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Abstract

This Note presents criteria on the artificial compliance dueto intrinsic cohesive zone models. A
homogenized model is proposed for a collection of cohesive zones embedded between each mesh
of a finite element-type discretization (cohesive-volumetric approach). The overall elastic behavior
of this cohesive-volumetric medium is obtained as a function of the local properties and the mesh
size. For an isotropic discretization, a criterion on the cohesive stiffnesses is derived: the additional
compliance inherent to intrinsic cohesive zone models is bounded by lower value.

keywords:damage; Cohesive Zone Model; Rigorous Criteria; Cohesive Stiffness; Homogenization

Résumé

Critères sur les raideurs cohésives pour les formulations intrinsèques. Cette Note propose des
critères pour la souplesse additionnelle inhérente aux modèles de zones cohésives intrinsèques. Un
modèle micromécanique est développé pour une collection dezones cohésives insérées entre toutes les
mailles d’une discrétisation spatiale de type éléments finis (approche cohésive-volumique). Le com-
portement linéaire effectif du milieu cohésif-volumique est relié aux propriétés locales et à la taille de
maille. Pour une discrétisation isotrope, un critère est obtenu pour les raideurs cohésives: la souplesse
additionnelle macroscopique liée à la présence de modèles cohésifs est minorée.

Mots-clés:Endommagement; Modèle de Zone Cohésive; Critères rigoureux; Raideur cohésive; Homogénéisation

Version française abrégée

Les modèles de zone cohésive intrinsèque possèdent une raideur initiale finie: leur insertion entre
chaque maille d’une discrétisation de type éléments finis (l’approchecohésive-volumique) conduit à
l’introduction d’une souplesse additionnelle. Différents auteurs ont proposé de limiter cette souplesse
additionnelle en définissant des critères reliant la raideur cohésive à la taille des maillages considérés,
e.g. (2; 13); ces critères sont jusqu’à présent semi-empiriques et limités à certains types de chargement.
Cette Note présente des critères valables pour tout maillage et tout taux de triaxialité.
Modèle micromécanique.Le principe de l’approche, proposé en premier lieu par (1), consiste à con-
sidérer l’approche cohésive-volumique comme une collection d’inclusions cohésives distribuée dans un
milieu continu selon une statistique de distribution spatiale liée à la morphologie du maillage sous-jacent.
Le comportement élastique homogène équivalent de ce milieuest borné par valeur inférieure à l’aide de
l’estimation de Hashin-Shtrikman (4). Ce changement d’échelles nécessite de définir une déformation
de la phase cohésive au travers d’une épaisseur fictivee destinée à tendre vers zéro et un tenseur de
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raideur du quatrième ordre pour la phase cohésive (5). Une prise de moyenne adaptée de l’estimation
de Hashin-Shtrikman sur les orientations des arêtes du maillage et un passage à la limitee → 0 permet
d’obtenir les critères attendus (12).
Critères.Dans le cas d’une microstructure globalement isotrope – phase continue isotrope et orientations
équiprobables arêtes des mailles – un critère (16) est obtenu pour la raideur cohésive:

CNLmesh

EM
≥ γ

R

1−R

(
1 +

4

3

CN

CT

)
,

oùCN etCT sont les raideurs cohésives normale et tangente,EM le module de Young de la phase con-
tinue,R une perte de raideur apparente tolérée par l’utilisateur,Lmesh la taille de maille etγ un paramètre
lié à la morphologie du maillage. Les critères semi-empiriques de la littérature〈〈 CNLmesh/E

M plus
grand qu’une quantité fixée〉〉(2; 13) sont ainsi étendus et trouvent une justification théorique.

1 Introduction

Cohesive zone models (CZM) are one of the most widely used approaches to simulate numerical fracture
processes from crack initiation to overall failure. In particular, the cohesive-volumetric finite element
method allows multi-crack initiation without any ad hoc criteria: a traction-separation law is incorpo-
rated between each mesh of a finite element-type discretization. However, the numerical results show
that this cohesive-volumetric implementation exhibits a strong mesh sensitivity which is still an issue
of concern. The paper (12) was the first one to emphasize this mesh-dependency by illustrating the
link between the crack path and the mesh size or the mesh type.Despite this crack path sensitivity, the
authors show therein that global characteristics are not very sensitive to the mesh and can be predicted
with reasonable accuracy.
This mesh-dependency is particularly noteworthy forintrinsic CZM, i.e. traction-separation laws with
initial slope: embedding such types of CZM within a finite element mesh leads to an additional compli-
ance that drastically increases when the mesh size decreases. Following (10), this artificial compliance
can be illustrated on a simple 1D-example (see Fig. 1). In this case, the equilibrium condition reads:
F/S = EMε = CN[u], whereF is the applied force,ε the strain in the bulk elements (mesh size
Lmesh, cross areaS), EM the Young modulus of the bulk elements,CN the initial cohesive stiffness of
the intrinsic model and[u] is the displacement jump across the cohesive zone. From the definition of
the overall strain

ε̃ =
F/S

EM
+

F/S

CNLmesh
,

one can deduce the normalized apparent Young modulus:

Ẽ

EM
=

F/S

EMε
=

ξ

1 + ξ
with ξ =

CNLmesh

EM
. (1)

According to (1), the ratioξ seems to be the key adimensional parameter controlling the mesh sensitivity
in intrinsic CZMs: more precisely, the added compliance vanishes (̃E → EM ) whenξ → +∞, see
Fig. 1 right. In other words, the overall elastic behavior isnot affected by the introduction of intrinsic
CZMs between bulk elements and therefore the mesh sensitivity effect vanishes.
Following the same set of ideas, various authors have proposed semi-empirical bounds for the ratioξ in
order to obtain ’invisible’ CZMs on a structural scale. Performing numerical tension and shear tests, (2)
have noticed that the elastic wave speeds are unchanged across a cohesive line between two elastic and
isotropic media whenξ ≥ 10. Estimating the added compliance for cross-triangle elements arranged in
quadrilateral pattern submitted to uniaxial tension, biaxial uniform tension and pure shear, (13) obtain
(νM is the Poisson ratio of the bulk material):

ξ ≫ α

√
2 + 1

1− νM
with α = 1 for plane stress andα =

1

1− (νM )2
for plane strain.
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Fig. 1: Illustration of the relationship between apparent Young modulus and mesh size in 1D-case: (left)
a representative part of 1D finite element mesh with embeddedcohesive zone model, (right) overall
Young modulus normalized by bulk modulus vs mesh size.

The aim of the present Note is to generalize these criteria tothree dimensional situations and to any type
of loadings. For that purpose, a new micromechanical model is developed.

2 Micromechanical model

2.1 Cohesive-volumetric discretization as a matrix-inclusion composite

Consider a cohesive-volumetric finite element discretization: each volumetric element is connected to
each other using CZMs as boundary conditions. The central proposal is to replace this discretization with
a continuousmatrix containing cohesiveinclusions(Fig. 2). The matrix has the same behavior as the

Fig. 2: Principle of the approach: a cohesive-volumetric finite element mesh is replaced by a continuous
matrix corresponding to bulk elements and a collection of penny-shaped cohesive inclusions correspond-
ing to the edges of the underlying mesh; (left) 2-D illustration, (right) 3-D illustration.

bulk finite element whereas the inclusions have a cohesive behavior defined by a traction-separation law.
The spatial distribution of the cohesive inclusions corresponds to those of the edges of the underlying
mesh and has the same density, denoted byZ. In particular, in the case of a statistically isotropic mesh,
e.g. a Delaunay-type mesh, the inclusions are randomly distributed in space and in orientation. The
densityZ corresponds to the specific ’surface’ of the interface between the meshes: in two dimensions,Z
is equal to the ratio of the total length of the edges to the area of the meshed surface; in three dimensions,
Z is equal to the ratio of the total area of the edges to the volume of the meshed body. Moreover, the
following geometric assumption is made:

H1: The inclusions are assumed to be of penny-shaped type (Fig. 2). In two dimensions, the straight
edges of the mesh are thus replaced by zero thickness whiskers and this assumption has no con-
sequence. In three dimensions, the polygonal edges are replaced by disks (with the same spatial
density): the two situations are admittedly close to each other but are different when considered
rigorously.

2.2 Phases properties

Subsequently, we restrict our attention to linear elastic behaviors for the matrix and for cohesive inclu-
sions. The continuous matrix phase is considered as isotropic and its constitutive relation reads:

σ = C
M : ε with C

M = 3kMJ+ 2µMK, (2)
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whereσ (resp. ε) is the stress (resp. strain) field,CM is a fourth order elasticity stiffness tensor,kM

andµM are the bulk modulus and the shear modulus respectively,J andK are the isotropic fourth order
symmetric tensors (i being the second order identity tensor):

J =
1

3
i⊗ i, K = I− J, with Iijkl =

1

2
(iikijl + iilijk).

The cohesive behavior for the penny-shaped inclusions is defined by a traction-separation law which
corresponds to a linear relation between the cohesive stress vectorRcoh and the opening displacement
vector[u], in a local normal-tangent basis oriented by the normal vector n to the cohesive inclusion:

R
coh = K · [u] with K =

(
CNn⊗ n+ CT

uT ⊗ uT

uT · uT

)
, (3)

whereCN (resp.CT) is the normal (resp. tangential) initial ’stiffness’ of the cohesive law,uN (resp.uT)
is the normal (resp. tangential) component of[u] = uNn+ uT. Hence, the cohesive stress tensor reads
(1):

σcoh = (CNEl + CTKl) : ([u]⊗s n) (4)

where⊗s is the symmetric dyadic product (2a ⊗s b = aibj + ajbi for any vectora andb) andEl, Kl

are two components of the fourth order transversely isotropic and symmetric tensors frame:El = n ⊗
n ⊗ n ⊗ n andKl = 2(j

s
⊗ j

s
+ j

t
⊗ j

t
) with j

s
= n ⊗s s andj

t
= n ⊗s t, wheres andt are

two orthogonal vectors defining the transversal plane (n, t, s define the local orthogonal basis of the
cohesive inclusion). A fourth order cohesive stiffness tensorCcoh is constructed, defining the cohesive
’strain’ with the help of a small lengthe (6), and the constitutive relation thus reads for the inclusions:

σcoh = C
coh : εcoh with C

coh = e (CNEl + CTKl) and εcoh =
[u]⊗s n

e
. (5)

The small lengthe, that should tend to zero, is a fictitious thickness associated to the cohesive zone.
Since oblate ellipsoids tend to penny-shaped inclusions when their thickness tends to zero, the cohesive
inclusions are now considered as oblate ellipsoids and their volume fractionf is the product of the
densityZ (inversely proportional to a length, namely the mesh sizeLmesh) and of the fictitious thickness
e: f = eZ (a cylindrical hypothesis instead of oblate one has no consequence whene→ 0).

2.3 Hashin-Shtrikman estimate

A Hashin-Shtrikman estimate (4) is used in order to establish an analytical expression of the overall
elastic stiffness, denoted byChom. The considered matrix-inclusion composite (Fig. 2) is composed
of an isotropic elastic matrix (volume fraction1 − f ) following the constitutive relation (2) and of a
collection of transversely isotropic oblate ellipsoids (volume fractionf ) with the largest semi-axisa
varying fromA− to A+, with the same aspect ratiow ≪ 1 and following the constitutive relation (3).
The orientation of these ellipsoids is characterized by thedirection of their symmetry axis, i.e. a vector
n of the unit sphereS of R3 (measure4π). Splitting this collection of inclusions intoN − 1 families
r (r = 2, . . . , N ) and defining the inclusion densityφ(a,n) such thatφ(a,n) da dS is the number of
inclusions of ther-th family with radius included in(a, a + da) and elementary surfacedS centred on
n. The volume fraction of ther-th family reads:cr = φ(a,n)4π

3
a3w da ds, with

∑N
r=2

cr = f . In this
situation, the following generalization of the Hashin-Shtrikman’s result holds (14):

C
HS(C0) =

[
(1− f)CM : V1 +

N∑

r=2

crC
coh
r : Vr

]
:

[
(1− f)V1 +

N∑

r=2

crVr

]−1

(6)

whereC0 (resp. Ccoh
r ) is the fourth order stiffness tensor of a reference medium (resp. of ther-th

family of inclusions),V1 = (C∗ + C
M )−1 andVr = (C∗ + C

coh
r )−1. The Hill influence tensor
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C
∗ characterizes the stress that the infinite surrounding reference medium applies on a single ellipsoid

having a homogeneous eigenstrain:C
∗ depends on the shape of the inclusionw, on its orientationn and

on the reference mediumC0. IntroducingTr = Vr : V
−1
1

and remarking that cohesive stiffness depends
only on the orientationn, i.e. Ccoh

r = C
coh(n), and that tensorTr depends only on the aspect ratiow

and the directionn, i.e.

Tr = T(w,n) = (C∗(w,n) + C
coh(n))−1 : (C∗(w,n) + C

M ) (7)

the estimate (6) is rewritten with the help of the densityφ(a,n) and an integration over the radius and
the orientation:

C
HS(C0) =

[
(1− f)CM +

∫

S

∫ A+

A−

φ(a,n)
4π

3
a3wC

coh(n) : T(w,n) da dS

]
:

[
(1− f)I+

∫

S

∫ A+

A−

φ(a,n)
4π

3
a3wT(w,n) da dS

]
−1

. (8)

Sincew is constant andCcoh(n) andT(w,n) do not depend on radiusa, integrating overa leads to:

C
HS(C0) =

[
(1− f)CM + w

∫

S

ψ(n)Ccoh(n) : T(w,n) dS

]
:

[
(1− f)I+ w

∫

S

ψ(n)T(w,n) dS

]
−1

(9)

whereψ(n) =
∫ A+

A− (4/3)πa3φ(a,n)da. If the underlying mesh contains specific orientations (e.g.
anisotropic meshes), they have to be taken into account through the densityψ(n). For simplicity,
isotropic meshes (e.g. Delaunay-type meshes) alone are considered in the next section.

2.4 Lower bound for isotropic meshes

Assuming that the orientations of inclusions have an equi-probability property, the densityψ(n) reduces
to f/(4πw) and the estimate (9) becomes withf = eZ:

C
HS(C0) =

[
(1− f)CM + f

1

4π

∫

S

C
coh(n) : T(w,n) dS

]
:

[
(1− f)I+ f

1

4π

∫

S

T(w,n) dS

]
−1

=

[
(1− eZ)CM + eZ

〈
C

coh : T
〉
	

]
:
[
(1− eZ)I+ eZ〈T〉

	

]
−1 (10)

where, for any fourth order tensorD, 〈D〉
	
= (J :: D)J + (1/5)(K :: D)K indicates the average on all

orientations (3). The overall stiffness tensor is obtainedasChom = lime→0C
HS(C0).

At this stage, according to the choice of the reference medium C
0, different bounds and estimates can

be derived. Since, in a quadratic sense,C
coh is smaller than the matrix elastic tensorC

M whene tends
to zero (see equation (5)), the Hashin-Shtrikman upper bound or the Mori-Tanaka estimate correspond
to the choiceC0 = C

M which gives the trivial resultChom = C
M at the limite → 0. The same trivial

result is obtained for the self-consistent scheme (C
0 = C

hom). Thus, by focusing on the caseC0 = C
coh,

the Hashin-Shtrikman lower bound is defined:

C
hom = lim

e→0
C

HS(Ccoh) = lim
e→0

[
(1− eZ)CM + eZ

〈
C

coh : T
〉

	

]
:
[
(1− eZ)I+ eZ〈T〉

	

]
−1

.

(11)
Using the method proposed in (9) to estimate the transversely isotropic influence tensorC∗(Ccoh) and
therefore the tensorT in (11), see (7), the expression of the bulk and shear effective moduli is derived
after a convenient passage to the limit fore→ 0:

khom

kM
=

ξk

ξk + 1
with ξk =

CN

ZkM
and

µhom

µM
=

ξµ
ξµ + 1

with ξµ =
15

4(1 + 3CN/CT)

CN

ZµM
.

(12)
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It is worth noting that equations (12) show that a cohesive-volumetric formulation with vanishing tan-
gential cohesive stiffness (CT → 0) leads to a macroscopic no shear material (µhom → 0). Moreover,
the lower bounds (12) allow the definition of criteria on the overall loss of stiffnesses, e.g. assuming that
a reduction of5% on the apparent bulk modulus and shear modulus is admissible:

khom

kM
≥ 0.95 is ensured forξk ≥ 20 and

µhom

µM
≥ 0.95 is ensured forξµ ≥ 20 . (13)

In the next section, the lower bounds (12) and the (13)-type criteria are numerically tested in the 2-D case
for isotropic and regular meshes. As mentioned in assumption H1, no approximation is introduced by the
penny-shaped morphology in that case and (12) is a rigorous lower bound for the cohesive-volumetric
approach with isotropic meshes.

3 Numerical comparisons

The numerical experiments concern both 2-D Delaunay and regular ’cross-triangle quadrilateral’ meshes
(each square element is subdivided into four isosceles triangles). The linear elastic response of cohesive-
volumetric finite element method is calculated under plane-strain conditions (software XPER (7; 8)).
The comparison between numerical results and relations (12) involves the computation of the density
Z = A/S whereA is the total edge length (resp. area) in 2-D (resp. in 3-D) andS is the total area (resp.
volume) of the 2-D (resp. 3-D) meshed body. For regular meshes characterized by a mesh sizeLmesh, A
is proportional toLq−1

mesh andS is proportional toLq
mesh whereq is the considered dimension; densityZ

is thus inversely proportional to the mesh sizeZ = γ/Lmesh whereγ depends on the spatial distribution
of the underlying mesh. For cross-triangle quadrilateral 2-D meshes,γ = 2(1+

√
2) (1; 13). For 2-D or

3-D Delaunay tessellations,Lmesh is a stochastic parameter andγ has to be understood as a mean value
and a variance (11).

Fig. 3: Normalized overall elastic modulus of a cohesive-volumetric formulation with intrinsic CZMs
(caseCN = CT): lower bounds (12) (thick gray line), criteria (13) (dashedline), numerical results
for Delaunay meshes (closed symbols with variance) and for cross-triangle quadrilateral meshes (open
symbols); bulk modulus (left) and shear modulus (right).

Typical results for the particular caseCN = CT are shown in Fig. 3. As expected, relations (12) are
rigorous lower bounds forisotropic meshes (Delaunay) and the numerical results clearly show that
criteria (13),ξk ≥ 20 andξµ ≥ 20, ensure that the overall added compliance do not exceed5% (dashed
lines in Fig. 3). Moreover, these results illustrate that (12) are convenient estimates forregular meshes.
Noting that these regular meshes exhibit a higher added compliance than isotropic meshes, we derive in
the next section criteria on cohesive stiffnesses.
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4 Criteria on cohesive stiffnesses

Following (1), criteria on cohesive stiffnesses can be obtained from the previous micromechanical
model. Considering a homogeneous medium with a Young modulus Ehom = 9khomµhom/(3khom +
µhom) and a Poisson ratioνhom = (3khom − 2µhom)/(6khom +2µhom) – the same relations hold for the
matrix phase – two relative apparent reductionsR (resp. r) due to the presence of intrinsic CZMs are
defined for Young modulus (resp. Poisson ratio) with the helpof relations (12):

R =
Ehom

EM
=

ξE

1 + ξE
where ξE =

5

1 + (4/3)(CN/CT)
× CN

EMZ
(14)

r =
νhom

νM
=

EMZ(−1 + 2CN/CT) + 15CNν
M

EMZ(3 + 4CN/CT)νM + 15CNνM
. (15)

The relation (14) extends the 1D-equation (1) with a prefactor onξ and the use of the densityZ instead
of Lmesh. ReductionR = 1 can not be reached (the overall Young modulus is always disturbed by the
presence of CZMs), but for a given value ofR ∈ [0, 1[, equation (14) leads to an estimate by lower
value ofCN/(E

MZ) involving the ratioCN/CT:

CN

EMZ
≥ 1

5

R

1−R

(
1 +

4

3

CN

CT

)
. (16)

Fortunately, apparent reductionr = 1, i.e. νhom = νM , can be reached in (15) fixing the ratio
CN/CT and thus defining ’invisible’ intrinsic CZMs for the Poissonratio of the considered homoge-
neous medium:

νhom = νM ⇒ CN

CT
=

1

2

1 + 3νM

1− 2νM
. (17)

The condition (17) ensures same elastic reduction for bulk,shear and Young moduli:khom/kM =
µhom/µM = Ehom/EM ; same relations were proposed by (5) as a closure condition in their self-
consistent estimate for pure hydrostatic loadings. The present approach can thus be seen as an im-
provement of the results of (5) to arbitrary type of loadings. Recalling thatZ = γ/Lmesh, one obtains
with (16) and (17) a criterion on the ratioCNLmesh/E

M extending semi-empirical criteria previously
proposed in the literature (2; 13):

CNLmesh

EM
≥ γ

R

1−R

1

3(1− 2νM )
. (18)

As shown in section 3, the case of regular meshes withγ = 2(1 +
√
2) allows the derivation of 2-D

practical criteria on the cohesive stiffnesses. This value ofγ combined with the relation (17) and the
inequality (18) provides ’practical5% criteria’ (R = 0.95):

CT

CN
= 2

1− 2νM

1 + 3νM
with

CNLmesh

EM
≥ 30

1− 2νM
. (19)

For a bulk material withνM = 0.2, these criteria giveCT = 0.75CN andCN ≥ 50EM/Lmesh. Con-
versely, for a bulk material withνM = 0.2, the criterion proposed by (2), i.e.CNLmesh/E

M ≥ 10,
corresponds to a reductionR about0.78, which guaranties only that the loss in apparent Young modulus
is less than22%.

5 Conclusion

In this Note, we have studied the overall linear constitutive behavior of an isotropic medium contain-
ing intrinsic cohesive inclusions considered as a representation of a cohesive-volumetric finite element
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modeling. An asymptotic formulation of the Hashin-Shtrikman lower bound with convenient orienta-
tional average allows the definition – for any type of loading– rigorous criteria (12) on the normal (CN)
and tangential (CT) cohesive stiffnesses for isotropic meshes and practical criteria for regular meshes.
The accuracy of the proposed criteria were tested by numerical comparisons. Intermediate results of
this study show that: 1/ a cohesive-volumetric approach with a vanishing tangential cohesive stiffness
(CT → 0) leads to an overall no shear material, 2/ an a priori estimate (19) allows the calibration of
CN andCT as a function both of the mesh size and of the elastic properties of the bulk material. The
extension of this results to damageable cohesive laws will be presented in a forthcoming work.
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