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Abstract : We consider a two-player zero-sum game with integral payoff and with incomplete
information on one side, where the payoff is chosen among a continuous set of possible payoffs.
We prove that the value function of this game is solution of an auxiliary optimization problem
over a set of measure-valued processes. Then we use this equivalent formulation to characterize
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of possible payoffs is considered.
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1 Introduction.

In this paper, we investigate a continuous time two-player zerosum game with lack of informa-
tion on one side: according to a given probability, some payoff is chosen randomly among a
family of payoffs depending on a parameter taking its values in R

N , and is communicated to
one player (say Player 1), Player 2 being only aware of the underlying probability. Then Player
1 want to minimize, Player 2 to maximize the payoff.
Games with incomplete informations (where some players have private informations) were intro-
duced in the framework of repeated games by Aumann and Maschler in the nineteen sixties (see
[1]) and are, since then, the aim of many works, see for instance [7], [12], [14] and the references
therein.
The first author of the present paper introduced the continuous time case in [3]. It is proven
there that, under suitable assumptions, differential games with asymmetric informations have
a value which can be characterized as a solution in some dual, viscosity sense of a Hamilton-
Jacobi-Isaacs equation. The result was generalized to stochastic differential games in [4].
A crucial point in games with incomplete information is that, the players observing each other
all along the game, the non informed player will try to guess his missing information through
the actions of his opponent. This implies that the informed player, instead of fully using his
information, needs to reveal it sparingly and to hide its revelation by using random strategies
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to this aim. In the framework of repeated games, the behavior of the informed player is there-
fore strongly linked with a martingale with values in the set of probability measures, called
“martingale of beliefs”, which describes the belief the non informed player has on the chosen
index. Rewriting the value of the game as an optimization problem over the set of martingales
has been extensively used in the recent literature [8, 9]. When the set of possible payoffs is
finite (say: I possible payoffs), this set of probabilities over {1, . . . , I} can be assimilated to the
simplex ∆(I), subset of RI . In the case of continuous times games without dynamic, and in
analogy to the repeated games, we proved in [5], that the value function of the game is solution
of an optimization problem over this set of RI -valued martingales. This result is generalized to
stochastic differential games by Grün [10].
In the present paper we investigate the case of continuous games without dynamics, with a
continuum of possible cost functions. A crucial aspect of games with a finite number of possible
payoffs, is that the set of probability-measures can be assimilated to R

I . Therefore the value
function depend on two parameters t ∈ [0, T ], the starting time and p ∈ ∆(I) the initial proba-
bility and, even if the place taken by the parameter p in the Hamilton-Jacobi-Isaacs equation is
not standard, it is still an equation in R×R

I . The equivalent formulation of the value function
as a control problem over a set of martingales In the case of a continuum of possible payoffs.

The main results of this paper are, on the one hand, a representation formula of the value
in terms of a minimization problem over a set of martingale measures and the existence of an
optimal martingale measure. On another hand, we also characterize the value as the (dual)
solution of a Hamilton-Jacobi equation.

2 Notations and preliminaries.

Let us first introduce the model we will study throughout the paper. We consider a continuous
time game starting at some initial time t0 > 0 and ending at a terminal time T > t0. The
players try to optimize an integral payoff of the form

∫ T

t0

ℓ(x, s, u(s), v(s)) ds

where (u(s))s∈[t0,T ] is the control played by the first player while (v(s))s∈[t0,T ] is the control
played by the second player. The first player is minimizing, the second one maximizing. The
main point in the above payoff function is its dependence with respect to a parameter x. The
game is played as follows: at time t0 the parameter x is chosen by nature according to some
probability m̄ and the result is announced to the Player 1, but not to the Player 2. Then the
players choose their respective controls in order to optimize the payoff. The map ℓ as well as
the measure m̄ are public knowledge.

To fix the ideas, we will assume throughout the paper that the parameter x belongs to some
Euclidean space R

N . Although this assumption is not really important for the existence of a
value, the representation Theorem 3.2 or the characterization of the value given in Proposition
4.1, it will be crucial for the existence of an optimal martingale measure (Theorem 3.3) or a
sharper characterization (Proposition 4.3).

Moreover, to get some compactness ensuring the existence of an optimal martingale measure,
we will have to assume that the measure m̄ has some finite moment. Again, to fix the ideas, we
will assume the finiteness of the second moment (however, the reader will easily notice that any
moment larger than 1 would do the job). Let ∆(RN ) be the set of Borel probability measures
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on R
N and Π2 be the subset of ∆(RN ) with a finite second order moment:

∫

RN

|x|2dm(x) < +∞ ∀m ∈ Π2 .

It will be convenient to endow Π2 with the Monge-Kantorovich distance d1:

d1(m,m
′) = inf

γ∈Π(m,m′)

∫

R2N

|x− y|dγ(x, y)

where Π(m,m′) is the set of Borel probability measures on R
2N such that γ(A × R

N) = m(A)
and γ(RN ×A) = m′(A) for any Borel set A ⊂ R

N . Recall that the above minimization problem
has at least one minimum and we denote by Πopt(m,m

′) the set of such minima for d1. Again
there is some arbitrariness in the choice of this distance, but it is useful here to fix the notations.

Let T > 0 be a finite time horizon, and U and V two compact subsets of some finite
dimensional space. For all 0 ≤ t0 ≤ t1 ≤ T we denote by U(t0, t1) = {u : [t0, t1] → U measurable}
the set of controls with values in U . We endow U(t0, t1) with the L1 distance

dU(t0,t1)(u1, u2) =

∫ t1

t0

|u1(s)− u2(s)|ds ∀u1, u2 ∈ U(t0, t1) ,

and with the Borel σ−algebra associated with this distance. Recall that U(t0, t1) is then a Polish
space (i.e., a complete separable metric space). The set V(t0, t1) of Lebesgue measurable maps
v : [t0, t1] → V is defined in a symmetric way and endowed with the L1 distance and with the
associate Borel σ−algebra. We write U(t0) and V(t0) for U(t0, T ) and V(t0, T ).

The instantaneous reward

ℓ : RN × [0, T ]× U × V → R

is assumed to be continuous in all variables, Lipschitz in (x, t) uniformly in u and v, and bounded.
Fix now (t0,m) ∈ [0, T ]×Π2. For all (u, v) ∈ U(t0)× V(t0), we define the payoff

J (t0,m, u, v) =

∫

RN

∫ T

t0

ℓ(x, s, u(s), v(s)) ds m(dx).

Note that J(t0,m, u, v) is the mean with respect to the probability m of a family of running
costs depending on the parameter x ∈ R

N . The control u represents the action of Player 1, v
the action of Player 2. In this game, Player 1 will try to minimize, Player 2 to maximize the
payoff.
In order to give a probabilistic interpretation of the game, we now introduce a probability space
(Ω0,F0, P0). If X is a random variable of distribution m, we can rewrite the payoff

J (t0,m, u, v) = E0

[
∫ T

t0

ℓ (X, s, u(s), v(s)) ds

]

.

The next step is to define the strategies of the Players. We have to model the facts that

• Player 1 knows the index x before the game starts, but not Player 2,

• each Player observe the action of his opponent,

• the Players can act randomly.
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The strategies of Player 1 are defined as follows: For some fixed subdivision ∆ : t0 < t1 <
. . . < tn = T , let A∆(t0) be the set of Borel measurable maps α : V(t0) → U(t0) which
are nonanticipative with delay with respect to the subdivision ∆ : for any v1, v2 ∈ V(t0), if
v1 ≡ v2 a.e. on [t0, ti] for some i ∈ {0, . . . , n − 1}, then α(v1) ≡ α(v2) on [t0, ti+1]. We set
A(t0) = ∪∆A∆(t0) and endow A(t0) with the distance

d(α1, α2) = sup
v∈V(t0)

dU(t0)(α1(v), α2(v))

An element of B(t0), the set of strategies for Player 2, is a nonanticipative, Borel measurable
map β : U(t0) → V(t0) such that, for all t ∈ [t0, T ], for any u1, u2 ∈ U(t0), there exists δ > 0
such that, if u1 ≡ u2 a.e. on [t0, t], then β(u1) ≡ β(u2) on [t0, t + δ]. (i.e, in contrast to the
strategies of Player I, Player II is allowed to adapt his delay belonging what he is answering to).

Due to the delays the Players have to respect, we get, as in [4, 5]:

Lemma 2.1 There exists a Borel measurable map Φ : A(t0)×B(t0) → U(t0)×V(t0) such that,
for all pair (α, β) ∈ A(t0)× B(t0) and (u, v) ∈ U(t0)× V(t0),

(u, v) := Φ(α, β) ⇔ [ α(v) = u and β(u) = v a.e. ] (2.1)

Definition 2.2 Fix some other sufficiently large probability spaces (Ω1,F1, P1) and (Ω2,F2, P2).
A strategy for Player I for the initial time t0 ∈ [0, T ] is a measurable application α from R

N ×Ω1

to some A∆(t0). We denote by ÃX(t0) the set of these strategies.
A strategy for Player II is a random variable on (Ω2,F2, P2) with values in B(t0). We denote
by B̃(t0) the set of strategies for Player II.

We set (Ω,F , P ) = (Ω0 × Ω1 × Ω2,F0 ⊗ F1 ⊗ F2, P0 ⊗ P1 ⊗ P2) and denote by E[·] the corre-
sponding expectation.

Fix t0 ∈ [0, T ]. For any (α, β) ∈ ÃX(t0)× B̃(t0), we are now able to define the payoff of the two
strategies by

J (t0, α, β,m) :=

∫

RN×A(t0)×B(t0)

∫ T

t0

ℓ(x, t,Φ(α(x, ω1), β(ω2))(t))dt dP1(ω1)dP2(ω2)dm(x)

= E

[
∫ T

t0

ℓ(X, t,Φ(α(X), β)(t))dt

]

The upper and lower value functions of the game are defined by

V+(t0,m) = inf
α∈ÃX (t0)

sup
β∈B̃(t0)

J (t0, α, β,m),

and
V−(t0,m) = sup

β∈B̃(t0)

inf
α∈ÃX(t0)

J (t0, α, β,m).

Note that we also have

V+(t0,m) = inf
α∈ÃX (t0)

sup
β∈B(t0)

J (t0, α, β,m).

Lemma 2.3 The value functions V+ and V− are Lipschitz continuous.
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Proof: We only explain the proof for V+, the arguments for V− being symmetrical. Let us first
check the Lipschitz continuity in m. Let m1,m2 ∈ Π2 and γ ∈ Πopt(m1,m2). Let us desintegrate
γ with respect to m1: dγ(x, y) = dγx(y)dm1(x).
For ǫ > 0, let α2 ∈ ÃX(t0) be ǫ-optimal for V+(t0,m2):

sup
β∈B(t0)

J (t0, α2, β,m2) ≤ V+(t0,m2) + ǫ.

Let ξ : RN × Ω1 → R
N be a measurable map such that, for all x ∈ R

N , the random variables
(ξ(x, ·), x ∈ R

N ) are independent of (α2(x), x ∈ R
N) and the distribution of each ξ(x, ·) is γx.

Then the map (ω, x, v) → α1(ω, x, v) := α2(ω, ξ(x, ω), v) defines a strategy, i.e., an element of
ÃX(t0). We have, for all β ∈ B(t0),

J (t0, α1, β,m1) =

∫

RN

E1

[
∫ T

t0

ℓ(x, t,Φ(α2(ξ(x)), β)(t))dt

]

dm1(x)

=

∫

RN

dm1(x)

∫

RN

dγx(y)E1

[
∫ T

t0

ℓ(x, t,Φ(α2(y), β)(t))dt

]

=

∫

R2N

dγ(x, y)E1

[
∫ T

t0

ℓ(x, t,Φ(α2(y), β)(t))dt

]

≤

∫

R2N

dγ(x, y)E1

[
∫ T

t0

(ℓ(y, t,Φ(α2(y), β)(t)) + C|x− y|) dt

]

≤ J (t0, α2, β,m2) + Cd1(m1,m2)

≤ V+(t0,m2) + ǫ+ Cd1(m1,m2).

Therefore

V+(t0,m1) ≤ sup
β∈B(t0)

J (t0, α1, β,m1) ≤ V+(t0,m2) + ǫ+ Cd1(m1,m2).

This proves the Lipschitz continuity of V+ with respect to m, uniformly in t.

Next we prove the Lipschitz continuity in time. Fix m ∈ Π2, 0 ≤ t0 ≤ t1 ≤ T and ū ∈ U .
For ǫ > 0, let α1 be ǫ-optimal for V+(t1,m). We define a strategy in ÃX(t0) by setting

α0(x, v, ω1)(t) =

{

ū for t ∈ [t0, t1)
α1(x, v|[t1,T ]

, ω1) otherwise.

For all β0 ∈ B(t0), we define β1 ∈ B(t1) by setting β1(u) = β0((ū, u)), where (ū, u) denotes the
control equal to ū on [t0, t1) and to u on (t1, T ). Let (u1(x, ω1), v1(x, ω1)) = Φ(α1(x, ω1), β1)
be the solution of the fixed point equation given in Lemma 2.1. Then, by definition of α0

and because β0 is nonanticipative, Φ(α0(x, ω1), β0) is equal to (ū, β0(ū)) on [t0, t1] and to
(u1(x, ω1), v1(x, ω1)) on [t1, T ]. Hence, as the payoff is bounded by C,

J (t0,m, α0, β0) = E
[

∫ T

t0
ℓ(X, t,Φ(α0(X), β0)(t))dt

]

≤ C(t1 − t0) + J (t1,m, α1, β1)

≤ C(t1 − t0) +V+(t1,m) + ǫ.
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Therefore
V+(t0,m) ≤ C(t1 − t0) +V+(t1,m) .

The reverse inequality
V+(t0,m) ≥ V+(t1,m)− C(t1 − t0)

can be established in a symmetrical way. �

Lemma 2.4 The value functions and V− and V+ are convex with respect to m.

Proof: The convexity of V− is an easy consequence of the definition, because

V−(t0,m) = sup
β∈B̃(t0)

∫

RN

inf
α∈A(t0)

∫

Ω2

∫ T

0
ℓ(x, t,Φ(α, β(ω2)))dt dP2(ω2)dm(x) ,

which is clearly convex with respect to m.
Let us now check the convexity of V+. Fix t0 ∈ [0, T ] and let m1,m2 ∈ Π2 and λ ∈ (0, 1).

Set m = λm1 + (1− λ)m2.
Since m1 is absolutely continuous with respect to m, there exist pλ ∈ L1(RN ,R+;m) such that

λm1(dx) = pλ(x)m(dx)

with pλ ≥ 0 m−a.e. Remark that

(1− λ)m2(dx) = (1 − pλ(x))m(dx),

and therefore that pλ takes its values in [0, 1] m−a.e. Now, for ǫ > 0, let α1 (resp. α2) ∈ ÃX(t0)
be ǫ-optimal for V+(t0,m1) (resp. V

+(t0,m2)), and let α ∈ ÃX(t0) be such that, for all x ∈ R
N ,

and all measurable, bounded f : A(t0) → R,

E1 [f(α(x))] = pλ(x)E1 [f(α1(x))] + (1− pλ(x))E1 [f(α2(x))] .

For any β ∈ B(t0), it follows that

J (t0,m, α, β) =

∫

RN

E1

[
∫ T

t0

ℓ(x, t,Φ(α(x), β)(t))dt

]

dm(x)

=

∫

RN

(

pλ(x)E1

[
∫ T

t0

ℓ(x, t,Φ(α1(x), β)(t))dt

]

+ (1− pλ(x))E1

[
∫ T

t0

ℓ(x, t,Φ(α2(x), β)(t))dt

])

dm(x)

= λ

∫

RN

E1

[
∫ T

t0

ℓ(x, t,Φ(α1(x), β)(t))dt

]

dm1(x) + (1− λ)

∫

RN

E1

[
∫ T

t0

ℓ(x, t,Φ(α2(x), β)(t))dt

]

dm2(x)

≤ λV+(t0,m1) + (1− λ)V+(t0,m2) + ǫ.

Since this holds true for all β ∈ B(t0) and for any ǫ > 0, it follows that

V+(t0,m) ≤ λV+(t0,m1) + (1− λ)V+(t0,m2).

�
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We now introduce the Hamiltonian of the game :

∀(t,m) ∈ [0, T ]×Π2, H(t,m) = inf
u∈U

sup
v∈V

∫

RN

ℓ(x, t, u, v)dm(x),

and assume throughout the rest of the paper that Isaac’s condition: for all t ∈ [0, T ] andm ∈ Π2,

inf
u∈U

sup
v∈V

∫

RN

ℓ(x, t, u, v)dm(x) = sup
v∈V

inf
u∈U

∫

RN

ℓ(x, t, u, v)dm(x). (2.2)

Proposition 2.5 Under Isaac’s condition (2.2), the game has a value: for all (t0,m) ∈ [0, T ]×
Π2, V

+(t0,m) = V−(t0,m).

Proof: The result has been proved for measures m with finite support and very slight different
notion of strategies in [5]. A careful examination of the proof shows that the result of [5] also
hold with the new definition of strategies. Let us explain how the condition on the measure can
be removed. For an arbitrary measure m ∈ Π2, let (mn)n∈N be a sequence of measures with
finite support, such that d1(mn,m) →n→+∞ 0. Since, by lemma 2.3, V+ and V− are Lipschitz
with respect to m, we have, for all t0 ∈ [0, T ], and all n ∈ N,

|V+(t0,m)−V−(t0,m)| ≤ |V+(t0,m)−V+(t0,mn)|+|V−(t0,m)−V−(t0,mn)| ≤ 2Cd1(m,mn),

where C is a Lipschitz constant for V+ and V−. The right-hand side term being arbitrarily
small, the result follows. �

Let us complete this paragraph with a technical Lemma, which shows that the payoff associated
to a control without delay may be approximated as close as needed by the same control but
with delay.

Lemma 2.6 Let m ∈ Π2 and ǫ > 0. For all v ∈ V(0), there exists δ(v) > 0 such that, for all
u ∈ U(0),

∣

∣

∣

∣

∫

RN

∫ T

0
ℓ(x, s, us, vs)dsdm(x)−

∫

RN

∫ T

0
ℓ(x, s, us, v(s−δ(v))+dsdm(x)

∣

∣

∣

∣

≤ ǫ.

Proof: Let M be an upper bound for |ℓ(x, s, u, v)|. Fix ǫ > 0 and let B ∈ B(RN ) a compact set
such that m(B) ≥ 1− ǫ/6MT . Then we have, for all δ > 0,

∣

∣

∣

∣

∫

RN

∫ T

0
ℓ(x, s, us, vs)dsdm(x)−

∫

RN

∫ T

0
ℓ(x, s, us, v(s−δ)+)dsdm(x)

∣

∣

∣

∣

≤ ǫ/3 + I(δ, ǫ).

with

I(δ, ǫ) :=

∫

B

∫ T

0

∣

∣ℓ(x, s, us, vs)− ℓ(x, s, us, v(s−δ)+)
∣

∣ dsdm(x)

Now, since ℓ is continuous, it is uniformly continuous on the compact set B × [0, T ] × U × V .
Therefore there exists η > 0 such that, for all (x, s, u) ∈ B × [0, T ] × U and v, v′ ∈ V with
|v − v′| ≤ η, |ℓ(x, s, u, v) − ℓ(x, s, u, v′)| ≤ ǫ/3T .
It follows that, for all δ > 0,

I(δ, ǫ) ≤ ǫ/3 + 2Mλ({s ∈ [0, T ], |vs − v(s−δ)+ | > η}).

≤ ǫ/3 + 2M
η

∫ T

0 |vs − v(s−δ)+ |ds,
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where the last relation comes from the inequality of Bienaymé-Tchebychev.
Finally it is well known that, for any v ∈ V(0),

lim
δց0

∫ T

0
|vs − v(s−δ)+ |ds = 0.

Therefore there exists δ0 > 0 such that, for all δ < δ0,

∫ T

0
|vs − v(s−δ)+ |ds ≤ ǫη/6M.

The result follows. �

3 An alternative formulation of the value function.

In this section, we show that the upper value function can be represented in term of a mini-
mization of a cost over a family of martingale measures. Many results on these processes used
below can be found in Horowitz [11] or Walsh [15] for instance.

For any 0 ≤ t0 ≤ t1 ≤ T and m ∈ Π2, we introduce the set M(t0, t1,m) of all measure-valued
processes (Mt)t0≤t≤t1 defined on a sufficiently large probability space (Ω,F , P ) which satisfy for
all measurable, bounded functions f : RN → R,

(i) t 7→

∫

RN

f(x)dMs(x) is P -a.s. càdlàg,

(ii) there exists a R
N -valued random variable X of distribution m such that, for all t ∈ [t0, t1],

P -a.s.,

Mtf :=

∫

RN

f(x)dMt(x) = E
[

f(X)|FM
t

]

, (3.3)

where (FM
t )t∈[t0,t1] is the right continuous, completed filtration generated by (Mt(B), B ∈

B(RN))t∈[t0,t1].

Remarks 3.1 1) Let M ∈ M(t0, t1).

• For all t ∈ [t0, t1], the random variable Mt is P -a.s. a probability measure which satisfies

E [Mt(B)] = m(B), B ∈ B(RN ).

• The process (Mt) is a martingale measure: for all measurable, bounded function f , (Mtf)t∈[t0,t1)
is a martingale in the filtration (FM

t )t∈[t0,t1).

• Let G : [t0, t1) × R
N × Ω → R measurable, bounded and such that, for all x ∈ R

N the
process (G(t, x, ·))t∈[t0 ,t1) is adapted to the filtration (FM

t ). Then we get, P -a.s., for all
t ∈ [t0, t1),

E[G(t,X)|FM
t ] =

∫

RN

G(t, x)dMt(x).
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2) Conversely, let (Ft)t∈[t0,t1) be a right continuous and complete filtration on (Ω,F , P ). For all
t ∈ [t0, t1) and B ∈ B(Rn), set

Mt(B) = P [X ∈ B|Ft].

Then (Mt) is a martingale measure, which admits a càdlàg modification, i.e. a modification M
such that, for all measurable and bounded function f , (Mtf) is càdlàg. It is then clear that this
modification belongs to M(t0, t1). In the sequel we identify all martingale measures with their
càdlàg modifications.

We write M(t0,m) for M(t0, T,m).

Now let

W (t0,m) = inf
M∈M(t0,m)

E

[
∫ T

t0

H(s,Ms)ds

]

, (3.4)

where we recall that H(t,m) = infu∈U supv∈V

∫

RN

ℓ(x, t, u, v)dm(x).

The main result of this section is the following representation formula:

Theorem 3.2 For all (t0,m) ∈ [0, T ] ×Π2, it holds that

W (t0,m) = V+(t0,m). (3.5)

Proof: We shall prove the two inequalities providing (3.5).

1) V+(t0,m) ≤W (t0,m)

FixM ∈ M(t0,m) and let ū(t,m) be a measurable selection of Argminu∈U supv∈V

∫

RN

ℓ(x, t, u, v)dm(x).

Consider the control process ũ = (u(t,Mt))t∈[t0,T ]. Remark that ũ is adapted to the filtration

(FM
t ). Since X is a realization of the probability measure m, the joint distribution of (ũ,X) on

U(t0)× R
N can be desintegrated as follows:

P [(ũ,X) ∈ dudx] = P̃x(du)m(dx),

for some measurable family of probability measures (P̃x, x ∈ R
N ).

Let now be a strategy αM for Player I such that, for all x ∈ R
N , for all measurable bounded

f : U(t0) → R and for all v ∈ V(t0),

E1[f(αM (x, v))] =

∫

U(t0)
f(u)P̃x(du).

Then, for any arbitrary β ∈ B(t0), strategy for Player II, we got

J (t0,m, αM , β) =

∫

RN

∫

U(t0)

∫ T

t0

ℓ(s, x, u(s), β(u)s)dsP̃x(du)dm(x)

= E

[
∫ T

t0

ℓ(s,X, ũs, β(ũ)s)ds

]

= E

[
∫ T

t0

E
[

ℓ(s,X, ũs, β(ũ)s)|F
M
s

]

ds

]

= E

[
∫ T

t0

∫

RN

ℓ(s, x, ũs, β(ũ)s)Ms(dx)ds

]

.
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It follows that

J (t0,m, αM , β) ≤ E

[
∫ T

t0

sup
v∈V

∫

RN

ℓ(s, x, ũs, v)Ms(dx)ds

]

.

Due to the arbitrariness of β ∈ B(t0) and the definition of ũ, it follows that

supβ∈B(t0) J (t0,m, αM , β) ≤ E

[
∫ T

t0

sup
v∈V

∫

RN

ℓ(s, x, ũs, v)Ms(dx)ds

]

= E

[
∫ T

t0

H(s,Ms)ds

]

,

The result follows.

2) W (t0,m) ≤ V+(t0,m)

2.0) Fix ǫ > 0. Let αǫ ∈ ÃX(t0) be ǫ-optimal for V+(t0,m). The assertion follows as soon
as we find some M ∈ M(t0,m) and β ∈ B(t0) such that

E

[
∫ T

t0

ℓ (X, s,Φ(αǫ(X), β)(s)) ds

]

≥ E

[
∫ T

t0

H(s,Ms)ds

]

− ǫ.

More precisely, we shall prove by induction, that there exists M ∈ M(t0,m) and β ∈ B(t0),
such that, if t0 < t1 < . . . < tn = T denotes the time grid associated to the strategy αǫ, it holds,
for all k ∈ {1, . . . , n}, that

E

[

∫ tk

tk−1

ℓ (X, s,Φ(αǫ(X), β)(s)) ds

]

≥ E

[

∫ tk

tk−1

H(s,Ms)ds

]

− ǫ/n. (3.6)

In parallel to the strategy β we shall construct a random process Z : Ω × [t0, T ] → U wich
satisfies

Φ(αǫ(X), β)(s) = (Zs, β(Z)(s)) λ× P -a.s.. (3.7)

2.1) Because of the delay, on [t0, t1), the control of Player I doesn’t depend on the strategy of
Player II. Since, by definition, αǫ is a measurable map from Ω1×R

N toA(t0), this control depends
also in a measurable way of (ω1, x). More precisely, we can set, for any (x, ω, v) ∈ R

N×Ω×V(t0),
uǫ(x, ω) = α(x, ω1, v)|[t0,t1) ∈ U(t0, t1) with ω = (ω0, ω1). We finally define the random process
(Zs) on the time interval [t0, t1) by: Zs = uǫ(X)s, s ∈ [t0, t1).
Then, for all β ∈ B(t0) and x ∈ R

N , a trivial application of the fixed point relation (2.1) of
Lemma 2.1 shows that, on the same interval [t0, t1), (3.7) is satisfied.
We denote by (Fs, s ∈ [t0, t1)) the completed right-continuous filtration generated by the process
(Zs). Let M ∈ M(t0,m) be the martingale measure defined on [t0, t1) by: for all B ∈ B(RN),

Ms(B) = P [X ∈ B|Fs], s ∈ [t0, t1).

2.2) Suppose now that, for some k ∈ {0, . . . , n− 1}, for all u ∈ U(t0), β(u) is defined on [t0, tk),
as well as (Zs) satisfying (3.7) on [t0, tk+1). Let M ∈ M(t0,m) still be a càdlàg version of the
martingale measure M0 defined on [t0, tk + 1) by

∫

RN

f(x)M0
s (dx) = E[f(X)|Fs], s ∈ [t0, tk+1).
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We suppose also that the inequality (3.6) holds for all j ∈ {1, . . . , k}.
Now we extend the strategy β on [tk, tk+1):
First of all, for u ∈ U and s ∈ [tk, tk+1), we denote by v̄(s, u,m) a measurable selection of

Argmaxv∈V

∫

RN

ℓ(x, s, u, v)m(dx).

Remark that, for all s ∈ [t0, tk+1), Ms− is measurable with respect to Fs− = σ(Zr, r < s) ∨ N ,
where N is the set of null-sets for the probability P .
Therefore there exists some measurable application Ψ : [t0, tk+1) × U(t0), such that, for all
u ∈ U(t0) and all fixed s ∈ [t0, tk+1), Ψ(s, u) depends only on the restriction of u on [t0, s) :
Ψ(s, u) = Ψ(s, (ur, r ∈ [t0, s)) and such that v̄(s, Zs,Ms−) = Ψ(s, (Zr, r ∈ [t0, s])) λ × P -a.s..
Now we set, for any (u(s), s ∈ [t0, T ]) ∈ U(t0) and s ∈ [tk, tk+1), β

0(u)(s) = Ψ(s, (ur, r ∈ [t0, s])).
By Lemma 2.6, there exists, for all u ∈ U(t0) some delay δ(u) > 0 such that

∣

∣

∣

∣

E

∫ tk+1

tk

ℓ(X, s, us, β
0(u)s)ds− E

∫ tk+1

tk

ℓ(X, s, us, β
0(u)(s−δ(u))+ )ds

∣

∣

∣

∣

≤ ǫ/n.

We can extend now the strategy β on [tk, tk+1) by setting

∀u ∈ U(t0),∀s ∈ [tk, tk+1), β(u)s = β0(u)(s−δ(u))+ .

We get then

E

[
∫ tk+1

tk

ℓ(X, s,Φ(αǫ(X), β)(s))ds

]

= E

[
∫ tk+1

tk

ℓ(X, s, Zs, β
0(Z)(s− δ(Z))+)ds

]

≥ E

[
∫ tk+1

tk

ℓ(X, s, Zs, β
0(Z)(s))ds

]

− ǫ/n.

Further, since the filtration (Fs) is generated by (Zs) and by the definition of M , it holds, for
all s ∈ [tk−1, tk),

E
[

ℓ(X, s, Zs, β
0(Z)(s))|Fs

]

=

∫

RN

ℓ(x, s, Zs, β
0(Z)(s))dMs(x) P -a.s..

Integrating over [tk, tk+1) and taking the expectation of both sides, we get

E

[
∫ tk+1

tk

ℓ(X, s, Zs, β
0(Z)(s))ds

]

= E

[
∫ tk+1

tk

∫

RN

ℓ(x, s, Zs, v̄(s, Zs,Ms−))dMs(x)ds

]

= E

[
∫ tk+1

tk

∫

RN

ℓ(x, s, Zs, v̄(s, Zs,Ms))dMs(x)ds

]

= E

[
∫ tk+1

tk

(

sup
v∈V

∫

RN

ℓ(x, s, Zs, v)Ms(dx)

)

ds

]

≥ E

[
∫ tk+1

tk

H(s,Ms)ds

]

.

It remains now to extend the process Z on [tk+1, tk+2) : Using the fix point Lemma 2.1, we
define first the map uǫ : RN × Ω → U(tk+1, tk+2) by

∀(x, ω1) ∈ R
N × Ω1,Φ(α

ǫ(x, ω1), β) = (uǫ(x, ω1), β(u
ǫ(x, ω1))

11



and set then, for all s ∈ [tk+1, tk+2),

Zs(ω) = uǫ(X(ω0), ω1).

The result follows. �

In the remaining part of this section, we prove that the infimum in (3.4) is attained up
to a change of probability space. Let P be the set of Radon nonnegative measures m on
[−1, T + 1] × R

N , with total mass T + 2, with a first marginal equal to the Lebesgue measure
on [−1, T + 1] and such that

∫

(−1,T+1)×RN

|x|2m(dt, dx) < +∞ .

We endow P with the weak topology. Any measurem ∈ P can be desintegrated intom(dx, ds) =
ms(dx) ds, where ms is a probability measure on R

N for almost every s. In the sequel we
systematically identify measurem ∈ P and Borel families of probability measures (ms)s∈[−1,T+1].
We denote by Γ the subset of P consisting in measuresm ∈ P which have a càdlàg representative
for the d1 distance. The topology on Γ is the one induced by P. We denote by t → mt the
canonical process on Γ. For a fixed initial condition (t̄, m̄) ∈ [0, T ] × Π2 we finally denote by
M(t̄, m̄) the set of Borel probability measures M on Γ under which,

(i) mt̄ = m̄ for t < t̄,

(ii) mt ∈ D for t ≥ T , where D is the set of single Dirac masses on R
N ,

(iii) for any continuous, bounded map ϕ : RN → R, the process t →
∫

RN ϕ(x) dmt(x) is a
càdlàg martingale for the filtration (Ft) generated by the process (mt).

Note that the law of any martingale measure M ∈ M(t0, m̄) belongs to M(t̄, m̄).

Theorem 3.3 For any (t̄, m̄) ∈ [0, T ]×Π2, there is some M̄ ∈ M(t̄, m̄) such that

V+(t̄, m̄) =

∫

Γ

∫ T

t̄

H(s,ms) ds dM̄(m) .

Theorem 3.3 is an easy consequence of the following compactness property of the setM(t̄, m̄):

Proposition 3.4 Let (t̄, m̄) ∈ [0, T ]×Π2. Let (Mn) be a sequence in M(t̄, m̄). Then there is a
subsequence (Mn′

) and a set I of full measure in [−1, T + 1] such that (Mn′

) converges weakly
(as a measure over P) to some M ∈ M(t̄, m̄) and (Mn′

t ) converges weakly (as a measure over
∆(RN )) to Mt for any t ∈ I.

The proof of Proposition 3.4 is a variation on a paper by Meyer and Zheng [13]. Let us start
with some sufficient condition for a measure on P to be supported by Γ. For this, we need some
notations. For m ∈ P and ϕ ∈ C0 with at most a linear growth, we denote by t → mt(ϕ) the
real-valued measurable map t→

∫

RN ϕ(x)dmt(x).
Let t → ft on [−1, T + 1] be a real valued measurable map and u < v. Following [13],

we define the number of crossing Nuv(f) as the largest number k for which we can find times
−1 ≤ t1 < t′1 < · · · < tk < t′k ≤ T + 1 such that each set of the form (−1, t1) ∩ f

−1((−∞, u)),
(ti, t

′
i) ∩ f

−1((v,+∞)), (t′i, ti+1) ∩ f
−1((−∞, u)) and (t′k, T + 1) ∩ f−1((v,+∞)) has a positive

measure. Let Lip1 be the set of 1−Lipschitz continuous maps ϕ on R
N such that ϕ(0) = 0.
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Lemma 3.5 Let M be a probability measure on P such that, for some constant C,

M

[

sup
t∈[−1,T+1]

∫

RN

(|x|2 + 1) dmt(x) > R

]

≤
C

R
∀R ≥ 1 (3.8)

and
∫

P
Nuv(m(ϕ)) dM(m) ≤

|u|+ C

v − u
∀u < v, ϕ ∈ Lip1 .

Then M(Γ) = 1.

Proof of the Lemma: We endow Lip1 with the distance

d(ϕ,ψ) =

∥

∥

∥

∥

ϕ− ψ

|x|2 + 1

∥

∥

∥

∥

L∞(Rn)

.

Then Lip1 is a compact set. Fix ǫ > 0, R ∈ (0, 1/(2ǫ)), u < v such that v − u > 2Rǫ and
ϕ1, . . . , ϕn in Lip1 such that

⋃n
k=1B(ϕk, ǫ) ⊃ Lip1, where B(ϕk, ǫ) is the closed ball centered at

ϕk and of radius ǫ in Lip1. In view of our assumption,

M
[

N (u+Rǫ)(v−Rǫ)(m(ϕk)) ≥
n

ǫ

]

≤
|u|+Rǫ+ C

v − u− 2Rǫ

ǫ

n

So

M

[

sup
k∈{1,...,n}

N (u+ǫ)(v−ǫ)(m(ϕk)) ≥
n

ǫ

]

≤
|u|+Rǫ+ C

v − u− 2Rǫ
ǫ

In view of assumption (3.8), we have

M

[

sup
t∈[−1,T+1]

∫

RN

(|x|2 + 1) dmt(x) > R

]

<
C

R
.

Let ER denote the set of m ∈ P such that sup
t∈[−1,T+1]

∫

RN

(|x|2 + 1) dmt(x) ≤ R. Let ϕ ∈ Lip1

and m ∈ ER. By definition of the (ϕk), there is some k ∈ {1, . . . , n} such that d(ϕ,ϕk) ≤ ǫ.
Then

sup
t∈[−1,T+1]

|mt(ϕ) −mt(ϕ
k)| ≤ sup

t∈[−1,T+1]
(|x|2 + 1)dmt(x) d(ϕ,ϕ

k) ≤ Rǫ .

Hence
sup

ϕ∈Lip1

Nuv(m(ϕ)) ≤ sup
k∈{1,...,n}

N (u+Rǫ)(v−Rǫ)(m(ϕk)) ,

so that

M

[{

sup
ϕ∈Lip1

Nuv(m(ϕ)) ≥
n

ǫ

}

∪Ec
R

]

≤
|u|+Rǫ+ 1

v − u− 2Rǫ
ǫ+

C

R
.

Letting ǫ→ 0 and then R→ +∞ we obtain, for any u < v and M − a.s.

sup
ϕ∈Lip1

Nuv(m(ϕ)) < +∞ and sup
t∈[−1,T+1]

∫

RN

(|x|2 + 1) dmt(x) < +∞ . (3.9)

It remains to show that any m satisfying the above inequalities coincides (up to a subset of
measure 0) with an element of Γ.
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Let us fix t ∈ (0, T ] and let Lt(m) the left essential upper limit of (ms) as s→ t−:

ν ∈ Lt(m) ⇔ ∀δ > 0, |{s ∈ (t− δ, t), ms ∈ B(ν, δ)}| > 0

where B(ν, δ) is the ball centered at ν and of radius δ for the Monge-Kantorovich d1 distance.
We claim that Lt(m) is a singleton. Indeed, note first that Lt(m) is not empty by compactness.
Assume that Lt(m) is not a singleton. Then there would exist some ν1 6= ν2 in Lt(m). Since

sup
ϕ∈Lip1

∫

RN

ϕd(ν1 − ν2) = d1(ν1, ν2) ,

there is some ϕ ∈ Lip1 such that
∫

RN ϕd(ν1 − ν2) = η > 0. Let us set u =
∫

RN ϕdν2 + η/4
and v =

∫

RN ϕdν1 − η/4. Then v > u and, by definition of Lt(m), Nuv(m(ϕ)) = +∞. This
contradicts (3.9). Therefore Lt(m) is a singleton for any t. In the same way, one can prove
that the right essential upper limit Rt(m) of (ms) as s → t+ is reduced to a singleton for any
t ∈ [0, T ). One then easily checks that t → Rt(m) is right-continuous, has a left-limit on (0, T )
and that mt = Rt(m) for a.e. t. Thereforem belongs to Γ because m has a càdlàg representative
R·(m). �

Proof of Proposition 3.4: Let (Mn) be a sequence in M. Since, for any k > 0 and for any
fixed n, the random process t →

∫

RN (|x|2 ∧ k)dmt(x) is a martingale under Mn, we have, from
Doob’s maximal inequality,

Mn

[

sup
t∈[−1,T+1]

∫

RN

(|x|2 ∧ k)dmt(x) ≥ R

]

≤
1

R

∫

RN

|x|2dm̄(x) =:
C̄

R
∀R ≥ 1 .

Letting k → +∞, we obtain

Mn

[

sup
t∈[−1,T+1]

∫

RN

|x|2 dmt(x) ≥ R

]

≤
C̄

R
∀R ≥ 1 .

Since the set

{

m ∈ P, sup
t∈[−1,T+1]

∫

RN

|x|2 dmt(x) ≤ R

}

is compact, the sequenceMn is tight and

therefore a subsequence of (Mn), still denoted (Mn), converges weakly on P to some probability
law M . Note that

M

[

sup
t∈[−1,T+1]

∫

RN

|x|2 dmt(x) > R

]

≤
C̄

R
∀R ≥ 1 .

Let us now show thatM is supported by Γ. Fix this, let us denote by En and E the expectations
with respect to Mn and M respectively. Fix ϕ ∈ Lip1 ∩ C0

b (R
N ), where C0

b (R
N ) denotes the set

of continuous, bounded function in R
N . Our aim is to estimate E [Nuv(m(ϕ))]. Since, under

Mn, the process t →
∫

RN ϕ(x) dmt(x) is a martingale, its conditional variation (in the sense of
[13]) can be estimated by

sup
t∈[−1,T+1]

En

[∣

∣

∣

∣

∫

RN

ϕ(x) dmt(x)

∣

∣

∣

∣

]

≤ sup
t∈[−1,T+1]

En

[
∫

RN

(|x|2 + 1) dmt(x)

] ∥

∥

∥

∥

ϕ

|x|2 + 1

∥

∥

∥

∥

∞

≤ C̄ +1

So, by Lemma 3 of [13], we have, for any u < v,

En [Nuv(m(ϕ))] ≤
|u|+ C̄ + 1

v − u
.
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Since Nuv is lower semicontinuous for the weak topology, we get

E [Nuv(m(ϕ))] ≤
|u|+ C̄ + 1

v − u
.

Now we can relax the boundedness assumption on ϕ to get that the above inequality holds for
any ϕ ∈ Lip1. Then Lemma 3.5 implies that M(Γ) = 1. Note also that, under M , m0− = m̄
and mt ∈ D for any t ≥ T because D is closed under the weak topology.

We now prove the finite dimensional convergence. Since P is a Polish space andMn converges
weakly toM , Skorokhod’s theorem implies that there is a probability space (Ω,A,P) and random
variables Mn and M on P with respective law Mn and M and such that Mn almost surely
converges to M. Note that the processes t → Mn

t and t → Mt are càdlàg P−a.s. because
Mn is supported by Γ. Let now (ϕk) be a sequence which is dense in C0

b (R
N ) (for the uniform

convergence on compact subsets of RN). From our assumption, the process t → Mn
t ϕ

k is a
martingale. So, by a diagonal argument, (the proof of) Theorem 5 of [13] gives the existence
of a set of full measure I in [0, T ] and a subsequence (again denoted (Mn)) such that (Mn

t ϕ
k)

converges to Mtϕ
k as n→ +∞ P−a.s. Since (ϕk) is dense, this easily implies that (Mn

t ) weakly
converges to Mt for any t ∈ I P−a.s.. This means thatMn

t converges weakly toMt (as measures
on ∆(RN )) for any t ∈ I: for any ϕ ∈ C0

b (∆(RN )),

∫

∆(RN )
ϕ(ν)dMn

t (ν) = E [ϕ(Mn
t )] → E [ϕ(Mt)] =

∫

∆(RN )
ϕ(ν)dMt(ν) ∀t ∈ I .

Let us finally show that M belongs to M. For this it only remains to show that, for any
continuous bounded map ϕ : R

N → R, the process Mtϕ is a martingale for the filtration
generated by Mt. Let k1, . . . , km be indices, t1 ≤ · · · ≤ tm, t be times in I and f1, . . . , fm, f be
bounded continuous maps. Then, for any t ∈ [0, T ], and since Mn

t ϕ is a martingale,

E
[

f1(M
n
t1
ϕk1) . . . fm(Mn

tmϕ
k1)f(Mn

t ϕ)
]

= E
[

f1(M
n
t1
ϕk1) . . . fm(Mn

tmϕ
k1)f(Mn

t∧tmϕ)
]

Letting n→ +∞ and using the finite dimensional convergence, we get

E
[

f1(Mt1ϕ
k1) . . . fm(Mtmϕ

k1)f(Mtϕ)
]

= E
[

f1(Mt1ϕ
k1) . . . fm(Mtmϕ

k1)f(Mt∧tmϕ)
]

Since M is càdlàg, the σ−algebra generated by the family of random variables f1(Mt1ϕ
k1),

. . . , fm(Mtmϕ
k1) (where k1, . . . , km, t1 ≤ · · · ≤ tm and f1, . . . , fm are as above) is equal to

(σ(Ms, s ≤ t))t∈[0,T ]. ThereforeMϕ is a martingale and the proof of the Proposition is complete.
�

Proof of Theorem 3.3: In view of Theorem 3.2 we know that there exists a sequence
Mn ∈ M(t̄, m̄) such that

lim
n→+∞

E

[
∫ T

t̄

H(s,Mn
s )ds

]

= V+(t̄, m̄) .

Let Mn be the law of Mn and recall that Mn ∈ M(t̄, m̄) and that

E

[
∫ T

t̄

H(s,Mn
s )ds

]

=

∫

Γ

∫ T

t̄

H(s,ms) ds dM
n(m) .
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According to Proposition 3.4 there is a measure M̄ ∈ M(t̄, m̄), a subsequence of the (Mn), still
denoted (Mn), and a set I of full measure in [0,+∞) such that Mn

t converges weakly (as a
measure over ∆(RN )) to M̄t for any t ∈ I. Then, for any t ∈ I,

lim
n→+∞

∫

Γ
H(t,mt) dM

n(m) =

∫

Γ
H(t,mt) dM̄(m)

because the map µ→ H(t, µ) is continuous in Π2 for the d1 distance. Then, since H is bounded,
we conclude by Lebesgue convergence Theorem that

V+(t̄, m̄) =

∫ T

t̄

∫

Γ
H(t,mt) dM̄(m) .

�

A simple application of the above characterization of the value function is the following dynamic
programming principle:

Corollary 3.6 We have

V+(t,m) = inf
M∈M(t,m)

E

[
∫ t+h

t

H(s,Ms)ds +V+(t+ h,Mt+h)

]

∀h ∈ [0, T − t] . (3.10)

Moreover there exists an enlargement of (Ω,F , P ), and, on it, some M̃ as above such that

V+(t,m) = E

[
∫ t+h

t

H(s, M̃s)ds+V+(t+ h, M̃t+h)

]

∀h ∈ [0, T − t] ,

Proof: As usual, we split the relation (3.10) in two inequalities which we prove separately.
Let us denote by Vh(t,m) the right hand side of (3.10) and, for ǫ > 0, let M ǫ ∈ Mf (t,m) be
an ǫ-optimal martingale measure for Vh(t,m) with finite support (i.e., the support of M ǫ is
concentrated on a finite number of measures).
Let A1, . . . , An be the atoms af the σ-algebra FMǫ

t+h and m1, . . . ,mn ∈ Π2 the values taken by
M ǫ

t+h on these sets. Remark that, for all i ∈ {1, . . . , n}, mi is the law of the restriction of X on
Ai.
For each i ∈ {1, . . . , n}, let M (i) ∈ M(t+ h,mi) be ǫ-optimal for V (t + h,mi) and define some

measure valued processes (M i
s, s ∈ [t+ h, T ]) such that M i|Ai×[t+h,T ]

(d)
= M (i) and with terminal

value MT = δX .
Finally we set

M̄ ǫ
s =

{

M ǫ
s for s < t+ h,

M i
s on Ai × [t+ h, T ], i ∈ {1, . . . , n}.

It is easy to prove that M̄ ǫ ∈ M(t,m). Therefore it holds that

V+(t+ h, M̄t+h) =
∑n

i=1 1lAi
V+(t+ h,mi)

≥
∑n

i=1 1lAi
E
[

∫ T

t+h
H(s,M

(i)
s )ds

]

− ǫ

=
∑n

i=1 1lAi
E
[

∫ T

t+h
H(s,M i

s)ds|Ai

]

− ǫ

= E
[

∫ T

t+h
H(s, M̄ ǫ

s)ds|F
Mǫ

t+h

]

− ǫ.
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It follows that

Vh(t,m) ≥ E
[

∫ t+h

t
H(s,M ǫ

s )ds
]

+ E
[

∫ T

t+h
H(s, M̄ ǫ

s)ds
]

− 2ǫ

= E
[

∫ T

t
H(s, M̄ ǫ

s)ds
]

− 2ǫ

≥ V+(t,m)− 2ǫ.

Since the last relation holds true for all ǫ > 0, we get our first inequality:

Vh(t,m) ≥ V+(t,m).

1.2 Consider now M ǫ ∈ Mf (t,m) being ǫ-optimal for V+(t,m). Again we denote by A1, . . . , An

the atoms of FMǫ

t+h and by m1, . . . ,mn the values taken by M ǫ
t+h.

Then we can write

V+(t,m) ≥ E

[

∫ t+h

t

H(s,M ǫ
s)ds +

n
∑

i=1

1lAi
E

[
∫ T

t+h

H(s,M ǫ
s)ds|Ai

]

]

− ǫ.

Now, restricted on Ai, M
ǫ is a martingale measure with initial condition mi. Therefore it holds

that

E

[
∫ T

t+h

H(s,M ǫ
s)ds|Ai

]

≥ V+(t+ h,mi).

The dynamic programming principle follows.

2. By Theorem 3.3, we can enlarge the probability space (Ω,F , P ) such that there exists
M̃ ∈ M(t,m) which is optimal for V+(t,m). For ǫ > 0, let M ǫ ∈ Mf (t,m) such that

E[
∫ T

t+h
d1(M

ǫ
s , M̃s)ds] ≤ ǫ. Since the trajectories of M̃ are càdlàg, we can choose M ǫ such

that E[d1(M
ǫ
t+h, M̃t+h)] ≤ ǫ. Using the fact that V is Lipschitz in m, we get now

E[V+(t+ h, M̃t+h)] ≤ E[V+(t+ h,M ǫ
t+h)] + Cǫ

= E[
∑

iV
+(t+ h,mi)1lAi

] + Cǫ,

where A1, . . . , An are the atoms of FMǫ

t+h and m1, . . . ,mn the values taken by M ǫ
t+h on them.

Now, since, for each i ∈ {1, . . . , n}, the restriction of (M ǫ
s)t+h≤s≤T on Ai belongs to M(t+h,mi),

and then, using the fact that H is Lipschitz, we have

E[
∑

i V
+(t+ h,mi)1lAi

] ≤ E[
∫ T

t+h
H(s,M ǫ

s)ds]

≤ E[
∫ T

t+h
H(s, M̃s)ds] + Cǫ.

It follows that

E[V+(t+ h, M̃t+h)] ≤ E[

∫ T

t+h

H(s, M̃s)ds]. (3.11)

Finally, using the first part of the Lemma, we get

E
[

∫ t+h

t
H(s, M̃s)ds+V+(t+ h, M̃t+h)

]

≤ E
[

∫ t+h

t
H(s, M̃s)ds+

∫ T

t+h
H(s, M̃s)ds

]

= V (t,m)

= infM∈M(t,m)E
[

∫ t+h

t
H(s,Ms)ds +V+(t+ h,Mt+h)

]

≤ E
[

∫ t+h

t
H(s, M̃s)ds+V+(t+ h, M̃t+h)

]

.

The result follows. �
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4 Characterization of the value function.

In this section, we give two different characterizations of the value function V+ as a viscosity
solution of some deterministic functional equations. The first one, stating that V+ is the largest
subsolution of some equation, is interesting by its simplicity. The second one is purely local, but
is more involved in its formulation and derivation.

4.1 Characterization of the upper value function as largest subsolution of

some HJI-equation.

Proposition 4.1 The value function V+ is the largest continuous map on [0, T ] × Π2 which
satisfies
i) For all m ∈ Π2, V

+(T,m) = 0,
ii) V+ is convex with respect to m,
iii) for all m ∈ Π2, V

+(·,m) is a subsolution (in the viscosity sense) of the following ordinary
differential equation

d

dt
V+(t,m) +H(t,m) = 0 in (0, T ) . (4.12)

Proof: The map V+ clearly satisfies V+(T,m) = 0 for all m ∈ Π2. Moreover V+ is convex inm
by Lemma 2.4. Let us now check that, for any m ∈ Π2, V

+(·,m) is a subsolution of (4.12). For
t ∈ [0, T ), let φ ∈ C1([0, T ]) be such that V+(·,m) ≤ φ and V+(t,m) = φ(t). Let M ∈ M(t,m)
be the martingale measure defined by

Mr =

{

m if r ∈ [t, T ),
δx with probability m for t ≥ T .

By dynamic programming (Corollary 3.6), we have, for any h ∈ [0, T − t],

φ(t) = V+(t,m) ≤ E

[
∫ t+h

t

H(r,Mr)dr +V+(t+ h,Mt+h)

]

≤ h H(r,m) + φ(t+ h) .

The result follows by dividing by h and letting h→ 0.

We now prove that V+ is the largest subsolution. Let w : [0, T ] × Π2 → R be convex with
respect to m, with w(T, ·) = 0 and such that w(·,m) is a subsolution of (4.12). We have to prove
that w ≤ V+. For (t0,m0) ∈ [0, T ] × Π2, let t0 < t1 < . . . < tn = T be a subdivision of [t, T ],
with tk+1 − tk = τ > 0.
For m ∈ Π2, k ∈ {1, . . . , n − 2} and ǫ > 0, let wǫ(t) = sup{w(s,m) − 1

2ǫ |t − s|2, s ∈ [0, T ]} be
the sup-convolution of w on the interval [tk, tk+1]. Then (see e.g. [2]) the map wǫ is a locally
Lipschitz subsolution on [tk, tk+1] of

(wǫ)′(t) +H(t,m) ≥ −o(1).

It follows that

wǫ(tk+1)− wǫ(tk) +

∫ tk+1

tk

H(s,m)ds ≥ −τo(1).

Since wǫ ց w(·,m) as ǫց 0, we get for w(·,m):

w(tk+1,m)− w(tk,m) +

∫ tk+1

tk

H(s,m)ds ≥ 0. (4.13)
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Let now M ∈ M(t0,m0) and let us define M τ ∈ M(t0,m0) by

M τ
s =Mtk for s ∈ [tk, tk+1)

From (4.13), we get

E

[

w(tk+1,Mtk+1
)− w(tk,Mtk+1

) +

∫ tk+1

tk

H(s,Mtk+1
)ds

]

≥ 0.

where, since w is convex and M a martingale measure,

E
[

w(tk,Mtk+1
)|Ftk

]

≥ w(tk,Mtk).

It follows that

E

[

w(tk+1,Mtk+1
)− w(tk,Mtk) +

∫ tk+1

tk

H(s,Mtk+1
)ds

]

≥ 0. (4.14)

Summing up the right-hand side of (4.14) over all k ∈ {0, . . . , n−1} and recalling that w(T, ·) = 0,
we get

w(t0,m0) ≤ E

[

n−1
∑

k=0

∫ tk+1

tk

H(s,Mtk+1
)ds

]

Since (Ms) is càdlàg, letting τ → 0 yields to

w(t0,m0) ≤ E

[
∫ T

0
H(s,Ms)ds

]

Now we take the infimum over M to get the desired result:

w(t0,m0) ≤ V+(t0,m0)

�

4.2 Characterization of the value of the game as dual solution of a HJI-

equation.

The main drawback of the previous characterization is that it is of nonlocal nature. We now
show that it is possible to characterize the value function by local inequalities. We use here
several ideas of [6].

Definition 4.2 Let V : [0, T ]×Π2 → R.

1. Dual supersolution: We say that V is a viscosity dual supersolution to

∂V

∂t
(t,m) +H(t,m) = 0 (4.15)

if V is lower semicontinuous, V (t, ·) is convex for any t and if, for any m̄ ∈ Π2 and smooth
test function ϕ : [0, T ] → R such that t → V (t, m̄)−ϕ(t) has a local minimum at t̄ ∈ [0, T )
with m̄ extreme point of the graph of V (t̄, ·), one has

ϕ′(t̄) +H(t̄, m̄) ≤ 0
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2. Dual subsolution: We say that V is a viscosity dual subsolution to (4.15) if V is upper
semicontinuous, V (t, ·) is convex for any t and if, for any m̄ ∈ Π2 and smooth test function
ϕ : [0, T ] → R such that t→ V (t, m̄)− ϕ(t) has a local minimum at t̄ ∈ [0, T ), one has

ϕ′(t̄) +H(t̄, m̄) ≥ 0

3. Dual solution: We say that a continuous map V : [0, T ] × Π2 → R is a viscosity dual
solution of (4.15) if it is a sub and a supersolution of (4.15).

Proposition 4.3 The value function V+ is a dual solution to

{

∂V
∂t

(t,m) +H(t,m) = 0
V (T,m) = 0 ∀m ∈ Π2

(4.16)

Proof : By Proposition 4.1, we know already that V+ is a subsolution of (4.16). Let now any
m̄ ∈ Π2 and ϕ : [0, T ] → R be smooth test function such that V+(t, m̄) ≥ ϕ(t) with an equality
at t̄ and m̄ is an extreme point of the graph of V+(t̄, ·). Let M̃ be the optimal martingale
measure as in Corollary 3.6:

V+(t̄, m̄) = E

[

∫ t̄+h

t̄

H(s, M̃s)ds+V+(t̄+ h, M̃t̄+h)

]

∀h ∈ [0, T − t̄] . (4.17)

Taking h = 0 in (4.17) gives

V+(t̄, m̄) = E
[

V+(t̄, M̃t̄+)
]

,

so that M̃t̄+ = m̄ because m̄ is an extreme point of V+(t̄, ·). Since V+ is convex in m, we have

E[V+(t̄+ h, M̃t̄+h)] ≥ V+(t̄+ h, m̄).

Replacing this in the right hand side term of (4.17), we obtain

ϕ(t̄) = V+(t̄, m̄) ≥ E

[

∫ t̄+h

t̄

H(s, M̃s)ds

]

+V+(t̄+ h, m̄) ≥ E

[

∫ t̄+h

t̄

H(s, M̃s)ds

]

+ ϕ(t̄+ h).

(4.18)
Dividing by h and letting h→ 0+ in the above inequality gives the desired result. �

Proposition 4.4 (Comparison) If V1 is a dual supersolution and V2 is a dual subsolution,
with V1(T ·) ≤ V2(T, ·) in Π2, then V1 ≤ V2 in [0, T ]×Π2.

Remark 4.5 In particular V is the unique dual viscosity solution of equation (4.16).

Proof : Let us fix η,M > 0. We argue by contradiction, assuming that, for ǫ > 0 sufficiently
small,

sup
t,s,m

V1(s,m)− V2(t,m)−
(s − t)2

2ǫ
− ηt > 0 ,

where the supremum is taken over the Borel probability measures m with a support in B(0,M).
Since this set is compact, there is a maximum point (s̄ǫ, t̄ǫ, m̄ǫ

0). As V1(T ·) ≤ V2(T, ·), we
have s̄ǫ, t̄ǫ < T when ǫ is small enough. Let Cǫ be the set of maximum points of the form
(s̄ǫ, t̄ǫ,m) and let m̄ǫ be an extreme point of Cǫ. By Carathéodory Theorem, m̄ǫ belongs to Cǫ.
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We claim that m̄ǫ is an extreme point of the graph of V2(t̄
ǫ, ·). Indeed, if m̄ǫ = m1+m2

2 with
V2(t̄

ǫ,m1) = V2(t̄
ǫ,m2) = V2(t̄

ǫ, m̄ǫ), we have

1

2

2
∑

i=1

V1(s̄
ǫ,mi)− V2(t̄

ǫ,mi)−
(s̄ǫ − t̄ǫ)2

2ǫ
≥ V1(s̄

ǫ, m̄ǫ)− V2(t̄
ǫ, m̄ǫ)−

(s̄ǫ − t̄ǫ)2

2ǫ

by convexity of V1(s̄
ǫ, ·). Now note also that the support of m1 and the support of m2 are

in B(0,M) because so is the support of m̄ǫ. By optimality of m̄ǫ the points (s̄ǫ, t̄ǫ,m1) and
(s̄ǫ, t̄ǫ,m2) belong to Cǫ and therefore m1 = m2 = m̄ǫ since m̄ǫ is an extreme point.

We now use the definition of viscosity dual solutions: since the map s→ V1(s, m̄
ǫ)− (s−t̄ǫ)2

2ǫ
has a maximum at s̄ǫ, we get

s̄ǫ − t̄ǫ

ǫ
+H(s̄ǫ, m̄ǫ) ≥ 0 .

Since the map t → V2(t, m̄
ǫ) + (s̄ǫ−t)2

2ǫ − ηt has a minimum at s̄ǫ with m̄ǫ an extreme point of
the graph of V2(s̄

ǫ, ·), we get

η +
s̄ǫ − t̄ǫ

ǫ
+H(s̄ǫ, m̄ǫ) ≤ 0

So
η +H(s̄ǫ, m̄ǫ)−H(s̄ǫ, m̄ǫ) ≤ 0 .

As ǫ → 0, we have s̄ǫ, t̄ǫ → t̄ and m̄ǫ → m̄ (up to some subsequence), so that η < 0. This
contradicts the definition of η.

In conclusion, for any ǫ > 0 and η > 0 and for any (s,m) ∈ [0, T ]×Π2 such that the support
of m is in B(0,M), we have

V1(s,m)− V2(t,m)−
(s− t)2

2ǫ
− ηt ≤ 0 ,

Taking s = t, and letting η → 0+ andM → +∞, we obtain that inequality V1(t,m)−V2(t,m) ≤
0 holds for any (t,m) such that m has a compact support. We complete the proof by density.
�
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