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Abstract

We consider random samples in Rd drawn from an unknown den-

sity. This paper is devoted to study the properties of the Delaunay

complex restricted to nearest neighbors to estimate the density sup-

port and its geometrical properties. We exhibit suitable value for the

number of neighbors to be chosen. This value depends on the dimen-

sion d, the unknown support S, the unknown density f and the size

of the sample. Since f is continuous and the boundary of S is smooth

the value only depends on d and the size of the sample. The conver-

gence of the underlying estimator for the support is proved and a lower

bound for the convergence speed is given. A procedure to estimate

the topological properties of the support is presented.

key words : Delaunay complex, Support estimation, Topological

data analysis.

1 Introduction, notations and hypotheses

1.1 Introduction

Let X1, ...Xn be a random sample in Rd drawn from f (an unknown density).
The density support S is defined by S = {x ∈ Rd, f(x) > 0} (where A de-
notes the closure of the set A). Estimation of the support of the density has
various applications in cluster analysis, marketing and econometrics or med-
ical diagnostics (see the discussion in Baillo, Cuevas and Justel [1]). When
the support is assumed to be convex, its natural estimator is the convex hull
of the sample (see [8] for instance). When the support is no longer assumed
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to be convex the most natural estimator (and the most studied one) as been
introduced by Chevalier[5] and is:

Ŝn,rn = ∪iB(Xi, rn)

The properties of this estimator have been studied extensively to reach
an exact convergence rate and a central limit theorem ([9] and [10]).

Other estimators have been proposed (as in [6], [15] for instance) but it
will be seen, in next paragraph, that topology estimation methods are mainly
linked to Chevalier’s estimator [5]. In the same time, the main weakness of
Chevalier’s estimator is that the topological properties of the estimated sup-
port are not guaranteed to be the same as those of the support (in particular
such an estimator can create unexpected holes).

Estimating the topological properties of the density support is a new and
challenging domain that has many applications in fields such as times series,
data analysis, image processing and computer vision (see [4] for a review of
the applications of topological properties estimation and [14] for a concrete
application). By estimating of the topological properties we mean : finding
a simplicial complex which is homeomorph to S and can then be used to
compute homology groups or homotopy groups.

Computation of persistent homology ([3], [16] and [11] ) is a way to esti-
mate the topological properties of S via a set of simplicial complexes. The
ε−Rips Complex is the simplicial complex consisting of all simplices that
“link” points in a small ball of radius ε. As the support is unknown, the
suitable values for ε that assure existence of a a homeomorphism between
the simplicial complex and S are unknown. The persistent homology method
computes all the ε−Rips complexes and uses a “barcode” graphical indicator
to choose an acceptable solution.

Another idea to estimate topological properties is given by the α−shape
method ([12]). Let us cite the Edlesbrunner’s work [7] which proves that:
DS(X) ≈ S when a reasonable condition is respected (the closed ball prop-
erty). To define DS(X) let us first denote by V (Xi) the Voronoi cell of
Xi and by VS(Xi) = V (Xi) ∩ S the restricted Voronoi cell. A simplex
σ = (Xi1 , ...Xid′

) is a simplex of DS(X) if and only if ∩jVS(Xij ) 6= ∅. Obvi-
ously here S is unknown and the α−shape method proposes to use a Chevalier
[5] type estimator: DŜn,α

(X) of S instead of S.

Each time, the choice of suitable values for ε (persistent homology) and
α (α−shapes) is not easy. Moreover choosing of local values (ε(x) or α(x))
may improve the methods when the density is not uniform.
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The idea is here to use the well known dual method for a fixed (but
may be local) radius: a number of nearest neighbors. It will be proposed
to estimate the support and it’s topological properties using Dkn(X), the
Delaunay complex restricted to the kn−nearest neighbors.

Definition 1. σ = (Xi1 , ...Xid′
) is a simplex of Dkn(X) if and only if:

1) σ is a simplex of D(X), the Delaunay complex of X

2) For all (j, k) [Xij , Xik ] is an edge of the kn−nearest neighbor graph

Under a set of hypotheses on S that are detailed in the following section,
section 2 is dedicated to giving values for kn. Intuitively kn should be small
enough to help detecting local phenomena : namely kn/n is expected to
converges to 0. But a too small value for kn may suppress too many simplices
to recognize the global underlying shape. According to [7] it is reasonable to
think that kn values such that DS(X) ⊂ Dkn(X) are not too small. Section
2 is then devoted to find the smallest number kn in order to ensure that
DS(X) ⊂ Dkn(X). We give values for kn for which this property is almost
surely true or asymptotically true

A remarkable result is that kn can be totally determined from the di-
mension d and the size of the sample since the density (restricted to S) is
uniformly continuous and if the boundary of the support is smooth. Under
weaker assumptions, kn can depends on the extremal values of the density
and on the more acute solid angle of S.

In section 3 we prove that Dkn(X) is a convergent estimator of S. By
abuse of notation, we write Dkn(X) = {x ∈ Rd, ∃σ ∈ Dkn(X), x ∈ σ} here.
The convergence speed is proved to be at least (n/ log(n))1/d and that is
better than the convergence speed for the Chevalier’s estimator.

Finally, section 4 presents an algorithm to find a complex homeomorph
to S. Unfortunately kn cannot be chosen in such a way that Dkn(X) =
DS(X) which would have allow us to conclude that Dkn(X) ≈ S (which is
the empirically observed behavior for Dkn(X)). However, a corollary to the
sections 2 and 3 is that, if Dkn(X) is not homeomorph to S the unexpected
phenomena are localized near the boundary. Such a corollary allows us to
propose a procedure to find a sub-complex of Dkn(X) homeomorph to S.

1.2 Hypotheses and notations

Throughout the paper X = {X1, ...Xn}, a sample of n independent and
identically distributed random variables observed in Rd (Xi ∈ Rd). If f is
the associated density, S its support, is defined by S = {x ∈ Rd, f(x) > 0}.
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Throughout the paper V (A) will denote the volume of the set A and B(x, r)
the open ball centered on x and of radius r.

Throughout the paper S will be supposed to have the following properties:

• P1: {x ∈ Rd, f(x) > 0} is a d-dimensional compact manifold (and so
the closure can be removed S = {x ∈ Rd, f(x) > 0}).

• P2: S has the α property, i.e. there exists ν such that for all ε < ν
and for all x ∈ S V (B(x, ε) ∩ S) > αθdε

d (with θd the volume of the
unit d−ball).

• P3: There exists µ(δ(S)) a constant such that:

V (∪x∈SB(x, ε))− V (S) ∼ εµ(δ(S)) and V (S)− V (S−
ε ) ∼ εµ(δ(S))

with S−
ε = {x ∈ S such that B(x, ε) ⊂ S}.

• P4: There exists ν such that for all ε < ν, S−
ε ≈ S.

• P5: f must satisfy the following property: f0 = infS(f) > 0 and
f1 = supS(f) < ∞ .

Let us remark that the most restrictive hypothesis is the first one. Firstly
the dimensional hypothesis restricts the field of applications, and it should be
said that a challenging future problem should be to suppress this hypothesis.
Secondly, the compactness of {x ∈ Rd, f(x) > 0} is also a strong hypoth-
esis, and it would be interesting to enlarge our results by suppressing that
hypothesis (and allow f to be null on the boundary of the support).

Let us briefly remark that, if δ(S) is a smooth d−1 manifold then P3 (via
Minkowski-Steiner formula) and P4 (via existence of a collar neighborhood
[13]) are automatically satisfied. Under this hypothesis P2 is also satisfy
for all α < 0.5. With this remark it can be easily proved the same results
as those proved in following sections replacing α by 0.5 when smoothness
of the boundary is assumed (using a slice modification in the definitions of
rn(ε), ρn(ε), r

⋆
n(x, ε), ρ

⋆
n(x, ε) in section 2).

It will not be assumed that f (restricted to S) is continuous (in fact uni-
form continuity of f will be an additional hypothesis) but it is required that
f be bounded on S (with a lower bound strictly greater than to 0).

Moreover we define :

• For A a set, δ(A) is the boundary of the set A.

• The complex restricted to a set A, denoted D |A, is composed of all the
simplices that are in D and have a vertex in A.
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2 Choosing the number of neighbors

The aim of this section is to determine suitable values for kn the number of
neighbors.

Since the density support S is unknown, it is impossible to compute the
Edelsbrunner restricted Delaunay complex DS(X).

Theorem 1 gives a lower bound k∗
n such that DS(X) ⊂ Dk∗n(X) almost

surely.
This ensures that, if kn ≥ k∗

n, not too many simplices are removed when
restricting to the kn−nearest neighbors. This bound is proved to be inde-
pendent of f in the case when f is uniformly continuous on S.

In generalDk∗n(X) * DS(X) but a weaker result of this type is established
: we prove that the simplices which are in Dk∗n(X) and not in DS(X) are
almost surely located near the boundary of S.

Theorem 1. Let us define

k∗
n =

f1
f0

2

α
(2d + α2d/2) ln(n)

k⋆
n =

2

α
(2d + α2d/2) ln(n)

rn =

(

2 ln(n)

f0θdαn

)1/d

ρn =

(

ln(n)

f0θdαn

)1/d

(i) If kn ≥ k∗
n then DS(X) ⊂ Dkn(X) almost surely.

(ii) If kn ≥ ck∗
n/2 with any constant c > 1 then

P (DS(X) ⊂ Dkn(X)) → 1

.
(iii) For all kn, Dkn(X) |S−

rn
⊂ DS(X) |S−

rn
almost surely.

(iv) For all kn, and for all constant c > 1:

P (Dkn(X) |S−

cρn
⊂ DS(X) |S−

cρn
) → 1

.
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Adding the hypothesis that f (restricted to S) is uniformly continuous
gives:

(i’) If kn ≥ k⋆
n then DS(X) ⊂ Dkn(X) almost surely.

(ii’) For all c > 1, if kn ≥ ck⋆
n/2 then

P (DS(X) ⊂ Dkn(X)) → 1

Before proving this theorem, let us remark that, as mentioned in section
1.2., if the boundary of S is a smooth (d − 1)−manifold α can be replaced
by all values strictly inferior to 0.5. In this case, if f is continuous, the lower
bound k⋆

n only depends on d and n.
The sequel of this section is devoted to the proof of Theorem 1.

We first define the following quantities:

rn(ε) =
(

(2+ε) ln(n)
f0θdαn

)1/d

, r⋆n(x, ε) =
(

(2+ε) ln(n)
f(x)θdαn

)1/d

ρn(ε) =
(

(1+ε) ln(n)
f0θdαn

)1/d

, ρ⋆n(x, ε) =
(

(1+ε) ln(n)
f(x)θdαn

)1/d

kn(ε, λ) =
f1
f0

2+ε
α
(λd + αλd/2) ln(n) , k⋆

n(ε, λ) =
2+ε
α
(λd + αλd/2) ln(n).

Lemma 1. Let us pick x ∈ S deterministically. Let Nx(X, λ) be the num-
ber of observations that are in B(x, λrn(ε)) and Mx(X, λ) be the number of
observations that are in B(x, λρn(ε)). Then there exists n0(ε) and n1(ε, λ)
such that:

• For all n > n0, P (Nx(X, 1) = 0) ≤ qn(ε) ∼ n−2−ε

• For all n > n0, P (Mx(X, 1) = 0) ≤ q′n(ε) ∼ xn−1−ε

• For all n > n1, P (Nx(X, λ) ≥ kn(ε, λ)) ∼ q∗n ≤ 1

2
√

π ln(n)
n−2−ε

• For all n > n1, P (Mx(X, λ) ≥ kn(ε, λ)/2) ∼ q∗n
′ ≤ 1

2
√

π ln(n)
n−1−ε

Proof. Proof of the first point: Let q denote the probability of having
one observation in B(x, rn(ε)). It is clear that P2 and P5 imply that for all
n such that rn(ε) < ν:

q ≥ (2 + ε) ln(n)

n

Then
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P (Nx(X, 1) = 0) = (1− q)n ≤
(

1− (2 + ε) ln(n)

n

)n

∼ n−2−ε

The proof of the second point is exactly the same.

Proof of the third point point: Let q denote the probability to have
one observation in B(x, λrn(ε)).

P2 and P5 now imply that for all n such that λrn(ε) < ν,

qm = (2 + ε)λd ln(n)

n
≤ q ≤ (2 + ε)f1

f0α
λd ln(n)

n
= qM .

Using the Gaussian approximation of the binomial law,

P (Nx(X, λ) ≥ kn(ε, λ)) ∼ Φ

(

nq − kn
√

nq(1− q)

)

= p1.

Now Using the previous equalities,

p1 ≤ Φ

(

nqM − kn(ε, λ)
√

nqm(1− qM )

)

= p2 ∼ Φ

(

nqM − kn(ε, λ)√
nqm

)

Replacing kn(ε, λ), qM and qm by their values,

p2 ∼ Φ

(

−f1
f0

√

(2 + ε) ln(n)

)

= p3.

And as f1
f0

≥ 1 and using the well known inequality Φ(−x) ≤ 1√
2πx

exp(−x),

p3 ≤ Φ
(

−
√

(2 + ε) ln(n)
)

≤ 1

2
√

π ln(n)
n−2−ε.

The proof of the fourth point is exactly the same.

Lemma 2. (Lemma 1 for the continuous case) Let us pick x ∈ S determinis-
tically. Let N⋆

x(X, λ) be the number of observations that are in B(x, λr⋆n(x, ε))
and M⋆

x(X, λ) be the number of observations that are in B(x, λρn(x, ε)).
If f is uniformly continuous then:

• there exists n0(ε) such that, for all n > n0, P (Nx(X, 1) = 0) ≤ q⋆n(ε) ∼
n−2−ε/2+ε2/4,
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• there exists n1(ε) such that, for all n > n1, P (Mx(X, 1) = 0) ≤ q⋆n
′(ε) ∼

n−1−ε/2+ε2/4,

• there exists n2(ε, λ) such that, for all n > n2, P (Nx(X, λ) ≥ kn(ε, λ)) ∼
q⋆∗n ≤ 1

2
√

π ln(n)
n−2−ε/2+ε2/4,

• there exists n3(ε, λ) such that, for all n > n3, P (Mx(X, λ) ≥ kn(ε, λ)/2) ∼
q⋆∗n

′ ≤ 1

2
√

π ln(n)
n−1−ε/2+ε2/4.

Proof. The proof is exactly the same than of Lemma 1. We will give details
only for the first point. Since f is absolutely continuous, there exists n0(ε)
such that for all n > n0 and all z ∈ B(x, r⋆n(x, ε)), f(z) ∈ [f(x)−f0ε/4, f(x)+
f0ε/4], and the proof for the first point is the same as previously using the

inequality: q ≥ f(x)−2εf0
f(x)

(2+ε) ln(n)
n

≥ (2 + ε/2− ε2/4) lnn
n
.

Lemma 3. (Classical geometric lemma) Points x1, ...xνn(ε) in S can be de-
terministically found such that:

• S ⊂ ∪B(xi, εrn(ε)/2)

• νn(ε) ≤ c(S)
f0εd

n
ln(n)

with c(S) a constant that only depends on S

This is a classical lemma and the proof is let to the reader.

Corollary 1. Let us pick deterministically x1, ...xνn(ε) points in S as in the
previous lemma:

• For all i, B(xi, rn(ε)) contains at least one point (except for finitely
many n)

• For all i, B(xi, λrn(ε)) contains at most kn(ε, λ) points (except for
finitely many n)

• P (∀i, B(xi, ρn(ε)) contains at least 1 point) → 1

• P (∀i, B(xi, λρn(ε)) contains at most kn(ε, λ)/2 points ) → 1

Proof. The proof is a direct application of Lemmas 1 and 3 in addition to
the Borel-Cantelli lemma.

Corollary 2. (continuous case) If f is uniformly continuous, let us pick
deterministically x1, ...xνn(ε) points in S as in the lemma 3:
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• For all i, B(xi, r
⋆
n(xi, ε)) contains at least one point (except for finitely

many n)

• For all i, B(xi, λr
⋆
n(xi, ε)) contains at least most k⋆

n(ε, λ) points (except
for finitely many n)

• P (∀i, B(xi, ρ
⋆
n(ε)) contains at least 1 point ) → 1

• P (∀i, B(xi, λρ
⋆
n(ε)) contains at most k⋆

n(ε, λ)/2 points) → 1

Proof. The proof is a direct application of lemmas 2 and 3 in addition to the
Borel-Cantelli lemma.

Lemma 4. (First point of theorem 1) If kn ≥ k∗
n then DS(X) ⊂ Dkn(X)

almost surely

Proof. The proof is divided into two parts. The first part assures that for
all edges of DS(X), the points of the edges are not too far one from each
other, or more precisely: for all Xi, Xj with [Xi, Xj] an edge of DS(X),
d(Xi, Xj) ≤ (2 + ε)rn(ε) (except for finitely many n). The second point uses
this upper bound to prove that points are no more than (1+ ε′)k∗

n neighbors
(except for finitely many n).

Throughout this proof, x1, ...xνn(ε) are deterministically picked in S as in
Lemma 2.

First step: It will be proved here that:

For all Xi, Xj with [Xi, Xj] an edge of DS(X), d(Xi, Xj) ≤ (2 + ε)rn(ε)
(except for finitely many n).

Let us suppose the contrary, and pick Xi, Xj with [Xi, Xj ] an edge of
DS(X) and d(Xi, Xj) ≥ (2 + ε)rn(ε).

As [Xi, Xj] is an edge of DS(X), there exists C ∈ S such that:

• r = d(C,Xi) = d(C,Xj) ≥ d(Xi, Xj)/2 ≥ (1 + ε/2)rn(ε)

• B(C, r) does not contain any point of X .

As C is in S, there exists an xi∗ with C ∈ B(xi∗ , εrn(ε)/2).
With our conditions, B(xi∗ , rn(ε)) ⊂ B(C, r) and so doesn’t contain any

observations. This is impossible, according to first point of corollary 1 (ex-
cept for finitely many n).
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Second step: It is now assumed that for all Xi, Xj with [Xi, Xj] an edge
of DS(X), d(Xi, Xj) ≤ (2 + ε)rn(ε) and it will be proved that Xj can not be
a more than kn(ε) nearest neighbor of Xi with:

kn(ε) =
1

α
((2 + 2ε)d + α(2 + 2ε)d/2)

f1
f0
(2 + ε) ln(n)

Once again let us suppose the contrary and suppose that there exist
Xi and Xj with d(Xi, Xj) ≤ (2 + ε)rn(ε) and with B(Xi, d(Xi, Xj)) con-
taining more than kn(ε) points. As Xi ∈ S there exists xi∗ with Xi ∈
B(xi∗ , εrn(ε)/2). As B(Xi, d(Xi, Xj)) ⊂ B(xi∗ , (2 + 2ε)rn(ε)), B(xi∗ , (2 +
2ε)rn(ε)) contains more than kn(ε) points and that is impossible (except for
finitely many n) according to second point of corollary 1 (with λ = 2(1+ ε)).

Remark: The proofs for points (ii), (i’) and (ii’) of theorem 1 are exactly
the same and will not be written here.

Lemma 5. Third point of Theorem 1:
For all kn, Dkn(X) |S−

(1+ε)rn(ε)
⊂ DS(X) |S−

(1+ε)rn(ε)
except for finitely many

n, and so for all kn, Dkn(X) |S−

rn
⊂ DS(X) |S−

rn
almost surely.

Proof. It is sufficient to prove that D(X) |S−

(1+ε)rn(ε)
⊂ DS(X) |S−

(1+ε)rn(ε)
except

for finitely many n.
As usual let us suppose the contrary, and pick a simplex ofD(X) |S−

(1+ε)rn(ε)

which is not in DS(X) |S−

(1+ε)rn(ε)
. Let us pick Xi a vertex of the simplex

that is in S−
(1+ε)rn(ε)

(this is possible by the definition of the restriction).

As the simplex is in D(X) and not in DS(X), there exists C /∈ S such
that B(C, d(Xi, C)) does not contain any other points of X . Now C /∈ S
implies that d(Xi, C) > (1 + ε)rn(ε), and there exists C ′ ∈ S, with also
C ′ ∈ [Xi, C] and d(Xi, C

′) = (1 + ε)rn(ε). Let us now pick deterministic
points as in Lemma 2. There exists xi∗ with C ′ ∈ B(xi∗ , εrn(ε)/2) and
B(xi∗ , rn(ε)) ⊂ B(C ′, rn(1 + ε)) ⊂ B(C, d(Xi, C)) and so B(xi∗ , rn(ε)) does
not contain any observations. That is impossible (except for finitely many
n).

Remark: The proof for (iii) is clearly the same.
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3 Density support estimation

Throughout this section, for the sake of simplicity, we write

Dkn(X) = {x ∈ Rd, ∃σ ∈ Dkn(X), x ∈ σ}.
When the support is convex, the convex hull of the observations (i.e

Dn(X) = D(X)) is known to be a good estimator of the support S (cite).
The restricted Delaunay complexes Dkn(X), kn ∈ {1, . . . , n} can be seen

as a generalization of the convex-hull which can be suitable when S is no
longer assumed to be convex.

In this section we focus on the study of Dk∗n(X) as an estimator of the
density support.

As in [9] the volume of the symmetric difference

A∆B = (A \B) ∪ (B \ A)

will be used to measure the distance between two sets A and B.
The main result of this section is the following:

Theorem 2. There exists a constant A(S, f) that only depends on S and the
extreme values of f such that:

(

n

ln(n)

)1/d

V (Dk∗n∆S) < A(S, f)almost surely.

If f is assumed to be uniformly continuous,

(

n

ln(n)

)1/d

V (Dk⋆n∆S) < A(S, f)almost surely.

This result does not give general properties for Dkn(X) as an estimator.
No optimal value for kn is exhibited. However, in view of Lemma 9 and
remarks that follow, one can empirically see that k∗

n is close to be optimal.
We now prove Theorem 2.
Let us denote k0 = (2f1/(αf0))(2

d+α2d/2). Let us remark that k0 ≥ 2d+1.
We will also define Mn = (k∗

n/(f0αnθd))
1/d.

Lemma 6. Let us denote Mn(ε, k
∗
n) = ((1 + ε)k∗

n/(f0αn))
1/d. Let us choose

deterministically x1, ...xνn(ε) such that S ⊂ ∪B(xi, εMn), all xi are in S and
νn(ε) < c(S)nεd/ ln(n). There are at least k∗

n points in each ball B(xi,Mn(ε, k
∗
n))

(except for finitely many n).
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Proof. Let Ni denote the number of points of X that are in B(xi,Mn(ε, k
∗
n)).

For a point Xj the probability to fall in B(xi,Mn(ε, k
∗
n)) is q.

As in the proof of Lemma 1, q ≤ (1+ ε)k∗
n/n (using P1, P2 and P4) and

using the Gaussian approximation of the binomial law

P (Ni < k∗
n) ∼ Φ

(

k∗
n − nq

√

nq(1− q)

)

= p1

p1 ≤ Φ

(

k∗
n − nq∗

√

nq∗(1− q∗)

)

= p2

p2 = Φ

(

− ε
√

k∗
n√

1 + ε

)

≤
√
1 + ε

ε
√

2πk∗
n

exp(−k∗
n) =

√
1 + ε

ε
√

2πk∗
n

n−k0

The probability Pn that there exists a ball that contains less than k∗
n

points therefore satisfies
∑

Pn < ∞. This conclude the demonstration.

Corollary 3. Let X(k∗n(i)) denote the k∗the
n neighbor of Xi.

maxi(d(Xi, Xk∗n(i)) ≤ (k∗
n/(f0αn))

1/d

almost surely.

Proof. Let us first choose deterministically x1, ...xνn(ε) as in previous lemma.
Let us suppose that there exists Xi such that d(Xi, Xk∗n(i)) ≥ (1 + 2ε)Mn.
There exists a xi such that Xi is in B(x, εMn)). As B1 = B(xi,Mn)[(1 +
2ε)1/d − ε1/d]) ⊂ B(Xi, d(Xi, Xj)), B1 contains less than k∗

n points. This is
impossible (except for finitely many n). Finally the inequality (1 + 2ε)1/d −
ε1/d > (1 + ε1/d) implies that B1 contains more than k∗

n points. This is
impossible (except for finitely many n).

Corollary 4. Dk∗n(X) ⊂ ∪x∈SB(x,Mn) almost surely.

Proof. If x is in Dk∗n(X), it is in a simplex σ = (X1(x), .., Xd′(x)) (d
′ ≤ d+ 1)

and d(x,X1(x)) < Mn almost surely using the previous corollary, so x ∈
B(X1(x),Mn).

Lemma 7. S−
2rn ⊂ D(X) almost surely.

Proof. Let us suppose that there exist x ∈ S−
2(1+ε)rn

and x /∈ D(X). As D(X)
is the convex hull of X , this implies that there exists a hyperplane H which
contains x, and −→u such that:

12



• ||−→u || = 1

• For all Xi ∈ X , −→u .
−−→
xXi ≥ 0.

The half ball B−(x, 2(1 + ε)rn, u) = {y ∈ B(x, 2(1 + ε)),−→u .−→xy < 0} does
not contain any observations. Let us now define x0 such that −→xx0 = −(1 +
ε)rn

−→u . Then x0 ∈ S because x ∈ S−
2(1+ε)rn

and B(x0, (1+ ε)rn ⊂ B−(x, 2(1+

ε)rn, u) and so does not contain any observations. This is impossible except
for finitely many n.

Corollary 5. S−
2rn ⊂ Dk∗n(X) almost surely.

Proof. This is a direct application of Lemmas 8, 4 and 6: since x is in D(X)
and in S−

2rn, it is in DS(X) as in Lemma 6 and so it is in Dk∗n(X) via Lemma
4.

Lemma 8. P (S−
2ρn ⊂ Dk∗n(X)) → 1.

Moreover if f is assumed to be uniformly continuous then S−
2rn ⊂ Dk⋆n(X)

almost surely and P (S−
2ρn ⊂ Dk⋆n(X)) → 1

The proof is similar to the one of Corollary 5.

Lemma 9. Both parts of the symmetric difference of S and Dk∗n(X) can be
almost surely bounded as follows:

(

n

ln(n)

)1/d

V (Dk∗n(X)\S) ≤
(

n

ln(n)

)1/d

V (∪x∈SB(x,Mn)\S) ∼ (f0αθd)
1/dk0µ(δ(S))

(

n

ln(n)

)1/d

V (S \Dk∗n(X)) ≤
(

n

ln(n)

)1/d

V (S \ S−
2rn) ∼ (f0αθd)

1/dµ(δ(S))

Proof. lemma 9 is a direct consequence of Corollaries 4 and 5 and Hypothesis
P3.

Remark 1 : Increasing kn increases V (Dkn \ S). Moreover, decreasing kn
increases V (S\Dkn). Lemma 9 states that the convergence rates of V (Dk∗n\S)
and V (S \Dk∗n) are of the same order. This suggest that an optimal choice
for kn should be of order log(n) as k∗

n.
Remark 2: It can be easily seen that such a convergence speed is better

than the convergence speed for Chevalier’s support estimator. Biau, Cadre
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and Pelletier proved in [9] that the convergence speed is
√

nrdn when nrdn → ∞
and nrd+2

n → 0. Obtaining a speed an higher than
(

n
ln(n)

)1/d

gives rn that

can not satisfy nrd+2
n → 0.

Remark 3 : Theorem 2 is a direct consequence of Lemma 9.

4 Using Dk0n
(X) to estimate topological prop-

erties of S

Here k0
n can denote or k∗

n, ck
∗
n/2, k

⋆
n, ck

⋆/2
n (c > 1) according to the expected

hypothesis on f and the chosen convergence mode. Also r0n will be the asso-
ciated radius (rn when expected an almost surely convergence and ρn if the
probability convergence sufficient). The expression “almost surely or in prob-
ability” should end most of the following equalities, inclusion of sentence. It
has been removed for ease of reading.

It would have been preferable to obtain (in section 2) the equalityDS(X) =
Dk0n(X) to prove that Dk0n ≈ S (since X has the closed ball property [?]).
Unfortunately such an equality is false because there exist small simplices (in
the k0

n nearest neighbor graphs) that are not simplices of DS(X) (the center
of the circumscribed sphere is not in S).
Here, all that can be assured is that

S−
2r0n

⊂ Dk0n(X)

Property P4 assures this, since n is large enough that Dk0n(X) contains
a set homeomorph to S. That localizes the presence of unexpected non
contractible cycles (of any dimension) of Dk0n(X) in S \ S−

2r0n
.

Now, S\S−
2r0n

has a decreasing measure that converges towards 0 and even

if this doesn’t assure that there is a homeomorphism between Dk0n(X) and
S, it proves that the unexpected phenomena are concentrated in a “small”
set.

In practice, topological differences between DS(X) and Dk0n(X) have
never been observed when computing examples. And what has been observed
is that the simplices that are in Dk0n

(X) and not in DS(X) are localized on
the boundary (or, if a simplex is not on the boundary it is surrounded by
another simplex of Dk0n(X) which is not a simplex of DS(X)) (see figure 1 ).

Unfortunately the fact that only such configurations can happen has not
been proved. (Moreover it is possible to construct example of the opposite:

14



it can be quite easily proved that, when boundary is smooth and d = 2 the
probability of having Dk0n

(X) not homeomorphic to DS(X) vanishes, but ex-
tension to higher dimension is a challenging further problem).

Figure 1 presents a simulated restricted Delaunay complex on a toy ex-
ample: points uniformly drawn on a holed disk (a Cd Rom) for an increasing
number of observations (first 100 then 200, 500 and finally 1000). Here it has
been chosen to use k⋆

n/2−nearest neighbors (i.e. only to assure the conver-
gence in probability, but assuming that the density is uniformly continuous
and that δ(S) is smooth so α = 0.5).

The plain large red complex is DS(X) and the plain thin and blue one is
Dk⋆n/2(X). The boundary of S−

2ρ⋆n
is represented by large dashed circles.The

boundary of S−
ρ⋆n

is represented by large circles.. Finally the boundary of S
is presented by thin dashed circles.

The convergence of Dk⋆n/2(X) towards S can be clearly observed.
In the first graph (100 observations) Dk⋆n/2(X) does not allow one to

recognize the hole in the disk: the hole is filled by simplices.
From 200 observations the Dk⋆n/2(X) allows one to recognize topologically

a holed disk.
For n = 200 and n = 500 one can observe simplices of Dk⋆n/2(X) |S−

ρ⋆n

that

are not in DS(X) |S−

ρ⋆n

(a case of this is circled by a gray ellipse for the 500

points example). Such situations vanish for n = 1000.
Even if it has never been observed that, for n is large enough, there is

topological difference between S and Dk0n(X) an algorithm must be proposed
to correct potential problems (unexpected non contractible cycles of any di-
mension in S \ S−

2rn).

We now propose to compute the set of peeled complexes (a peeling oper-
ation consists of removing all the simplices that intersect the boundary).

Definition 2. The peeling function P : C → C (with C the set of all the
simplicial complexes) can be defined as follows:

• P (c) ⊂ c

• σ ∈ c and σ /∈ P (c) ⇔ σ ∩ δ(c) 6= ∅

The effect of peeling can be seen in figure 2.
It is thus proposed to compute topological invariants as homology groups

for all the P (i)(Dk0n
) and proceed as in the persistent homology method.
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Figure 1: Examples of restricted Delaunay complexes

Such a procedure is expected to successively erase the unexpected cy-
cles near the boundary (if they exist). It can also provide a lot of precious
informations such as:

• P (1)(Dk0n) = ∅ indicates that the intrinsic dimension is lower than d

• the last non empty P (i)(Dk0n
) can give a kind of reduced skeleton of the

data support.

5 Conclusion and further works

The idea of estimating the support of the density and its topological proper-
ties via the Delaunay complex restricted to the kn−nearest neighbors gives
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Figure 2: Effect of the peeling function on a complex. Not all the complex is
plotted: little bold segments are those of δ(c) and hugely bold segment are
those of δ(P (c)). It can be seen that the peeling operation erases the two
non retractile cycles located near the boundary.

very good results. First let us notice the fact that kn is explicitly known
since the density is uniformly continuous and the boundary of the support is
a smooth manifold (which are not too strong hypotheses). Practical results
are better than what is proved in this paper: in practice Dk0n(X) ≈ S, and
the proposed peeling procedure in the last section is not really needed. It
would be great to be able to prove this. Some other theoretical extensions
would be very interesting:

• The first would be to deal with densities that are null on the boundary
of the support (i.e. the closeness of {x such that:f(x) > 0} is no longer
assumed).

• The second (and maybe the more interesting point) would be: how to
deal with a support of lower dimension ? (intrinsic dimension d′ < d)
The field of application field would be greater. It could be applied to
dimension reduction problem linked with sparsity. An algorithm can
already be easily proposed: to build Delaunay complex restricted to
d′ (via local PCA [2]) and to kn(d

′) neighbors for instance). Study
of the theoretical properties of such an estimator is the main problem
that has to be solve. It can yet be empirically said that the restricted
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delaunay complex with a number of neigbors choosen as in this paper
but replacing d by d′ gives quite good results. Obviously there is no
homeomorphism between S and its estimate but convergence of the es-
timate seems to appear. It can be observed in figures 3 and 4 (a cercle
and a cylinder). First proof of this empiricall result has to be done and
second an algorithm that does not start by the computation of the ini-
tial delaunay complex has to be found xhen d is large (practically when
d > 5) to have reasonable computing time. An even more challenging
problem is to deal with uncknown intrinsic dimension of the support.
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Figure 3: Examples of restricted Delaunay complexes with points drawn on
a circle : d = 2, d′ = 1 (100, 200, 500 and 1000 points)
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