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Abstract

We consider random samples in Rd drawn from an unknown den-

sity. This paper is devoted to the study the properties of the De-

launay polyhedron restricted to nearest neighbors as an estimator of

the density support preserving its topological properties. When the

dimension of the support is d, we exhibit suitable value for the num-

ber of neighbors to be used. This value ensure that, when d = 2,

our estimator is a.a.s. homeomorph to the support. Empirically, our

estimator also preserves the topology for higher dimensions but it is

not proved here. When f is Lipschitz continuous and the boundary

of S is smooth the value depends on d and the size of the sample

only. The convergence of the underlying estimator to the support is

proved and a lower bound for the convergence rate is given. When the

dimension of the support is less than d, another estimator is proposed.

Key Words: Delaunay complex, polyhedron, support estimation,

topological data analysis, geometric inference.

1 Introduction

Let Xn = {X1, . . . , Xn} be a random sample in Rd drawn from an unknown
density f . The density support S is defined by S = {x ∈ Rd, f(x) > 0},
where A denotes the closure of the set A. Estimation of the support of the
density has various applications in cluster analysis, marketing, econometrics,
medical diagnostics, and so on (see the discussion in [1]).

For instance, classification and clustering methods can be deduced from
the support estimation. A natural way to cluster points is to look at the
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connected components of the density support. For a classification problem
an intuitive solution is given by the following algorithm: first one has to
estimate the supports of each class and, after that, a new observation can be
affected to a class if its belong to its support [1]. Of course, in practice it is
not that simple, and it may be more realistic to work with level sets instead
of the whole supports. Indeed, in the first case (clustering) one can easily
imagine a situation where the support is connected, while the level sets has
several connected components (the density is multi-modal) which correspond
to natural clusters (see [8]). In the second case (classification), level sets can
be separated, even when the supports are overlapping. However, in this
work we concentrate on the density support estimation only. We think that
generalization of our method to the level sets is possible, and so, this paper
can be considered as a first step.

There exists various ways to estimate the density support (see, for ex-
ample, [19], [17] and [24]). However, usually the statisticians study the
asymptotic behavior of a distance between the support and its estimator,
and are rarely interested in the recognition of its topological properties (we
can, nevertheless, mention an informal discussion in [5]).

In our opinion, the recognition of the topological properties is very inter-
esting and important from the statistical point of view. As an illustration of
that we can stress the impact of the topological knowledge on the dimension
reduction problem. When the intrinsic dimension of the support is d′ < d
then:

• if S is convex then Principal Component Analysis will do the job;

• if S is homeomorph to a convex then non linear projection method such
as isomap [30] will succeed;

• if S is not homeomorph to a convex then such methods as curvilinear
distance analysis [25] may be preferred.

Other potential statistical applications can be found in [10] or [16].
Numerous results concerning the recognition of the topological properties

based on a finite number of points can be found in the literature devoted to
computational geometry (see, for example, [21], [20] and [6]). However, in
this field, the statistical or probabilistic point of view is rarely discussed.

The aim of the present work is to unify this two approaches. More pre-
cisely we are interested in the construction of a density support estimator
preserving the topological properties (the estimator is homeomorph to the
support). A similar problem is considered in [13], [12] and [14], but the
proposed estimator is radically different from ours.
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1.1 Support estimation methods

When the aim is to estimate the density support, the estimated object is
a set which is quite unusual in statistics. To study the convergence of the
estimators, one have to choose a distance between sets. Usually, in sup-
port estimation problems, the distance given by the measure (typically the
Lebesgue one) of the symmetric difference is considered.

Definition 1. The symmetric difference of two sets A and B is

A∆B = (A \B) ∪ (B \ A).

Definition 2. Let µ be a measure in Rd, A ⊂ Rd and B ⊂ Rd. The symmet-
ric difference distance (with respect to µ) is given by dµ(A,B) = µ(A∆B).

The most natural support estimator (and the most studied one) has been
introduced in [15] and [19] as:

Ŝn,rn =
⋃

i

B(Xi, rn)

where B(x, r) denotes the closed ball of radius r centered in x. Throughout
this paper, this estimator will be called Devroye-Wise estimator.

The properties of this estimator have been extensively studied. Namely,
an exact convergence rate and a central limit theorem (for the symmetric
difference distance) were obtained in [4] and [3].

Other estimators can also be found in statistical literature (see, for ex-
ample, [17] and [24]). However, as we will see later, the topology preserving
methods are mainly based on balls unions, and so linked with the Devroye-
Wise estimator.

Our idea is that focusing on the measure can not help to solve the topol-
ogy preservation problem: one can easily imagine a sequence of sets that
converges to a limit (for the symmetric difference distance) having very dif-
ferent topological properties.

This is illustrated by two examples in Figure 1, where

Sn = [0, 1]2 \
(

n
⋂

i=1

[

i

n + 1
− 1

n3
,

i

n + 1
+

1

n3

]

× [0, 1]

)

and

Sn = [0, 1]2 \
(

n
⋂

i=1

B(xi, 1/n2)

)

with xi drawn uniformly in the unit square.
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Figure 1: Sn and Sn for n ∈ {2, 3, 4, 5, 6}.

In each of the two examples, the measure (surface) of the symmetric dif-
ference with the unit square converges to 0 (with rate 1/n), but the elements
of the sequence are not homeomorph to the unit square.

As we will see later, a situation similar to the second example of Figure 1
can occur when using the Devroye-Wise estimator and so, the latter may not
preserve the topology of the support.

The aim of the present paper is to propose an estimator of the density
support preserving the topological properties (that is, homeomorph to it).

Topology preserving estimation is a new and challenging domain that has
many application fields such as times series, data analysis, image processing
and computer vision (see [10] for a review of applications of topological prop-
erties estimation and [26] or [16] for concrete applications).

1.2 Topology recognition methods

The problem of recognition of the topological properties of a given set based
on a finite set of points is widely considered in computational geometry.
By recognition of the topological properties we mean here: finding a set
homeomorph to the given one, but having a “simple structure” permitting
to “easily” compute some topological invariants such as homology groups or
homotopy groups [7]. A natural way to guarantee the “simple structure” is
to use polyhedron sets [7].

Definition 3 (Simplex, Sub-simplex). Let x1, . . . , xk be k affinely indepen-
dent points (that is, points which are not in a k′ hyperplane with k′ ≤ k−2).
The associated simplex σ = (x1, . . . , xk) is the convex hull of the points.
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A simplex σ′ = (x′1, . . . , x
′
k′) is a sub-simplex of σ if {x′1, . . . , x′k′} ⊂

{x1, . . . , xk}.

Definition 4 (Simplicial Complex). A simplicial complex K is a collection
of simplexes such that:

• if σ is a simplex of K, then every sub-simplex of σ is a simplex of K;

• if σ1 and σ2 are two simplexes of K and if σ = σ1 ∩ σ2 is not empty,
then σ is a sub-simplex of σ1 and of σ2.

Definition 5 (Polyhedron). Let K be a simplicial complex. The set K =
⋃

σ∈K σ is called the polyhedron of K.

Remark: the simplicial complex K is an abstract object that allows to
compute some topological invariants of the concrete geometric object K. In
this paper, we focus on the geometric object K. A set A homeomorph to a
polyhedron K is told triangulable.

In this paper a specific complex: the Delaunay Complex is used. There
is two equivalent definitions of the Delaunay Complex.

Definition 6 (Delaunay Complex via Voronoi Cells). Let Xn = {X1, .., Xn}
be a set of points in Rd. The Voronoi cell of the point Xi denoted Vor(Xi) is

the set Vor(Xi) = {x ∈ Rd such that, for all j 6= i, ||−−→xXi|| ≤ ||−−→xXj||}.
A simplex σ = (Xi1 , . . . , Xik) belongs to the Delaunay Complex D(Xn) if

⋂

j Vor(Xij ) 6= ∅.

Definition 7 (Delaunay Complex via circumscribed spheres). Let Xn =
{X1, .., Xn} be a set of points in Rd.

A d−simplex σ = (Xi1 , . . . , Xid+1
) belongs to the Delaunay Complex

D(Xn) if B(O, r) ∩ Xn = ∅, where the open ball B(O, r) has the same center
and the same radius as the hypersphere S(O, r) circumscribed to {Xi1 , . . . , Xid+1

}.
A simplex σ′ belongs to the Delaunay complex D(Xn) if it is a sub-simplex

of a d−simplex of the Delaunay Complex D(Xn).

The polyhedron D(Xn) associated to the Delaunay complex D(Xn) is the
convex hull of the set Xn. To recognize the topology of a set using a Delaunay
based polyhedron it is so needed to remove some simplexes. Based on that
idea, in [21], Edelsbrunner built a restriction of the Delaunay polyhedron
that is homeomorph to a set.

Definition 8 (Edelsbrunner’s Restriction). Let Xn = {X1, .., Xn} be a set
of points in Rd. We denote Vor(S)(Xi) = Vor(Xi) ∩ S the Voronoi cell of Xi
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Figure 2: Example of Delaunay complexes built on 4 points (left) and 100
points (right). Points are drawn uniformly in the unit square. The interior
of every triangle is a 2−dimensional simplex.

restricted to S. The Delaunay Complex restricted to S is denoted D(S)(Xn)
and is defined as follows:

A simplex σ = (Xi1, ..., Xik) belongs to the Delaunay ComplexD(S)(Xn) if
∩jV orS(Xij ) 6= ∅.

The associated polyhedron is denoted D(S)(Xn).

Definition 9 (Closed Ball Property). Let S be a compact d′− manifold (with
or without boundary ∂S). We say that Xn = {X1, . . . , Xn} ⊂ Rd has the
closed ball property on S if for every {i1, .., ik}:
⋂

V or(S)(Xij ) is empty or homeomorph to a d′+1−k dimensional closed
ball
⋂

V or(∂S)(Xij ) is empty or homeomorph to a d′ − k dimensional closed
ball

The fact that such an assumption is reasonable is discussed in [21] when
S is a smooth manifold.

Theorem 1. If Xn has the closed ball property on S then: D(S)(Xn) ∼= S
(D(S)(Xn) is homeomorph to S).

Obviously for the statistician S is unknown and the Edelsbrunner’s re-
striction of the Delaunay complex can not be computed.
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1.3 Topology preserving methods when the support is

unknown

1.3.1 The α−shape method

The α−shape method, introduced in [20] proposes to use the Edelsbrunner’s
Delaunay restriction. Here, Xn = {X1, . . . , Xn} is a random sample drawn
from an unknown density that is supported by S. As D(S)(Xn) can not
be computed because S is unknown it is proposed to restrict the Delaunay
polyhedron on an estimator of the support. The chosen way to estimate
the support is the Devroye-Wise method. So the proposed polyhedron is:
D(Ŝn,rn )(Xn). The name α in the name α−shapes comes from the fact that

the authors named the radius α (here rn).
We think that there is two main problems with such a method. First, the

choice of local radius may improve the global radius method when density is
far from uniform. Second, an interesting phenomena occurs when we work
with union of balls estimators: The optimal radius choice (according with the
symmetric difference distance) may gives estimator that is not homeomorph
to the support. More than that, the associated α−shape does not correct the
problem. The Figure 3 illustrates that phenomena. For an uniform sample of
1000 points in the unit disk, the optimal radius r for Devroye-Wise estimator
has been estimated (via Monte Carlo method as here the support is known).
The left graphic is the Devroye-Wise estimator which is not homeomorph to
the disk because of the existence of various small holes. The right graphics
is the Edelsbrunner’s restriction of the Delaunay polyhedron to our support
estimator. The small holes are strongly emphasized and the result is not
homeomorph to the disk.
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Figure 3: Devroye-Wise estimator for an optimal radius (left) and the asso-
ciated α−shape (right).
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As a conclusion the choice of the radius for the topology preserving prob-
lem is not optimal for the support estimation problem. So both problem
can not be optimally solves together. Practically a good radius choice is
fundamental and this choice can not be done only according to the support
estimation problem.

Exactly the same kind of problems occurs for the [13], [12] [14] method.

1.3.2 Persistent homology

Another method for the estimation of some topological invariants of the
density support is the computation of persistent homology (see [9], [31] and
[11]). Instead of the Delaunay complex the complex used is now the ε−Rips
Complex.

Definition 10. Let Xn = {X1, .., Xn} be a set of points in Rd. The ε−Rips
Complex ε−R(Xn) is defined as follows:

A simplex σ = (Xi1 , ..., Xik) belongs to the ε−Rips Complex if ||−−−−→XijXi′j
|| ≤

ε

The practical choice of a suitable value for ε when the support is un-
known is hard (and the existence of a value that ensures homeomorphism
or, at least homotopy equivalence is not ensured). To skirt this problem, the
authors propose to compute the invariants on a large set of ε values and to
look for the persistent ones.

This method gives quite good results but the reading of the persistent
invariants is not that easy and there is no associated support estimator.

To conclude this section it can be seen that the two main problems with
the above exposed method are :

• The choice of suitable values for the radius is not an easy job.

• Moreover choosing of local values for the radius may improve the meth-
ods when the density is not uniform.

1.4 The proposed estimator

We based our estimator on the following ideas:
On one hand, if the support is convex then the convex hull of the observa-

tion (which is also their Delaunay polyhedron) can be seen as the best density
support estimator and it also conserves the topology of the support. Some
asymptotic properties of this estimator can be found for instance in [22], [2],
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[28] or [29] and the convergence rate is n−2/(d+1). The convexity hypothesis
is a strong assumption, and it can appear natural to try to generalize this
result to non-convex sets estimating the support restriction of the Delaunay
polyhedron.

On the other hand, Edelsbrunner proved that there exists a restriction of
the Delaunay Polyhedron that is homeomorph to the support, but unfortu-
nately the knowledge of the support is needed to ensure the homeomorphism.
Using a restriction of the Delaunay polyhedron to a ball-based support esti-
mator can give good result for topology recognition but with some problems
previously exposed. So we are going to look to another way to restrict the
Delaunay polyhedron.

The idea here is to use the well-known dual method for a fixed radius
method, that is nearest neighbors method. More precisely, we propose to
estimate the support with Dkn(Xn), the Delaunay polyhedron restricted to
the kn−nearest neighbors.

Definition 11 (Delaunay polyhedron restricted to nearest neighbors). Let
Xn = {X1, .., Xn} be a set of points in Rd.

A simplex σ = (Xi1 , ...Xid′
) belongs to Dkn(Xn) if:

1) σ is a simplex of Dkn(Xn), the Delaunay complex of Xn

2) For all (j, k), [Xij , Xik ] is an edge of the kn−nearest neighbor graph.

As usual, Dkn(Xn) is the associated polyhedron.

In the Section 2 we study some properties this polyhedron-estimator. The
aim is to find suitable sequences for kn that allows to preserve the topology
of S. According to Edelsbrunner’s work we wish to find value for kn such
that D(S) = Dkn. Unfortunately such a result can not be obtained but we
find explicit values for kn, such that: kn/n → 0 and D(S) ⊂ Dkn a.a.s.
(asymptotically almost surely). The second property (D(S) ⊂ Dkn) ensures
that not too many simplexes are removed by the restriction. The first point
(kn/n→ 0) ensures that local phenomena are recognized (kept simplex are all
included in small balls). So both points are a first step towards the existence
of a homeomorphism. In the specific case of the dimension 2 it can be shown
that Dkn

∼= S a.a.s. but for higher dimension such a result could not be
obtained.

We also carry out a quick study of the properties of Dkn as an estimator
of S. Note first that we chose to work with the Hausdorff distance between
sets.
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Definition 12 (Hausdorff distance). Let A an B be two subsets of Rd. We
denote A+ εB the set

⋃

a∈A B(a, ε)

dH(A,B) = inf{r > 0, A ⊂ B + εB and B ⊂ A + εB}.

In literature, the Hausdorff distance is the second usual choice after the
symmetric difference distance. When the dimension of S is the dimension of
the ambient space the two choices are almost equivalent.

We will show that for our value of kn, the sequence (lnn/n)
1/ddH(Dkn , S)

is e.a.s. bounded. Such a rate of convergence is similar to the one founded
in [18] for Devroye-Wise estimator. This is disappointing with regard to the
expected rate (n−2/(d+1) according to [2]). Empirical simulations show that
our theoretical result underestimates the real one and that a better result
can be obtained.

In Section 3, the method is adapted to the most interesting case when
the dimension of the support is less than the dimension of the ambient space.
However, it will be assumed that the dimension d′ of the support is known.
A new estimator is proposed. This estimator is also a nearest-neighbor type
restriction of the Delaunay complex but it is done according to the dimension
of the support. Suitable values for the number of neighbors are exhibited
when S is with or without boundary. The properties of the new polyhedron
as a support estimator are also studied and, in this case, the choice of the
Hausdorff distance is meaningful (while the symmetric difference distance is
not anymore).

1.5 Definitions and Notations

Throughout the paper we will use the following notations:
B(x, r) (resp. B(x, r)) denotes the open (resp. closed) ball of radius r,

centered in x.
Bk (resp. Bk) denotes the open (resp. closed) k−dimensional unit ball (if

there is no dimension ambiguity we write simply B or B).
For a set A in Rd, V (A) denotes the volume (according to the Lebesgue

measure µ). We denote θd = V (Bd).
A set A is said to be a k−dimensional manifold, if each point x of A

has a neighborhood homeomorph to Bk or to Bk. A manifold is told to be
a manifold with boundary if there exists at least one x of A that does not
admit any neighborhood homeomorph to Bk. If Å denotes the interior of A
and A the closure of A, the boundary ∂A of A is defined by ∂A = A \ Å.

A compact set A is said to be α−standard, if there exists ε0 such that:
for all x ∈ S and for all ε ≤ ε0 we have V (B(x, ε) ∩ A) ≥ αεdθd) (see ??).
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The functions ϕ(x) and ψ(x) sometimes used in the paper are respectively
defined by ϕ(x) = (x+ 1) ln(x+ 1)− x and ψ(x) = x− ln(1 + x)x.

To simplify the notations it will now be denoted Dkn for the Delaunay
polyhedron restricted to the kn−nearest neighbors (resp. D(S) for the De-
launay polyhedron restricted to the support as in [21]) instead of Dkn(Xn)
(resp. D(S)(Xn))

2 Case when the dimension of the support is

the dimension of the observation space

2.1 Hypotheses

Throughout the paper Xn = {X1, . . . , Xn} is a sample of n independent and
identically distributed Rd−valued random variables. If f is the associated
density, its support S is defined by S = {x ∈ Rd, f(x) > 0}.

Throughout this section S will be supposed to verify the two following
hypotheses:

• H1: S is a compact d−dimensional manifold. It is d−dimensional
as the ambient space. Remark: a compact d−dimensional manifold
included in Rd has a boundary.

• H2: S is α−standard. This covers a huge range of possible man-
ifolds such as polyhedron or manifold with a C2 boundary. For a
d−dimensional manifold with a C2 boundary, S is α−standard for all
α < 0.5. For a d−dimensional manifold with a piecewise C2 boundary,
α can be seen as a function of the most acute solid angle of S.

The density f will be supposed to verify the two following hypotheses:

• H3: inf{f(x), x ∈ S} = f0 > 0. We also denote f 0 = inf{f(x), x ∈
∂S} (obviously, as f0 > 0 we have f 0 > 0) and f1 = max{f(x), x ∈ S}

Two additional hypotheses will sometimes be used

• H4: S is a manifold with a C2 boundary.

• H5: f |S (f restricted to the support) is Lipschitz continuous. That is
there exists a realKf such that for all x, y ∈ S2, |f(x)−f(y)| ≤ Kf ||−→xy||
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2.2 Preservation of the topological properties

Let us recall that when the density support S is known, Edelsbrunner showed
in [21], that the simplicial complex D(S) is homeomorph to S (under a rea-
sonable hypotheses). So, it is natural to consider the following problem: can
we find a sequence kn that ensures that:

• DS is (asymptotically) included in Dkn ?

• Dkn is (asymptotically) included in D(S) ?

The first question will be answered in Section 2.2.1 where the correspond-
ing values of kn will be found.

Unfortunately, we will see in Section 2.2.3 that it is not possible to find
values of kn that ensure both inclusions. However, a “homeomorphism the-
orem” will be established in the two-dimensional case (d = 2).

2.2.1 The first inclusion

The first inclusion (D(S) ⊂ Dkn) is, for us, the most important because it
ensures that not too many simplexes are removed.

Property 1. Let us put: k̃n(a, λ) = ⌈λa lnn⌉
If hypotheses H1 (Xn ⊂ Rd and S is d−dimensional compact manifold),

H2 (S is α−standard) and H3 (f0 = maxS(f) > 0) are satisfied then, there
exists an explicit value a such that:

• For all λ > 1 D(S) ⊂ Dk̃n(a,λ)
asymptotically almost surely;

• For all λ > 2 D(S) ⊂ Dk̃n(a,λ)
eventually almost surely.

If, additionally, the hypotheses H4 (Lipschitz Continuity of f) and/or
H5 (smoothness of the boundary) are satisfied, the explicit constant a can
be adapted. The values of a corresponding to different sets of hypotheses are
given in the following table:

hypothesis notation a

H1, H2 and H3 ãd(f, S)
f1
f0

1
α
2d(1 + ϕ−1(2−d−1))

H1, H2, H3 and H4 ãd(f, ·) f1
f0
2d+1(1 + ϕ−1(2−d−1))

H1, H2, H3 and H5 ãd(·, S) 1
α
2d(1 + ϕ−1(2−d−1))

H1, H2 , H3, H4 and H5 ãd 2d+1(1 + ϕ−1(2−d−1))

12



d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7
ãd 7.15 12.32 21.98 40.33 75.64 144.33 278.96
nmin 23 48 102 217 465 997 2140

Table 1: Constants for the number of neighbors and minimal number of
points required according to the dimension.

with f1 = maxS(f) and ϕ(x) = (x+ 1) ln(x+ 1)− x

As the last case is the most useful in practice, we give in Table 1 some
numerical values. Values of ãd are given for d ∈ {1, 2, 3, 4, 5, 6, 7}. The last
line of the table gives values for the smallest value of n (nmin), such that
k̃n(ãd, 1) < n. This is the smallest number of observations that allows to
deal with the given dimension.

2.2.2 Choice of the parameter λ

In practice we have to choose a value for λ to compute the Delaunay restric-
tion. In his section we show that, even if it is not proved by Property 1, a
choice λ = 1 gives satisfying results. Here we have chosen to draw uniform
sample in d−dimensional unit balls (even if it can seems a very restrictive
example the manifold hypotheses on the support ensure that it is locally
relevant). For every values for d (d ∈ {1, 2, 3, 4}) and for every value for
n (n ∈ {100, 200, ..., 1000}) 1000 sample are drawn. For each sample Xn it
is possible (because the support is known) to compute D(S) and to extract
the minimum value for k (k∗n(Xn)) such that the graph associated to D(S) is
included in the k−nearest neighbor graph. In Figure 4 we plot different per-
centiles for k∗n(Xn)/ lnn and compare them to ãd. The following percentiles
are computed: 90%, 95%, 99%, 99.5% and the max.

It seems that kn(Xn)/ lnn is asymptotically inferior to ãd. This justify
that in almost every presented examples in the paper, it will be chosen to
work with kn(ãd, 1) neighbors.

2.2.3 Topological properties

Values for kn such that D(S) can be reasonably supposed to be included in
Dkn are now founded. Next, the two following points have to studied:

• To have D(S)
∼= S, The closed ball property of Xn on S needs to be

verified. Edelsbrunner argued about the reasonability of such an as-
sumption in when S is smooth. Can that purpose be probabilistically
specified?
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Figure 4: Choice of the parameter

• Unfortunately we can not expect that Dkn = D(S). In Figure 5 we
can see that nothing prevents existence of small simplices having the
centers of their circumscribed spheres outside of S (the red triangles).
Nevertheless can it be established that Dkn

∼= D(S) ?

The two-dimensional case. The specificity of the case d = 2 is that the
above points can be theoretically answered by Lemma 1 that ensures that
the closed ball property is satisfied a.a.s and Theorem 2 that establishes the
existence of an homeomorphism a.a.s.

Lemma 1. If d = 2 and if hypotheses H1 (Xn ⊂ Rd and S is d−dimensional
compact manifold), H2 (S is α−standard), H3 (f0 = maxS(f) > 0) and
H4 (here ∂S is a C2 1−manifold) are satisfied then, Xn has the closed ball
property a.a.s.
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Figure 5: Delaunay polyhedron (yellow), Delaunay polyhedron restricted to
its nearest neighbors (red) and Delaunay polyhedron restricted to the support
(blue) on an example.

Theorem 2. Let us put: k̃n(a, λ) = ⌈λa lnn⌉. If d = 2 and if hypothe-
ses H1 (Xn ⊂ Rd and S is d−dimensional compact manifold), H2 (S is
α−standard), H3 (f0 = maxS(f) > 0), H4 (here ∂S is a C2 1−manifold)
and H5 (Lipschitz continuity of f) are satisfied then, for all λ > 1, Dk̃n(ã2,λ)

is homeomorph to S a.a.s. with ã2 = 8(1 + ϕ−1(8−1))

Of course a similar result can be obtained without the hypothesis H5

replacing ã2 by ã2(., f)

Discussion for other dimensions. For the the case d = 2, the proofs are
relatively easy because all the phenomena that could contradict the closed
ball property can be classified and studied. The second point is that it can
be clearly seen that in this case the restriction Dkn is homeomorph to DS (if
D(S) ⊂ Dkn and kn/n is small enough).

For dimensions higher than 2, the generalization of Lemma 1 and The-
orem 2 is still an open problem, but it can be reasonably assumed that the
asymptotic behavior of the Delaunay polyhedron restricted to the kn−nearest
neighbor is still good.

First, for the closed ball property we can refer to the discussion done in
[21], where Edelsbrunner pointed out that it is a very reasonable hypothesis
when the manifold is C2.

Let us now discuss the existence of a homeomorphism between D(S) and
Dkn . First, let us remark that the suitable sequences kn exhibited in Property
1 satisfy the usual conditions for nearest neighbors statistics: kn → ∞ and
kn/n → 0. The second condition ensures that the kept simplexes are small
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n = 100 110 120 130 140 150

homeomorph to B 79.8% 36.6% 11.8% 3.6% 0.5% 0%
homeomorph to S 20.2% 63.4% 88.2% 96.4% 99.5% 100%

Table 2: Results for simulations on B2(0, 1) \ B2(0, 0.5). 1000 samples for
each value for n.

(their edge’s length converges to 0) and so, unsuitable edges (as those that fill
in holes for instance) are removed. The remaining problem is the following:
can the restriction to the nearest neighbor create undesirable phenomena
near the boundary ?

Let us remark that choosing k′d,n(a, λ) = ⌈λαa lnn⌉ (with a in the set
of suitable values exhibited in Property 1 i.e. {ãd(f, S), ãd(., S), ãd(f, .), ãd}
according to the supposed hypotheses) avoid the creation of undesirable phe-
nomena far from the boundary and gives to every points far from the bound-
ary a neighborhood homeomorph to a ball. The use of k̃d,n(a, λ) = ⌈λa lnn⌉
take the boundary effect into account and it is reasonable that every points
near the boundary has a suitable neighborhood (that contains a set home-
omorph to a close ball). An empirical validation of this discussion can be
found in Table 3.

2.2.4 Some simulations

In Figure 2.2.4 we present a simulated restricted Delaunay polyhedron on a
toy example: points uniformly drawn on a holed disk (a CD-Rom) for an
increasing number of observations (first 100 then 200, 500 and finally 1000).
Even if it can be consider as a very easy toy example this geometric figures
allows to observe almost all the local cases that can occurs in case when d = 2
and the boundary is smooth.

Here we have chosen to use k̃n(ãd, 1)−nearest neighbors restriction.
To illustrate the convergence towards 1 of the probability thatDk̃n(ãd,1)

(X ) ∼=
S, we present in Table 2 (resp. Table 3) the results of 1000 samples of size
n uniformly drawn in B2(0, 1) \ B2(0, 0.5) (resp. B3(0, 1) \ B3(0, 0.5)). We
have only observed two different behaviors of the restricted Delaunay poly-
hedron: first, the inside hole is unfortunately filled in and the polyhedron
is homeomorph to a ball; second, the polyhedron is homeomorph to S. No
other cases (creation of unexpected phenomena near the boundary) had been
observed. For the two experiences, the convergence of the probability to be
homeomorph to the support towards 1 (which is proved when the dimension
is 2 and not proved when the dimension is 3) can be observed .
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Figure 6: Restricted Delaunay polyhedron for the CD-Rom example.

2.3 Estimation of the support

Beyond the topological aspect, it can be interesting to observe the properties
of the restricted Delaunay polyhedron as an estimator of the density support.
The different lemmas needed in the proofs of the results of the previous
section allow to quickly obtain a first result which will be given in Theorem
3. The convergence rate seems to be good (the same that for Devroye-Wise
estimator in [18] where an analogous idea is developed : we wish D(S) ⊂ Dkn

while, in [18] authors wish S ⊂ Ŝn). But we will see on simulation results
that our Theorem 3 seem to be highly improvable to reach a convergence rate
that may not be so different that the rate of the convex hull as an estimator
of the support under the convexity hypothesis.

As will also be interested in the case where the dimension of the support
is smaller than the dimension of the ambient space, we need first to choose
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n = 200 220 240 260 280 300

homeomorph to B 87.9% 50.1% 21.2% 7.5% 1.8% 0.3%
homeomorph to S 12.1% 49.9% 78.8% 92.5% 98.2% 99.70%

Table 3: Results for simulations on B3(0, 1) \ B3(0, 0.5). 1000 samples for
each value for n.

carefully a distance between sets. This necessity will be illustrated in section
3.4.1.

2.3.1 Choice of a distance between sets

Usually to measure the distance between the support and its estimator the
symmetric difference distance is used.

If such a distance measure is suitable when the dimension of the support
is the dimension of the ambient space, it is no longer the case when the
dimension of the support is smaller than the dimension of the ambient space.

As in [18] we propose here to use the Hausdorff distance between sets
instead of the symmetric difference distance.

When the dimension of the support, the dimension of the ambient space
and the dimension of the estimator of the support are equal there is a strong
link between the Hausdorff distance and the symmetric difference distance
via the Steiner Minkowski formula:

Definition 13 (Steiner-Minkowski formula). let d ≥ 2, and A ( Rn be a
d−dimensional manifold with a C2 boundary. Let µ be the Lebesgue measure.
Then the boundary of S is measurable and its measure λ(∂A) is given by the
following formula (Minkowski-Steiner):

λ(∂A) = lim inf
r→0

µ(A+ B)− µ(A)

r
,

This formula seems intuitive but the proof is not so simple [23]. But
a consequence is that the Hausdorff convergence implies the convergence
according to the symmetric difference distance via the following property:

Property 2. If dH(S, Ŝn) = εn → 0, then µ(S∆Ŝn) = O(εn).

• Ŝn ⊂ S + εnB ⇒ V (Ŝn \ S) ≤ V (S + εnB \ S) ∼ εnλ(∂S)

• S ⊂ Ŝn + εnB ⇒ V (S \ Ŝn) ≤ V (Ŝn + εnB \ Ŝn) ∼ εnλ(∂S)
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2.3.2 Consistency of the support estimator

The consistency of the density support estimated by the restricted Delaunay
polyhedron is given by theorem 3.

Theorem 3. Let us put: k̃n(a, λ) = ⌈λa lnn⌉.
For each density f and support S, satisfying hypotheses H1 (Xn ⊂ Rd

and S is d−dimensional compact manifold), H2 (S is α−standard) and H3

(f0 = maxS(f) > 0), there exists an explicit constant M(S, f) such that for
all λ > 2 and a suitable values as in Property 1.

dH(Dk̃n(a,λ)
, S)

( n

lnn

)1/d

≤M(S, f) e.a.s.

If, additionally, the hypotheses H4 (Lipschitz Continuity of f) and/or
H5 (smoothness of the boundary) are satisfied, the explicit constant M(S, f)
can be adapted. The values of M(S, f) corresponding to different sets of
hypotheses are given in the following table:

hypothesis a M(S, f)

H1, H2 and H3 ãd(f, S) max
(

λ2a(1+ψ−1(2−d))
θdαf0

, 2
θdαf0

)1/d

H1, H2, H3 and H4 ãd(f, .) max

(

λ2a(1+ψ−1(2−d))
θdαf0

,
max

(

1,2(1− 1

d
)
f0
f0

)

θdf0

)1/d

H1, H2, H3 and H5 ãd(., S) max
(

λ2a(1+ψ−1(2−d))
θdαf0

, 2
θdαf0

)1/d

H1, H2 , H3, H4 and H5 ãd max

(

λ2a(1+ψ−1(2−d))
θdαf0

,
max

(

1,2(1− 1

d
)
f0
f0

)

θdf0

)1/d

with f1 = maxS(f), f 0 = min∂S(f), ϕ(x) = (x + 1) ln(x + 1) − x and
ψ(x) = x− ln(1 + x).

2.3.3 Some simulations

In this section (and only here), we use the symmetric difference distance.
This choice has been done in order to compare the restricted Delaunay poly-
hedron with the Devroye-Wise estimator using the most usual distance in
the literature. Each time we have use uniform samples to avoid any discus-
sion about the fact that local radius may over-perform the fixed one for the
Devroye-Wise estimator.

In Figure 7 we present the results for the uniform samples on a 2 dimen-
sional ball and on a 2 dimensional “CD-Rom”. On the first line of each exam-
ple we represent the restricted Delaunay polyhedron (with kn = k̃n(ã2, 1)).
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On the second line of each example, we represent the Devroye-Wise estimator
with an optimal choice of the radius (here the real support is known, and so
we can choose the radius that minimize the symmetric difference distance).
In the ball example, the performance of the two estimators seems to be com-
parable. However it will be clear, from Figure 8 that the restricted Delaunay
estimator over-perform the Devroye-Wise estimator. In the “CD-Rom“ ex-
ample, the restricted Delaunay is worse than the Devroye-Wise estimator for
small values of n, but seems to be comparable when n ≥ 150. As in the ball
example, the restricted Delaunay estimator becomes in fact quickly better
than the Devroye-Wise estimator.
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Figure 7: Comparison between restricted Delaunay polyhedron and Devroye-
Wise estimator on two examples: sample in a ball (first line the restricted
polyhedron and second line the best Devroye-Wise estimator) and in a CD-
Rom (third line the restricted polyhedron and fourth line the best Devroye-
Wise estimator).

In Figure 8 we plot the histogram of the density estimation of the symmet-
ric difference distance for different estimator of the support: the restricted
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Delaunay polyhedron, the Devroye-Wise estimator (the best one as previ-
ously) and the convex hull (that is the Delaunay polyhedron). The chosen
shape is ball (for dimension 2 and 3). This choice allows to compute easily the
volume of the symmetric difference distance using Monte-Carlo integration.
It also allows to point out that the Restricted Delaunay polyhedron is very
similar to the convex hull estimator (which can be assumed to be the best one
in the convex case). As previously, even if it can appear as very restricted,
this choice of ball shape is justified by the manifold hypotheses. For each
n ∈ {50, 100, 200, 500, 1000}we compute 200 uniform samples. For each sam-
ple the optimal (according to the symmetric difference distance) radius for
the Devroye-Wise estimator is computed (Monte Carlo) and the symmetric
difference distance for the three proposed estimators are computed.
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Figure 8: Comparison between the convex hull, restricted Delaunay polyhe-
dron and Devroye-Wise estimator: histograms for 200 uniform samples of
size n in a ball for dimension 2 (first line) and dimension 3 (second line).

3 Case when the dimension of the support is

smaller than the dimension of the observa-

tion space

In this section we focus on a more interesting case when the dimension of the
support (d′) is smaller than the dimension of the ambient observation space
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(d). In this case, the definitions of the support and of the density are a little
more tricky. If we denote E the set of closed sets E ⊂ Rd such that P (E) = 1
the support can be defined by: S =

⋂

E∈E E. Once the support is defined, a
finite measure µS associated to the support can be constructed with the use
of the Lebesgue measure on Rd µ as follows. For all A ⊂ S:

µS(A) = lim
x→0

θd′µ(A+ xBd)
θdxd−d

′

So, finally, the density f w.r.t. to the measure µS can be defined.
In the following section we will set up the needed hypothesis on S and

f . Then we will find suitable values kn that ensure that D(S) ⊂ Dkn a.a.s.
(and e.a.s.). A procedure to remove simplexes of dimension higher than d′ is
presented after. The final algorithm is tested on several data sets.

3.1 Hypotheses

Throughout this section S will be supposed to have the two following prop-
erties:

• H’1: S is a compact C2, d′−dimensional manifold with d′ < d.

• H’2: S is d′−dimensional α−standard, that is, there exists ε0 such
that: for all x ∈ S and for all ε ≤ ε0, we have µS(B(x, ε)∩S) ≥ αθd′ε

d′.

The density f has to satisfy the hypothesis:

• H3: inf{f(x), x ∈ S} = f0 > 0. We will also denote f0 = inf{f(x), x ∈
∂S} (obviously, as f0 > 0, we have f 0 > 0 when ∂S 6= ∅).

Three additional hypotheses are also studied

• H4: S is a manifold with a C2 boundary.

• H’4: S is a manifold without boundary.

• H5: f |S is Lipschitz continuous.

3.2 Number of neighbors

To preserve the topology we need to find a polyhedron made of d′−simplexes.
So, we will first restrict the Delaunay polyhedron to nearest neighbors, then
propose an algorithm that is expected to keep only d′−dimensional simplexes.
As in the previous part, we want to choose a number of neighbors that ensures
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that the Delaunay polyhedron restricted to to nearest neighbors contains the
Delaunay polyhedron restricted to the support. When S is a d′−manifold,
the analogue of Property 1 is given by property 3.

Property 3. Let us put: k̃n(a, λ) = ⌈λa lnn⌉
If hypothesesH’1 (S is a d′−dimensional C2 manifold), H’2 (S is α−standard)

and H3 (f0 = minS(f) > 0) are satisfied then, there exists an explicit value
for a such that:

• for all λ > 1, D(S) ⊂ Dk̃n(a,λ)
asymptotically almost surely;

• for all λ > 2, D(S) ⊂ Dk̃n(a,λ)
eventually almost surely.

If, additionally, the hypotheses H4 (smoothness of the boundary) or H’4

(absence of boundary) and/or H5 (Lipschitz continuity of f) are satisfied,
the explicit constant a can be adapted. The values of a corresponding to dif-
ferent sets of hypotheses are given in the following table:

hypothesis notation a

H’1, H’2 and H3 ãd′(f, S)
f1
f0

1
α
2d

′

(1 + ϕ−1(2−d
′−1))

H’1, H’2, H3 and H4 ãd′(f, ·) f1
f0
2d

′+1(1 + ϕ−1(2−d
′−1))

H’1, H’2, H3 and H5 ãd′(·, S) 1
α
2d

′

(1 + ϕ−1(2−d
′−1))

H’1, H’2 , H3, H4 and H5 ãd′ 2d
′+1(1 + ϕ−1(2−d

′−1))

H’1, H’2, H3 and H’4 0.5ãd′(f, ·) f1
f0
2d

′

(1 + ϕ−1(2−d
′−1))

H’1, H’2 , H3, H’4 and H5 0.5ãd′ 2d
′

(1 + ϕ−1(2−d
′−1))

with f1 = maxS(f) and ϕ(x) = (x+ 1) ln(x+ 1)− x.

3.3 Estimation of the support

3.3.1 The choice of the Hausdorff distance

When the dimension of S is different from the dimension of the ambient
space, there is no more relation between the symmetric difference distance
and the Hausdorff one. The choice of the Hausdorff distance between sets is
still meaningful. That is not the case of the symmetrical difference distance.
Indeed, the estimator Gd′,kn and S are two d′−dimensional sets. So, if µ is
the Lebesgue measure on Rd, µ(Gd′,kn∆S) = 0 (even if the support and its
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estimator are very different). If we choose instead of µ , a d′−dimensional
“measure” µ′there is high chance to have a measure 1 (even if the support
and its estimator are very similar).

3.3.2 Consistency of the estimator

The following analogue of Theorem 3 holds:

Theorem 4. Let us put: k̃n(a, λ) = ⌈λa lnn⌉
For each density f and support S, satisfying hypotheses H’1 (S is a

d′−dimensional C2 manifold), H’2 (S is α−standard) andH3 (f0 = minS(f) >
0), if a denotes the explicit constant of Property 3, there exists an explicit
constant M(S, f) such that

dH(Dk̃n(a,λ)
, S)

( n

lnn

)1/d′

≤M(S, f) e.a.s.

If, additionally, the hypotheses H4 (smoothness of the boundary) or H’4

(absence of boundary) and/or H5 (Lipschitz continuity of f) are satisfied,
the explicit constant M(S, f) can be adapted. The values of M(S, f) corre-
sponding to different sets of hypotheses are given in the following table:

hypothesis a M(S, f)

H1, H2 and H3 ãd′(f, S) max
(

λ2a(1+ψ−1(2−2))
θdαf0

, 2
θdαf0

)1/d

H1, H2, H3 and H4 ãd′(f, .) max

(

λ2a(1+ψ−1(2−2))
θdαf0

,
max

(

1,2(1− 1

d
)
f0
f0

)

θdf0

)1/d

H1, H2, H3 and H5 ãd′(., S) max
(

λ2a(1+ψ−1(2−2))
θdαf0

, 2
θdαf0

)1/d

H1, H2 , H3, H4 and H5 ãd′ max

(

λ2a(1+ψ−1(2−2))
θdαf0

,
max

(

1,2(1− 1

d
)
f0
f0

)

θdf0

)1/d

H’1, H’2, H3 and H’4 0.5ãd′(f, .) max
(

λ2a(1+ψ−1(2−2))
θdαf0

, 2
θdαf0

)1/d

H’1, H’2 , H3, H’4 and H5 0.5ãd′ max

(

λ2a(1+ψ−1(2−2))
θdαf0

,
max

(

1,2(1− 1

d
)
f0
f0

)

θdf0

)1/d

with f1 = maxS(f), ϕ(x) = (x+1) ln(x+1)−x and ψ(x) = x− ln(1+x).

3.4 Proposed algorithm to recover the topology

To recover the topological properties, we propose to compute a new polyhe-
dron: the d′−dimensional and kn−nearest-neighbor restriction of D, Gkn,d′ =
Gkn,d′(Xn) which is constructed as follows.
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Definition 14. The d′−dimensional and kn−nearest-neighbor restriction of
the Delaunay polyhedron, Gkn,d′ can be algorithmically defined by:

1) First compute Dkn and extract the polyhedron Dkn,d′ defined as fol-
lows: a simplex σ belongs to Dkn,d′ if it belongs to Dkn and if it is a
d′′−dimensional simplex (with d′′ ≤ d′).

2) A d′−simplex σ belongs to Gkn,d′ if σ belongs to D(Dkn,d′)
.

3) When d′′ < d′, a d′′−simplex σ belongs to Gkn,d′ if it is a sub-simplex
of a d′−simplex.

4) For d′′ = d′ + 1 to d: A d′′−simplex σ belongs to Gkn,d′ if all its faces
(d′′ − 1−sub-simplexes) belongs to Gkn,d′.

The idea that lead us to the construction of Gkn,d′ is the Following:

• First we want to find all the “good” d′−simplexes. It is so natural to
look for the d′−simplexes of Dkn which are those of Dkn,d′.

• As Dkn is a consistent estimator of S which is d′−dimensional, we can
reasonably expect Dkn,d′ to be a consistent estimator of S. In this
polyhedron, there exists some non-retractable undesirable “holes” in
place of d′′−simplexes of Dkn (with d′′ > d′). The idea is to keep only
simplexes that are in D(Dkn,d′ )

(the Edelsbrunner’s restriction). This
step allows to remove most of this phenomenas. To finish we apply the
rules 3) and 4) to achieve the construction.

3.5 Choice of the dimension

For a chosen dimension d∗ we can compute Gkn,d∗ . Our intuitive idea is that
if d∗ underestimates the true intrinsic dimension d′, then there exists many
(d∗ + 1)−simplexes in Gkn,d∗ . So, for each d∗, we can compute ρ(d∗) that
represents the part of the d∗−simplexes that are sub-simplexes of a d∗ +
1−simplex. If we have no preliminary knowledge of the intrinsic dimension
then we propose to compute Gk̃n(ã1,1),1

, . . . , Gk̃n(ãd∗ ,1),d
∗ and to stop when

ρ(d∗) can be consider small enough.

3.6 Examples

3.6.1 Simulated 1−dimensional manifold

First we present in Figure 9 simulation results for recognition of 1−dimensional
sets. The first one is a manifold. 100 points are drawn on a spiral in R3 (with

25



uniform law for the angle and the height). The spiral form is recognized and
no undesired 2 or 3−dimensional simplexes are conserved. The second and
third examples are drawn on an “X” form. This is not a manifold. The
general form is recognize but some undesired simplexes are conserved in the
center, where the manifold hypothesis is not satisfied.
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Figure 9: From left to right: 100 points on a 3d−spiral (ρ(1) = 0); 100 points
on an “X’ (ρ(1) = 18%); 300 points on an “X” (ρ(1) = 6.75%).

3.6.2 Simulated 2−dimensional manifold

We present in Figure 10 simulation results for 2−dimensional manifolds in
R3. 300 points are uniformly drawn on a cylinder. When the dimension
1 is tested, ρ(1) = 0.94 that clearly indicates an underestimation of the
dimension. For the dimension 2, ρ(2) = 0.016 that means that there exists
some residual 3−dimensional simplex but they are few.

3.6.3 Simulated 3−dimensional manifold

We present in Figure 11 simulation results for a 3−dimensional manifold in
R3. 400 points are drawn in a thicken cylinder. ρ(1) = 0.97 and ρ(2) = 0.65
that indicates that the dimension is 3. So the used method is the restricted
Delaunay polyhedron.

3.6.4 The Standford Bunny

The Standford Bunny data set (that can be find in the Stanford 3D Scan-
ning Repository project data-base http://graphics.stanford.edu/data/
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Figure 10: 300 points on a cylinder. Left: the result when the dimension is
supposed to be 1. Right the result when the dimension is supposed to be 2.

Figure 11: 400 points on a thicken cylinder, 1−dimensional, 2−dimensional
and 3−dimensional recognition.

3Dscanrep/#bunny) contains 35947 points and 69451 triangles obtained af-
ter having scanned a ceramic figurine of a rabbit. Note that the given tri-
angulation on the Bunny data set is obtained with the knowledge of the
data construction (physics of the scanner). Here we will treat the data
as a sample with no a a priori knowledge on its construction. We will
only assume that the dimension 2 is known. We randomly choose n ∈
{200, 300, 500, 1000, 1500, 3000} points in the data base and reconstruct the
polyhedron. Table 4 presents the values of ρ(1) and ρ(2) for different values
of n. The expected convergence of ρ(1) toward 1 and of ρ(2) toward 0 can
be empirically observed but it seems very slow.

Figure 12 presents the different polyhedron estimators, the convergence
toward the Bunny surface can be observed. When n ≥ 1000, the bunny
shape is recognized. Figure 13 presents the residual 3−simplexes in the
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n 200 300 500 1000 1500 3000
ρ(1) 0.8695 0.9015 0.9160 0.9202 0.9251 0.9314
ρ(2) 0.4073 0.3872 0.3053 0.2473 0.2577 0.2106

Table 4: ρ values for the Standford Bunny

Bunny recognition. It can be observed on this figure that they seems to have
a vanishing importance.
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Figure 12: Bunny recognition.
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Figure 13: Residual 3−simplexes in the Bunny recognition.

3.6.5 Face data base

We present here the result of our algorithm for the face data set used in the
presentation of isomap [30]. The data set contains n = 698 pictures (64× 64
pixel each, d = 1024) of a face with 3 varying parameters (horizontal rotation
angle, vertical rotation angle and light direction). The intrinsic dimension is
at most 3. A first dimension reduction via isomap is done (with the use of the
40−nearest neighbor graph to compute the geodesic distance) and the chosen
dimension is 4 according to the eigenvalue values of the Multi Dimensional
Scaling.

When testing the different dimensions between 1 and 3 we have : ρ(1) =
0.9652, ρ(2) = 0.9208 and ρ(3) = 0.5524 and so the dimension 3 is chosen. An

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Figure 14: Eigen values for the multi dimensional scaling
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Figure 15: Boundary of Gkn,2 and Gkn,3 (that can be seen as the interior of
Gkn,2) (Projection in the 3 first axes of isomap)

interesting phenomena appears here: every 3−simplex of Gkn,3 is a 3−simplex
of Gkn,2. That is why we presents both Gkn,2 and Gkn,3 in Figure 15.

Another interesting phenomena is the existence of a non retractable cycle
in Gkn,2 (that does not exist anymore in Gkn,3). The presence or not of such
a cycle is not an evidence. A non retractable cycle of Gkn,2 is illustrated in
Figure 16 the faces that are separated in Gkn,3 are indicated by the “slash”.

4 Conclusion and perspectives

Let us first note the major limitation of our method which is the need of
preliminary computation of the Delaunay complex. This requires d to be
small enough to have a reasonable computational time. This also requires
the data sets to be numerical. Obviously, for large dimension sets, union of
balls method such as in ([13], [12] or [14]) may be preferred. When data sets
are not numerical, one can choose to use persistent homology [9].

When it can be practically applied, the idea of estimating the support
of the density preserving topological properties by the Delaunay complex re-
stricted to the kn−nearest neighbors gives very good results. First, let us
notice the fact that kn is explicitly known when the density is Lipschitz con-
tinuous and the boundary of the support is a C2 manifold (which are not too
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Figure 16: A non retractable cycle of Gkn,2.

strong hypotheses). Simulation results are better than what is proved in this
paper. Empirically, we have observed the convergence of the probability to
have a homeomorphism between the support and its estimator to 1. We have
also observed that the convergence rate of the Hausdorff distance between
the support and its estimator is higher than the established one. So, there is
still some theoretical improvement to be done.

We have an asymptotic result concerning the right choice of the number
of neighbors but, as it can be seen in Figure 4, our bound overestimates suf-
ficient values. So when the number of observations is quite small, some holes
may be filled by our estimator. Can we find a practical way of choosing the
good number of neighbors ?

Last but not least, let us note that several improvements are necessary
to make this work applicable to “real-life” problems (as classification).

We need to adapt our method to the estimation of the level sets of the
density instead of the whole density support, in order to have a really useful
tool for classification and clustering for instance but also for more specific
applications such as in [16].

When the support is a d′−manifold that can be decomposed into two
parts: a principal d′′−manifold (d′′ < d′) and small-noise for other directions
(as in the face example), can we re-built the principal structure (instead of
the whole support)?

A Some useful lemmas

A.1 Elementary lemmas

Lemma 2. If S is a d−dimensional compact manifold, then there exists
constants c0(S) and r0(S) such that: for all r ∈ R, r < r0(S) one can choose
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deterministic x1, . . . , xν such that S ⊂ ⋃B(xi, r) and ν ≤ c0(S)r
−d.

Such a constant ν is usually called the covering number from the inside.

Lemma 3. If S ⊂ Rd is a d−dimensional compact manifold (with boundary
∂S), then there exists constants c1(∂S), ρ1(S) and r1(S) > 0 such that: for
all ρ ∈ R, ρ < ρ1(S) and r ∈ R, r < r1(S) one can choose deterministic
x1, . . . , xν such that ∂S + ρB ⊂ ⋃B(xi, r) and ν ≤ c1(∂S)ρr

−d.

Proof for Lemmas 2 and 3 are not presented here, They are consequences
of covering number properties and are direct corollaries of Lemmas 2.1 and
2.2 in [27]

Lemma 4. If S is a d−dimensional compact manifold with a C2 (d−1)−dimensional
boundary, then there exist, c3(S) ≥ 0 and r3(S) > 0 such that: for all x ∈ S
and all r ≤ r3(S), we have V (B(x, r) ∩ S) ≥ 0.5(1− c3(S)r)θdr

d.

See Lemma 2.4 in [27].

Lemma 5. If f is a Lipschitz continuous function on a compact S and
min f = f0 > 0, then f−1/d is a Lipschitz continuous function on S, and so
there exists a constant Kf−1/d such that |f−1/d(x)− f−1/d(y)| ≤ Kf−1/d ||−→xy||.

Lemma 6. Let S be a compact subset of R2 with a C2 boundary. There exists

constants r4 > 0 and AS such that: for all X and Y such that ||−−→XY || ≤ r4,

and [X, Y ] ∩ ∂S 6= ∅, we have dmin([X, Y ], ∂S) ≤ AS||
−−→
XY ||2.

It is a well known result about linear interpolation.

Lemma 7. Let S be a compact subset of R2 with a C2 boundary. For all
x ∈ ∂S, let us denote −→u x a vector normal to ∂S at the point x and that has
an unit norm.

There exists constants rS > 0 such that: For all x ∈ ∂S B(x+rS−→u x, rS)∩
S = ∅ or B(x− rS

−→u x, rS) ∩ S = ∅

Every rS inferior to the the minimum radius of curvature of ∂S is suitable.

A.2 Other useful lemmas

Lemma 8. Let r(x) be a Lipschitz continuous function on S. Suppose that
{X1, . . . , Xn} is a sample on S drawn with some density such that there exists
constants a0 and b0 satisfying: for all x ∈ S we have P (Xi ∈ B(x, r(x)ρ)) ≥
a0(1− b0ρ)ρ

d. The following holds:

if λ > 1, then “B(x, r(x)(λ lnn/(a0n))1/d) ∩ Xn 6= ∅ for all x ∈ S” a.a.s.;
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if λ > 2, then “B(x, r(x)(λ lnn/(a0n))1/d) ∩ Xn 6= ∅ for all x ∈ S” e.a.s.

Proof. First, let us cover S with small deterministic balls of radius εn(λ lnn/(a0n)
1/d

centered in x∗1, . . . , x
∗
ν (ν ≤ c0(S)ε

−d
n n/ lnn).

Let us suppose that there exist an x such that B(x, r(x)(lnn/n)1/d) does
not contain any observation. There exits an i such that x ∈ B(x∗i , εn(λ lnn/(a0n))1/d),
and so B(x∗i , (r(x)− εn)(λ lnn/(a0n))

1/d) does not contain any observation.
The Lipschitz hypothesis implies that B(x∗i , r(x∗i )(1−Krεn)(λ lnn/(a0n))

1/d)
does not contain any observation neither.

On the other hand, for a given (deterministic) x:

P

(

B
(

x, r(x)(1−Krεn)

(

λ ln(n)

a0n

)1/d
)

∩ Xn = ∅
)

≤
(

1− λ(1 + o(1))
lnn

n

)n

.

So, the probability qn that there exists a x∗i such that B(x∗i , r(x∗i )(1 −
Krεn)(λ lnn/(a0n))

1/d) does not contains any observation satisfies

qn = O

(

ε−dn n1−λ+o(1)

lnn

)

.

Choosing εn = lnn−1/d we obtain the desired.

Lemma 9. Let an be a sequence that satisfies an > 0 and an → a > 0 and
let x > 0 be some constant.

Let us now define the sequences

unk = Ck
n

(

an
lnn

n

)k (

1− an
lnn

n

)n−k

, k∗n = ⌈(1+x)a lnn⌉, and vn =

n
∑

k=k∗n

unk .

Then

vn ≤
√
2

x
√

πk∗n
n−a(1+x) ln(1+x)−x(1 + o(1)).

Proof. Let us first remark that:

unk+1 =
n− k − 1

k + 1

(

an
lnn

n

)(

1− an
lnn

n

)−1

unk .
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and so:

unk+1 =
n− k − 1

n

(

an lnn

⌈(1 + x)a lnn⌉

)(

k∗n
k + 1

)(

1− an
lnn

n

)−1

unk

So it is possible to choose N0 such that: for all n ≥ N0 and all k ≥ k∗n we
have

unk+1 < (1− x/2)unk .

So, for all n ≥ N0 we have vn ≤ unk∗n(2/x).
Applying the Stirling formula we get

unk∗n ∼ 1
√

2πk∗n
n−an[(1+x) ln(1+x)−x],

and so

vn ≤
√
2

x
√

πk∗n
n−a[(1+x) ln(1+x)−x](1 + o(1)).

The lemma is proved.

Corollary 1. Let r(x) be a Lipschitz continuous function on S. Suppose
that {X1, . . . , Xn} is a sample on S drawn with some density such that there
exists constants a1 and b1 satisfying for all x ∈ S P (Xi ∈ B(x, r(x)ρ)) ≤
a1(1 + b1ρ)ρ

d.
Then, for all λ′ > 0 the following holds:

if y > ϕ−1((λ′a1)
−1), then “for all x ∈ S the ball B(x, r(x)(λ′ lnn/n)1/d)

contains less than kn = ⌈a1(1 + y)λ′ lnn⌉ points” a.a.s.

if y > ϕ−1(2(λ′a1)
−1), then “for all x ∈ S the ball B(x, r(x)(λ′ lnn/n)1/d)

contains less than kn = ⌈a1(1 + y)λ′ lnn⌉ points” e.a.s.

Proof. First, let us cover S with small deterministic balls of radius εn(λ
′ lnn/(n))1/d

centered in x∗1, . . . , x
∗
ν (ν ≤ c0(S)ε

−d
n n/ lnn).

Let us suppose that there exist an x such that B(x, r(x)(λ′ lnn/n)1/d) con-
tains more than k observations. There exits an i such that x ∈ B(x∗i , εn(λ′ lnn/n)1/d),
and so B(x∗i , (r(x) + εn)(λ lnn/(n))

1/d) contains more than k observations.
The Lipschitz hypothesis implies that B(x∗i , r(x∗i )(1 +Krεn)(λ lnn/(n))

1/d))
also contains more than k observations.
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On the other hand, for a given (deterministic) x let us denote qn(x)
the probability that B(x, r(x)(1 +Krεn)(λ lnn/(n))

1/d) contains more than
kn = ⌈a1λ′(1 + y) lnn⌉ observations. Applying Lemma 9 we get:

qn(x) = O

( √
2

y
√
πkn

n−a1λ′[(1+y) ln(1+y)−y]

)

.

So, the probability qn that there exists an x∗i such that B(x∗i , r(x∗i )(1 +
Krεn)(λ lnn/(n))

1/d) contains more than kn observations satisfies

qn = O

(

ε−dn
y lnn3/2

n1−a1λ′[(1+y) ln(1+y)−y]

)

,

that is,

qn = O

(

ε−dn
y lnn3/2

n1−a1ϕ(y)

)

choosing εn = lnn−3/2d we obtain the desired.

Lemma 10. Let an be a sequence that satisfies an > 0 and an → a > 0 and
let x > 0 be a constant.

Let us now define the sequences

unk = Ck
n

(

an(1 + x)
lnn

n

)k (

1− an(1 + x)
lnn

n

)n−k

, k∗n = ⌈a lnn⌉ and vn =

k∗n
∑

k=0

unk .

Then

vn ≤
√
2

x
√

πk∗n
na(ln(1+x)−x+(1−an/a)(1+x)+ln(an/a))(1 + o(1)),

that is

vn ≤
√
2

x
√

πk∗n
n−aψ(x)+o(1).

The proof is very similar to that of Lemma 9 and is omitted.

Corollary 2. Let r(x) be a Lipschitz continuous function defined on S. Sup-
pose that {X1, . . . , Xn} is a sample on S drawn with some density such that
there exists constants a0 and b0 satisfying for all x ∈ S we have P (Xi ∈
B(x, r(x)ρ)) ≥ a0(1− b0ρ)ρ

d.
Then, for all λ′ > 0, the following holds
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if y > ψ−1((λ′a1)
−1) then : “for all x ∈ S the ball B(x, r(x)(λ′ lnn/n)1/d)

contains less than kn = ⌈a0λ′ lnn⌉ points” a.a.s.

if y > ψ−1(2(λ′a1)
−1) then : “for all x ∈ S the ball B(x, r(x)(λ′ lnn/n)1/d)

contains less than kn = ⌈a0λ′ lnn⌉ points” e.a.s.

The proof is very similar of that of Corollary 1 an is omitted.

Lemma 11. Let an be some sequence and ρ > 1 be some constant. We put
pn =

(

an
lnn
n

)ρ
.

Let us now define the sequences

unk = Ck
n(pn)

k (1− pn)
n−k and vn =

n
∑

k=l

unk .

Then

vn ≤ aln
1

l!

(lnn)ρl

n(ρ−1)l
ean lnn/nρ−1

.

Proof. First let us note that

unk ≤ 1

k!

(

an lnn
ρ

nρ−1

)k

.

Now it is sufficient to use the inequality

∞
∑

k=l

xk

k!
≤ xl

l!
ex

in order to conclude the proof of the Lemma.

B Proof of Property 1

Let r(x) be a Lipschitz continuous function on S.
Suppose that for every deterministic ball centers in x ∈ S and with a

small enough radius ρ there exists constants a0, b0, a1 and b1 such that

a0ρ
d(1− b0ρ) ≤ P (Xi ∈ B(x, r(x)ρ)) ≤ a1ρ

d(1 + b1ρ).

Then:

i) Let λ > 1 (resp. λ > 2). Then, Lemma 8 implies that for every edge

[Xi, Xj ] belonging to D(S) we have ||−−−→XiXj|| < 2(λ lnn/(a0n))
1/d) a.a.s.

(resp. e.a.s.).
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Proof. For every edge [Xi, Xj] belonging to D(S), there exists a point

O in Vor(Xi) ∩ Vor(Xj) ∩ S such that B(O, ||−−→OXi||) does not contain

any observation. Lemma 8 implies that ||−−→OXi|| ≤ (λ lnn/(a0n))
1/d

a.a.s. (resp. e.a.s.). Of course, the same argument gives ||−−→OXj|| ≤
(λ lnn/(a0n))

1/d a.a.s. (resp. e.a.s.). So ||−−−→XiXj|| < 2(λ lnn/(a0n))
1/d

a.a.s. (resp. e.a.s.).

ii) Corollary 2 implies that for all y > ϕ−1(2−da0/(λa1)) (resp. y >
ϕ−1(2−d+1a0/(λa1)) , every edge [Xi, Xj] belonging to D(S) satisfy:

B(Xi, ||
−−−→
XiXj||) contains less than ⌈2dλa1

a0
(1 + y) lnn⌉ points.

To conclude the proof, it remains to apply the above with r(x), a0, a1, b0
and b1 chosen according to the following table.

hypotheses r(x) a0 a1 b0 b0
H1, H2 and H3 1 αθdf0 θdf1 0 0
H1, H2, H3 and H4 1 0.5θdf0 θdf1 cb(S) 0

H1, H2, H3 and H5 f(x)−1/d αθd θd Kfd−1 Kfd−1

H1, H2, H3, H4 and H3 f(x)−1/d 0.5θd θd Kfd−1 + cb(S) Kfd−1

C Proof of Theorem 3

Theorem 3 is a direct corollary of the two following lemmas.

Lemma 12. Let us denote: d∗H(A,B) = inf{r, A ⊂ B+rB}. If y > ψ−1(2−d)
(with ψ(y) = ln(1 + y)− y) and a ∈ {ã(f, S), ã(., S), ã(f, .), ã} ,we have

d∗H(D⌈a lnn⌉, S) ≤
(

a(1 + y) lnn

θdαf0n

)1/d

e.a.s.

Proof. Let us suppose that Dkn * S + rnB. Then there exists a simplex
σ of Dkn (to simplify notations let σ = (X1, . . . , Xd+1)) and x ∈ σ with

dmin(x, S) > rn, and so ||−−→xXi|| > rn for all i ∈ {1, . . . , d+ 1}.
As ||−−→xX1|| ≤ maxi,j∈{1,...,d+1} ||

−−−→
XiXj||, there exists i and j in {1, . . . , d+1}

such that ||−−−→XiXj || > rn and and Xi and Xj are kn nearest neighbor one of
each other.

So, there exists a point x ∈ S (Xi for instance) such that B(x, rn) contains
less than kn points. However, Corollary 2 ensures that such a situation can
not occur e.a.s.
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Lemma 13.

d∗H
(

S,D⌈a lnn⌉

)

( n

lnn

)1/d

is bounded e.a.s.

The bound is:

• max
(

θ−1
d f−1

0 , θ−1
d 2(1− 1/d)(min∂S f)

−1
)1/d

when ∂S is smooth;

• (b/(f0θdα))
1/d for every b > 2 in the general case.

Proof. Let us suppose that x satisfies x ∈ S and x /∈ Dkn + rB. Then

mini ||
−−→
xXi|| > r and so B(x, r) ∩ Xn = ∅.

Let us note that in [27] Penroses already proved the result for the case
when the boundary of S is C2:

d∗H
(

S,D⌈a lnn⌉

)

≤
(

max
(

f−1
0 , 2(1− 1/d)(min

∂S
f)−1

)1/d lnn

nθd

)1/d

e.a.s.

Lemma 8 gives a weaker version with a higher constant and the same rate
for all b > 2

d∗H
(

S,D⌈a lnn⌉

)

≤
(

b lnn

nf0αθd

)1/d

e.a.s

The Lemma is proved.

D Proofs of the results for the case d = 2

In this section we suppose that d = 2 and that ∂S is C2.

D.1 The Closed Ball Property

The specificity of the dimension 2 is that the different cases contradicting the
closed ball property can be easily enumerated. The four possible cases are:

i) there exits Xi and Xj such that Vor(Xi) ∩ Vor(Xj) ∩ ∂S 6= ∅ and
Vor(Xi) ∩ Vor(Xj) ∩ ∂S ≇ B0;

ii) there exitsXi andXj such that Vor(Xi)∩Vor(Xj)∩S 6= ∅ and Vor(Xi)∩
Vor(Xj) ∩ S ≇ B1;

iii) there exits Xi such that Vor(Xi) ∩ ∂S 6= ∅ and Vor(Xi) ∩ ∂S ≇ B1;

iv) there exits Xi such that Vor(Xi) ∩ S 6= ∅ and Vor(Xi) ∩ S ≇ B2.

38



Firs we prove that the situation iv) can not happen e.a.s.

Proof. Let us denote r(x) = supr{for all U ∼= B2 such that x ∈ U and U ⊂
B(x, r), we have U ∩ S ∼= B2 or U ∩ S ∼= B2}. Let us now denote r0 =
infx r(x). We will first proof that r0 > 0. Let us suppose the contrary. There
exist a sequence rn → 0, a sequence of points xn and a sequence of sets Un
(xn ∈ Un and Un ⊂ B(xn, rn)) with Un ∩ S ≇ B2 and Un ∩ S ≇ B2. The
compactness of S allow to exhibit a subsequence of xn that converges toward
x ∈ S. Our supposition contradict the fact that x admit a neighborhood
homeomorph to a ball (closed or open) that is that S is a manifold. The
fact that for all Xi we have Vor(Xi) ∩ S ⊂ B(Xi, (3/f0αθd)(lnn/n)

1/2) e.a.s.
concludes the proof.

Remark: The proof for the case iv) is also valid in other dimensions.
Let us now suppose that iv) does not happen, the three other cases cases

can be enumerated in a different way First we can note that i) or ii) implies
that there exists [x1, x2] = Vor(Xi) ∩ Vor(Xj) and y1, y2, y1 6= y2 two points
in [x1, x2] ∩ ∂S

a) is i) or ii) with x1 ∈ S or x2 ∈ S.

b) i) or ii) with x1 /∈ S and x2 /∈ S.

c) iii) but neither i) nor ii) and ∂Vor(Xi) ∩ ∂S 6= ∅

d) iii) but neither a) nor b) nor c) and ∂Vor(Xi) ∩ ∂S = ∅

Figure 17 illustrates this four possible cases

a) b) c) d)

Vor

S

Vor

S

Vor

S

Vor

S

Figure 17: The different cases that contradict the closed ball property, the
hexagon represents the Voronoi cell and the curve the boundary of S.

The idea of the proof is the following:
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• On one hand, a), b) and c) implie the existence of constants A > 0 and
B > 0 and of a point x∗ ∈ ∂S + A(lnn/n)B such that B(x∗, B lnn/n)
contains at least 2 observations. Lemmas 3 and 11 allows thus to
conclude that this situations can not occur a.a.s.

• On the other hand, d) can not occur a.a.s. because of the manifold
hypothesis on ∂S and the fact that the Voronoi cell size converges to
0 (with a reasonment very similar to the proof that iv) can not occur
(a.a.s).

Let us first prove that a) implies the existence of constants A1 > 0 and
B1 > 0 and of a point x∗ ∈ ∂S + A1(lnn/n)B such that B(x∗, B1 lnn/n)
contains at least 2 observations.

Proof. Suppose that the situation a) occurs with x1 ∈ S.
According to the Rolle theorem there exists a point O in ∂S such that

the tangent ∆ of S at the point O is parallel to (x1, x2).

There exists Or with ||−−→OOr|| = rS, such that B(Or, rS) ∩ S = ∅ (Lemma
7).

Let us note that [x1, x2] = Vor(Xi) ∩ Vor(Xj) implies the existence of
Xi and Xj with a midpoint x∗ belonging to (x1, x2) and that are in a ball
B(O, a∗(lnn/n)1/2) e.a.s. (a∗ = 3/f0αθd can be used according to Lemma 8).

Looking at Figure 18 it becomes clear that

• d(x∗, ∂S) ≤ dmin(z, Or)− rS ≤ (a∗2/2rS) lnn/n e.a.s.;

• ||−−→Xix
∗|| ≤ ||z′ − y∗|| ≤ ||−→y∗z|| ∼ (a∗2/2rS) lnn/n e.a.s.

Let us now quickly note that: b) and c) also imply the existence of con-
stants A2 > 0 and B2 > 0 and of a point x∗ ∈ ∂S + A2 lnn/nB such that
B(x∗, B2 lnn/n) contains at least 2 observations. See Figure 19 to be con-
vinced that we are in a classical linear interpolation case and so Lemma 6 is
sufficient to conclude.

We now use Lemmas 3 and 11 to prove that for all x ∈ ∂S + A lnn/nB,
the ball B(x∗, B lnn/n) contains at most 1 observation a.a.s.

Proof. Let us first cover ∂S + A lnn/nB with deterministic balls of radius
εn lnn/n centered in x1, . . . , xν with ν ≤ c1(∂S)Aε

−2
n (n/ lnn) as in Lemma 3.

Let us now suppose that there exists x∗ ∈ ∂S + A lnn/nB, such that
B(x∗, B lnn/n) contains at least 2 observations. There exists an xi such that
x∗ ∈ B(xi, εn lnn/n), and so B(xi, (εn+B) lnn/n) contains at least 2 points.
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Figure 18: Construction for case a).
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x1

x∗

Xi

Xj

y2

S

y1

case b)

y1

y2

x1

x2

x∗

Xi

Xj S

case c)

Figure 19: Construction for the cases b) and c).
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On the other hand, Lemma 11 ensures that for a deterministic x the
probability qn(x) that B(x, (εn + B) lnn/n) contains at least 2 points satis-

fies: qn(x) = O
(

lnn4

n2

)

. So, if qn denotes the probability that there exists

an xi such that B(xi, (εn + B) lnn/n) contains at least 2 points, qn(x) =

O
(

ε−2
n

lnn3

n

)

. Choosing, for instance, ε = lnn allows to conclude the proof.

D.2 Proof of Theorem 2

Let us first remark that all Xi belong to D(S) (and so also to Dkn e.a.s.).
Let us suppose that D(S) ⊂ Dkn, that Xn has the closed ball property on

S, and that Dkn ⊂ S + εnB with S + εnB ∼= S ∼= D(S) (which is a.a.s. true).
There is three different ways to have Dkn ≇ D(S):

i) Dkn “connects” different components of D(S);

ii) Dkn “fills a hole” of D(S);

iii) Dkn “adds a hole” to D(S).

These 3 different phenomena are illustrated in Figure 20.

Figure 20: Different ways to have Dkn ≇ D(S)

Let us first note that the two first points (i and ii) contradict the fact
that Dkn ⊂ S + εnB with S + εnB ∼= S ∼= D(S).

We can thus focus on the last point (iii).
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If there exists an unexpected “hole” in Dkn , then there exists a simplex
σ = (X1, X2, X4) that satisfies: σ ∈ Dkn , σ /∈ D(S) and a simplex σ′ =
(X1, X2, X3) that satisfies: σ /∈ Dkn, σ /∈ D(S) (as in Figure 21).

X4

X3

Dkn

(X1, X2, X3) /∈ Dkn

(X1, X2, X4) ∈ Dkn

X2

X1

Figure 21: existence of a hole

Let us now focus on the two simplexes σ and σ′. The center O (resp. O′)
of the circumscribed circles of σ (resp σ′) belongs to ∆ (the mid-perpendicular
of [X1, X2]) and is not in S. In this section we will denote C (resp. C′ resp.
C′′) the circle circumscribed to σ (resp. circumscribed to σ′ resp. of radius

||−−−→X1X2|| and centered in X1) and B (resp. B′ resp. B′′) is the associated
balls.

Let us first distinguish two cases :

a) O and O′ “are on the same side” (
−−→
MO.

−−→
MO′ ≥ 0) where M is the

middle point of [X1, X2].

b) O and O′ “are on opposite side” (
−−→
MO.

−−→
MO′ < 0) whereM is the middle

point of [X1, X2].

It quickly becomes clear that the case a) is not possible. The simplex
(X1, X2, X3) belongs to the Delaunay complex but not to the Delaunay com-
plex restricted to Dkn, so X3 is not a kn−nearest neighbor of X1 or not a
kn−nearest neighbor of X2. Let us suppose that X3 is not a kn−nearest
neighbor of X1. It is easy to see that X3 ∈ (C′ \ B) \ B′′ (because of the
properties of the Delaunay complex and because X3 is not a kn−nearest
neighbor of X1, while X2 is a nearest neighbor of X1). Case a) implies that
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(C′ \ B) \ B′′ = ∅ (see Figure 22).

C

C
′

X2

O
′

O

M

X1

∆

C
′′

X4

Figure 22: case a) (impossible a.a.s.)

C
′′

∆

X3

X4

X2

X1

C
′

C

O

M
O

′

Figure 23: case b

Let us now remark that ∂S ∩∆ ∩ B′′ 6= ∅ e.a.s.
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Proof. When n is large enough, all B(Xi, ||
−−−→
XjXi||) where Xj is at most a

kn−nearest-neighbors of Xi satisfy : B(Xi, ||
−−−→
XjXi||) ∩ S is homeomorph to

a close ball. This implies that B′′ ∩ S is path connected, so there exists
a continuous path in B′′ ∩ S that links X1 to X2 and so crosses ∆. So :
S ∩∆∩B′′ 6= ∅. As O and O′ are in ∆ and not in S we have Sc∩∆∩B′′ 6= ∅,
and so ∂S ∩∆ ∩ B′′ 6= ∅.

Let us first consider the case: ∂S ∩∆ ∩ B′′ = {x0}.

The first sub-case is:
−−→
MO′.

−−→
Mx0 > 0. The point M does not belong to

S (otherwise there exists another point in ∂S ∩ ∆ ∩ B′′). We can define

two points x+0 = argmin{||−−→Mx||, x ∈ S,
−−→
Mx = t

−−−→
MX2, t > 0} and x−0 =

argmin{||−−→Mx||, x ∈ S,
−−→
Mx = t

−−−→
MX2, t < 0} both belonging to ∂S.

O /∈ S

X2 ∈ Sx+
0M /∈ Sx−

0

O′ /∈ S

x0 ∈ ∂S

X1 ∈ S

Figure 24: ∂S ∩∆ ∩ B′′ = {x0} and the intersection “is under O′”.

By Lemma 6 ||−−→Mx0|| ≤ c||
−−−→
x+0 x

−
0 ||2. So, ||−−→Mx0|| ≤ c||−−−→X1X2||2. Let us

denote α the angle Ô′X1M . tan(α) = ||−−→O′M ||/||−−−→MX1|| ≤ 2c||−−−→X1X2||. Let

us denote x∗ the intersection of C′′ and (X1, O
′) and ρ = ||−−−→x∗X2||. See

Figure 25 for the construction. First, ρ = sin(α)||−−−→X1X2|| ≤ 2c||−−−→X1X2||2.
Second, C′ \ B′′ ⊂ B(x∗, ρ). Third, ||−−→x∗x0|| ≤ ||−−−→X1X2||. This three points
imply a.a.s. the existence of a point x∗, and of constants A and B such
that: dmin(x

∗, ∂S) ≤ A(ln(n)/n)1/2 and there is at least two points in
B(x∗, B lnn/n). An argument similar to the one used in the previous section
allows to conclude that it is impossible a.a.s. (the probability of occurrence

is a O(ε−2
n

lnn5/2

n1/2 ) for any εn → 0, and so we can choose εn = lnn, for instance,
to conclude).

Let us now consider the second sub-case:
−−→
MO′.

−−→
Mx0 < 0. See Figure

26 to be convinced that we are back in an interpolation problem and that

dmin(X2, ∂S) ≤ A lnn/n and d||−−−→X2X3|| ≤ B lnn/n which is impossible a.a.s.
according to Lemma 6.
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Figure 25: conclusion for ∂S ∩∆∩B′′ = {x0} and the intersection “is under
O′”.

Figure 26: ∂S ∩∆ ∩ B′′ = {x0} and the intersection “is over O”.

Let us now suppose that ∂S ∩∆∩B′′ contains at least two points x0 and

x1. This case is easy: let us denote ρ = ||−−−→X1X2|| > 0. Lemma 6 ensures that
||−−→x0x1|| ≤ Aρ2 and a new application of Lemma 6 ensures that ρ ≤ A4ρ4 that
is impossible a.a.s.
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D.3 Discussion when d′ < d

The proofs of Property 3 and of Theorem 4 in the case d′ < d are exactly the
same than those of Property 1 and of Theorem 3. The only difference is the
use of new inequalities for the probability to have an observation that falls
into balls given by Lemmas 14, 15 and 16.

Lemma 14. If S is a C2 manifold there exists constants r0 > 0 and B+
S such

that for all r ≤ r0: µS(B(x, r) ∩ S) ≤ θd′r
d′(1 +B+

S r)

Lemma 15. If S is a C2 manifold with a C2 boundary there exists constants
r0 > 0, B−

S and B+
S such that for all r ≤ r0: θd′r

d′(0.5+B−
S r) ≤ µS(B(x, r)∩

S) ≤ θd′r
d′(1 +B+

S r)

Lemma 16. If S is a C2 manifold without boundary there exists constants
r0 > 0, B−

S and B+
S such that for all r ≤ r0: θd′r

d′(1 + B−
S r) ≤ µS(B(x, r) ∩

S) ≤ θd′r
d′(1 +B+

S r)
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[18] A. Cuevas and A. Rodŕıguez-Casal. On boundary estimation. Advanced
in Applied Probability, 36:340–354, 2004.

[19] L. Devroye and G.L. Wise. Detection of abnormal behavior via non-
parametric estimation of the support. SIAM Journal of Applied Math-
ematics, 38:480–488, 1980.

49



[20] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a
set of points in the plane. IEEE Trans. Inform. Theory, 29:551–559,
1983.

[21] H. Edelsbrunner and N. R. Shah. Triangulating topological spaces. In-
ternat. J. Comput. Geom. Appl., 7:365–378, 1997.

[22] B. Efron. The convex hull of a random set of points. biometrika, 15:331–
343, 1965.

[23] H. Federer. Geometric Measure Theory. 1996.
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