP(O,R?)
cu. — 0 in LP(O,R?)

1One can easily check that us ;- (w,.) belongs to a fixed ball B(0,r) of LP(O,R3). Since the weak topology of LP(O,R3)
induces a metric on bounded sets, the diagonalization argument holds.

15



we infer

w. — 0 in WHP(Q,, R?)
w. — 0in LP(Q,, R?)

when € — 0.

Let C. , be the smallest cube in 7 containing %QP. Our strategy is to change the function w, in order
to obtain a function in Admc, ,(w,u(zo) — v(2o)) whose gradient decreases the left hand side of (17).

First change. For i > 0 intended to go to 0 set A,, := (S,\eD(w)), (we do not indicate the dependence
on € and w) and we () := e, (T)we(x) + ev(xo) Where ¢, := py * 14, - Note that ¢, satisfies

lgrad(¢e,)| <

and

thus w, ,, = ev(zg) on I(Q, \eT'(w)). We extend w, ,, by ev(zo) on the complementary set of Q,\eT (w).

Set Ag, := Ay, x I,. From the growth condition (3) we deduce

fOP(Vuwe ) dx

= / fOP(Vwe ) dx—|—/ [P (Ve ) d
Azy (Qp\eT (w))\ Az,
< / P (Vwe) dx —I—/ [P (Ve ) da.
P (Qp\eT (w))\ A2y
On the other hand
/ P (Ve ) dx
(Qp\eT(w))\ Az,
<cf (llgrad ¢l w.]? + |6-.n | Ve.l?) do
(Qp\eT (w))\ Az,
<

1
C(—p/ \we\pdx—ksup/ |Vw5|pd:1:).
1 J(Qp\eT )\ Az, & J(Qp\eT(w))\Azy

(20)

Letting successively € — 0 and 7 — 0 and since (|Vw,|").s¢ is uniformly integrable we finally deduce

lim sup lim sup

/ P (Vwe ) de = 0.
n € (Qp\eT(w))\Az2n

Consequently, combining (20) and (21)

liminfliminf/ fOP(Vwe ) doe < liminf][ P (Vw,) dx.
g

n €
P 3

Second change. With the function ¢., defined previously, set v, = %
’ Ts, Peim

random function
Ze . 1= We .y + Ve pleu(zo) — ][ W,y dz].

Q@

16

(21)

(22)

and consider the



The function v, ,, fulfills the following conditions
0 on 9(S,\ eD(w)),
wa,n(j) = 71 on/i
fs, e di
fs, e di = 1, and |grad(ve)| < =
2 =1, and |gra
K TR = Sl

and 7 (change of scale and argue as in (7) by reasoning on 15, \ D(w)). Thus

][ Zey dx = eu(xg)

P
and

2o = £0(20) 0n A(Q, \ T(w)).

where C(n) is a nonnegative constants depending only of p

From the definition of z. , we derive

fOP(Vzey) de = fOP(Vwe ) dz + Re o p
Qp A2n

IN

[P (Vwe ) dedz + Re 5y p (23)
op

Ry p ::/ [P (Ve ) do.
(Rp\eT' (w))\ A2y

where

From the growth condition (4)
P

T Ay, |P
Renl < [ W da+ ¢ QNN A gy o
(@p\eT(w))\ Az nPC(n)

But applying estimate (21) with the function | . [P substituted for f°°?

][ we., di }

P

lim sup lim sup/ |Vwe,|" dz = 0.
=0 e=0 J(Qp\eT(w))\Azy

]épwm 42 ]

clearly tends to 0 when ¢ — 0 (recall that w. strongly converges to 0 in L?(Q,,R?)). Thus, letting
successively € — 0 and 7 — 0 in (23) we obtain

On the other hand

[€p|u(9ﬁo)|p + !

n—0 e—0 n—0 e—

lim inf lim inf [P(Vzey) dr < liminflim i(I)lf/ [P (Vwe,y) d
op

P

and finally from (22)

lim inf lim inf fOP(Vzey) de < liminf foOP(Vw,) du. (24)
n—0 e—0 Qp € Qp

1
Let us define the Sobolev function z., on $Q, by 2., (y) := =z ,(cy) which satisfies the following
) € 3 e )

conditions:

L) = vlm) onALQNTW)),

1
][ 2L, ydy = 7][1 zen(ey)dy

) €
e P
1
= — e d
- ][p Ze(w)da
= u(xo).

17



Extend z_ , by v(zo) on C¢ , \ 1Q,, and set

9 |C€77l|

e = ’lS|
e™~p

(,z(fm7 — v(xo)).

It is easy to check that 2", belongs to Admg, , (u(2o) — v(20)). Changing of scale at the left hand side

Ce .

of (24), using the facts that f°>P is positively p-homogeneous and that lir% ’ 1(;;]‘ = 1, we obtain for P

e—0 | =
P
almost every w in € :
. 1
fo(u(zo) —v(z0)) = lim =—38c, ,(w,u(zo) —v(z0))
e=0 |Ce |

< limsup lim sup ][ [PV ,) dx
n—0 e—0 C. P 7

= limsup lim sup FoR(V2L,) do
Qp

&g,m
n >0 e—0 1
€

= liminfliminf [P (Vze ) do
n—0 e—0 Q,

1iminf][ fooP(Vw,) de.

P

IN

Therefore fi*(u(xo) — v(xo)) < liminf f°P(Vw,) dx which completes the proof. O
g
Qp

Remark 3.2. A carefully analysis of the proof above lead us to the following generalization of the lover
bound: for allu. — w in LP(O,R?), for all function v, in WHP(O,R?) satisfying sup,~ [|[Vve)| Leonr, mexa) <
+00, and for all function ¢ € LP(O,R3)

F¢(u) < liminf F'* (w, u.)

e—0

where, for every u € LP(O,R?),

F'ua(w ’LL) o /(;\T f(SVu) dx qu (S Wl—‘l(;p(o,RS),u =V, on O ﬂTE

400 otherwise,

4 The limit problem associated with the fibers
4.1 The limit functional

In the following we denote by a(w, .) the characteristic function of the random set D(w) so that 1p_(w)(&) =

~

1 D,,_(w)(f) = a(w, f) VZ € O. According to this notation we consider the random integral functional
G.(w,.) defined in LP(O,R3) by

/ a(w, g)g(Vu)dac if u| (O\T:) = 0, u[(ONTL) € WeP(ONT.,R?)
G:(w,u) = o € 0
400 otherwise.

According to Proposition 2.2 of Section 2 we have

18



Proposition 4.1. There exists a P-mesurable set Q" C Q, with P(Q”) =1 such that
Vwe Q") a(w, g) - E(/ a(w,§)dg) := 0  for the topology o(L>°,L").
v

Now let us consider the function g+ : R* — R defined for every a € R by

L(a):= inf
g(a)= nf  9(&a),

and we define the deterministic functional Gg : LP (O, R?) — R U {400} by

1 Ou
~ 9 Ly (= =—)dz if ueV
Golu) = /O(g) (G g i vV
+00 otherwise
ou

where Vp = {u € LP(O,R?) : 92. € LP(O,R?), u(#,0) =0 on (5} . Note that the function G consid-
T3

ered in the introduction is nothing but the function defined by Go(v) = Go(fv). In the next sections we
are going to establish

Theorem 4.1. The sequence (Ge)eso almost surely sequentially T'-converges to the functional éo when
LP(O,R?) is equipped with its weak topology.

The use of the weak topology in LP(O,R?) comes from the next compactness result.

Lemma 4.1. Let (uc)e>o be a sequence satisfying sup Ge(w,u:) < +oo for allw € Q. Then for all

€
w € Q) there exist a subsequence possibly depending on w and u € Vjy possibly depending on w such that

a(w, “)us — u in LP(O,R?) (25)
5
., O0u ou
— c 27 p 3

a(w, E)axg D in LP(O,R?). (26)

Proof. From the coercivity of g, and since u. = 0 on I'y, we infer

p

Oue dx

(91'3

/ e (i, 25)Pdz < C
onNT.

onNT,

C
< =
= aGE(w7u8)

which gives (25). Weak convergence (26) is obvious and u(2,0) = 0 on O is easily checked. Note that
since Vo € WLP((0,h), LP(O,R?)) C C([0, ], LP(O,R3)) equality u(.,0) = 0 may be understood in a
classical sense. O
4.2 The lower bound

Proposition 4.2. For all u. such that a(w, <)u. weakly converges to u in LP(O,R?) and all w €

Go(u) < limiélf Ge(w,ue)

Proof. Fix w € Q7 and assume that lim iglf G.(u:) < +oo. From inequalities g > g+ > (¢g+)** and the
E—
Moreau-Rockafellar duality principle we infer that for all ¢ in L9(O,R3) where g = p’%l is the conjugate
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exponent of p:

liminf G.(u;) > nminf/a(w,f)(gﬂ**(%)dx
E— O

e— 9 8$3
Oue Ty, e
hmlglf( [ atw Dozt = [ o D)) (i)
~ [ogmda=o / (5)" (8)dr
_ el _ Ly *
- [/ Jogemie = [ () (@]
By taking the the supremum over all functions ¢ in ¢ € L9(O,R3) we finally obtain

liminf Ge(u) > 6 sup U </>3 /(gL)*(cb)dfc]
€= $ELI(O,R3) T3 o

1 0u
J_ **
0/ 9ax3)dx

which completes the proof. O

Y

4.3 The upper bound

Proposition 4.3. For allu € Vi and all w € Q" there exists a sequence (ue(w))e=o in LP(O,R3) weakly
converging to u in LP(O,R?) such that

Go(u) > limsup Ge(w, ue(w)).

e—0
Proof. In all the proof we fix w in 7. We proceed into two steps.
First step. let u € C1(O,R3), with u = 0 on ['5. We construct a sequence (u.(w))eso € LP(O,R3)
such that u.|[(O\T:) =0, u. [ (ONT.) € WHP(O NT.,R3) and satisfying

a(w, é)us(w) —uin LP(O,R?),

. 1 Ou
lim G (o) =0 [ g (G5
For 1 > 0 intended to tend to zero, consider £” in LP(O, M?3*2) such that
1 Bu 1. 1 0u
= inf Z - g
9/ 902, 9/0 gelﬁswg(“ Vi G s )da’

Y

1 du
9/0 g(ﬁ"—l—Vuaa )dm— (27)

The measurability of the matrix valued function z — £"(x) comes from the coercivity and the growth
condition fulfilled by g and may be proven thanks to the measurable selection theorem (see [7]). Since
CH(O,M?3*2) is dense in LP(O,M?3*2), according to the Lipschitz property of the convex function g one
may assume that £7 € CL(O, M3*2).

Let us consider a random function ¢(w,.) = (é1(w,.), d2(w,.)) in CL(R?,R?) satisfying ¢(w, ) = 9
whenever § € D(w) and set

1

e = ofe, 2) [ula) + <1, ). (28)

Clearly u., € WE(’)”(O NT.,R3) and uc | (O\T:) = 0. Furthermore, from Proposition 4.1, u. ,(w) — u
in LP(O,R3). On the other hand a straightforward calculation yields

o | 8)
o | 8)

)5? + 5(,252((4),

Ve, = sVu+ €7+ 0,(e),

Oue, _16
9 = g oes T Onle)
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on T, N O, where lim._, O,(¢) = 0. From (27) and the Lebesgue dominated convergence theorem we
infer

lim lim G.(ue,(w)) = 11m9 <§n+ gV ;é?) da

n—0e—0
1 Bu
= 0 dx.
/ 9 8x3
By using a standard diagonalization argument, there exists a map € — 7(¢), n(¢) — 0 when ¢ — 0 so

that, setting u. = Ue ,n(e)
us(w) = u in Lp(o R?)

7 1 ou
. 1 -y
lim G(uw) =0 [ (4)(G )
1 ou
Second step (Relaxation). let u € V. Thus Go(u) = 6 9 3 ——) dz. According to standard
T3

ou

relaxation results there exists a sequence ((p)nen in Ccl(O,R?’) weakly converging to Don in LP(O,R?)
€3

such that

1 10
Jim [ gt Go) = [ 6t Game (29)

For all z € O, consider the function v, € Vj defined by

= /:3 Cn(E, s) ds

Oun _, Ou n LP(O,R?) so that v, — w in LP(O,R?). From (29) we infer that (v,)nen is a

Then —
6333 63:3
sequence of C1(O,R3)-functions in V weakly converging to u in LP(O,R?) and satisfying
1
lim 6 (7%
n—+00 O 0 Oxs

)Zéo(u)-

Last step. With the notation of the previous step, according to the first step there exists a sequence
(ue,n(w))e>0 satisfying
Ue p(w) = v,  in LP(O,R?) when € — 0,

hmGEnuEn —9/ 18%

Letting n — 400 in the two estimates above and using again a Standard diagonalization argument, we
deduce that there exists a map € — n(e) such that

Ug n(e) (w) —u in LP(Q’ RS) (30)
lim G (w, Uz n(e) (W) = Go(u)-
We end the proof by setting u.(w) := e (o) (w). O

5 The limit problem associated with the complete structure

Now, we deal with the asymptotic behavior of the complete structure. Let us recall that the functional
energy H. is defined in LP(O,R3) by :

e? f(Vu) dx +/ 9(Vu) dx if u € WP (O, R?)
onT.

H.(w,u) = /O\TS

+o00 otherwise.
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It is worth noticing that for u in WESP(O,R:)’), one has
H.(w,u) = F*(w,u) + Ge(w, 11.nou).

We define in LP(O,R3) the deterministic functional G by Go(v) = Go(Av), i.e.,

ov
R .
9/0(9 ) (—axg)dx if veVp

+00 otherwise.

Go(v) =

We equip LP(O,R?) with its weak topology and establish the following main theorem of the paper:

Theorem 5.1. The sequence (H:)eso almost surely sequentially T'-converges to the infimum convolution
Fy 7 Go defined for every u € LP(O,R3) by

FovGo(we= _if (Fo(u )+ Go(v)).

Consequently (H. + L)e~o almost surely sequentially T'-converges to the functional Fy 7 Go + L.

The choice of the weak topology which equips LP(O,R3) is suggested by the following compactness
result. The proof is very similar to that of Lemma 3.1 and 4.1 and left to the reader (see Remark 3.1).

Lemma 5.1. Let (uc)eso be a sequence in LP(O,R?) such that sup,-o H:(w,u:) < +o0o and set v, =
a(w, )uc. Then, there exist (u,v) in LP(O,R3) and a subsequence possibly depending on w such that for
P almost every w

(ue,ve) = (u,v) in LP(O,R3) x LP(O,R3)

Ov Ov
g . P 3
o, - 92s in LP(O,R”).

5.1 The lower bound

In this section, we establish the lower bound in the definition of the I'-convergence of H. to H:

Proposition 5.1. For every u. weakly converging to u in LP(O,R3), and for P-almost every w in
H(u) < ligriiélng(w,us).
Proof. One may assume liminf._,o H.(w,u:) < 400, so that, for a non relabeled subsequence,
He(w,u) = F* (w, ue) + Ge(w, 1m.noue)
and, from Lemma 5.1, there exists v € Vj such that
(ue,ve) = (u,v) in LP(O,R3) x LP(O,R?).
According to Proposition 3.2, Remark 3.2 and Proposition 4.2, we infer for P a.s. w € Q)
lim inf H (w,112) > F§""(u) + Gov) = Fofu ~ %v) + GO(%U),

thus
limi(r)lf H (w,ue) >
E—

(FO (u—w) + Go(w))

inf
weLP(O,R3)

which ends the proof. O
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5.2 The upper bound
Now we establish the upper bound in the definition of I'-convergence:

Proposition 5.2. For every u in LP(O,R3), there exists a sequence (ue(w))eso in LP(O,R3) such that
for P-almost every w € Q, u.(w) = u and

limsup H, (w, us(w)) < H(u). (31)

e—0

Proof. One may assume H(u) < +oo. For n > 0 intended to go to zero, let v, be a n-minimizer in the
definition of H (u):
H(u) > Fy" (u) + Go(vy) — 1.

It is easily seen that one may assume that v, € C(O,R?). According to Propositions 3.1, 3.2 there
exists u, - (w) almost surely weakly converging to u in LP(O,R3) with 17 nouy (w) = vy, such that for
P-almost every w in €2

lim (0, uy o () = 3" (u). (32)

On the other hand combining (28) and (30), there exists v, (w) in Wll(’]p (ONT.,R?) almost surely weakly
converging to 6v, in LP(O,R?) of the form

Z z z
'Un,a(w) = a’(w7 g) [’UT]('T) + E(bl (wa g)g{l + €¢2(w7 g)gg] .
which satisfies for P-almost every w
lim G (w0, v, () = GolBv) = Go(vy). (33)

From now on, we do not indicate the dependence of the functions w, . and v, . on w. Combining (32)
and (33) we infer
Fy (1) + Go(vg) = lim FY(w,1,0) + lim G, v,.0). (34)
E— E—
let us set ~ ~
. z, T,
Upe = Une + EP1 (Wa g)gl + 5¢2(W7 g)€2 .

Note that 17, oy, = vy, and that, from the Lipschitz condition satisfied by f,
lir% Fine (w, iy ) = liH(l) F(w,uy ).
Thus (34) yields
Fy"(w) +Go(vy) = lim (FEe (w,iy,e) + Ge(w,vy.0))
= liné H.(w, Uy,c) (35)
E—

Clearly @, . — u in L?(O, R3). We end the proof by letting n — 0 and using a standard diagonalization
argument. O

Collecting Lemma 5.1 and Theorem 5.1, and according to the variational nature of the I'-convergence
we obtain

Corollary 5.1. The problem
(Pr.) inf {He(w,u) — /O Ludz:ve LP(OJR?’)}
almost surely converges to the problem
(Pw) min {H(u) — /O Ludz:ve LP(O,R?’)}

in the sense of the I'-convergence and, up to a subsequence, every sequence (ucs(w))eso of e-minimizers
of (Pu.) almost surely weakly converges in LP(O,R?) to a minimizer of (Pp).
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