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Abstract : We consider a two-player zero-sum game with integral payoff and with incomplete
information on one side, where the payoff is chosen among a continuous set of possible payoffs.
We prove that the value function of this game is solution of an auxiliary optimization problem
over a set of measure-valued processes. Then we use this equivalent formulation to characterize
the value function as the viscosity solution of a special type of a Hamilton-Jacobi equation. This
paper generalizes the results of a previous work of the authors [5], where only a finite number
of possible payoffs is considered.
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1 Introduction.

In this paper, we investigate a continuous time two-player zerosum game with lack of informa-
tion on one side: according to a given probability, some payoff is chosen randomly among a
family of payoffs depending on a parameter taking its values in RY, and is communicated to
one player (say Player 1), Player 2 being only aware of the underlying probability. Then Player
1 want to minimize, Player 2 to maximize the payoff.

Games with incomplete informations (where some players have private informations) were intro-
duced in the framework of repeated games by Aumann and Maschler in the nineteen sixties (see
[1]) and are, since then, the aim of many works, see for instance [7], [12], [14] and the references
therein.

The first author of the present paper introduced the continuous time case in [3]. It is proven
there that, under suitable assumptions, differential games with asymmetric informations have
a value which can be characterized as a solution in some dual, viscosity sense of a Hamilton-
Jacobi-Isaacs equation. The result was generalized to stochastic differential games in [4].

A crucial point in games with incomplete information is that, the players observing each other
all along the game, the non informed player will try to guess his missing information through
the actions of his opponent. This implies that the informed player, instead of fully using his
information, needs to reveal it sparingly and to hide its revelation by using random strategies



to this aim. In the framework of repeated games, the behavior of the informed player is there-
fore strongly linked with a martingale with values in the set of probability measures, called
“martingale of beliefs”, which describes the belief the non informed player has on the chosen
index. Rewriting the value of the game as an optimization problem over the set of martingales
has been extensively used in the recent literature [8, 9]. When the set of possible payoffs is
finite (say: I possible payoffs), this set of probabilities over {1,...,I} can be assimilated to the
simplex A(I), subset of R!. In the case of continuous times games without dynamic, and in
analogy to the repeated games, we proved in [5], that the value function of the game is solution
of an optimization problem over this set of R/-valued martingales. This result is generalized to
stochastic differential games by Griin [10].
In the present paper we investigate the case of continuous games without dynamics, with a
continuum of possible cost functions. A crucial aspect of games with a finite number of possible
payoffs, is that the set of probability-measures can be assimilated to R!. Therefore the value
function depend on two parameters ¢ € [0, 7], the starting time and p € A(I) the initial proba-
bility and, even if the place taken by the parameter p in the Hamilton-Jacobi-Isaacs equation is
not standard, it is still an equation in R x R’. The equivalent formulation of the value function
as a control problem over a set of martingales In the case of a continuum of possible payoffs.
The main results of this paper are, on the one hand, a representation formula of the value
in terms of a minimization problem over a set of martingale measures and the existence of an
optimal martingale measure. On another hand, we also characterize the value as the (dual)
solution of a Hamilton-Jacobi equation.

2 Notations and preliminaries.

Let us first introduce the model we will study throughout the paper. We consider a continuous
time game starting at some initial time 5 > 0 and ending at a terminal time 7" > t3. The
players try to optimize an integral payoff of the form

T
0z, s,u(s),v(s)) ds

to

where (u(s))seft,,7] is the control played by the first player while (v(s))sejt, 7] is the control
played by the second player. The first player is minimizing, the second one maximizing. The
main point in the above payoff function is its dependence with respect to a parameter x. The
game is played as follows: at time ty the parameter x is chosen by nature according to some
probability m and the result is announced to the Player 1, but not to the Player 2. Then the
players choose their respective controls in order to optimize the payoff. The map ¢ as well as
the measure m are public knowledge.

To fix the ideas, we will assume throughout the paper that the parameter x belongs to some
Euclidean space RY. Although this assumption is not really important for the existence of a
value, the representation Theorem 3.2 or the characterization of the value given in Proposition
4.1, it will be crucial for the existence of an optimal martingale measure (Theorem 3.3) or a
sharper characterization (Proposition 4.3).

Moreover, to get some compactness ensuring the existence of an optimal martingale measure,
we will have to assume that the measure m has some finite moment. Again, to fix the ideas, we
will assume the finiteness of the second moment (however, the reader will easily notice that any
moment larger than 1 would do the job). Let A(R™) be the set of Borel probability measures



on RV and I, be the subset of A(RY) with a finite second order moment:
/ lz|?dm(z) < 400 Ym € Ily .
RN
It will be convenient to endow IIy with the Monge-Kantorovich distance dj:

di(m,m’) = inf / |z — yldy(z,y)
~vell(m,m') Jr2N
where II(m,m’) is the set of Borel probability measures on R?V such that v(4 x RY) = m(A)
and y(RY x A) = m/(A) for any Borel set A C RY. Recall that the above minimization problem
has at least one minimum and we denote by I (m, m’) the set of such minima for d;. Again
there is some arbitrariness in the choice of this distance, but it is useful here to fix the notations.
Let T > 0 be a finite time horizon, and U and V two compact subsets of some finite
dimensional space. For all 0 < tg < ¢; < T we denote by U(tog,t1) = {u : [to, t1] — U measurable}
the set of controls with values in U. We endow U(tg,t1) with the L! distance

t1
it (t,01) (U1, u2) = / lui(s) —ua(s)lds  Vuy,ug € Ulto,t1) ,

to

and with the Borel o—algebra associated with this distance. Recall that U(to, ¢1) is then a Polish
space (i.e., a complete separable metric space). The set V(tg,t1) of Lebesgue measurable maps
v : [to,t1] — V is defined in a symmetric way and endowed with the L! distance and with the
associate Borel o—algebra. We write U(tg) and V(to) for U(ty,T") and V(to,T).

The instantaneous reward

CRY X [0,T]xUxV =R
is assumed to be continuous in all variables, Lipschitz in (x, ¢) uniformly in u and v, and bounded.

Fix now (tg,m) € [0,T] x II5. For all (u,v) € U(ty) x V(ty), we define the payoff

T
J(to, m,u,v) = /RN t 0z, s,u(s),v(s)) ds m(dx).

Note that J(tp, m,u,v) is the mean with respect to the probability m of a family of running
costs depending on the parameter € RY. The control u represents the action of Player 1, v
the action of Player 2. In this game, Player 1 will try to minimize, Player 2 to maximize the
payoff.

In order to give a probabilistic interpretation of the game, we now introduce a probability space
(Q0, Fo, Po). If X is a random variable of distribution m, we can rewrite the payoff

T (to,m,u,v) = B [/Te(x,s,u(s),v(s)) ds| .

to
The next step is to define the strategies of the Players. We have to model the facts that
e Player 1 knows the index = before the game starts, but not Player 2,
e each Player observe the action of his opponent,

e the Players can act randomly.



The strategies of Player 1 are defined as follows: For some fixed subdivision A : ty < ] <

. < t, =T, let Aa(to) be the set of Borel measurable maps o : V(tg) — U(ty) which
are nonanticipative with delay with respect to the subdivision A : for any vi,ve € V(tg), if
v] = vg a.e. on [tp,t;] for some i € {0,...,n — 1}, then a(v1) = a(v2) on [to,tit1]. We set
A(ty) = UaAAa(to) and endow A(tg) with the distance

d(ar,az) = sup dy (1 (v), az(v))
veV(to)

An element of B(tg), the set of strategies for Player 2, is a nonanticipative, Borel measurable
map (3 : U(tp) — V(to) such that, for all ¢t € [tg, T, for any uj,us € U(ty), there exists § > 0
such that, if u1 = ug a.e. on [tg,t], then S(u1) = B(u2) on [to,t + d]. (i.e, in contrast to the
strategies of Player I, Player II is allowed to adapt his delay belonging what he is answering to).

Due to the delays the Players have to respect, we get, as in [4, 5]:

Lemma 2.1 There ezists a Borel measurable map ® : A(to) x B(to) — U(to) x V(to) such that,
for all pair (o, B) € A(to) x B(to) and (u,v) € U(to) x V(to),

(u,v) := ®(a, B) & [ a(v) =wand B(u) = v a.e. | (2.1)

Definition 2.2 Fiz some other sufficiently large probability spaces (1, F1, P1) and (Qa, Fa, P3).
A strategy for Player I for the initial time to € [0,T] is a measurable application o from RN x
to some Aa(to). We denote by Ax(to) the set of these strategies.

A strategy for Player II is a random variable on (Qa, Fa, Py) with values in B(tg). We denote
by B(ty) the set of strategies for Player II.

We set (2, F,P) = (Qp x Q1 x Qo, Fp @ F1 @ F2, Py ® Pi ® Py) and denote by E[] the corre-
sponding expectation.

Fix to € [0,T]. For any (o, 8) € Ax(to) x B(to), we are now able to define the payoff of the two
strategies by

T

J(to, a0, Bym) = Uz, t, P(a(x,wr), B(w2))(t))dt dPy(w)dPy(wa)dm(x)

/RNXé(to)XB(tO) to
_ E[ e(x,t,@<a<x>,ﬁ><t>>dt}
to

The upper and lower value functions of the game are defined by

V+(t05m) = 1~nf sup j(to,a,ﬁ,m)a
acAx (to) 5€l§(t0)

and

V™~ (tg,m) = sup inf  J(to, o, 8,m).
ﬁel?(to) a€Ax (to)

Note that we also have

V+(t0,m) = lpf sup j(to,a,ﬁ,m).
acAx (to) BEB(to)

Lemma 2.3 The value functions V¥ and V— are Lipschitz continuous.



Proof: We only explain the proof for V¥, the arguments for V~ being symmetrical. Let us first
check the Lipschitz continuity in m. Let mq, mg € Ilp and «y € Iyt (M1, m2). Let us desintegrate
v with respect to mq: dy(z,y) = dv.(y)dm, (z).
For € > 0, let ay € Ax (to) be e-optimal for V*(tg, ms):
sup J(to, az, B,ma) < VT (tg,mo) +e.

BEB(to)
Let £ : RN x Q; — RY be a measurable map such that, for all € RV, the random variables
(&(z,-),z € RY) are independent of (as(x),z € RY) and the distribution of each &(z,-) is V.
Then the map (w,z,v) — a1(w,z,v) := as(w,&(x,w),v) defines a strategy, i.e., an element of
Ax(tg). We have, for all 8 € B(to),

Snansm)= [ B[t atas(e@). Ho] amiw

to

_ @ [ du)E | [ et ). 80
[ imte) [ dwwm| |

to

— /sz dy(z,y)Er [ T£($,t,q)(a2(y)’/8)(t))dt:|

T
< [ denm | [ o). 5)0) + Cle -y ]
< Jl(to, s, B,msa) + Cdi(mq, ms)

< V+(7f0,m2) + e+ Cdl(ml,mg).
Therefore

V*t(tg,m1) < sup J(to,a1,B,m1) < VT (tg,ma) + €+ Cdi(my, ma).
BEB(to)

This proves the Lipschitz continuity of VT with respect to m, uniformly in t.

Next we prove the Lipschitz continuity in time. Fix m € Ilp, 0 < to <t < Tand ueU.
For € > 0, let a; be e-optimal for V¥ (t1,m). We define a strategy in Ax (to) by setting

U for t € [to,tl)
oy (z, Ul ppw1)  otherwise.

oo v = §

For all By € B(tp), we define 51 € B(t1) by setting 51(u) = Bo((@,u)), where (@, u) denotes the
control equal to 4 on [tg,t1) and to u on (t1,7T). Let (ui(x,wi),vi(z,w1)) = ®(a1(z,w1),51)
be the solution of the fixed point equation given in Lemma 2.1. Then, by definition of «q
and because [y is nonanticipative, ®(ap(x,w1),Bo) is equal to (@,Bo(u)) on [tg,t1] and to
(u1(z,w1),v1(x,w1)) on [t1,T]. Hence, as the payoff is bounded by C,

T (to,m, a0, o) = B | [y UX,t, @(a0(X), fo)(t))dt
< C(tl—t0)+j(t17m7a1751)
< Oty —to) + VT (t1,m) +e

5



Therefore
V™ (tg,m) < Oty —to) + VT (t1,m) .

The reverse inequality
V+(t0’ m) > V+(t1’ m) - C(tl - tO)

can be established in a symmetrical way. O

Lemma 2.4 The value functions and V~ and VT are convex with respect to m.

Proof: The convexity of V™ is an easy consequence of the definition, because

T
V™ (tg,m) = Su(};o)/R inf /92/0 Uz, t, P(a, B(w2)))dt dPy(we)dm(x) ,

BeB N acA(to)

which is clearly convex with respect to m.

Let us now check the convexity of V. Fix tg € [0,7] and let mq,mg € Iy and X € (0,1).
Set m = Amy + (1 — X\)ma.
Since m is absolutely continuous with respect to m, there exist py € LI(RN ,Ry;m) such that

Amy (dzx) = py(x)m(dx)
with py > 0 m—a.e. Remark that
(1 = A)ma(dr) = (1 — pa(z))m(dx),

and therefore that py takes its values in [0, 1] m—a.e. Now, for € > 0, let oy (resp. ag) € Ax (to)
be e-optimal for V*(tg,m1) (resp. V¥ (tg,m2)), and let o € Ax(ty) be such that, for all z € RV,
and all measurable, bounded f : A(tg) — R,

By [f(a(2))] = pa(@) Ex [f(aa(2))] + (1 = pa(x)) Er [f(az())]
For any (8 € B(tg), it follows that
T
J(to, m, e, B) = /RN Ey [/t E(m,t,q)(a(:v),ﬁ)(t))dt] dm(x)
T

_ /RN (pA(x)El [ Te(%uq)(al(x),ﬁ)(t))dt} + (1 — pa(x))Ey [

to

Uz, t, P(az(z), ﬁ)(t))dt} )

to

3 [ ([ e tatn s ane +a-x [ B[ e et s

to to
< AV (to,m1) + (1 = A)V*(tg,m2) + €.
Since this holds true for all 5 € B(tp) and for any € > 0, it follows that

V+(t0’m) < AVJr(tO’ml) + (1 - A)VJr(tO,mQ)‘

dm(x)

} dmo(z)



We now introduce the Hamiltonian of the game :

V(t,m) € [0,T] x Iy, H(t,m) = inf sup/ Oz, t,u,v)dm(z),
uel yey JRN

and assume throughout the rest of the paper that Isaac’s condition: for all ¢ € [0,7] and m € Ilg,

inf sup l(x,t,u,v)dm(x) = sup inf K(x,t,u,v)dm(x). (2.2)
uelU yeV JRN vey uel

Proposition 2.5 Under Isaac’s condition (2.2), the game has a value: for all (tg,m) € [0,T] x
H27 V+(t05m) = V_(t(]?m)‘

Proof: The result has been proved for measures m with finite support and very slight different
notion of strategies in [5]. A careful examination of the proof shows that the result of [5] also
hold with the new definition of strategies. Let us explain how the condition on the measure can
be removed. For an arbitrary measure m € Ily, let (m,)nen be a sequence of measures with
finite support, such that di(my,m) —,_s 100 0. Since, by lemma 2.3, VT and V~ are Lipschitz
with respect to m, we have, for all ty € [0,T], and all n € N,

[Vt (to,m)=V~ (to,m)| < |V (to,m)— VT (tg, my)|+| V™ (tg,m) =V~ (tg, my)| < 2Cd;(m,my),

where C is a Lipschitz constant for V¥ and V~. The right-hand side term being arbitrarily
small, the result follows. O

Let us complete this paragraph with a technical Lemma, which shows that the payoff associated
to a control without delay may be approximated as close as needed by the same control but
with delay.

Lemma 2.6 Let m € Iy and € > 0. For all v € V(0), there exists 6(v) > 0 such that, for all

u e U(0),
/ / (z,8,us,vs)dsdm(z / / (z, 8, Us, V(s—5(v)), dsdm(z)
RN RN

Proof: Let M be an upper bound for |/(z,s,u,v)|. Fix ¢ > 0 and let B € B(R") a compact set
such that m(B) > 1 —¢/6MT. Then we have, for all 6 > 0,

/ / (z,8,us,vs)dsdm(z / / (7,5, us, V(s_g), Jdsdm(x)
RN RN

T
1(d,€) ::/B/O {E(ﬂ:,s,us,vs)—f(x 8, Us, V(s—5), )| dsdm(x)

Now, since / is continuous, it is uniformly continuous on the compact set B x [0,T] x U x V.
Therefore there exists n > 0 such that, for all (z,s,u) € B x [0,T] x U and v,v € V with
v =2 | <, [(x,s,u,v) —L(z,s,u,v")| < e/3T.

It follows that, for all § > 0,

<e.

<e€/3+1(d¢€).

with

1(6,¢) < €/3+2MA({s € [0,T], |vs — v(s—35). | > n})-

IN

/34 M fo [vs — V(s—5), |ds,



where the last relation comes from the inequality of Bienaymé-Tchebychev.
Finally it is well known that, for any v € V(0),

T

;i\r“r(l) ; [vs — V(s—5), |ds = 0.

Therefore there exists dg > 0 such that, for all § < dy,

T
/ [vs — V(5—s), |ds < en/6M.
0

The result follows. O

3 An alternative formulation of the value function.

In this section, we show that the upper value function can be represented in term of a mini-
mization of a cost over a family of martingale measures. Many results on these processes used
below can be found in Horowitz [11] or Walsh [15] for instance.

For any 0 < to < t; < T and m € Il,, we introduce the set M(tg,t1, m) of all measure-valued
processes (M )y <t<t, defined on a sufficiently large probability space (€2, F, P) which satisfy for
all measurable, bounded functions f : RY — R,

(i) t— f(z)dM;(z) is P-a.s. cadlag,
RN

(ii) there exists a R¥-valued random variable X of distribution m such that, for all t € [to, t1],
P-a.s.,

Mf = - f(z)dM(z) = E [f(X)’]:t]M] ) (3.3)
where (FM )te[to,t1) 18 the right continuous, completed filtration generated by (M(B), B €
BRY))sefto,t1)-

Remarks 3.1 1) Let M € M(to,t1).

e For allt € [ty,t1], the random variable My is P-a.s. a probability measure which satisfies

E [My(B)] = m(B), B € B(RY).

e The process (My) is a martingale measure: for all measurable, bounded function f, (Myf)iej.41)

is a martingale in the filtration (ftM)te[tmtl)-

o Let G : [to,t1) x RNV x Q — R measurable, bounded and such that, for all x € RY the
process (G(t,2,-))iefto.11) 15 adapted to the filtration (FM). Then we get, P-a.s., for all
t e [t(), tl),

E[G(t, X)|FM] = G(t, z)dM;(z).
RN



2) Conversely, let (Fi)iepy 1) be a right continuous and complete filtration on (Q, F, P). For all
t € [to,t1) and B € B(R™), set
My(B) = PIX € B|F).

Then (My) is a martingale measure, which admits a cadlag modification, i.e. a modification M
such that, for all measurable and bounded function f, (M.f) is cadlag. It is then clear that this
modification belongs to M(to,t1). In the sequel we identify all martingale measures with their
cadlag modifications.

We write M(to, m) for M(to, T, m).

Now let

T
W(to,m)= inf E|[ H(s, My)ds|, 3.4
(to,m) MeMito.m) [ to (s, M) S] (34)

where we recall that H(t,m) = inf,cy SUPveV/ (x,t,u,v)dm(x).
The main result of this section is the following Hrggpresentation formula:
Theorem 3.2 For all (tg,m) € [0,T] x Ila, it holds that
W (to,m) = VT (tg,m). (3.5)

Proof: We shall prove the two inequalities providing (3.5).

1) V*(to,m) < W(to, m)

Fix M € M(typ, m) and let @(t, m) be a measurable selection of Argmin,, <y sup,ecy / (x,t,u,v)dm(zx).
RN

Consider the control process & = (u(t, M)),cp, r1- Remark that @ is adapted to the filtration

(FM). Since X is a realization of the probability measure m, the joint distribution of (@, X) on
U(tg) x RY can be desintegrated as follows:

P[(i, X) € dudz] = Py(du)m(dz),

for some measurable family of probability measures (]51, r € RV).
Let now be a strategy ajys for Player I such that, for all z € RY, for all measurable bounded
f:U(ty) = R and for all v € V(tg),

Elf (o (2, 0))] = / £ () By (du).

U(to)
Then, for any arbitrary § € B(tg), strategy for Player II, we got

J(to,m,an, B) = /RN /L{(t t E (s,2,u(s), B(u)s)ds Py (du)dm(z)

= # [t X 50000 ]

LS to

= E _/TE [6(s, X, iis, B(1)s) | FM] ds}

L/ to

_E /tT N E(s,x,as,ﬁ(&)s)Ms(dx)ds] .

9



It follows that

T

Fnmarnd) < B| [ sup [ tlsan oM (a)is]
to veV JRN

Due to the arbitrariness of 5 € B(tg) and the definition of @, it follows that

T
SUpPgeB(ty) J (tos myan, B) < E [/t sgg /RN E(s,x,ﬂs,v)Ms(daz)ds]
0o v
T
= F [ H(s,MS)ds} ,
to

The result follows.

2) W(tg,m) < VT (tg,m)

2.0) Fix € > 0. Let a¢ € Ax(tg) be e-optimal for V*(tg,m). The assertion follows as soon
as we find some M € M(tyg,m) and 8 € B(tp) such that

E[ Tﬁ(X,s,@(of(X),ﬁ)(s))ds} > E[ !

to

H(s,Ms)ds] —e.

to

More precisely, we shall prove by induction, that there exists M € M(tg,m) and B € B(tp),
such that, if to < t; < ... <t, =T denotes the time grid associated to the strategy «f, it holds,
for all k € {1,...,n}, that

ty

E /tk (X, 5,8(a(X), B)(s)) ds| > E

th—1

H(s,M)ds| — €/n. (3.6)

th—1

In parallel to the strategy S we shall construct a random process Z : Q x [tg,T] — U wich
satisfies

O(a(X),B)(s) = (Zs,B(Z)(s)) A x P-as.. (3.7)

2.1) Because of the delay, on [tg,t1), the control of Player I doesn’t depend on the strategy of
Player II. Since, by definition, o is a measurable map from Q; xR" to A(tg), this control depends
also in a measurable way of (w1, z). More precisely, we can set, for any (x,w,v) € RY x Qx V(to),
uf(r,w) = az,w1,9)|[1y.4,) € U(to,t1) With w = (wp,w1). We finally define the random process
(Zs) on the time interval [tg,t1) by: Zs = u(X)s, s € [to,t1).

Then, for all B € B(ty) and x € RY, a trivial application of the fixed point relation (2.1) of
Lemma 2.1 shows that, on the same interval [to,t1), (3.7) is satisfied.

We denote by (Fs, s € [to,t1)) the completed right-continuous filtration generated by the process
(Zs). Let M € M(tg, m) be the martingale measure defined on [tg,t;) by: for all B € B(RY),

MS(B) = P[X S B‘./—"S], s € [to,tl).

2.2) Suppose now that, for some k € {0,...,n — 1}, for all u € U(ty), B(u) is defined on [to, tx),
as well as (Z5) satisfying (3.7) on [to, tx+1). Let M € M(tg,m) still be a cadlag version of the
martingale measure M defined on [tg,t; + 1) by

i ()M (dz) = B[f(X)|F], s € [to, ths)-

10



We suppose also that the inequality (3.6) holds for all j € {1,..., k}.
Now we extend the strategy 8 on [tk, tx11):
First of all, for v € U and s € [tg,tg+1), we denote by ©(s,u,m) a measurable selection of

Argmax, ¢y / 0(x, s,u,v)m(dx).
N

Remark that,Rfor all s € [to,trr1), Ms— is measurable with respect to Fs_ = o(Z,,r < s) VN,
where N is the set of null-sets for the probability P

Therefore there exists some measurable application ¥ : [to,tr1+1) X U(t), such that, for all
u € U(tp) and all fixed s € [tg,tg+1), U(s,u) depends only on the restriction of u on [tg, s) :
U(s,u) = ¥(s,(uy,r € [to,s)) and such that v(s, Zs, Ms_) = ¥(s,(Z,,r € [to,s])) A X P-as..
Now we set, for any (u(s),s € [to,T]) € U(tp) and s € [tg, tri1), BO(u)(s) = W(s, (ur, 7 € [to, s])).
By Lemma 2.6, there exists, for all u € U(tp) some delay d(u) > 0 such that

tht1

tet+1
‘E/ (X, s,us,%(u)s)ds — E E(X,s,us,ﬁo(u)(s,5(u))+)ds <e€/n.

tk 173

We can extend now the strategy 5 on [tg,txy1) by setting
Vu € U(to), Vs € [tr, trr1), Bu)s = B°() (s—s(u)s -
We get then

I [ / MUK s, B (), ﬁ)(s))ds} - B [ / X s 2 ﬁO(Z)(s—cS(Z))Jr)ds}

> E [ /tt+ UX,s, Zs, ﬁO(Z)(s))ds} —e/n.

Further, since the filtration (F;) is generated by (Z5) and by the definition of M, it holds, for
all s € [tk717tk)7

E[U(X,s,Zs,8°(Z)(s))|Fs] = /RN Uz, s, Zs, °(Z)(s))dM(z) P-a.s..

Integrating over [ty,tr+1) and taking the expectation of both sides, we get

B Utk“ e(X,s,Zs,ﬁO(Z)(s))ds} - B /tk“/ (2,5, Zo, 0(5, Zo, M ))dMs(x)ds}

tg

tet+1
= FE / / (x,8,Zs,0(8, Zs, My ))dMs(x)ds]

[ fle+1
= E/ <sup K(x,s,Zs,v)Ms(dx)> ds}
ty,

veV JRN
tet+1

> E His, Ms)ds} :

LS4y,

It remains now to extend the process Z on [tg4+1,%x+2) : Using the fix point Lemma 2.1, we
define first the map u® : RN x Q — U(tpq1,tpy2) by

V(z,wi) € RY x Qp, ®(af(x,w1), B) = (u(z,w1), B(u(x,w;))

11



and set then, for all s € [tgy1,tkt2),

The result follows. O

In the remaining part of this section, we prove that the infimum in (3.4) is attained up
to a change of probability space. Let P be the set of Radon nonnegative measures m on
[~1,T + 1] x RV, with total mass 7'+ 2, with a first marginal equal to the Lebesgue measure
on [—1,T + 1] and such that

/( 1,T+1) xRN [#*m(dt, dz) < +o0.
-1, X

We endow P with the weak topology. Any measure m € P can be desintegrated into m(dz, ds) =
ms(dx) ds, where m, is a probability measure on R for almost every s. In the sequel we
systematically identify measure m € P and Borel families of probability measures (ms)sc|—1,741]-
We denote by I' the subset of P consisting in measures m € P which have a cadlag representative
for the dy distance. The topology on I' is the one induced by P. We denote by t — m; the
canonical process on I'. For a fixed initial condition (¢,7m) € [0,T] x IIy we finally denote by
M(t,m) the set of Borel probability measures M on I' under which,

(i) mg=m for t <{,
(ii) my € D for t > T, where D is the set of single Dirac masses on R,

(iii) for any continuous, bounded map ¢ : RN — R, the process t = [pn ¢(z) dmy(z) is a
cadlag martingale for the filtration (F;) generated by the process (my).

Note that the law of any martingale measure M € M tq,m) belongs to M(t,m).

Theorem 3.3 For any (t,m) € [0,T] x Iy, there is some M € M(t,m) such that

V(I m) = /F /t " H(s.my) ds dNI(m)

Theorem 3.3 is an easy consequence of the following compactness property of the set M(£, m):

Proposition 3.4 Let (t,7m) € [0,T] x . Let (M™) be a sequence in M(t,m). Then there is a
subsequence (M™) and a set I of full measure in [—1,T + 1] such that (M™) converges weakly

(as a measure over P) to some M € M(t,m) and (M]") converges weakly (as a measure over
A(RN)) to My for any t € I.

The proof of Proposition 3.4 is a variation on a paper by Meyer and Zheng [13]. Let us start
with some sufficient condition for a measure on P to be supported by I'. For this, we need some
notations. For m € P and ¢ € CY with at most a linear growth, we denote by t — my(y) the
real-valued measurable map ¢t — [pn @()dmy(z).

Let t — f; on [-1,T + 1] be a real valued measurable map and u < v. Following [13],
we define the number of crossing N“Y(f) as the largest number k for which we can find times
—1 <t <t} <--- <ty <t <T+1such that each set of the form (—1,¢1) N f~1((—o0,u)),
(ti, th) N (v, +00)), (tytiv1) N fFH((—o0,u)) and (), T + 1) N f~1((v, +00)) has a positive
measure. Let Lip; be the set of 1—Lipschitz continuous maps ¢ on R such that ((0) = 0.

12



Lemma 3.5 Let M be a probability measure on P such that, for some constant C,

M| sup / (lz|* + 1) dmy(z) > R| < ¢ VR>1 (3.8)
te[-1,T+1] JRN R
and .
/ N (m(p)) dM(m) < [F Yu < v, ¢ € Lip; .
P V—1U
Then M(T") = 1.

Proof of the Lemma: We endow Lip; with the distance

-1
lz[2 +1

d(p, 1) =

Lo (R™) .

Then Lip; is a compact set. Fix e > 0, R € (0,1/(2¢)), u < v such that v — v > 2Re and
@', ..., 9" in Lip; such that (J;_, B(¢*,€) D Lip1, where B(p, €) is the closed ball centered at
©* and of radius € in Lip;. In view of our assumption,

4+ Re+C ¢
M N(U+RE)(U—R€) kyy > n < ‘u’ -

[ (m(gp))_e}_v—u—QRen
So

< |u| + Re 4+ C .

M N(u+e)(v—e) kyy > n
[ P (m(e ))_e T v—u—2Re

ke{l,...,n}
In view of assumption (3.8), we have

M[ sup / (|z* + 1) dmy(z) > R| < = .
| Jen R

te[-1,T+1

Let Er denote the set of m € P such that  sup / (Jz|> + 1) dmy(z) < R. Let ¢ € Lipy
te[—1,7+1] JRN
and m € Eg. By definition of the (¢*), there is some k € {1,...,n} such that d(p, o) < e.
Then
sup [my(p) —me(@F)| < sup (2> + D)dmy() d(p, ") < Re.

te[~1,T+1] te[~1,T+1]

Hence
sup N“(m(p)) < sup  NOFRICTEI (k) |
pELipy ke{l,..n}

so that
|u| + Re + 1 C

<t

n
M N >~ UE}
[{ sup (m(p)) > c } ULp v—1u— 2Re R

p€Lipy

Letting ¢ — 0 and then R — +00 we obtain, for any u < v and M — a.s.

sup N*(m(p)) < +o0 and sup / (Jz]* + 1) dmy(z) < 400 . (3.9)
pELip1 te[-1,7+1] JRN

It remains to show that any m satisfying the above inequalities coincides (up to a subset of
measure 0) with an element of T'.
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Let us fix t € (0,7] and let L;(m) the left essential upper limit of (ms) as s — ¢~ :
veL(m) & V>0, [{se(t—246t), mse B(v,0)}| >0

where B(v,0) is the ball centered at v and of radius § for the Monge-Kantorovich d; distance.
We claim that L;(m) is a singleton. Indeed, note first that L;(m) is not empty by compactness.
Assume that L;(m) is not a singleton. Then there would exist some v; # v in Ly(m). Since

sup / ed(v1 —va) = dy(v1,19) ,
peLipy JRN

there is some ¢ € Lip; such that [pn @d(vy —v2) =1 > 0. Let us set v = [pn pdvy + 1/4
and v = [pn @dvy —n/4. Then v > u and, by definition of Ly(m), N"(m(p)) = +oco. This
contradicts (3.9). Therefore L;(m) is a singleton for any ¢. In the same way, one can prove
that the right essential upper limit R¢(m) of (mys) as s — t1 is reduced to a singleton for any
t € [0,T). One then easily checks that t — R;(m) is right-continuous, has a left-limit on (0,7")
and that my = R;(m) for a.e. t. Therefore m belongs to I because m has a cadlag representative
R.(m). O

Proof of Proposition 3.4: Let (M™) be a sequence in M. Since, for any k£ > 0 and for any
fixed n, the random process t = [ (|2[* A k)dmy(z) is a martingale under M", we have, from
Doob’s maximal inequality,

. _
M" sup / (|| A k)dmy(z) > R| < —/ |z|2din(x) =: ¢ VR>1.
te[—1,T+1] JRN R Jg~ R
Letting £ — 400, we obtain
n 2 é
M sup |z|* dmy(z) > R| < — VR>1.
te[-1,7+1] JRN R

Since theset ¢ m € P,  sup / |2|? dmy(z) < R} is compact, the sequence M™ is tight and
te[-1,7+1] JRN

therefore a subsequence of (M™), still denoted (M™), converges weakly on P to some probability

law M. Note that

<S¢ yrs1.

M sup / |22 dmy(z) > R
te] RN R

—1,T+1]

Let us now show that M is supported by I'. Fix this, let us denote by E™ and E the expectations
with respect to M™ and M respectively. Fix ¢ € Lip; N CJ(RY), where C)(R”") denotes the set
of continuous, bounded function in RY. Our aim is to estimate E[N“’(m(y))]. Since, under
M™, the process t — [pn @(2) dmy(x) is a martingale, its conditional variation (in the sense of
[13]) can be estimated by

sup E" [
te[—1,T+1]

| #la) dmi(a)

SD —
< sup E”[/ z|> +1) dm x} HiH <C+1
} te[~1,T+1] RN(‘ | ) dma(z) 2> + 11,

So, by Lemma 3 of [13], we have, for any u < v,

< \u!—i—(j’—i-l.
v—Uu

E" [N"(m(p))]
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Since N"V is lower semicontinuous for the weak topology, we get

< ]u\—i—(j’—i-l.
vV—1U

E[N"(m(p))]

Now we can relax the boundedness assumption on ¢ to get that the above inequality holds for
any ¢ € Lip;. Then Lemma 3.5 implies that M (I') = 1. Note also that, under M, mg- = m
and my € D for any t > T because D is closed under the weak topology.

We now prove the finite dimensional convergence. Since P is a Polish space and M™ converges
weakly to M, Skorokhod’s theorem implies that there is a probability space (2, A, P) and random
variables M"” and M on P with respective law M"™ and M and such that M"™ almost surely
converges to M. Note that the processes t — MYP and t — M, are cadlag P—a.s. because
M™ is supported by I'. Let now (¢*) be a sequence which is dense in CJ(R™) (for the uniform
convergence on compact subsets of RY). From our assumption, the process ¢t — M?gpk
martingale. So, by a diagonal argument, (the proof of) Theorem 5 of [13] gives the existence
of a set of full measure I in [0,7] and a subsequence (again denoted (M")) such that (M}pF)
converges to Myp* as n — 400 P—a.s. Since (¥) is dense, this easily implies that (M}) weakly
converges to My for any ¢ € I P—a.s.. This means that M;* converges weakly to M; (as measures
on A(RM)) for any ¢ € I: for any ¢ € CO(A(RY)),

is a

[ o)) =Bl 5 EleM)) = [ paMiy) el
A(RN) A(RN)

Let us finally show that M belongs to M. For this it only remains to show that, for any
continuous bounded map ¢ : RV — R, the process M;p is a martingale for the filtration
generated by My. Let kq,...,k,, be indices, t; < --- < t,,,t be times in I and fy,..., fin, f be
bounded continuous maps. Then, for any ¢ € [0, 7], and since M}y is a martingale,

E | i(Me™) o (M, ) F(ME9)| = B[ (MBS [ (M7 65) (M, 0)|

Letting n — +oo and using the finite dimensional convergence, we get
E | AilMu@") o (M, @) F(Mig)| = B[ Ai(Me ™) fon (Mo, 05) f (Mo, 0)|

Since M is cadlag, the o—algebra generated by the family of random variables fi(IMy, "),

oy fn(My, ©F1) (where ki,... kpm, t; < -+ < t,, and fi,..., fm are as above) is equal to
(0(Ms, s <t))ejo,r- Therefore My is a martingale and the proof of the Proposition is complete.
O

Proof of Theorem 3.3: In view of Theorem 3.2 we know that there exists a sequence
M"™ € M(t,m) such that

n—-+4o0o

lim F [/tT H(s,Mg)ds] = VT (t,m).

Let M™ be the law of M" and recall that M™ € M(f,m) and that

E [/tTH(s,MZ)ds] :/F/tTH(s,ms) ds dM™(m) .
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According to Proposition 3.4 there is a measure M € M(t,m), a subsequence of the (M™), still
denoted (M™), and a set I of full measure in [0,400) such that M;* converges weakly (as a
measure over A(RM)) to My for any ¢ € I. Then, for any t € I,

lim H(t my) dM™(m /Htmt) dM (m)

n—-+4o0o

because the map p — H (¢, ) is continuous in Iy for the d; distance. Then, since H is bounded,
we conclude by Lebesgue convergence Theorem that

V*(E,m) :/tT/FH(t,mt) dM (m) .

A simple application of the above characterization of the value function is the following dynamic

O

programming principle:
Corollary 3.6 We have

t+h
VT (t,m)=  inf )E [
t

H(s, MJ)ds + V' (t + b, Mt+h)} Vhe[0,T—1. (3.10)
MeM(t,m

Moreover there exists an enlargement of (0, F, P), and, on it, some M as above such that
t+h ~ ~
V*(t,m)=E [ H(s,My)ds + V7T (t+h, Mt+h)} Vh e [0,T —1],
t

Proof: As usual, we split the relation (3.10) in two inequalities which we prove separately.
Let us denote by V’(¢,m) the right hand side of (3.10) and, for € > 0, let M€ € M (t,m) be
an e-optimal martingale measure for V’(t,m) with finite support (i.e., the support of M¢ is
concentrated on a finite number of measures).

Let Aq,..., A, be the atoms af the o-algebra ‘7:t+/€z and myq,...,m, € Iy the values taken by
Mg, on these sets. Remark that, for all i € {1,...,n}, m; is the law of the restriction of X on

i
For each i € {1,...,n}, let M® € M(t + h,m;) be e-optimal for V(¢ + h,m;) and define some

)

measure valued processes (M{,s € [t + h,T]) such that Mi|A,'x[t+h7T} = M® and with terminal

value My = dx.
Finally we set

NE =

S

M for s <t+h,
M! on A; x [t+h,T), i€ {l,...,n}.

It is easy to prove that M¢ € M(t,m). Therefore it holds that
v (t + h’ Mt+h) = Z?:l ]lAiV+ (t + ha ml)
T .
St E |, H(s,Ms(”)ds} _e
Yo g FE ftﬁh (s Mi)ds|Al-] —€
= [th (s, MS)ds| t+h}_€'

v
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It follows that

Vit,m) > B[ H(s, Me)ds} +E[ ﬁhH(s,M;)ds] 2
= ft (s, Me ds] — 2¢

> V*t(t,m) — 2e.
Since the last relation holds true for all € > 0, we get our first inequality:
Vi(t,m) > V*t(t,m).

1.2 Consider now M e Mq(t, m) being e-optimal for VT (¢, m) Again we denote by Aq,..., A,
the atoms of ]: h and by myq, ..., my, the values taken by M
Then we can write

t+h

t+h
V(t,m)>FE

n T
H(s,M{)ds + Y 1sE [ H(s, M;)dsyA,}

t

Now, restricted on A;, M€ is a martingale measure with initial condition m;. Therefore it holds
that
T
E [ H(s,M§)ds|Ai] >Vt + h,my).
t+h
The dynamic programming principle follows.

2. By Theorem 3.3, we can enlarge the probability space (Q, F,P) such that there exists
M € M(t,m) which is optimal for V*(t,m). For ¢ > 0, let M € M;y(t,m) such that

f:l—h dy(M¢, M,)ds] < e. Since the trajectories of M are cadlag, we can choose M€ such
that E[d; (M, My4)] < e. Using the fact that V is Lipschitz in m, we get now

E[V*(t+h, Myp)] < E[VY(t+h,Mg,)] + Ce
= B[, VT(t+hm)la] + Ce,

where Aq,..., A, are the atoms of ]:+;L and mq,...,m, the values taken by M frp, ON them.
Now, since, for each i € {1,...,n}, the restriction of( $)t+h<s<T on A; belongs to M(t+h,m;),
and then, using the fact that H is Lipschitz, we have

E[Zz v (t + h, ml)]lAz] < ft%h )ds]
< E| t+hH(5 My)ds] + Ce.
It follows that T
E[VY(t+h, M) <E[| H(s, M,)ds]. (3.11)
t+h

Finally, using the first part of the Lemma, we get

t t
= V(t,m)

= infyrenmm B [} H (s, Mo)ds + V7 (t+ b, Myy,)|

E [ " H (s, My)ds + V7 (t+ h, MHh)} .

E[ t+hH(s,Ms)ds+V+(t+h,Mt+h)} < E[ t+hH(s,MS)ds+fth(s,Ms)ds]

IN

The result follows. O
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4 Characterization of the value function.

In this section, we give two different characterizations of the value function V* as a viscosity
solution of some deterministic functional equations. The first one, stating that V7 is the largest
subsolution of some equation, is interesting by its simplicity. The second one is purely local, but
is more involved in its formulation and derivation.

4.1 Characterization of the upper value function as largest subsolution of
some HJI-equation.

Proposition 4.1 The value function V7T is the largest continuous map on [0,T] x Iy which
satisfies

i) For all m € Ily, VT (T, m) = 0,

ii) V' is convex with respect to m,

iii) for all m € Ty, VT (-,;m) is a subsolution (in the viscosity sense) of the following ordinary
differential equation

%Vﬂt,m) +H({t,m)=0  in(0,7) . (4.12)
Proof: The map V7 clearly satisfies VT (T, m) = 0 for all m € IIy. Moreover V' is convex in m
by Lemma 2.4. Let us now check that, for any m € Ily, VT (-, m) is a subsolution of (4.12). For
t €[0,T), let ¢ € C1([0,T]) be such that V*(-,;m) < ¢ and V¥ (¢t,m) = ¢(t). Let M € M(t,m)

be the martingale measure defined by

v lm ifrelt,T),
" | 8, with probability m for t > T.

By dynamic programming (Corollary 3.6), we have, for any h € [0,T — t],

h
o(t)=V*tit,m)< FE [ " H(r, M,)dr + V7T (t+ h, M;,p,)
< h H(tr,m) +o(t+h) .

The result follows by dividing by h and letting h — 0.

We now prove that VT is the largest subsolution. Let w : [0,7] x IIy — R be convex with
respect to m, with w(T, -) = 0 and such that w(-,m) is a subsolution of (4.12). We have to prove
that w < V*. For (tg,mo) € [0,T] x Iy, let tp < t; < ... < t, = T be a subdivision of [t,T],
with tp41 —tp, =7 > 0.

For m € Ilp, k € {1,...,n — 2} and € > 0, let w(t) = sup{w(s,m) — =t — s[%,s € [0,T]} be
the sup-convolution of w on the interval [tg,tx+1]. Then (see e.g. [2]) the map w€ is a locally
Lipschitz subsolution on [tg,tx41] of

(w)'(t) + H(t,m) > —o(1).

It follows that

tht1
w(tgs1) — w(t) + H(s,m)ds > —71o(1).

tg
Since w® N\, w(-,m) as € \, 0, we get for w(-,m):
tht1

w(tgr1, m) — w(ty, m) + H(s,m)ds > 0. (4.13)

ty
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Let now M € M(tyg, mo) and let us define M7 € M(tp, mg) by
M; = Mtk for s € [tkatk—f—l)

From (4.13), we get
tet1
Ew(tyyr, My, ) —w(ty, My, ) + H(s, My, )ds| > 0.
173
where, since w is convex and M a martingale measure,

E [w(ty, My, )| Fe,| = wlty, My,).

It follows that

tet+1
B |w(tesr, My, ) — w(te, My,) + H(s,MtkH)dS] > 0. (4.14)
i

Summing up the right-hand side of (4.14) over all k£ € {0, ...,n—1} and recalling that w(T, -) = 0,

we get
n—1 thy1
Z/ H(s, My, )ds
k=0 "tk

Since (My) is cadlag, letting 7 — 0 yields to

w(to,mo) < E

w(ty,mo) < E [/OT H(37Ms)d8]

Now we take the infimum over M to get the desired result:
w(to, mo) < V*(to, mo)

O

4.2 Characterization of the value of the game as dual solution of a HJI-
equation.

The main drawback of the previous characterization is that it is of nonlocal nature. We now
show that it is possible to characterize the value function by local inequalities. We use here
several ideas of [6].

Definition 4.2 Let V : [0,T] x Iy — R.

1. Dual supersolution: We say that V is a viscosity dual supersolution to

oV
S (tm) + H(t,m) = 0 (4.15)

if V is lower semicontinuous, V (t,-) is convex for any t and if, for any m € Iy and smooth
test function ¢ : [0,T] — R such that t — V (t,m) — p(t) has a local minimum at t € [0,T)
with m extreme point of the graph of V(t,-), one has

() + H(t,m) <0
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2. Dual subsolution: We say that V' is a viscosity dual subsolution to (4.15) if V is upper
semicontinuous, V (t,-) is convex for any t and if, for any m € Iy and smooth test function
¢ :[0,T] = R such that t — V(t,m) — p(t) has a local minimum at t € [0,T), one has

O (&) + H(t,m) >0

3. Dual solution: We say that a continuous map V : [0,T] x IIs — R is a viscosity dual
solution of (4.15) if it is a sub and a supersolution of (4.15).

Proposition 4.3 The value function VT is a dual solution to

{ %—‘;(t,m) + H(t,m)=0 (4.16)

V(T,m)=0 Vm € Il

Proof : By Proposition 4.1, we know already that VT is a subsolution of (4.16). Let now any
m € Il and ¢ : [0,T] — R be smooth test function such that V*(¢,m) > ¢(t) with an equality

at £ and m is an extreme point of the graph of V*(¢,-). Let M be the optimal martingale
measure as in Corollary 3.6:
B t+h
Vt(t,m)=F

t

H(s, My)ds + V(T +h, MHh)] Vh e [0,T —1]. (4.17)
Taking h = 0 in (4.17) gives

VE(Em) = B [V M)
so that Mz = 7 because 7 is an extreme point of V*(Z,-). Since V* is convex in m, we have
E[VY(t +h, M) > V(& + h,m).

Replacing this in the right hand side term of (4.17), we obtain

t+h ~ T+h R )
o) =V*T(t,m) >F H(s,M)ds| +VT(t+h,m)>E H(s,Ms)ds| + o(t + h).
t t
(4.18)
Dividing by h and letting h — 07 in the above inequality gives the desired result. O

Proposition 4.4 (Comparison) If V; is a dual supersolution and Vs is a dual subsolution,
with Vi(T-) < Va(T, ) in Ila, then Vi < Va in [0,T] x Ila.

Remark 4.5 In particular V is the unique dual viscosity solution of equation (4.16).

Proof : Let us fix n, M > 0. We argue by contradiction, assuming that, for € > 0 sufficiently

small,
(s —t)°
2e

sup Vi(s,m) — Va(t,m) —

t,s,m

—-nt > 0,

where the supremum is taken over the Borel probability measures m with a support in B(0, M).
Since this set is compact, there is a maximum point (8¢, m§). As Vi(T-) < Vo(T,-), we
have 5,1 < T when € is small enough. Let C. be the set of maximum points of the form
(5¢,t¢,m) and let ¢ be an extreme point of C.. By Carathéodory Theorem, m* belongs to C-.
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We claim that m€ is an extreme point of the graph of V(&% ). Indeed, if m® = % with
Va(te,my) = Va(t, ma) = Va(t°, m©), we have

(56_56)2 —€ -~ € € =€ (ge _56)2
AN _ _ v/
s v vt ) -

2
1 _
S VA mi) — Va(E,m) -
i=1
by convexity of Vi(5% ). Now note also that the support of m; and the support of mg are
in B(0, M) because so is the support of m¢. By optimality of m¢ the points (5¢,t,m1) and
(5%, t¢,m3) belong to C, and therefore m; = mgy = m* since m€ is an extreme point.
(s—t)?
2e

We now use the definition of viscosity dual solutions: since the map s — Vi(s,m¢) —
has a maximum at s¢, we get
ge _ fe

€

+ H(s,m) >0.

S€_+)2
Since the map t — Va(t,m¢) + - Qet)

the graph of V5(5¢,-), we get

— nt has a minimum at §¢ with m® an extreme point of

o€ 1€

n + + H(3,m) <0

So
n+ H(5,m) — H(5m) <0.

As e — 0, we have 51 — ¢ and m® — m (up to some subsequence), so that n < 0. This
contradicts the definition of 7.

In conclusion, for any € > 0 and n > 0 and for any (s, m) € [0,T] x Iz such that the support
of m is in B(0, M), we have

—)?
Vits.m) — Va(tom) - O <0,
€
Taking s = t, and letting n — 07 and M — +oo, we obtain that inequality Vi (t,m)—Va(t,m) <
0 holds for any (¢,m) such that m has a compact support. We complete the proof by density.
O
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