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Introduction

We are interested in the determination of the macroscopic behavior of a randomly fibered mechanical structure whose reference configuration is the open subset O := O × (0, h) of R 3 , with basis O := (0, l 1 ) × (0, l 2 ) ⊂ R 2 . More precisely for ε = 1 n we consider the union of fibers T ε (ω) := εD(ω) × R where D(ω) := i∈N D(ω i ) and D(ω i ) are disks distributed at random in R 2 following a stochastic point process ω = (ω i ) i∈N of R 2 associated with a suitable probability space (Ω, A, P). The random fibered structure is then given by O = (O \ T ε (ω)) ∪ O ∩ T ε (ω) (see Figure 1 and Figures 3,4 in Section 2), and Figure 1: The random fibered structure we aim to supply a deterministic equivalent variational limit when ε tends to zero, of the sequence of random integral functionals H ε mapping Ω × L p (O, R 3 ) into R + ∪ {+∞}, defined for every ω in (Ω, A, P) by

H ε (ω, u) =    ε p ˆO\Tε(ω) f (∇u) dx + ˆO∩Tε(ω) g(∇u) dx if u ∈ W 1,p Γ0 (O, R 3 )
+∞ otherwise.

The space W 1,p Γ0 (O, R 3 ) is made up of the functions u in W 1,p (O, R 3 ) such that u = 0 on Γ 0 := O × {0} in the trace sense. For more precision on the stochastic point process (ω i ) i∈N and for all question of measurability relating to the considered random maps we refer the reader to the next section. For short we sometimes write T ε instead of T ε (ω).

We assume that f and g are two quasiconvex functions defined on the set M 3×3 of 3 × 3-matrices and satisfy the standard growth condition of order p > 1: there exist two positive constants α, β, such that

∀M, M ∈ M 3×3 α|M | p ≤ f (M ) ≤ β(1 + |M | p ), (1) 
idem for g. Note that f satisfies automatically the Lipschitz property

|f (M ) -f (M )| ≤ L|M -M |(1 + |M | p-1 + |M | p-1 ) (2) 
for some positive constant L, idem for g. Furthermore, we assume that there exists β > 0, 0 < γ < p and a p-positively homogeneous function f ∞,p (the p-recession function of f ) such that for all

M ∈ M 3×3 |f (M ) -f ∞,p (M )| ≤ β (1 + |M | p-γ ). (3) 
From (3) we infer lim t→+∞ f (tM ) t p = f ∞,p (M ) so that from (1), f ∞,p satisfies for all

M ∈ M 3×3 α|M | p ≤ f ∞,p (M ) ≤ β|M | p . (4) 
and

|f ∞,p (M ) -f ∞,p (M )| ≤ L|M -M |(|M | p-1 + |M | p-1 ) (5) 
for all (M, M ) ∈ M 3×3 × M 3×3 .

As a consequence of the variational convergences we will provide an equivalent deterministic problem of

(P Hε ) inf H ε (ω, u) -ˆO L.u dx : u ∈ L p (O, R 3 )
where L ∈ L q (O, R 3 ), q = p p-1 .

The functional H ε models the internal energy of a mechanical structure made up of the union T ε of thin parallel cylinders which represent the rigid fibers and a soft elastic material matrix occupying O \ T ε . We only have a statistical knowledge of the cross sections of the fibers in the sense that their positions are statistically homogeneous. From the mathematical point of view, this means that they are placed at random according to a stationary point process. The stiffness of the elastic material occupying O \ T ε is of order ε p . The functions u represent the displacements of the mechanical structure subjected to a given load L and clamped on the plane Γ 0 = [x 3 = 0]. We assume large deformations in the matrix and the fibers so that the strong and soft materials are hyperelastic. Our objective is to analyze the behavior of (P Hε ) in a variational way when ε tends to 0 while the fillling ratio of the fibers is kept constant and, consequently, to provide a simplified but accurate model for the behavior of the slices of the geomaterial TexSol T M ( [START_REF] Frémond | Non-Smooth Thermo-mechanics[END_REF][START_REF] Laniel | Consistent thermodynamic modelling of wire-reinforced geomaterials[END_REF][START_REF] Laniel | Discrete element investigations of wire-reinforced geomaterial in a three-dimensional modeling[END_REF]). It is a soil reinforcement process created in 1984 by Leflaive, Khay and Blivet from the LCPC (Laboratoire Central des Ponts et Chaussées) which mixes the soil (sand) with a wire. The obtained reinforced material has a better mechanical resistance than the sand without wire. The wire is randomly distributed on the free surface and is covered with sand simultaneously to create a TexSol T M layer. In our simplified model we assume the wire to cut the surface perpendicularly (the size h is small) so that the thin parallel cylinders, randomly distributed, represent the pieces of the wire which are perfectly stuck with a hyperelastic matrix which represent the sand (cf. Figure 2). From the mathematical point of view we reexamine the work of [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure[END_REF][START_REF] Bellieud | Homogenization of a soft elastic material reinforced by fibers[END_REF][START_REF] Licht | A nonlocal energy functional in pseudo-plasticity[END_REF] in a stochastic setting and in the scope of nonlinear elasticity. We establish the almost sure convergence of (P Hε ) when ε → 0 to the deterministic and homogeneous problem

(P H ) min H(u) -ˆO L.u dx : v ∈ L p (O, R 3 )
where the energy functional H is of non local nature. More precisely we establish the almost sure Γconvergence of the sequence (H ε ) ε>0 to the infimum convolution 

F 0 G 0 defined for every u ∈ L p (O, R 3 ) by F 0 G 0 (u) := inf v∈L p (O,R 3 ) F 0 (u -v) + G 0 (v) ( Theorem 
F 0 (u) = ˆO f * * 0 (u) dx, G 0 (u) =    θ ˆO(g ⊥ ) * * ( ∂u ∂x 3 )dx if u ∈ V 0 +∞ otherwise,
where

V 0 := u ∈ L p (O, R 3 ) : ∂u ∂x 3 ∈ L p (O, R 3 ), u(x, 0) = 0 on O .
The densities f 0 and g ⊥ are defined by

f 0 (a) = inf n∈N * ˆΩ S [0,n[ 2 (ω, a) n 2 dP(ω) , a ∈ R 3 , g ⊥ (a) := inf ξ∈M 3×2 g (ξ|a) , M 3×2
is the set of 3 × 2 matrices, where  → S  is a suitable discrete subadditive process on subsets of R 2 , and θ ∈ (0, 1) is the asymptotic volume fraction ´Ω | Ŷ ∩ D(ω)| dP(ω), Ŷ = (0, 1) 2 of the fibers. In our probabilistic model the random set D(ω) is statistically not too sparse so that θ > 0 (Remark 2.1). In the deterministic case, i.e., when the fibers are periodically distributed, θ reduces to | Ŷ ∩ D|, and the density f * * 0 to

f * * 0 (a) = inf ˆŶ (f ∞,p ) * * ( ∇w, 0) dŷ : w ∈ W 1,p # ( Ŷ , R 3 ), ˆŶ w dŷ = a, w = 0 in D where W 1,p # ( Ŷ , R 3 ) denotes the subset of W 1,p ( Ŷ , R 3
) made up of Ŷ -periodic functions (Corollary 2.1).

The probabilistic framework

No difference is made between R 3 and the three dimensional euclidean physical space equipped with an orthogonal basis denoted by (e 1 , e 2 , e 3 ). For all x = (x 1 , x 2 , x 3 ) of R 3 , x stands for (x 1 , x 2 ) and M 3×3 , M 3×2 denotes the sets of 3 × 3 and 3 × 2 matrices. We denote by Ŷ the unit cell (0, 1) 2 of R 2 and by Y the unit cell (0, 1) 3 of R 3 . For any δ > 0 and any non empty bounded set  of R 2 , we make use of the following notation:

Âδ := x ∈ Â : d(x, R 2 \ Â) > δ
. For any bounded Borel set A of R 2 or R 3 , |A| denotes its Lebesgue measure and #(A) its cardinal when it is finite.

Let d be a given number satisfying 0 < d ≤ 1 and consider the set

Ω = (ω i ) i∈N : ω i ∈ R 2 , |ω i -ω j | ≥ d for i = j
equipped with the trace σ-algebra A of the standard product σ-algebra on Ω. Let Bd/2 (0) be the open ball of R 2 centered at 0 with radius d/2, then for every ω = (ω i ) (i)∈N we form the disk D(ω i ) := ω i + Bd/2 (0) and consider D(ω

) := i∈N D(ω i ). Therefore ω → T (ω) = D(ω) × R is a random set in R 3 , union of random cylinders, whose basis is the union of the pairwise disjoint disks D(ω i ) of R 2 centered at ω i . We set T ε (ω) := εD(ω) × R.
For every z ∈ Z 2 we define the operator τ z : Ω → Ω by τ z ω = ωz. Note that D(τ z ω) = D(ω)z. Furthermore we assume that there exists a probability measure on (Ω, A) which satisfies the system of three following axioms:

(A 1 ) Non sparsely distribution: P ω ∈ Ω : | Ŷ ∩ D(ω)| > 0 = 1;
(A 2 ) Stationary condition: ∀z ∈ Z 2 , τ z #P = P where τ z #P denotes the probability image of P by τ z ;

(A 3 ) Asymptotic mixing property: for all sets E and F of A, lim |z|→+∞ P(τ z E ∩ F ) = P(E)P(F ).

Remark 2.1.

i) It would be more natural to consider stationary condition (A 2 ) with respect to the continuous group (τ t ) t∈R 2 defined in the same way by τ t ω = ωt. Actually the discrete group (τ z ) z∈Z 2 suffices for the mathematical analysis. The size of the cell Ŷ is chosen in such a way to fix the generator of the group (τ z ) z∈Z 2 . Condition (A 2 ) then says that every random function X taking its source in Ω is statistically homogeneous in the sense that X and X • τ z have the same law (i.e. X#P = X • τ z #P). Roughly speaking, moving a window  in R 2 following the translations in R 2 , the distributions of cross sections in the window are statistically the same.

ii) Condition (A 1 ) together with condition (A 2 ) yield that the random set D(ω) is statistically not too sparse in R 2 . Indeed for every

Z 2 -translated  = Ŷ + z of Ŷ P ω : |  ∩ D(ω)| > 0 = P ω : | Ŷ ∩ (D(ω) -z)| > 0 = P ω : | Ŷ ∩ (D(τ z ω))| > 0 = P ω : | Ŷ ∩ (D(ω))| > 0 = 1.
Note that from (A 1 ), the asymptotic volume fraction satisfies

ˆΩ | Ŷ ∩ D(ω)| dP(ω) > 0.
iii) Condition (A 3 ) says that the events τ z E and F are independent provided that z be large enough.

iv) Consider ω = (ω i ) i∈N where ωi are the centers of the hexagonal close-packing of disks in R 2 . Then ω is a "maximal" distribution in the sense that A simple specimen of probability space which fulfills all the conditions above is the generalized random chessboard described below.

| Ŷ ∩ D(ω)| ≤ | Ŷ ∩ D(ω)| for a.s. ω in Ω.
Example 2.1 (Random chessboard-like). Given 0 < d < 1, let us consider a countable set of points Ω 0 = {x k : k ∈ N} in Ŷd/2 and set Ω := Π z∈Z 2 Ω z where Ω z = Ω 0 + z for all z ∈ Z 2 . We equip Ω with the σ-algebra A generated by the cylinders of Ω. For a given family (α k ) k∈N of non negative numbers satisfying k∈N α k = 1 we consider the probability measure µ 0 = k∈N α k δ x k on Ω 0 and the product probability measure P = Π z∈Z µ z on (Ω, A) where µ z = µ 0 for all z ∈ Z. Then it is easy to check that P satisfies axioms (A 1 )-(A 3 ). Figure 4: A piece of a random chessboard of cross sections at scale ε = 1 with #(Ω 0 ) = 9 Remark 2.2. All the results of the paper remain valid if we substitute for the disk Bd/2 (0), any connex compact set of R 2 included in Bd/2 (0) and chosen at random.

Let us recall the following general basic notion of discrete subadditive process. We consider a probability space (Ω, A, P) and a group (τ z ) z∈Z N of P-preserving transformations on (Ω, A). The group (τ z ) z∈Z N is said to be ergodic if every set E in A, such that τ z E = E for every z ∈ Z N , satisfies P(E) = 0 or P(E) = 1. A sufficient condition to ensure ergodicity of (τ z ) z∈Z N is the mixing condition (A 3 ): for every E and F in A lim 

lim n→∞ S In |I n | = lim n→∞ S [0,n[ N n N = inf n∈N * E S [0,n[ N n N = lim n→∞ E S [0,n[ N n N
where E denotes the expectation operator.

For a proof see [START_REF] Ackoglu | Ergodic theorem for superadditive processes[END_REF] and, for some extensions, see [START_REF] Krengel | Ergodic Theorems[END_REF][START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF].

We are going to define the limit density energy associated with the random integral functional u → ´O\Tε f (∇u) dx by applying Theorem 2.1 with N = 2 to a suitable set function S on subsets of I, which ranges over the space L 1 (Ω, A, P) governed by axioms (A 1 )-(A 3 ). More precisely, for all  ∈ I and all

a ∈ R 3 set S Â(ω, a) := inf ˆ• Â×(0,1) f ∞,p (∇w) dx : w ∈ Adm A (ω, a)
,

Adm Â(ω, a) := w ∈ W 1,p 0 •  ×(0, 1) \ T (ω), R 3 : • Â×(0,1) w dx = a ,
where we still denote by w the extension by zero on T (ω)∩ • Â ×(0, 1) of every function w in Adm Â(ω, a). Since the Lebesgue measure does not charge the boundary of the elements of I, one can take as I the set of all open intervals (a, b) of the lattice spanned by Ŷ that we still denote by I. Subsequently the subadditivity condition (i) becomes: for every I ∈ I such that there exists a finite family (I j ) j∈J of disjoint intervals in

I with |I \ j∈J I j | = 0, S I (•) ≤ j∈J S Ij (•).
It is standard to see that the random functionals defined in the introduction are measurable when Ω × L p (O, R 3 ) is equipped with the product σ-algebra A ⊗ B where B is the Borel σ-algebra associated with the normed space L p (O, R 3 ). Consequently, for all fixed  in I and all fixed a in R 3 , the map ω → S Â(ω, a) is measurable. Actually we have Theorem 2.2. For all fixed a ∈ R 3 , the map S(., a) :

I -→ L 1 (Ω, A, P) Â -→ S Â(., a)
is a subadditive process with respect to the group (τ z ) z∈Z 2 defined by τ z (ω) = ωz. It satisfies for all a ∈ R 3 , all  ∈ I and all δ > 0 small enough

S Â(ω, a) ≤ C(p) δ p ( Ŷ \ D(ω)) 2δ |a| p | Â| (6)
where C(p) is a non negative constant depending only of p.

Therefore for any regular family (I n ) n∈N of sets in I, the limit lim

n→∞ S In (ω, a) |I n | exists for P almost every ω ∈ Ω and lim n→∞ S In (a, ω) |I n | = lim n→∞ S [0,n[ 2 (., a) n 2 = inf m∈N * E S [0,m[ 2 (., a) m 2
.

We denote by f 0 the common value above.

Proof. We establish that Adm Â(ω, a) is non empty and that S  ∈ L 1 (Ω, A, P) by establishing [START_REF] Bellieud | Homogenization of a soft elastic material reinforced by fibers[END_REF]. The rest of the proof consists in checking each condition (i) and (ii) and is straightforward. Fix  ∈ I. For 0 < δ small enough consider φ δ = ρ δ * 1 ( Â\D(ω)) δ where ρ δ is a standard mollifier. Clearly

φ δ (x) = 1 if x ∈ (  \ D(ω)) 2δ , 0 if x ∈ R 2 \ (  \ D(ω)). Therefore  φ δ dx ≥ (  \ D(ω)) 2δ | Â| .
Take ω the close-packing distribution in R 2 (Remark 2.1). According to (A 2 ), (A 3 ) we infer

 φ δ dx ≥ z∈ Â∩Z 2 ( Ŷ + z \ D(ω)) 2δ | Â| = z∈ Â∩Z 2 ( Ŷ \ D(τ z ω)) 2δ | Â| ≥ #( Â) | Â| ( Ŷ \ D(ω)) 2δ = ( Ŷ \ D(ω)) 2δ . (7) 
Take now θ ∈ C 1 0 (0, 1) satisfying ´1 0 θ(t) dt = 1. The random function defined by w δ (x,

x 3 ) = a φ δ (x)θ(x 3 ) ffl A φ δ dx
clearly belongs to Adm Â(ω, a) (for short we do not indicate the dependance on ω). Moreover from [START_REF] Castaing | Convex Analysis and measurable Multifunctions[END_REF] and the growth condition satisfied by

f ∞,p , S Â(ω, a) ≤ ˆÂ×(0,1)\T (ω) f ∞,p (∇w δ ) dx ≤ C(p) δ p ( Ŷ \ D(ω)) 2δ |a| p || Â|.
where C(p) is a non negative constant which depends only on p.

We define the elastic density associated with the limit internal energy of the material occupying O \ T ε (ω) by:

∀a ∈ R 3 , f * * 0 (a) = lim n→∞ S [0,n[ 2 (ω, a) n 2 * * (a) ω a.s. = inf m∈N * E S [0,m[ 2 (., a) m 2 * * (a)
where, for any function h : R 3 → R, h * * stands for its convexification, i.e., the greatest convex function less than h.

In order to provide some flexibility in the proofs of Section 3, it is convenient to introduce a new subadditive process A → S A where now A runs over half open cubes of R 3 , converging toward the same limit f 0 (a). Precisely, let us still denote by I the set of all open intervals (a, b) of the lattice spanned by Y , we apply Theorem 2.1 with N = 3 to the set function defined for all A ∈ I and all a ∈ R 3 by

S A (ω, a) := inf ˆ• A f ∞,p (∇w) dx : w ∈ Adm A (ω, a)
,

Adm A (ω, a) := w ∈ W 1,p 0 • A \T (ω), R 3 : • A w dx = a .
Theorem 2.3. For all fixed a ∈ R 3 , the map S(., a) :

I -→ L 1 (Ω, A, P) A -→ S A (., a)
is a subadditive process with respect to the group (τ z ) z∈Z 3 defined by τ z (ω) = ωẑ where z = (ẑ, z 3 ).

Therefore for any regular family (I n ) n∈N of sets in I the limit lim Proof. By repeating the proof of Theorem 2.2 with minor changes, we establish in the same way the existence of the limit lim

n→∞ S In (ω, a) |I n | . Take now I n = (0, n 2 ) 2 × (0, n). Clearly (I n ) n∈N is a regular family in I (I n = I n is suitable)
, and a change of scale yields S In (ω, a)

|I n | = S (0,n 2 ) 2 ×(0,n) (ω, a) n 5 = S (0,n) 2 ×(0,1) (ω, a) n 2 = S (0,n) 2 (ω, a) n 2 , so that for a.s. ω in Ω, lim n→∞ S In (ω, a) |I n | = f 0 (a).
Corollary 2.1. Assume that the fibers are periodically distributed, i.e., in the chessboard-like example above, Ω 0 and Ω 1 are reduced to a single point, then for all a ∈ R 3 ,

f 0 (a) = inf n∈N * S (0,n) 2 (a) n 2
where

S Â(a) := inf ˆ• Â×(0,1) f ∞,p (∇w) dx : w ∈ Adm Â(a)
,

Adm Â(a) := w ∈ W 1,p 0 •  ×(0, 1) \ T , R 3 : • Â×(0,1) w dx = a . Furthermore f * * 0 (a) reduces to f * * 0 (a) = inf ˆŶ (f ∞,p ) * * ( ∇w, 0) dŷ : w ∈ W 1,p # ( Ŷ , R 3 ), ˆŶ w dŷ = a, w = 0 in D where W 1,p # ( Ŷ , R 3 ) denotes the subset of W 1,p ( Ŷ , R 3 ) made up of Ŷ -periodic functions. Proof. Clearly f 0 (a) = inf n∈N * S (0,n) 2 (a) n 2 . Thus for all n ∈ N * f * * 0 (a) ≤ S (0,n) 2 (.) n 2 * * (a) so that f * * 0 (a) ≤ inf n∈N * S (0,n) 2 (.) n 2 * * (a).
Since the converse inequality is obviously satisfied, we conclude to

f * * 0 (a) = inf n∈N * S (0,n) 2 (.) n 2 * * (a). ( 8 
)
But from standard arguments using Fenchel's Duality,

S (0,n) 2 (.) n 2 * * (a) = 1 n 2 inf ˆn Ŷ ×(0,1) (f ∞,p ) * * (∇w) dy : w ∈ Adm n Ŷ (a) . (9) 
Let w # be a minimizer of

inf ˆY \T (f ∞,p ) * * (∇w) dy : w ∈ W 1,p # (Y, R 3 ), ˆY w dy = a, w = 0 in T , extended by Ŷ -periodicity on R 2 × (0, 1) and fix n ∈ N * . Clearly ∂(f ∞,p ) * * (∇w # (x)
) is non empty and for short, we assume that it is single valued. Note that -div∂(f ∞,p ) * * (∇w # ) = 0 a.e. in n Ŷ × (0, 1) and ∂(f ∞,p ) * * (∇w # ).ν is anti-periodic, ν denoting the unit normal to the boundary of n Ŷ × (0, 1). Take any w ∈ Adm n Ŷ (a). According to the subdifferential inequality we have ˆnY

(f ∞,p ) * * (∇w) dy ≥ ˆn Ŷ ×(0,1) (f ∞,p ) * * (∇w # ) dy + ˆn Ŷ ×(0,1) ∂(f ∞,p ) * * (∇w # ).∇(w -w # ) dy.
Integrating by parts, we infer

ˆn Ŷ ×(0,1) (f ∞,p ) * * (∇w) dy ≥ ˆn Ŷ ×(0,1) (f ∞,p ) * * (∇w # ) dy = n 2 ˆY (f ∞,p ) * * (∇w # ) dy so that from (9) S (0,n) 2 (.) n 2 * * (a) ≥ inf ˆY (f ∞,p ) * * (∇w) dy : w ∈ W 1,p # (Y, R 3 ), ˆY w dy = a, w = 0 in T .
Thus, from [START_REF] Chabi | Ergodic Theory and Application to Nonconvex Homogenization[END_REF] and since the converse inequality clearly holds

f * * 0 (a) = inf ˆY (f ∞,p ) * * (∇w) dy : w ∈ W 1,p # (Y, R 3 ), ˆY w dy = a, w = 0 in T .
The conclusion then follows by noticing that inf

ˆY (f ∞,p ) * * (∇w) dy : w ∈ W 1,p # (Y, R 3 ), ˆY w dy = a, w = 0 in T is equal to inf ˆŶ (f ∞,p ) * * ( ∇w, 0) dŷ : w ∈ W 1,p # ( Ŷ , R 3 ), ˆŶ w dŷ = a, w = 0 in D
which is a straightforward consequence of Jensen's inequality.

The following proposition is a straightforward consequence of estimate (6).

Proposition 2.1. The function f * * 0 is a positively homogeneous convex function of degree p, satisfies the growth conditions (4) with the same constant α, with a constant β possibly different, and satisfies the Lipschitz condition (5) with a constant L possibly different.

Proof. Clearly, f * * 0 is positively homogeneous of degree p. The upper bound in (4) follows straightforwardly from [START_REF] Bellieud | Homogenization of a soft elastic material reinforced by fibers[END_REF], and (5) will be deduced by using standard argument of convex analysis provided that we establish: f * * (a) ≥ α |a| p for all a ∈ R 3 . The assertion follows by noticing that for every function w in Adm n Ŷ (ω, a) we have

α |a| p = α n Ŷ ×(0,1) w dx p ≤ α n Ŷ ×(0,1) |w| p dx ≤ α n Ŷ ×(0,1) |∇w| p dx ≤ n Ŷ ×(0,1) f ∞,p (∇w) dx
where we have used Poincaré inequality in the second inequality.

We end this section by the following proposition which is a consequence of Theorem 2.1 when S is additive. It extends the Birkoff ergodic theorem. Proposition 2.2. Let n ∈ N * , and ψ : Ω × R 2 -→ R be a A ⊗ B(R 2 )-measurable function satisfying the three following conditions: i) for P-almost every ω ∈ Ω, ŷ → ψ(ω, ŷ) belongs to L 1 loc (R 2 ); ii) for all bounded Borel set  of R 2 the map  → ´Â ψ(ω, ŷ) dŷ belongs to L 1 (Ω, A, P);

iii) for all z ∈ nZ 2 , for all ŷ ∈ R 2 , ψ(ω, ŷ + z) = ψ(τ z ω, ŷ) for P-almost every ω ∈ Ω.

Then ψ(ω, . ε ) x → E (0,n) 2 ψ(., ŷ) dŷ for the σ(L 1 (O), L ∞ (O)) topology.
Proof. See Theorem 4.2 and Proposition 5.3 in [START_REF] Chabi | Ergodic Theory and Application to Nonconvex Homogenization[END_REF].

3 The limit problem associated with the soft material structure

This section is devoted to the asymptotic analysis of the functional

F v ε (ω, .) : L p (O, R 3 ) → R + ∪ {+∞} F v ε (ω, u) =    ε p ˆO\Tε f (∇u) dx if u ∈ W 1,p Γ0 (O, R 3 ), u = v on O ∩ T ε +∞ otherwise,
where v is a given function in W 1,p Γ0 (O, R 3 ). Before to establish the almost sure Γ-convergence of the functional F v ε we start by establishing a compactness result which explains why we equip L p (O, R 3 ) with its weak convergence. Note that the choice of the topology is crucial in the Γ-convergence process (see [START_REF] Attouch | Variational Convergence for Functions and Operators[END_REF][START_REF] Attouch | Variational analysis in Sobolev and BV space: application to PDEs and Optimization[END_REF][START_REF] Maso | An introduction to Γ-convergence[END_REF]). All along the paper we denote by → and the strong and weak convergences in the various topological spaces, we do not relabel the subsequences and C will denote various nonnegative constants independent of ε and ω which may vary from line to line. Lemma 3.1 (compactness). Let (u ε ) ε>0 be a sequence satisfying sup ε>0 F v ε (ω, u ε ) < +∞ for P a.s. ω ∈ Ω. Then for P a.s. ω ∈ Ω, there exists a subsequence possibly depending on ω and u ∈ L p (O, R 3 ) possibly depending on ω such that u ε u in L p (O, R 3 ).

Proof. Fix ω ∈ Ω such that (A 1 ) holds and such that sup

ε>0 F v ε (ω, u ε ) < +∞. Consider w ∈ W 1,p (R 2 , R 3
). According to the Poincaré-Wirtinger inequality, there exists a constant C(ω) such that

ˆŶ w - Ŷ ∩D(ω) w dŷ p dx ≤ C(ω) ˆŶ |∇w| p dx
from which we easily deduce

ˆε Ŷ w - ε Ŷ ∩εD(ω) w dŷ p dx ≤ C(ω) ˆε Ŷ |ε∇w| p dx and finally ˆε Ŷ |w| p dx ≤ 2 p ε 2 ε Ŷ ∩εD(ω) |w| p dx + C(ω) ˆε Ŷ |ε∇w| p dx . (10) 
Applying [START_REF] Maso | Non Linear Stochastic Homogenization and Ergodic Theory[END_REF] to the function τ εz w defined by τ εz w(x) := w(x + εz) we infer

ˆε( Ŷ +z) |w| p dx = ˆε Ŷ |τ εz w| p dx ≤ 2 p ε 2 ε Ŷ ∩εD(ω) |τ εz w| p dx + C(ω) ˆε Ŷ |ε∇τ εz w| p dx = 2 p ε 2 ε( Ŷ +z)∩εD(τ-zω) |w| p dx + C(ω) ˆε( Ŷ +z) |ε∇w| p dx . (11) 
Noticing that O \ z∈Iε ε( Ŷ + z) = 0 where I ε is a finite subset of Z 2 and ( Ŷ + z) z∈Z 2 are pairwise disjoint, from [START_REF] Fonseca | Analysis of concentration and oscillation effects generated by gradients[END_REF], and since u ε = v on εD(τ -z ω) × (0, h), we obtain

ˆO |u ε | p dx ≤ 2 p ε 2 z∈Iε ˆh 0 ε( Ŷ +z)∩εD(τ-zω) |v| p dx + C(ω) ˆO |ε∇u ε | p dx = C z∈Iε 1 |( Ŷ + z) ∩ D(τ -z ω)| ˆh 0 ˆε( Ŷ +z)∩εD(τ-zω) |v| p dx + C(ω) ˆO |ε∇u ε | p dx ≤ C 1 | Ŷ ∩ D(ω)| v p L p (O,R 3 ) + C(ω) ˆO |ε∇u ε | p dx
and the conclusion follows from

ε p ˆO\Tε |∇u ε | p dx ≤ 1 α F v ε (ω, u ε ).
Remark 3.1. The same compactness result clearly holds when we substitute any function v ε for v provided that sup

ε>0 v ε L p (O∩Tε,R 3 ) < +∞ and sup ε>0 ∇v ε L p (O∩Tε,M 3×3 ) < +∞.
Let us define the functional

F v 0 : L p (O, R 3 ) → R + by F v 0 (u) = ˆO f * * 0 (u -v) dx
where f 0 is the function defined in Section 2. The following theorem is a consequence of the two bounds established in the next two subsections.

Theorem 3.1. The sequence of random functionals (F v ε ) ε>0 almost surely sequentially Γ-converges to the deterministic functional F v 0 when L p (O, R 3 ) is equipped with its weak topology.

The upper bound

Proposition 3.1. There exists a set Ω ∈ A of full probability such that for all u ∈ L p (O, R 3 ) and all ω ∈ Ω there exists a sequence (u ε (ω)) ε>0 in L p (O, R 3 ) satisfying

u ε (ω) u in L p (O, R 3 ) F v 0 (u) ≥ lim sup ε→0 F v ε (ω, u ε (ω)) or, equivalently, for all ω ∈ Ω , Γ -lim sup F v ε (ω, .) ≤ F v 0 .
Proof. We proceed into two steps.

Step 1. For every v ∈ W 1,p (O, R 3 ), let us consider the function

F v 0 : L p (O, R 3 ) → R ∪ {+∞} defined by F v 0 (u) =    ˆO f 0 (u -v) dx if u ∈ C 1 c (O, R 3 ) +∞ otherwise.
We establish Γlim sup F ε (ω, .) ≤ F v 0 for P a.s. ω ∈ Ω . Let η ∈ Q + intended to go to 0 and let (Q i,η ) i∈Iη be a finite family of pairwise disjoint cubes of size

η included in O, such that O \ i∈Iη Q i,η = 0. Let v δ ∈ C 1 c (O, R 3 ) be a regular approximation of v in L p (O, R 3 ), i.e., satisfying v δ → v strongly in L p (O, R 3 ), set z δ := u -v δ and z δ,η := i∈Iη z δ (x i,η )1 Qi,η where x i,η is arbitrarily chosen in Q i,η . Since z δ is a Lipschitz function on O, clearly z δ,η → z δ = u -v δ in L p (O, R 3 ) when η → 0.
Consider the greater open cube C i,η,ε in I included in 1 ε Q i,η and let w i,η,ε ∈ Adm Ci,η,ε (ω, z δ (x i,η )) be a minimizer of S Ci,η,ε (ω, z δ (x i,η )) extended by zero outside C i,η,ε \ T (ω) (for shorten notation, we do not indicate the dependance on δ). The family (C i,η,ε ) ε is regular. Indeed for every cube Q =]a, b[ in R 3 , let denote by Q the associated cube ]0, b[ and consider the family (C i,η,ε ) ε . One has

|C i,η,ε | |C i,η,ε | = |C i,η,ε | 1 ε Q i,η × |Q i,η | Q i,η × 1 ε Q i,η |C i,η,ε | .
But one can easily check that lim

ε→0 |C i,η,ε | 1 ε Q i,η = lim ε→0 |C i,η,ε | 1 ε Q i,η
= 1 so that, for ε small enough (depending on fixed η)

|C i,η,ε | |C i,η,ε | ≤ 2 |Q i,η | Q i,η
. The family (C i,η,ε ) ε then clearly satisfies regularity conditions (i)-(iv).

Therefore, according to Theorem 2.3

lim ε→0 S Ci,η,ε (ω, z(x i,δ,η )) |C i,η,ε | = lim ε→0 1 |C i,η,ε | ˆCi,η,ε\T (ω) f ∞,p (∇w i,η,ε (ω, y)) dy = f 0 (z δ (x i,η )) (12) 
for all ω ∈ Ω i,η satisfying P(Ω i,η ) = 1. In what follows we denote the set of full probability

η∈Q + i∈Iη Ω i,η
by Ω and we fix ω ∈ Ω . From [START_REF] Frémond | Non-Smooth Thermo-mechanics[END_REF] we infer

ˆO f 0 (z δ,η ) dx = i∈Iη ˆQi,η f 0 (z δ,η ) dx = i∈Iη |Q i,η | f 0 (z(x i,η )) dx = lim ε→0 i∈Iη |Q i,η | 1 |C i,η,ε | ˆCi,η,ε\T (ω) f ∞,p (∇w i,η,ε (ω, y)) dy = lim ε→0 i∈Iη |Q i,η | 1 |εC i,η,ε | ˆεCi,η,ε\εT (ω) f ∞,p (∇w i,η,ε (ω, y ε ))dy = lim ε→0 i∈Iη 1 ε Q i,η |C i,η,ε | ˆQi,η\εT (ω) f ∞,p (∇w i,η,ε (ω, y ε ))dy = lim ε→0 i∈Iη ˆQi,η\Tε(ω) f ∞,p (∇w i,η,ε (ω, y ε )) dy. ( 13 
)
We have used the fact that lim ε→0 | 1

ε Qi,η| |Ci,η,ε| = 1 and that w i,η,ε = 0 outside C i,ε,η \ T (ω). Let us define the function u δ,η,ε on O by :

u δ,η,ε (ω, x) = v(x) + i∈Iη w i,η,ε (ω, x ε )1 Qi,η (x).
According to the boundary condition satisfied by 13), ( 5) and ( 3) we deduce

w i,η,ε , clearly u δ,η,ε ∈ W 1,p Γ0 (O, R 3 ) and u δ,η,ε = v on O ∩ T ε (ω). Furthermore, from (
ˆO f 0 (z η ) dx = lim ε→0 i∈Iη ˆQi,η\Tε(ω) f ∞,p (ε∇u δ,η,ε ) dx = lim ε→0 ˆO\Tε(ω) f ∞,p (ε∇u δ,η,ε ) dx = lim ε→0 ε p ˆO\Tε(ω) f (∇u δ,η,ε ) dx = lim ε→0 F v ε (ω, u δ,η,ε (ω, .)). (14) 
Letting η → 0, then δ → 0 in [START_REF] Laniel | Consistent thermodynamic modelling of wire-reinforced geomaterials[END_REF] and since w → ´O f 0 (w) dx is clearly strongly continuous in L p (O, R 3 ) we finally obtain

ˆO f 0 (z) dx = lim δ→0 lim η→0 lim ε→0 F v ε (ω, u δ,η,ε (ω, .)). ( 15 
)
On the other hand, since

w i,η,ε ∈ Adm Ci,η,ε (ω, z(x i,η )), one has Qi,η w i,η,ε (ω, x ε ) dx = 1 |Q i,η | ˆεCi,η,ε w i,η,ε (ω, x ε ) dx = |C i,η,ε | 1 ε Q i,η εCi,η,ε w i,η,ε (ω, x ε ) dx = |C i,η,ε | 1 ε Q i,η Ci,η,ε w i,η,ε (ω, x) dx = |C i,η,ε | 1 ε Q i,η z δ (x i,η )
so that letting successively ε → 0 and η → 0 we easily infer

lim η→0 lim ε→0 u δ,η,ε (ω, .) = v + (u -v δ ) weakly in L p (O, R 3 ).
Then letting δ → 0, lim δ→0 lim η→0 lim ε→0 u δ,η,ε (ω, .) = u weakly in L p (O, R 3 ). ( 16)

Collecting ( 15) and ( 16), a standard diagonalization argument1 furnishes a map ε → (δ(ε), η(ε)) such that u ε (ω, .)

:= u δ(ε),η(ε),ε (ω, .) u weakly in L p (O, R 3 ); lim ε→0 F v ε (ω, u ε (ω, .)) = F v 0 (u)
and the conclusion of step 1 follows straightforwardly.

Step 2. We end the proof by a relaxation argument. According to the first step

Γ -lim sup F v ε (ω, .) ≤ F v 0 .
Taking the lower semicontinuity envelope of each two members in the space L p (O, R 3 ) equipped with its weak topology, we infer Γlim sup F v ε (ω, .) ≤ ( F v 0 ) * * . But, from standard relaxation result ( F v ) * * = F v 0 and the conclusion follows.

The lower bound

Proposition 3.2. For all u ε weakly converging to u in L p (O, R 3 ) and for P a.s. ω ∈ Ω one has

F v 0 (u) ≤ lim inf ε→0 F v ε (ω, u ε ).
Proof. From (3) and since

u ε = v on T ε (ω) ∩ O we easily deduce lim inf ε→0 ε p ˆO\Tε f (∇u ε )dx = lim inf ε→0 ˆO f ∞,p (ε∇u ε )dx.
Fix x 0 in O and set Q ρ (x 0 ) := S ρ (x 0 ) × I ρ (x 0,3 ) (to shorten notation we sometimes do not indicate the fixed argument x 0 ). By using a blow up argument, it is enough to prove that for a.e. x 0 one has

lim ρ→0 lim inf ε→0 Qρ(x0) f ∞,p (ε∇u ε ) dx ≥ f * * 0 (u(x 0 ) -v(x 0 )).
According to the decomposition lemma (cf [START_REF] Attouch | Variational analysis in Sobolev and BV space: application to PDEs and Optimization[END_REF][START_REF] Fonseca | Analysis of concentration and oscillation effects generated by gradients[END_REF]), there exists w ε in W 1,p 0 (Q ρ , R 3 ) such that (|∇w ε | p ) ε>0 is uniformly integrable and such that the sequences (∇w ε ) ε>0 and (∇εu ε ) ε>0 generate the same Young measure µ (for shorten notation we do not indicate the dependance on ρ for w). Therefore applying standard lower semicontinuity and continuity properties for Young measures (see Proposition 4.3.4 and Theorem 4.3.3 in [START_REF] Attouch | Variational analysis in Sobolev and BV space: application to PDEs and Optimization[END_REF]) we infer

lim inf ε→0 Qρ(x0) f ∞,p (∇w ε ) dx = ˆQρ(x0) ˆM3×3 S f ∞,p (M ) dµ x dx ≤ lim inf ε→0 Qρ(x0) f ∞,p (ε∇u ε ) dx so that it suffices to establish lim inf ρ→0 lim inf ε→0 Qρ(x0) f ∞,p (∇w ε ) dx ≥ f * * 0 (u(x 0 ) -v(x 0 )). ( 17 
)
Note that since

εu ε 0 in W 1,p (O, R 3 ) εu ε → 0 in L p (O, R 3 )
we infer

w ε 0 in W 1,p (Q ρ , R 3 ) (18) w ε → 0 in L p (Q ρ , R 3 ) (19)
when ε → 0. Let C ε,ρ be the smallest cube in I containing 1 ε Q ρ . Our strategy is to change the function w ε in order to obtain a function in Adm Cε,ρ (ω, u(x 0 )v(x 0 )) whose gradient decreases the left hand side of [START_REF] Licht | A nonlocal energy functional in pseudo-plasticity[END_REF].

First change. For η > 0 intended to go to 0 set Âη := (S ρ \εD(ω)) η (we do not indicate the dependence on ε and ω) and w ε,η (x) := φ ε,η (x)w ε (x) + εv(x 0 ) where φ ε,η := ρ η * 1 Âη . Note that φ ε,η satisfies

|grad(φ ε,η )| ≤ C η and φ ε,η = 0 in ∂(S ρ \ εD(ω)), 1 in Â2η , thus w ε,η := εv(x 0 ) on ∂(Q ρ \ εT (ω))
. We extend w ε,η by εv(x 0 ) on the complementary set of Q ρ \ εT (ω). Set A 2η := Â2η × I ρ . From the growth condition (3) we deduce

ˆQρ f ∞,p (∇w ε,η ) dx = ˆA2η f ∞,p (∇w ε,η ) dx + ˆ(Qρ\εT (ω))\A2η f ∞,p (∇w ε,η ) dx ≤ ˆQρ f ∞,p (∇w ε ) dx + ˆ(Qρ\εT (ω))\A2η f ∞,p (∇w ε,η ) dx. (20) 
On the other hand

ˆ(Qρ\εT (ω))\A2η f ∞,p (∇w ε,η ) dx ≤ C ˆ(Qρ\εT (ω))\A2η ||grad φ|| p |w ε | p + |φ ε,η | p |∇w ε | p dx ≤ C 1 η p ˆ(Qρ\εT (ω))\A2η |w ε | p dx + sup ε ˆ(Qρ\εT (ω))\A2η |∇w ε | p dx .
Letting successively ε → 0 and η → 0 and since (|∇w ε | p ) ε>0 is uniformly integrable we finally deduce lim sup

η lim sup ε ˆ(Qρ\εT (ω))\A2η f ∞,p (∇w ε,η ) dx = 0. (21) 
Consequently, combining (20) and ( 21)

lim inf η lim inf ε ˆQρ f ∞,p (∇w ε,η ) dx ≤ lim inf ε Qρ f ∞,p (∇w ε ) dx. ( 22 
)
Second change. With the function φ ε,η defined previously, set ψ ε,η := φε,η ffl Sρ φε,η dx and consider the random function

z ε,η := w ε,η + ψ ε,η [εu(x 0 ) - Qρ w ε,η dx].
The function ψ ε,η fulfills the following conditions

ψ ε,η (x) =    0 on ∂(S ρ \ εD(ω)), 1 ffl Sρ φ ε,η dx on Â2η , ffl Sρ ψ ε,ρ dx = 1, and |grad(ψ ε,η )| ≤ 1 C(η)η
where C(η) is a nonnegative constants depending only of ρ and η (change of scale and argue as in ( 7) by reasoning on

1 ε S ρ \ D(ω)). Thus        Qρ z ε,η dx = εu(x 0 ) and z ε,η = εv(x 0 ) on ∂(Q ρ \ εT (ω)).
From the definition of z ε,η we derive

ˆQρ f ∞,p (∇z ε,η ) dx = ˆA2η f ∞,p (∇w ε,η ) dx + R ε,η,ρ ≤ ˆQρ f ∞,p (∇w ε,η ) dxdx + R ε,η,ρ (23) 
where

R ε,η,ρ := ˆ(Qρ\εT (ω))\A2η f ∞,p (∇z ε,η ) dx.
From the growth condition ( 4)

|R ε,η,ρ | ≤ ˆ(Qρ\εT (ω))\A2η |∇w ε,η | p dx + C |(Q ρ \ εT (ω)) \ A 2η | p η p C(η) p ε p |u(x 0 )| p + Qρ w ε,η dx p .
But applying estimate (21) with the function | . | p substituted for f ∞,p lim sup

η→0 lim sup ε→0 ˆ(Qρ\εT (ω))\A2η |∇w ε,η | p dx = 0.
On the other hand

ε p |u(x 0 )| p + Qρ w ε,η dx p
clearly tends to 0 when ε → 0 (recall that w ε strongly converges to 0 in L p (Q ρ , R 3 )). Thus, letting successively ε → 0 and η → 0 in (23) we obtain lim inf

η→0 lim inf ε→0 ˆQρ f ∞,p (∇z ε,η ) dx ≤ lim inf η→0 lim inf ε→0 ˆQρ f ∞,p (∇w ε,η ) dx and finally from (22) lim inf η→0 lim inf ε→0 ˆQρ f ∞,p (∇z ε,η ) dx ≤ lim inf ε Qρ f ∞,p (∇w ε ) dx. ( 24 
)
Let us define the Sobolev function z

ε,η on 1 ε Q ρ by z ε,η (y) := 1 ε z ε,η ( 
εy) which satisfies the following conditions:

z ε,η (y) = v(x 0 ) on ∂( 1 ε Q ρ \T (ω)), Qρ z ε,η (y)dy = 1 ε 1 ε Qρ z ε,η (εy)dy = 1 ε Qρ z ε,η (x)dx = u(x 0 ). Extend z ε,η by v(x 0 ) on C ε,ρ \ 1 ε Q ρ , and set z" ε,η := |C ε,η | 1 ε S ρ z ε,η -v(x 0 ) .
It is easy to check that z" ε,η belongs to Adm Cε,η (u(x 0 )v(x 0 )). Changing of scale at the left hand side of (24), using the facts that f ∞,p is positively p-homogeneous and that lim

ε→0 |C ε,η | 1 ε Q ρ = 1
, we obtain for P almost every ω in Ω:

f 0 (u(x 0 ) -v(x 0 )) = lim ε→0 1 |C ε,ρ | S Cε,ρ (ω, u(x 0 ) -v(x 0 )) ≤ lim sup η→0 lim sup ε→0 Cε,ρ f ∞,p (∇z ε,η ) dx = limsup η→0 lim sup ε→0 1 ε Qρ f ∞,p (∇z ε,η ) dx = liminf η→0 lim inf ε→0 Qρ f ∞,p (∇z ε,η ) dx ≤ lim inf ε Qρ f ∞,p (∇w ε ) dx. Therefore f * * 0 (u(x 0 ) -v(x 0 )) ≤ lim inf ε Qρ f ∞,p (∇w ε ) dx which completes the proof.
Remark 3.2. A carefully analysis of the proof above lead us to the following generalization of the lover bound: for all u ε u in L p (O, R 3 ), for all function v ε in W 1,p (O, R 3 ) satisfying sup ε>0 ∇v ε ) L p (O∩Tε,M 3×3 ) < +∞, and for all function ζ ∈ L p (O, R 3 )

F ζ (u) ≤ lim inf ε→0 F vε ε (ω, u ε )
where, for every u ∈ L p (O, R 3 ),

F vε ε (ω, u) =    ˆO\Tε f (ε∇u) dx if u ∈ W 1,p Γ0 (O, R 3 ), u = v ε on O ∩ T ε +∞ otherwise, F ζ (u) = ˆO f * * 0 (u -ζ).
4

The limit problem associated with the fibers

The limit functional

In the following we denote by a(ω, .) the characteristic function of the random set D(ω) so that 1 Dε (ω

)(x) = 1 Dr(ω) ( x ε ) := a(ω, x ε ) ∀x ∈ O.
According to this notation we consider the random integral functional G ε (ω, .) defined in L p (O, R 3 ) by

G ε (ω, u) =    ˆO a(ω, x ε )g(∇u)dx if u(O\T ε ) = 0, u(O ∩ T ε ) ∈ W 1,p Γ0 (O ∩ T ε , R 3 ) +∞ otherwise.
According to Proposition 2.2 of Section 2 we have 

G 0 : L p (O, R 3 ) → R ∪ {+∞} by G 0 (u) =    θ ˆO(g ⊥ ) * * ( 1 θ ∂u ∂x 3 )dx if u ∈ V 0 +∞ otherwise where V 0 := u ∈ L p (O, R 3 ) : ∂u ∂x 3 ∈ L p (O, R 3 ), u(x, 0) = 0 on O .
Note that the function G 0 considered in the introduction is nothing but the function defined by G 0 (v) = G0 (θv). In the next sections we are going to establish Theorem 4.1. The sequence (G ε ) ε>0 almost surely sequentially Γ-converges to the functional G 0 when L p (O, R 3 ) is equipped with its weak topology.

The use of the weak topology in L p (O, R 3 ) comes from the next compactness result. Lemma 4.1. Let (u ε ) ε>0 be a sequence satisfying sup ε G ε (ω, u ε ) < +∞ for all ω ∈ Ω". Then for all ω ∈ Ω" there exist a subsequence possibly depending on ω and u ∈ V 0 possibly depending on ω such that a(ω, . ε

)u ε u in L p (O, R 3 ) (25) a(ω, . ε ) ∂u ε ∂x 3 ∂u ∂x 3 in L p (O, R 3 ). ( 26 
)
Proof. From the coercivity of g, and since u ε = 0 on Γ 0 , we infer

ˆO∩Tε |u ε (x, x 3 )| p dx ≤ C ˆO∩Tε ∂u ε ∂x 3 p dx ≤ C α G ε (ω, u ε )
which gives (25). Weak convergence (26) is obvious and u(x, 0) = 0 on O is easily checked. Note that since

V 0 ⊂ W 1,p ((0, h), L p (O, R 3 )) ⊂ C([0, h], L p (O, R 3 
)) equality u(., 0) = 0 may be understood in a classical sense.

The lower bound

Proposition 4.2. For all u ε such that a(ω, . ε )u ε weakly converges to u in L p (O, R 3 ) and all ω ∈ Ω"

G 0 (u) ≤ lim inf ε→0 G ε (ω, u ε )
Proof. Fix ω ∈ Ω" and assume that lim inf ε→0 G ε (u ε ) < +∞. From inequalities g ≥ g ⊥ ≥ (g ⊥ ) * * and the Moreau-Rockafellar duality principle we infer that for all φ in L q (O, R 3 ) where q = p p-1 is the conjugate exponent of p:

lim inf ε→0 G ε (u ε ) ≥ lim inf ε→0 ˆO a(ω, x ε )(g ⊥ ) * * ( ∂u ε ∂x 3 )dx ≥ lim inf ε→0 ˆO a(ω, x ε )φ. ∂u ε ∂x 3 dx -ˆO a(ω, x ε )(g ⊥ ) * (φ)dx = ˆO φ. ∂u ∂x 3 dx -θ ˆO(g ⊥ ) * (φ)dx = θ ˆO 1 θ φ ∂u ∂x 3 dx -ˆO(g ⊥ ) * (φ)dx .
By taking the the supremum over all functions φ in φ ∈ L q (O, R 3 ) we finally obtain

lim inf ε→0 G ε (u ε ) ≥ θ sup φ∈L q (O,R 3 ) ˆO 1 θ φ ∂u ∂x 3 dx -ˆO(g ⊥ ) * (φ)dx = θ ˆO(g ⊥ ) * * ( 1 θ ∂u ∂x 3
)dx which completes the proof.

The upper bound

Proposition 4.3. For all u ∈ V 0 and all ω ∈ Ω" there exists a sequence

(u ε (ω)) ε>0 in L p (O, R 3 ) weakly converging to u in L p (O, R 3 ) such that G 0 (u) ≥ lim sup ε→0 G ε (ω, u ε (ω)).
Proof. In all the proof we fix ω in Ω". We proceed into two steps.

First step. let u ∈ C 1 (O, R 3 ), with u = 0 on Γ 0 . We construct a sequence (u ε (ω)

) ε>0 ∈ L p (O, R 3 ) such that u ε (O\T ε ) = 0, u ε (O ∩ T ε ) ∈ W 1,p (O ∩ T ε , R 3 ) and satisfying a(ω, . ε )u ε (ω) u in L p (O, R 3 ), lim ε→0 G ε (ω, u ε (ω)) = θ ˆO g ⊥ ( 1 θ ∂u ∂x 3 )dx.
For η > 0 intended to tend to zero, consider

ξ η in L p (O, M 3×2 ) such that θ ˆO g ⊥ ( 1 θ ∂u ∂x 3 )dx = θ ˆO inf ξ∈M 3×2 g ξ + 1 θ ∇u, 1 θ ∂u ∂x 3 dx ≥ θ ˆO g ξ η + ∇u, 1 θ ∂u ∂x 3 dx -η. ( 27 
)
The measurability of the matrix valued function x → ξ η (x) comes from the coercivity and the growth condition fulfilled by g and may be proven thanks to the measurable selection theorem (see [START_REF] Castaing | Convex Analysis and measurable Multifunctions[END_REF]). Since

C 1 c (O, M 3×2 ) is dense in L p (O, M 3×2
), according to the Lipschitz property of the convex function g one may assume that ξ

η ∈ C 1 c (O, M 3×2 ). Let us consider a random function φ(ω, .) = (φ 1 (ω, .), φ 2 (ω, .)) in C 1 c (R 2 , R 2 ) satisfying φ(ω, ŷ) = ŷ whenever ŷ ∈ D(ω) and set u ε,η = a(ω, x ε ) 1 θ u(x) + εφ 1 (ω, x ε )ξ η 1 + εφ 2 (ω, x ε )ξ η 2 . ( 28 
) Clearly u ε,η ∈ W 1,p Γ0 (O ∩ T ε , R 3 
) and u ε,η (O\T ε ) = 0. Furthermore, from Proposition 4.1, u ε,η (ω) u in L p (O, R 3 ). On the other hand a straightforward calculation yields 

∇u ε,η = 1 θ ∇u + ξ η + O η (ε), ∂uε,η ∂x3 = 1 θ ∂u ∂x3 + O η (ε) on T ε ∩ O,
G ε (u ε,η (ω)) = lim η→0 θ ˆO g ξ η + 1 θ ∇u, 1 θ ∂u ∂x 3 dx = θ ˆO(g ⊥ )( 1 θ ∂u ∂x 3 )dx.
By using a standard diagonalization argument, there exists a map ε → η(ε), η(ε) → 0 when ε → 0 so that, setting

u ε = u ε,η(ε)    u ε (ω) u in L p (O, R 3 ) lim ε→0 G ε (u ε (ω)) = θ ˆO(g ⊥ )( 1 θ ∂u ∂x 3 )dx. Second step (Relaxation). let u ∈ V 0 . Thus G 0 (u) = θ ˆO(g ⊥ ) * * ( 1 θ ∂u ∂x 3 
) dx. According to standard relaxation results there exists a sequence

(ζ n ) n∈N in C 1 c (O, R 3 ) weakly converging to ∂u ∂x 3 in L p (O, R 3 ) such that lim n→+∞ ˆO g ⊥ ( 1 θ ζ n ) = ˆO(g ⊥ ) * * ( 1 θ ∂u ∂x 3 )dx. ( 29 
)
For all x ∈ O, consider the function v n ∈ V 0 defined by

v n (x) := ˆx3 0 ζ n (x, s) ds. Then ∂v n ∂x 3 ∂u ∂x in L p (O, R 3 ) so that v n u in L p (O, R 3 ). From (29) we infer that (v n ) n∈N is a sequence of C 1 (O, R 3 )-functions in V 0 weakly converging to u in L p (O, R 3 ) and satisfying lim n→+∞ θ ˆO g ⊥ ( 1 θ ∂v n ∂x 3 ) = G 0 (u).
Last step. With the notation of the previous step, according to the first step there exists a sequence

(u ε,n (ω)) ε>0 satisfying    u ε,n (ω) v n in L p (O, R 3 ) when ε → 0, lim ε→0 G ε,n (u ε,n (ω)) = θ ˆO(g ⊥ )( 1 θ ∂v n ∂x 3 )dx.
Letting n → +∞ in the two estimates above and using again a standard diagonalization argument, we deduce that there exists a map ε

→ n(ε) such that u ε,n(ε) (ω) u in L p (O, R 3 ) lim ε→0 G ε (ω, u ε,n(ε) (ω)) = G 0 (u). ( 30 
)
We end the proof by setting u ε (ω) := u ε,n(ε) (ω).

5

The limit problem associated with the complete structure Now, we deal with the asymptotic behavior of the complete structure. Let us recall that the functional energy H ε is defined in L p (O, R 3 ) by :

H ε (ω, u) =    ˆO\Tε ε p f (∇u) dx + ˆO∩Tε g(∇u) dx if u ∈ W 1,p Γ0 (O, R 3 ) +∞ otherwise.
It is worth noticing that for u in W 1,p Γ0 (O, R 3 ), one has

H ε (ω, u) = F u ε (ω, u) + G ε (ω, 1 Tε∩O u). We define in L p (O, R 3 ) the deterministic functional G 0 by G 0 (v) = G 0 (θv), i.e., G 0 (v) =    θ ˆO(g ⊥ ) * * ( ∂v ∂x 3 )dx if v ∈ V 0 +∞ otherwise.
We equip L p (O, R 3 ) with its weak topology and establish the following main theorem of the paper:

Theorem 5.1. The sequence (H ε ) ε>0 almost surely sequentially Γ-converges to the infimum convolution F 0 G 0 defined for every u ∈ L p (O, R 3 ) by

F 0 G 0 (u) := inf v∈L p (O,R 3 ) F 0 (u -v) + G 0 (v) .
Consequently (H ε + L) ε>0 almost surely sequentially Γ-converges to the functional F 0 G 0 + L.

The choice of the weak topology which equips L p (O, R 3 ) is suggested by the following compactness result. The proof is very similar to that of Lemma 3.1 and 4.1 and left to the reader (see Remark 3.1).

Lemma 5.1. Let (u ε ) ε>0 be a sequence in L p (O, R 3 ) such that sup ε>0 H ε (ω, u ε ) < +∞ and set v ε = a(ω, . ε )u ε . Then, there exist (u, v) in L p (O, R 3 ) and a subsequence possibly depending on ω such that for P almost every ω

(u ε , v ε ) (u, v) in L p (O, R 3 ) × L p (O, R 3 )
∂v ε ∂x 3 ∂v ∂x 3 in L p (O, R 3 ).

The lower bound

In this section, we establish the lower bound in the definition of the Γ-convergence of H ε to H: Proposition 5.1. For every u ε weakly converging to u in L p (O, R 3 ), and for P-almost every ω in Ω H(u) ≤ lim inf ε→0 H ε (ω, u ε ).

Proof. One may assume lim inf ε→0 H ε (ω, u ε ) < +∞, so that, for a non relabeled subsequence, H ε (ω, u) = F uε ε (ω, u ε ) + G ε (ω, 1 Tε∩O u ε ) and, from Lemma 5.1, there exists v ∈ V 0 such that 

(u ε , v ε ) (u, v) in L p (O, R 3 ) × L p (O,
On the other hand combining (28) and (30), there exists v η,ε (ω) in W 1,p Γ0 (O ∩T ε , R 3 ) almost surely weakly converging to θv η in L p (O, R 3 ) of the form

v η,ε (ω) = a(ω, x ε ) v η (x) + εφ 1 (ω, x ε )ξ η 1 + εφ 2 (ω, x ε )ξ η 2 .
which satisfies for P-almost every ω

lim ε→0 G ε (ω, v η,ε (ω)) = G 0 (θv η ) = G 0 (v η ). (33) 
From now on, we do not indicate the dependence of the functions u η,ε and v η,ε on ω. Combining (32) and (33) we infer F in the sense of the Γ-convergence and, up to a subsequence, every sequence (u ε (ω)) ε>0 of ε-minimizers of (P Hε ) almost surely weakly converges in L p (O, R 3 ) to a minimizer of (P H ).
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  5.1 and Corollary 5.1) where F 0 and G 0 are the functionals energy Γ-limits of the functionals u → ε p ˆO\Tε f (∇u) dx and u → ˆO∩Tε g(∇u) dx respectively, which are defined in L p (O, R 3 ) by
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|z|→+∞P

  (τ z E ∩ F ) = P(E)P(F ) which expresses an asymptotic independence. Let I denote the set of half open intervals [a, b) of the lattice spanned by (0, 1) N . A discrete subadditive process with respect to (τ z ) z∈Z N is a set function S : I -→ L 1 (Ω, A, P) satisfying (i) for every I ∈ I such that there exists a finite family (I j ) j∈J of disjoint intervals in I with I = j∈J I j , S I (•) ≤ j∈J S Ij (•), (ii) ∀I ∈ I, ∀z ∈ Z N , S I • τ z = S z+I A family (I n ) n∈N of sets in I is called regular if there exists another family (I n ) n∈N of sets in I such that (i) I n ⊂ I n for all n ∈ N; (ii) (I n ) is non decreasing; (iii) there exists a constant C > 0 such that 0 < |I n | ≤ C|I n | for all n ∈ N, (iv) R N + = I n . The following subadditive ergodic theorem is due to Ackoglu-Krengel. Theorem 2.1. Let S be a discrete subadditive process with respect to an ergodic group (τ z ) z∈Z N satisfying inf ˆΩ S I (ω) |I| P(dω)I ∈ I, |I| = 0 > -∞ and let (I n ) n∈N be a regular family of sets in I. Then almost surely

n→∞S

  In (ω, a) |I n | exists for P almost every ω ∈ Ω and lim n→∞ S In (a, ω) |I n | = f 0 (a).

Proposition 4 . 1 .

 41 There exists a P-mesurable set Ω ⊂ Ω, with P (Ω") = 1 such that ∀ω ∈ Ω , a(ω, . ε ) E( ˆŶ a(ω, ŷ)dŷ) := θ for the topology σ(L ∞ , L 1 ). Now let us consider the function g ⊥ : R 3 → R defined for every a ∈ R by g ⊥ (a) := inf ξ∈M 3×2 g (ξ|a) , and we define the deterministic functional

  R

H

  3 ).According to Proposition 3.2, Remark 3.2 and Proposition 4.2, we infer for P a.s.ω ∈ Ω lim inf ε→0 H ε (ω, u ε ) ≥ F ε (ω, u ε ) ≥ inf w∈L p (O,R 3 ) F 0 (uw) + G 0 (w)which ends the proof.

5. 2 Proposition 5 . 2 .

 252 The upper boundNow we establish the upper bound in the definition of Γ-convergence: For every u in L p (O, R 3 ), there exists a sequence (u ε (ω)) ε>0 in L p (O, R 3 ) such that for P-almost every ω ∈ Ω, u ε (ω) u andlim sup ε→0 H ε (ω, u ε (ω)) ≤ H(u).(31)Proof. One may assume H(u) < +∞. For η > 0 intended to go to zero, let v η be a η-minimizer in the definition of H(u):H(u) ≥ F vη 0 (u) + G 0 (v η )η.It is easily seen that one may assume that v η ∈ C(O, R 3 ). According to Propositions 3.1, 3.2 there exists u η,ε (ω) almost surely weakly converging to u in L p (O, R 3 ) with 1 Tε∩O u η,ε (ω) = v η , such that for P-almost every ω in Ω lim ε→0 F vη ε (ω, u η,ε (ω)) = F vη 0 (u).

vη0)ξ η 1 +)ξ η 2 .F

 12 (u) + G 0 (v η ) = lim ε→0 F vη ε (ω, u η,ε ) + lim ε→0 G ε (ω, v η,ε ). (34)let us set ũη,ε = u η,ε + εφ 1 (ω, x ε εφ 2 (ω, x ε Note that 1 Tε∩O ũη,ε = v η,ε and that, from the Lipschitz condition satisfied by f , limε→0 ũη,ε ε (ω, ũη,ε ) = lim ε→0 F vη ε (ω, u η,ε ).Thus (34) yieldsF vη 0 (u) + G 0 (v η ) = lim ε→0 F ũη,ε ε (ω, ũη,ε ) + G ε (ω, v η,ε ) = lim ε→0 H ε (ω, ũη,ε )(35)Clearly ũη,ε u in L p (O, R 3 ). We end the proof by letting η → 0 and using a standard diagonalization argument.Collecting Lemma 5.1 and Theorem 5.1, and according to the variational nature of the Γ-convergence we obtain Corollary 5.1. The problem(P Hε ) inf H ε (ω, u) -ˆO L.u dx : v ∈ L p (O, R 3 )almost surely converges to the problem(P H ) min H(u) -ˆO L.u dx : v ∈ L p (O, R 3 )

  where lim ε→0 O η (ε) = 0. From (27) and the Lebesgue dominated convergence theorem we infer

	lim	lim
	η→0	ε→0

One can easily check that u δ,η,ε (ω, .) belongs to a fixed ball B(0, r) of L p (O, R 3 ). Since the weak topology of L p (O, R 3 ) induces a metric on bounded sets, the diagonalization argument holds.