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Abstract. We build unbounded classes of plane and projective plane
multiwheels that are 4-critical that are received summing odd wheels as
edge sums modulo two. These classes can be considered as ascending
from single common graph that can be received as edge sum modulo
two of the octahedron graph O and the minimal wheel W3. All graphs
of these classes belong to 2n− 2-edges-class of graphs, among which are
those that quadrangulate projective plane, i.e., graphs from Grötzsch
class, received applying Mycielski’s Construction to odd cycle [1].
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1 Introduction

We are using terminology from [5, 7, 8].

.............

Fig. 1. In the graph w13
(left) contracting thick edge we get octahedron graph without

an edge (O−, right). Adding dotted edge we get octahedron graph O.
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We consider graph in fig.1 left, that in [9] is denoted G3, but in this article
gets several denotations due to its particular features, w111 or w13 , g111 or g13 ,
see lower. In this introduction we consider some simple features of this graph w13

called base graph in frames of this article, but further in the article we generalize
these features to two, plane and projective plane, unbounded classes of graphs.

We start from a simple observation that contraction of one of edges (incident
to degree 3 vertices) in the graph (w13) turns it into octahedron graph (O) minus
an edge (O−), see fig.1. Now it is obvious that the graph O− is a minor of w13 ,
but the graph O is not.

Further, we may express this fact using terminology from [9], i.e., < O−, O >
is minor bracket for the graph w13 . We remind that < h1, h2 > is minor bracket
for G if h1 ≺ h2, h1 ≺ G and h2 6≺ G, [9]. The fact expressed as predicate
< h1, h2 : G >.

One more observation that the base graph w13 turns into the wheel graph
W3 after contracting three edges incident to three and four degree vertices.

Further, graph w13 is 4-critical [9], and this fact might be verified directly
for such a small graph. But for further discussion we need to examine this graph
more closely.

The base graph w13 can be considered as edge sum modulo two of three
graphs W3 in the way that each pair overlap just in one edge, and all three
wheels have one vertex in common, see fig. 2. Let us assume that overlap either
two rim edges, or two spike edges, or spike edge and rim edge, all three ways
giving the same graph w13 (see fig. 2): trivial (automorphism) fact, but not so
for further, see below. Further we are going to use this consideration of w13

as sum of three wheels, and for that reason we use this multi-index denotation
for it, i.e., w111 (or w13) with three indices (three ones), not single index, and
second index as factor of equal indices, see lower. Further we are going to use
by edge summation modulo two denotations with simple arithmetic operators,
i.e., multiplication and sum operators, e.g. w13 = 3W3. Of course, corresponding
graph operations behind are indeterministic, i.e., depending on how we configure
graphs one against other by edge summation modulo two, i.e., which elements of
corresponding graphs we allow to overlap. Besides, w13 may be expressed in the
way O + W3 with rim edges annihilating with a triangle of octahedron graph,
thus having one more equation w13 = O+W3 becoming equality under specified
conditions.

The graph w13 can be colored in four distinct ways, see fig.3. We distinct
them in way lonely color, D, is applied: the lonely D may color central hub,
section hub, rim and two vertices of rim, thus giving four ways. We remind that
only in chromatic critical graph every vertex may receive lonely color. Thereby,
each vertex for w13 may be colored with lonely color, thus proving that graph is
4-critical.

Further, the base graph w13 may be embedded on projective plane, quadran-
gulating it, see a) in fig. 8 lower. Clearly, w13 belongs to class of graphs with
2n − 2 edges by n vertices, where all graphs quadrangulating projective plane
should belong. Besides, w13 is selfdual, if considered plane, but of course not
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Fig. 2. Forming graph w13
(b) by summation modulo two of edges of three graphs W3

(a): 3W3 = w13
. Edges that annihilate (one in one pair) by summation modulo two

are depicted as dotted (b). In c) w13
is received by operation O + W3 where triangle

(depicted dotted) is annihilated in both graphs.
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Fig. 3. Four possible colorings of w13
. D designates lonely color. Lonely color D may

color central hub (first), section hub (second), rim (third), and two lonely vertices as
two rim vertices (fourth).

such on projective plane. It is remarkable that dual graph to octahedron is cube
graph, but cube graph with one corner cut off becomes just the graph w13 , that
is selfdual (see [9]).

The aim of this article is to show that these facts concerning this single
and very simple graph w13 may be extended for unbounded classes of 4-critical
graphs, both planar and projective planar. These classes we are going to build
from arbitrary odd wheel graphs.

The theorem about octahedron minor bracket is mentioned in [10], but here
we give proof of this fact.

2 Defining 4-critical plane multiwheels

Let us assume that the wheel Wk is built from k simple sections where as simple
section we take triangle C3 with one vertex common from each triangle for
the wheel’s hub, and opposite edge of triangle as for forming wheel’s rim. In
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other words, wheel Wk is the sum of its k sections (triangles) into a simple
graph (with double-edges turning into simple edges). By the way, if we applied
this same summation of the edges modulo two then the sides of triangles that
touch each other would annihilate, and remnant/resulting graph would be simple
cycle (rim of the wheel) and isolated vertex (hub of the wheel). As an obvious
observation, let us notice that edge sum modulo two of k > 3 triangles gives Ck

and isolated vertex only in case triangles annihilate two edges, and one vertex
becomes common for all triangles.

If we take wheel Wk to be odd (k is odd) then we get 4-critical graph. Odd
wheels are simplest unbounded class of vertex-3-connected 4-critical graphs. (Let
us remember that odd cycles is the only graphs that are 3-critical.) We are going
to generalize this class to 4-critical vertex-3-connected plane and projective plane
multiwheels.

Let us do similar as higher summation of edge sets of some wheels. Let us
replace each section in a simple odd wheel with another arbitrary odd wheel in
a way that edge sets of sections are summed modulo two. This new aggregation
of wheels M may be expressed as

∑
Wki

where summation is modulo two over
index i numbering sections that were replaced by wheels of order ki in each case.
Evidently the summation itself is indeterministic because result of it depends
on how wheels overlap each other by summation. Now we ask: under which
conditions the resulting graph is 4-critical. It turns out that the answer directly
is connected with the number of edges wheels intersect by summation. Theorem
5 below says that this number must be equal to two.

But first we are to prove some lemmas about intersecting wheels without
edge losses by summation modulo two. For example, W5 +W5 may be formed
with all five rim vertices of both wheels common and forming subgraph K5, but
resulting 6-chromatic graph is in no way chromatic critical.

Lemma 1 Let k odd wheels by summation possibly intersect in vertices but not
in edges. The sum of these wheels can’t give 4-critical graph except in case k = 1.

Proof. Let by summation of wheels k > 1 wheels have become vertex connected
components, that are wheels all the same, in the resulting graph. It is obvious
that elimination of edge or vertex, or edge contraction in one wheel can’t affect
coloring of others in four colors in the resulting graph. Thus, the graph can’t be
chromatic critical.

Let us configure two odd wheels so that they have common two adjacent
vertices, and sum their edges modulo two. It is easy to see that the resulting
graph is 3-chromatic. It suffices to notice that losing of an edge in both odd
wheels allow to color them in 3-colors so that lost edge’s ends receive the same
color. Further, we may easily apply the use of this fact to unclosed sequence of
wheels Wq1 ,...,Wqi where two proximal wheels overlap in two adjacent vertices,
but next two possibly only in one. Let us formulate it as a lemma.

Lemma 2 Let summation of edges modulo two is applied to unclosed sequence
of wheels. The resulting graph is 3-chromatic.
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We need one more crucial feature of 4-critical graphs. Let graphH is 4-critical
and let H ′ = H ⊙ w be graph H with vertex w split into two new vertices and
edges incident to w be connected either to one or other vertex. We ask whether
graph H ′ can remain to be 4-critical. Of course, it is expectable that H ′ becomes
3-chromatic.

Lemma 3 Let graph H be 4-critical and w ∈ V (H). Then graph H⊙w is always
3-chromatic.

We are not going to proving this fact here, but delegate to article [11]. We
call the feature of 4-critical graph to loose his state of 4-critical graph under ver-
tex split preservation of 4-criticality under vertex split. Thus, k-criticality is the
feature that is preserved under vertex and edge elimination and edge contrac-
tion and expectably under vertex split too. It is easy to see that 3-criticality is
preserved under vertex split and we ask this same for arbitrary k-critical graphs.

We are going to use lemma 3 in the following way. By summation of edge sets
of wheels modulo two in order to build new 4-critical graphs we may ignore cases
where wheels intersect only in vertices without incident edges, knowing that this
can’t lead to new 4-critical graphs. Suppose we received 4-critical graph in this
way. Then splitting all vertices that were merged by summation backwards we
should receive 3-chromatic graph but it might not be true. Let us formulate this
fact as lemma.

Lemma 4 Let by summation of edge sets of wheels some wheels intersect in
vertices without incident edges. Then resulting graph can’t be 4-critical.

Now we may go over to the main theorem of this chapter.

Theorem 5 Let 2k + 1 (k > 0) arbitrary odd wheels be summed in a way that
edges of wheels are summed modulo two and all wheels have one overlapping
vertex. The resulting graph M is 4-critical if and only if each wheel by summation
modulo two looses just two of its edges and resulting graph is planar.

Proof. Let us first observe that two wheels may overlap in one or three edges
but not in two, thus, to get two annihilating edges a wheel should overlap with
two other wheels with one overlapping edge in each.

Let us first assume that wheel graphs are summed observing two edge loss
condition. In this case four configurations of new section are possible, see fig. 4.
We denote graphs achieved in this way by wk1-k2-...kq

where q is number of sec-
tions, where in each section there are 2ki+1 edges, and call them multiwheels. In
this type of denotation we as if ignore three/four ways of section’s configuration,
but one could easily elaborate denotation with taking these different types of
sections into account, see below.

In figure 2 we see simplest case where summed are three wheels W3 giving
multiwheel w1-1-1. In place of multiindex k1-k2-...kq with hyphens we equally use
denotation without hyphens in case no confusion might arise, e.g. w111 in place
of w1-1-1.
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Fig. 4. Four types of sections for planar multiwheels possible. If third type we take
in two oriented ways, leftwards and rightwards, then we get one type of section more.
When so numbered first two and two other sections are mutually dual. It is convenient
to characterize type of section by type (rim or spike edge) of lost edges in wheel.
Then sections are 1) rim-rim-section (rr-section), 2) spike-spike-section (ss-section), 3)
spike-rim-section (sr-section) and 4) rim-spike-section (rs-section).

It is easy to see that w111 is 4-critical. Indeed, reserving central hub ver-
tex as eventual lonely color vertex (receiving color D, see fig. 3) other vertices
get forced colors. Further, both hub edge, spike edge and rim edge contrac-
tions/eliminations lead to 3-chromatic graph.

Let us assume that the resulting graph is planar. In that case it is conve-
nient to characterize type of section by type (rim or spike edge) of lost edges
in wheel. Then sections are 1) rim-rim-section (rr-section), 2) spike-spike-section
(ss-section), 3) spike-rim-section (sr-section) and 4) rim-spike-section (rs-section),
see fig.4. Section arisen from w1 we call simple section, which is of arbitrary type
due to automorphisms, i.e., rim edges are spike edges too, and reversely.

Now let us consider first type of section, rr-section, fig.4. At least one vertex
on rim may receive third color and then corresponding section hub receives
forth color. Removing rim edge makes possible to color rim with two colors, but
removing section’s spike edge allows now both previous adjacent vertices color
with one color, thus avoiding fourth color.

Let us consider second type section. Now the same applies for the local rim
edges of the section. At least one vertex of the local rim should receive third
color, and corresponding local rim edge or spike edge elimination may avoid use
of fourth color.

Let us consider third (and fourth) type of section. Now outer hinges and
vertex adjacent to central hub should receive different colors, but removal at
least one edge from section violates this condition and allows to color hinge
vertices of inner rim with the same color.

Thus, we have proved that multiwheel is 4-critical.
Let us prove theorem in the other direction.
According lemmas 1,2,4 we are to consider only those sums of wheels where

intersections of vertices without incident edges are absent and unclosed sequences
of wheels are absent. Even more, if some closed sequences are present, but some
wheels as unclosed ends are present, these cases are not to be considered be-



On building 4-critical plane and projective plane multiwheels 7

cause can’t give 4-critical graphs. The only cases are these where only closed
sequences of wheels are present. Further, only one closed sequence as cycle is to
be considered for further.

Further, let us consider case of non-planar resulting graph, see fig. 5. In
that case we have engaged in cycle of wheels some with two spikes that are not
sequencing one to other. In these cases such wheel may be as if in two ways
taken in cycle along one or other orientation in this wheel between two spikes. It
is easy to see that this leads to fact that such wheel cant’t give resulting graph
as 4-critical, because odd wheel may be divided only in half of odd wheel and
half of even wheel. Taking into cyclic path even part of wheel would spoil odd-
times-odd structure necessary for 4-critical multiwheel. (See fig.5, where rights
minimal case of non-planar resulting graph is shown to be 3-chromatic.) Thus,
we can’t afford non-planar spike pairs in edge summation modulo two. We have
come to conclusion that closed sequence should be planar.
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Fig. 5. Illustration to proof. Minimal possible case of nonplanar section for as if even-
tual nonplanar multiwheel w115. Left, we see non-planar section, where annihilated
spikes (dotted) are not sequencing ones, and section falls into as if two subwheels, one
even subwheel with subrim 1-2-3 and one odd subwheel with subrim 3-4-5-1. Right,
we color this nonplanar multiwheel into three colors, i.e., it isn’t 4-critical, even not
4-chromatic.

Thus, under assumption that all summing wheels have in common one vertex
each in each wheel with two incident edges that annihilate by summation modulo
two we have proved what was necessary. We have come to 4-critical graph only
by specified conditions.

We have proved the theorem.

2.1 Denotations for plane multiwheels. Some characteristics

Let us introduce some notational conventions for wheels and multiwheels. Along
with traditional denotation for wheels with capital letterW with index k, i.e.Wk,
for odd wheels of order k = 2q+1 we use denotation wq. For plane multiwheels
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we use letter w with odd (k ≥ 3) indices, wq1,...,qk where wqi was i-th wheel in
summation. Let us introduce quantity Q =

∑
qi and sometimes use denotation

wQ for this multiwheel.

If odd wheel has order k = 2q + 1, it has n = 2q + 2 vertices and m =
2n− 2 = 4q + 2 edges. Similar expressions hold for multiwheels, where in place
of q stands Q. Indeed, multiwheel has 2Q + 1 vertices and 4Q or 2n− 2 edges.
To get analogue expressions both for wheels and multiwheels we had to use for
wheels in place of quantity q quantity s = k/2, giving fractional numbers for
odd wheels. It would be interesting to ask then what pre-wheel stands behind
w1/2. It might be multiedge or edge adjacent to loop.

Both classes, wheels and multiwheels have m = 2n− 2 edges. Let us notice
that to the class of graphs Gn,2n−2 belong these quadrangulating projective
plane. In next section we show how this fact turns crucial for multiwheels in
generalizing them for projective plane.

Another question would be how to designate indices in multiwheel wq1,...,qk if
we wanted to take into account type of sections standing behind corresponding
indices. We have four types of sections, therefore we have to equip this index
with this additional information. One way would be to use four colors for indices.
Other way would be to supply index with diacritic sign, say, w

1-3̂-3̌-3̀-3́
or w

13̂3̌3̀3́

for w13333 with types of sections in augmented order.

3 Grötzsch graph, Mycielski’s Construction and 4-critical

projective plane multiwheels

We start with observation that Grötzsch graph [1] may be considered as edge
sum modulo two of five wheels w1 and one wheel w2, see fig. 6.
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Fig. 6. Example of non-planar graph that is 4-critical: Grötzsch graph. It may be built
as edge sum 5W3 +W5 modulo two. Annihilated edges are depicted as dotted for one
section standing for W3 and for W5.
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Grötzsch graph is 4-critical and it quadrangulates projective plane, see fig.
7. Indeed, it has 11 vertices and 20 edges, i.e., it belongs to 2n− 2-edges-class of
graphs, and fig. 7 shows how this embedding on projective plane is performed.
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Fig. 7. Grötzsch graph on projective plane. It quadrangulates projective plane. Com-
pare [6].

If in place of Grötzsch graph formed as 5w1 + w2 we take only three plus
one wheel, we get graph that is isomorphic to the base graph w13 . Taking this
fact into account, we designate this graph g111 or g13 and traditional Grötzsch
graph as g11111 or g15 . First, let us notice that both graphs are 4-critical, both
quadrangulate projective plane, first being planar, bet second - projective planar.
We might ask - are all graphs qw1+wq belonging summed according multiwheel
summation pattern 4-critical? The answer is quite obviously positive, and we
express the fact in the lemma what follows. We say that sum qw1+wq, k = 2q+1,
q > 0, modulo two is got according multiwheel pattern if k wheels w1 each looses
two edges and wq looses k edges. This class of graphs we call Grötzsch class.

Lemma 6 For k = 2q + 1, q > 0, resulting graphs from kw1 + wq summed
according multiwheel pattern are 4-critical and quadrangulate projective plane.

Of course, for k = 1, 2, we get the base graph and Grötzsch graph, which are
4-critical, and further graphs are 4-critical due to symmetry.

This class kw1 +wq , extending the base graph and the Grötzsch graph may
be got as the Mycielski’s Construction [2], page 130. For that we are to take 3-
critical graph, i.e., arbitrary odd cycle Ck, and apply Mycielski’s Construction.
Thus we see that if in Mycielski’s Construction we replace each new got k-critical
graph with arbitrary k-critical graph then we should receive k+1-critical graph,
which fact follows from the proof of the Mycielski’s Construction’s applicability
to get k-critical graphs, see [1]. Natural question would arise does there exist
Mycielski’s Construction’s generalization that works backwards too, i.e., that
each k + 1-critical graph has as antecedent k-critical graphs in terms of this or
similar construction. In order to include in Mycielski’s Construction previous
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planar class we are to allow to match previous graphs m edges with m new
vertices plus extra vertex. This would work for step from 3-critical to 4-critical
graphs, and give just our plane class of multiwheels.

Further we are going to build more multiwheels, but the previous class should
be the only that were quadrangulating projective plane.

Further we generalize projective planar multiwheels similarly as in case plane
multiwheels, i.e., sections of w1 may be replaced with arbitrary odd wheels. Fig.
8 shows simplest properly projective plane multiwheel q112.

Construction 7 Let us take odd in number (k = 2q + 1) odd wheels and one
wheel wq. Let us take in each of first wheels two proximal spikes and rim edge so
that they do not form triangle, and middle spike edge match with central wheel
wq, and other two chosen edges (spike and rim edge) match in cyclical sequence
of wheels.

The resulting graph built according construction 7 belongs to 2n − 2 edges
class and is 4-critical. We call the resulting graph multiwheel similarly to those
planar ones.
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Fig. 8. a) Graphs w111 and g111 are isomorphic; b)simplest properly projective plane
multiwheel with minimal edge number q112.

Theorem 8 Multiwheels built according construction 7 are 4-critical.

Proof. Let us use the fact that the base graph belongs to Grötzsch class, and
the construction for the base graph extended with non-planar section (see fig.5)
may be used for Grötzsch class in the whole.

Let us end this section with one more theorem.

Theorem 9 Multiwheel quadrangulates projective plane only if it belongs to
Grötzsch class.
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Proof. The only subclass to be considered is plane multiwheels with simple sec-
tions, excluding the base graph, i.e., w1q , q > 1. It suffices to consider the
minimal graph from the class w12 . For graph to quadrangulate surface it is nec-
essary that every edge goes into at least two square cycles. But the edge of w15

that is incident to vertices of degree three and four doesn’t fulfil this condition.

4 Octahedral theorem

Let us formulate what we call octahedral theorem for the plane multiwheels.
As was told in introduction, minor bracket works for the base graph, i.e.,

< O−, O;w13 > is true: O− ≺ w13 , O 6≺ w13 and O− ≺ O. It easily follows
from facts that the base graph is only vertex 3-connected, i.e., it has triples of
separating vertices, as long as octahedron graph doesn’t have. This argument
directly applies to plane multiwheels in general, because they are built allowing
triples of separating vertices for each section, that excludes possibility for O to
be minor. Both plane and projective plane multiwheels have the base graph as
their minor. Besides, Grötzsch graph doesn’t have O as minor. Indeed, it has 5
cubic vertices, which may be separated with triple of vertices, and adjacent to
central hub vertex, and remaining 5 vertices aren’t sufficient to hold O as minor.
This argument easily generalizes to Grötzsch class in the whole. It only remains
to persuade oneself that it works for projective plane multiwheel in general. And
again, sections that are differing from simple ones can be separated by triples of
vertices, see fig.8, b. Thus, we have done with the proof.

Let us formulate the fact for arbitrary multiwheels as theorem.

Theorem 10 Minor bracket < O−, O > works for both plane and projective
plane multiwheel graph classes.
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