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Abstract

We prove several discrete Gagliardo-Nirenberg-Sobolev and Sobolev-Poincaré inequali-
ties for some approximations with arbitrary boundary values on finite volume admissible
meshes. The keypoint of our approach is to use the continuous embedding of the space
BV (Ω) into L

N/(N−1)(Ω) for a Lipschitz domain Ω ⊂ RN , with N ≥ 2. Finally, we give
several applications to discrete duality finite volume (DDFV) schemes which are used for
the approximation of nonlinear and non isotropic elliptic and parabolic problems.
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1 Introduction

In this paper, we establish some discrete functional inequalities which are sometimes useful for
the convergence analysis of finite volume schemes. In the continuous framework, the Gagliardo-
Nirenberg-Sobolev and Sobolev-Poincaré inequalities are fundamental for the analysis of partial
differential equations. They are a standard tool in existence and regularity theories for solutions.
The L2 framework is generally used for linear elliptic problems, more precisely it is a classical
way to prove the coercivity of bilinear forms in H1

0 , which then allows to apply the Lax-Milgram
theorem to prove existence of weak solutions. More generally, the Lp framework is crucial for
the study of nonlinear elliptic or parabolic equations, to obtain some energy estimates which are
useful to prove existence of weak solutions. Poincaré-type inequalities are also one of the step in
the study of convergence to equilibrium for kinetic equations.

1.1 Gagliardo-Nirenberg-Sobolev and Sobolev-Poincaré inequalities

In the continuous situation, the Gagliardo-Nirenberg-Sobolev inequality writes as follows. Let
assume N ≥ 2 and Ω be an open domain of RN . Then for 1 < p ≤ N and q ≥ 1, there exists a
constant C > 0 such that for all u ∈ W 1,p(Ω) ∩ Lq(Ω),

‖u‖Lm(Ω) ≤ C ‖u‖θW 1,p(Ω) ‖u‖1−θ
Lq(Ω), (1)

where

0 ≤ θ ≤ p

p+ q(p− 1)
≤ 1 and

1

m
=

1− θ

q
+

θ

p
− θ

N
.

We refer to [19, 31] for a proof of this result. We also remind the well-known Sobolev-Poincaré
inequality [1, 8]:

‖u‖Lq(Ω) ≤ C ‖u‖W 1,p(Ω) ∀u ∈ W 1,p(Ω), (2)

for

1 ≤ q ≤ pN

N − p
if 1 ≤ p < N,

or 1 ≤ q < +∞ if p ≥ N.

The mathematical analysis of convergence and error estimates for numerical methods are
performed using functional analysis tools, such as discrete Sobolev inequalities. Several Poincaré-
Sobolev inequalities have been established for the finite volume schemes as well as for the finite
element methods. Concerning the finite volume framework, the first estimates were obtained in
the particular case N = 2, p = q = 2 (which is the standard Poincaré inequality) for Dirichlet
boundary conditions Y. Coudière and G. Manzini [11]. The idea of the proof in these papers is to
use some geometrical properties of the mesh. More precisely, given an oriented direction D, any
cell center of the mesh is connected to an upstream (with respect to D) center of an edge of the
boundary ∂Ω by a straight line of direction D. This connection crosses a certain number of cells
and their interfaces, and this argument allows to link a norm of the piecewise constant function
considered with a norm of a discrete version of its gradient. This result was later generalized to
the case of dimension N = 3 by R. Eymard, R. Herbin and Th. Gallouët [16]. Also the same
method has been applied to get more general Sobolev-Poincaré inequalities (2) for 1 ≤ p = q ≤ 2
by J. Droniou, Th. Gallouët and R. Herbin [15], and for p = 2, 1 ≤ q < ∞ if N = 2, 1 ≤ q ≤ 6
if N = 3 by Y. Coudière Th. Gallouët and R. Herbin [9], still in the case of Dirichlet boundary
conditions. Concerning the case of Neumann boundary conditions, a discrete Poincaré-Wirtinger
inequality (p = q = 2) was established in [16, 20] for N = 2 or 3 by using the same method.
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More recently, another idea was used to prove this type of discrete inequalities: the continuous
embedding of BV (Ω) into LN/(N−1)(Ω) for a Lipschitz domain Ω. This argument was first
exploited in [18] to prove a discrete Sobolev-Poincaré inequality (2) in dimension N = 2 with
q = 2 and p = 1, in the case of Neumann boundary conditions. Then this method was used in
[17] to prove general Sobolev-Poincaré inequalities (2) in any dimension N ≥ 1 in the particular
case of homogeneous Dirichlet boundary conditions. We also mention [5] where the continuous
embedding of BV (RN ) into LN/(N−1)(RN ) is used to establish an improved discrete Gagliardo-
Nirenberg-Sobolev inequality in the whole space RN , N ≥ 1.

Finally for p = 2, general discrete Sobolev-Poincaré inequalities are obtained in [21] for
Voronoi finite volume approximations in the case of arbitrary boundary conditions by using an
adaptation of Sobolev’s integral representation and the Voronoi property of the mesh. Con-
cerning the finite element framework, a variant of a Poincaré-type inequality (p = q = 2) for
functions in broken Sobolev spaces was derived in [4] for N = 2 and in [7, 32] for N = 2, 3. Then
a generalised result was proposed in [28], providing bounds on the Lq norms in terms of a broken
H1 norm (p = 2, 1 ≤ q < ∞ if N = 2 and 1 ≤ q ≤ 2N/(N − 2) if N ≥ 3). The proof is based
on elliptic regularity results and nonconforming finite element interpolants. Finally, a result in
non-Hilbertian setting (p 6= 2) was obtained in [13], taking inspiration from the technique used
by F. Filbet [18] and also R. Eymard, R. Herbin and Th. Gallouët [17], namely the continuous
embedding of BV (Ω) into LN/(N−1)(Ω).

1.2 Aim of the paper and outline

In this paper our aim is to provide a simple proof to discrete versions of Gagliardo-Nirenberg-
Sobolev (1) and Sobolev-Poincaré (2) inequalities for functions coming from finite volume schemes
with arbitrary boundary values. Several Sobolev-Poincaré inequalities are already proved as
mentioned above but here we propose a unified result. It includes in particular the case of
mixed boundary conditions. Concerning Gagliardo-Nirenberg-Sobolev inequalities, the result of
F. Bouchut, R. Eymard and A. Prignet [5] is to our knowledge the only available, and it deals
with the case of the whole space RN .

Our starting point to prove these discrete estimates is the continuous embedding of BV (Ω)
into LN/(N−1)(Ω), as in [18, 17, 13, 5]. The main difficulty appears when boundary conditions
must be taken into account. In the papers mentioned previously [18, 17, 13], the boundary condi-
tions are either homogeneous Dirichlet or Neumann on the whole boundary. In [5], the problem
is considered in the whole space RN . In the case where the function satisfies homogeneous
Dirichlet boundary conditions only on a part Γ0  ∂Ω of the boundary, we cannot use the same
strategy as in [17], which consists of extending the function considered to RN by zero. Our idea
is to thicken the boundary of Ω to take the mixed boundary conditions into account in this case.

The outline of the paper is as follows. In Section 2, we first define the functional spaces: the
space of finite volume approximations and the space BV (Ω). We will see that BV (Ω) is a natural
space to study piecewise constant functions as finite volume approximations. In Section 3, we
do not take into account any boundary conditions and prove the discrete Gagliardo-Nirenberg-
Sobolev inequalities (Theorem 3) and the discrete Sobolev-Poincaré inequalities (Theorem 4)
in this case. These results are the discrete counterpart of (1) and (2).They may be used for
instance in the convergence analysis of finite volume schemes in the case with Neumann boundary
conditions. Then, in Section 4, we consider the case where the discrete function is given by a
finite volume scheme with homogeneous boundary conditions on a part of the boundary. In
this case, the discrete space (for the finite volume approximations) is unchanged. However, the
discrete W 1,p seminorm will take into account some jumps on the boundary. We prove discrete
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Gagliardo-Nirenberg-Sobolev inequalities (Theorem 5) and discrete Sobolev-Poincaré inequalities
(Theorem 6), similar to (1) and (2) but with the W 1,p-seminorm instead of the full W 1,p-norm.
Finally, in Section 5, we show how to extend the results from Sections 3 and 4 to finite volume
approximations coming from discrete dual finite volume (DDFV) schemes. This family of schemes
is mainly applied to elliptic and parabolic problems. This method can be applied to a wide class
of 2D meshes (but also 3D [10]) and inherits the main qualitative properties of the continuous
problem: monotonicity, coercivity, variational formulation, etc...

2 Functional spaces

2.1 The space of finite volume approximations

We now introduce the discrete settings, including notations and assumptions on the meshes
and definitions of the discrete norms. Let Ω be an open bounded polyhedral susbset (Lipschitz
domain) of RN , N ≥ 2, and Γ := ∂Ω its boundary. An admissible mesh of Ω is given by a
family M of control volumes, a family E of relatively open parts of hyperplans in RN (which
represent the faces of the control volumes) and a family of points (xK)K∈M which satisfy the
Definition 9.1 in [16]. It implies that the straight line between two neighboring centers of cells
(xK , xL) is orthogonal to the face σ = K|L. In the set of faces E , we distinguish the interior
faces σ ∈ Eint and the boundary faces σ ∈ Eext. For a control volume K ∈ M, we denote by EK
the set of its faces, Eint,K the set of its interior faces and Eext,K the set of faces of K included in
the boundary Γ.
In the sequel we denote by d the distance in RN , m the Lebesgue measure in RN or RN−1. For
all σ ∈ E , we define

dσ =

{

d(xK , xL) for σ = K|L ∈ Eint,
d(xK , σ) for σ ∈ Eext,K .

We assume that the family of meshes considered satisfies the following regularity constraint:
there exists ξ > 0 such that

d(xK , σ) ≥ ξ dσ, for K ∈ M, for σ ∈ EK . (3)

The size of the mesh is defined by

h = max
K∈M

(diam(K)) . (4)

In general, finite volume methods lead to the computation of one discrete unknown by con-
trol volume. The corresponding finite volume approximation is a piecewise constant function.
Therefore, we define the set X(M) of the finite volume approximation:

X(M) =

{

u ∈ L1(Ω) / ∃(uK)K∈M such that u =
∑

K∈M

uK1K

}

.

Let us now define some discrete norms and seminorms on X(M).

Definition 1. Let Ω be a bounded polyhedral subset of RN , M an admissible mesh of Ω.

1. For p ∈ [1,+∞), the discrete Lp norm is defined by

‖ u ‖0,p,M =

(

∑

K∈M

m(K) |uK |p
)

1
p

, ∀u ∈ X(M).
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2. In the general case, for p ∈ [1,+∞), the discrete W 1,p-seminorm is defined by:

|u |1,p,M =









∑

σ∈Eint

σ=K|L

m(σ)

dp−1
σ

|uL − uK |p









1
p

, ∀u ∈ X(M)

and the discrete W 1,p-norm is defined by

‖ u ‖1,p,M = ‖ u ‖0,p,M + |u |1,p,M, ∀u ∈ X(M). (5)

3. In the case where homogeneous Dirichlet boundary conditions are underlying (because the
piecewise constant function comes from a finite volume scheme), we need to take into
account jumps on the boundary in the discrete W 1,p-seminorm. Let Γ0 ⊂ Γ be a part of the
boundary. In the set of exterior faces Eext, we distinguish E0

ext the set of boundary faces
included in Γ0. For p ∈ [1,+∞), we define the discrete W 1,p-seminorm (which depends on
Γ0) by

|u |1,p,Γ0,M =

(

∑

σ∈E

m(σ)

dp−1
σ

(Dσu)
p

)
1
p

, 1 ≤ p < +∞, (6)

where

Dσu =







|uK − uL | if σ = K|L ∈ Eint,
|uK | if σ ∈ E0

ext ∩ EK ,
0 if σ ∈ Eext \ E0

ext.
(7)

We then define the discrete W 1,p norm by

‖ u ‖1,p,M = ‖ u ‖0,p,M + |u |1,p,Γ0,M, ∀u ∈ X(M). (8)

2.2 The space BV (Ω)

Let us first recall some results concerning functions of bounded variation (we refer to [2, 33] for a
thorough presentation BV (Ω)). Let Ω be an open set of RN and u ∈ L1(Ω). The total variation
of u in Ω, denoted by TVΩ(u), is defined by

TVΩ(u) = sup

{∫

Ω

u(x) div (φ(x)) dx, φ ∈ C1
c (Ω), |φ(x)| ≤ 1, ∀x ∈ Ω

}

(9)

and the function u ∈ L1(Ω) belongs to BV (Ω) if and only if TVΩ(u) < +∞. The space BV (Ω)
is endowed with the norm

‖ u ‖BV (Ω) := ‖ u ‖L1(Ω) + TVΩ(u).

The space BV (Ω) is a natural space to study finite volume approximations. Indeed, as it is
proved for instance in [18], for u ∈ X(M), we have

TVΩ(u) ≤
∑

σ∈Eint

σ=K|L

m(σ) |uL − uK | = |u|1,1,M < +∞.

The discrete space X(M) is included in L1 ∩BV (Ω). Moreover, ‖u‖BV (Ω) ≤ ‖u‖1,1,M.
Our starting point for the discrete functional inequalities is the continuous embedding of

BV (Ω) into LN/(N−1)(Ω) for a Lipschitz domain Ω, recalled in Theorem 1.
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Theorem 1. Let Ω be a Lipschitz bounded domain of RN , N ≥ 2. Then there exists a constant
c(Ω) only depending on Ω such that:

(∫

Ω

|u | N
N−1 dx

)
N−1
N

≤ c(Ω) ‖ u ‖BV (Ω), ∀u ∈ BV (Ω). (10)

There are also more precise results involving only the seminorm TVΩ(u) instead of the norm
‖ u ‖BV (Ω). Indeed, the seminorm TVΩ becomes a norm on the space of BV functions vanishing
on a part of the boundary and also on the space of BV functions with a zero mean value. In
these cases, the continuous embedding of BV (Ω) into LN/(N−1)(Ω) rewrites as in Theorem 2.

Theorem 2. Let Ω be a Lipschitz bounded domain of RN , N ≥ 2.

1. There exists a constant c(Ω) > 0 only depending on Ω such that, for all u ∈ BV (Ω),

(∫

Ω

|u− u | N
N−1 dx

)
N−1
N

≤ c(Ω) TVΩ(u), (11)

where u is the mean value of u:

u =
1

m(Ω)

∫

Ω

u(x) dx.

2. Let Γ0 ⊂ ∂Ω, Γ0 6= ∅. There exists a constant c(Ω) > 0 only depending on Ω such that, for
all u ∈ BV (Ω) satisfying u = 0 on Γ0,

(
∫

Ω

|u | N
N−1 dx

)
N−1
N

≤ c(Ω) TVΩ(u). (12)

Actually, the constant c(Ω) involved in Theorems 1 and 2 depends only on θ and r such that
the domain Ω has the cone property for these parameters (see [1, Lemma 4-24], [30, Theorem
8-8]).

3 Discrete functional inequalities in the general case

We first consider the general case u ∈ X(M) with the discrete W 1,p norm defined by (5). The
discrete functional inequalities we will prove may be useful in the convergence analysis of finite
volume methods for problems with homogeneous Neumann boundary conditions.

3.1 General discrete Gagliardo-Nirenberg-Sobolev inequality

We start with the discrete Gagliardo-Nirenberg-Sobolev inequalities which are the discrete coun-
terpart of (1).

Theorem 3 (General discrete Gagliardo-Nirenberg-Sobolev inequality). Let Ω be an open bounded
polyhedral domain of RN , N ≥ 2. Let M be an admissible mesh satisfying (3)-(4).
Then for 1 < p ≤ N and q ≥ 1, there exists a constant C > 0 only depending on p, q, N and Ω
such that

‖ u ‖0,m,M ≤ C

ξ(p−1)θ/p
‖ u ‖θ1,p,M ‖ u ‖1−θ

0,q,M, ∀u ∈ X(M), (13)

6



where
0 ≤ θ ≤ p

p+ q(p− 1)
≤ 1 (14)

and
1

m
=

1− θ

q
+

θ

p
− θ

N
. (15)

Proof. Throughout this proof, C denotes constants which depend only on Ω, N , p and q.
As seen in Section 2.2, we have ‖v‖BV (Ω) ≤ ‖v‖1,1,M for all v ∈ X(M). Therefore, applying

Theorem 1, we get

‖ v ‖0,N/(N−1),M ≤ c(Ω) (| v |1,1,M + ‖ v ‖0,1,M) ∀v ∈ X(M). (16)

Let s ≥ 1. For u ∈ X(M), we now define v ∈ X(M) by vK = |uK |s for all K ∈ M. We note that

‖ v ‖0,N/(N−1),M =

(

∑

K∈M

m(K)|uK | sN
N−1

)
N−1
N

= ‖ u ‖s0,sN/(N−1),M

‖ v ‖0,1,M =
∑

K∈M

m(K)|uK |s = ‖ u ‖s0,s,M

and
| v |1,1,M =

∑

σ∈Eint

σ=K|L

m(σ)
∣

∣

∣|uK |s − |uL|s
∣

∣

∣.

But, for all σ = K|L, we have

∣

∣

∣

∣

|uK |s − |uL|s
∣

∣

∣

∣

≤ s
(

|uK |s−1 + |uL|s−1
)

|uK − uL| .

Applying a discrete integration by parts and Hölder’s inequality, we get, for any 1 < p ≤ N and
s ≥ 1:

∑

σ∈Eint

σ=K|L

m(σ)
∣

∣

∣|uK |s − |uL|s
∣

∣

∣≤ s
∑

K∈M

∑

σ=K|L

m(σ) |uK |s−1 |uK − uL|

≤ s





∑

K∈M

∑

σ=K|L

m(σ)

dp−1
σ

|uL − uK |p




1
p (

∑

K∈M

∑

σ∈EK

m(σ) dσ |uK |
(s−1)p
p−1

)
p−1
p

.

But, the regularity constraint (3) on the mesh ensures that for all K ∈ M:

∑

σ∈EK

m(σ) dσ ≤ 1

ξ

∑

σ∈EK

m(σ) d(xK , σ) =
N

ξ
m(K), (17)

and then, for any 1 < p ≤ N , s ≥ 1, we get:

∑

σ∈Eint

σ=K|L

m(σ)
∣

∣

∣|uK |s − |uL|s
∣

∣

∣ ≤ Cs

ξ(p−1)/p
|u |1,p,M ‖ u ‖(s−1)

0,(s−1)p/(p−1),M
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with 1 < p ≤ N and s ≥ 1. Therefore, from (16), we obtain that for u ∈ X(M), 1 < p ≤ N ,
s ≥ 1, and q := (s− 1)p/(p− 1) ≥ 1:

‖ u ‖s0,sN/(N−1),M ≤ C

(

1

ξ(p−1)/p
|u |1,p,M ‖ u ‖s−1

0,q,M + ‖u‖s0,s,M
)

.

However, since
1

s
=

1/s

p
+

(s− 1)/s

q
≤ 1,

we obtain by interpolation that

‖ u ‖0,s,M ≤ ‖ u ‖1/s0,p,M ‖ u ‖(s−1)/s
0,q,M , (18)

which yields

‖ u ‖s0,sN/(N−1),M ≤ C

(

1

ξ(p−1)/p
|u |1,p,M ‖ u ‖s−1

0,q,M + ‖ u ‖0,p,M ‖ u ‖s−1
0,q,M

)

,

and finally

‖ u ‖0,sN/(N−1),M ≤ C

ξ(p−1)/(ps)
‖ u ‖(s−1)/s

0,q,M ‖ u ‖1/s1,p,M. (19)

Using the following interpolation inequality

‖ u ‖0,m,M ≤ ‖ u ‖α0,r,M ‖ u ‖1−α
0,q,M when

1

m
=

1− α

q
+

α

r
with 0 ≤ α ≤ 1, (20)

with r = sN/(N − 1), we get

‖ u ‖0,m,M ≤ C

ξα(p−1)/(ps)
‖ u ‖α/s1,p,M ‖ u ‖1−α/s

0,q,M , ∀0 ≤ α ≤ 1.

Setting θ = α/s, with s = (p−1)q/p+1, we get the expected inequality (13) under the conditions
(14) and (15).

3.2 General discrete Sobolev-Poincaré inequality

We now give the discrete counterpart of the Sobolev-Poincaré inequalities (2).

Theorem 4 (General discrete Sobolev-Poincaré inequality). Let Ω be an open bounded polyhedral
domain of RN , N ≥ 2. Let M be an admissible mesh satisfying (3)-(4).
Then there exists a constant C > 0 only depending on p, q, N and Ω such that:

• if 1 ≤ p < N , for all 1 ≤ q ≤ p∗ :=
pN

N − p
,

‖ u ‖0,q,M ≤ C

ξ(p−1)/p
‖ u ‖1,p,M, ∀u ∈ X(M), (21)

• if p ≥ N , for all 1 ≤ q < +∞,

‖ u ‖0,q,M ≤ C

ξ(p−1)/p
‖ u ‖1,p,M, ∀u ∈ X(M). (22)
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Proof. Throughout this proof, C denotes constants which depend only on Ω, N , p and q.
The case p = 1, q = p∗ = N/(N − 1) corresponds to estimate (16). Then we obtain (21) for
p = 1 and for all 1 ≤ q ≤ p∗ by using the fact that Lp∗

(Ω) ⊂ Lq(Ω) since Ω is bounded.
Let us first consider the case where 1 < p < N . We get from (19) that

‖ u ‖0,sN/(N−1),M ≤ C

ξ(p−1)/(ps)
‖ u ‖(s−1)/s

0,q,M ‖ u ‖1/s1,p,M (23)

with

q =
(s− 1)p

p− 1
≤ 1.

Then we choose s ≥ 1 such that
sN

N − 1
=

(s− 1)p

p− 1
, that is s =

N − 1

N − p
p, which implies

sN

N − 1
=

pN

N − p
.

Therefore, we get

‖ u ‖0,pN/(N−p),M ≤ C

ξ(p−1)/p
‖ u ‖1,p,M ∀1 < p < N,

and since L pN/(N−p)(Ω) ⊂ Lq(Ω) for all 1 ≤ q ≤ pN/(N − p), it yields

‖ u ‖0,q,M ≤ C

ξ(p−1)/p
‖ u ‖1,p,M ∀q ∈

[

1 ,
pN

N − p

]

,

and the proof is complete for 1 ≤ p < N .
Now for p ≥ N , we begin with the case p = N . Using the Young’s inequality in (19), we obtain

‖ u ‖0,sN/(N−1),M ≤ C⋆

(

1

ξ(N−1)/N
‖ u ‖1,N,M + ‖ u ‖0,(s−1)N/(N−1),M

)

, (24)

with C⋆ independant of s. Then we proceed by induction on s ≥ N −1 to prove that there exists
a constant Cs depending on s such that

‖ u ‖0,sN/(N−1),M ≤ Cs

ξ(N−1)/N
‖ u ‖1,N,M. (25)

For s = N − 1, the result is given by (23). Then let s ≥ N such that (25) is true for s− 1. Using
(24) and (25), we get

‖ u ‖0,sN/(N−1),M ≤ C⋆(1 + Cs−1)

ξ(N−1)/N
‖ u ‖1,N,M.

Then (25) is true for all s ≥ N − 1, which finally yields

‖ u ‖0,q,M ≤ Cq

ξ(N−1)/N
‖ u ‖1,N,M ∀q ∈ [1,+∞[, (26)

which is the result for p = N . We emphasize that Cq → +∞ as q → +∞.
Finally for p > N , we obtain the result using the fact that

‖ u ‖1,N,M ≤ C

ξ(p−N)/pN
‖ u ‖1,p,M ∀p ≥ N. (27)
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Gathering (26) and (27) we get

‖ u ‖0,q,M ≤ C

ξ(N−1)/N
‖ u ‖1,N,M ≤ C

ξ(p−1)/p
‖ u ‖1,p,M ∀q ∈ [1,+∞[,

which completes the proof of Theorem 4.

3.3 Other discrete functional inequalities

From Theorems 3 and 4, we can deduce a discrete Nash inequality:

Corollary 1 (Discrete Nash inequality). Let Ω be an open bounded polyhedral domain of RN . Let
M be an admissible mesh satisfying (3)-(4). Then there exists a constant C > 0 only depending
on Ω and N such that

‖ u ‖1+
2
N

0,2,M ≤ C√
ξ
‖ u ‖1,2,M ‖ u ‖

2
N

0,1,M, ∀u ∈ X(M). (28)

Proof. For N = 2, the result is directly given by the application of Theorem 3 with p = 2, q = 1,
θ = 1/N = 1/2 and m = 2. For N ≥ 3, let us first apply Hölder’s inequality:

‖ u ‖20,2,M =
∑

K∈M

m(K)|uK |4/(N+2) |uK |2N/(N+2) ≤ ‖ u ‖4/(N+2)
0,1,M ‖ u ‖2N/(N+2)

0,2N/(N−2),M. (29)

Then we apply Theorem 4 with 1 ≤ p = 2 < N and q = p∗ = 2N/(N − 2):

‖ u ‖0,2N/(N−2),M ≤ C√
ξ
‖ u ‖1,2,M. (30)

Gathering (29) and (30), it yields the result.

In the proofs of Theorem 3 and Theorem 4, we have used the continuous embedding of BV (Ω)
into LN/(N−1)(Ω) as it is written in Theorem 1. But, starting with (11) instead of (10) leads
to a discrete Poincaré-Wirtinger inequality given in Proposition 1. This result has already been
proved in [18].

Proposition 1. Let Ω be an open bounded polyhedral domain of RN . Let M be an admissible
mesh satisfying (3)-(4). Then there exists a constant C > 0 only depending on Ω and N such
that

‖ u− u ‖0,N/(N−1),M ≤ c(Ω)√
ξ

|u |1,1,M, ∀u ∈ X(M).

It yields estimates only involving the discrete W 1,2-seminorm in some particular cases:

‖ u− u ‖0,q,M ≤ C√
ξ
|u |1,2,M ∀q ∈

[

1 ,
N

N − 1

]

, ∀u ∈ X(M).

(We recall that ū =
1

m(Ω)

∫

Ω

u(x)dx =
1

m(Ω)

∑

K∈M

m(K)uK for u ∈ X(M).)
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4 Discrete functional inequalities in the case of Dirichlet

boundary conditions

In this Section, we consider the case where the finite volume approximation u ∈ X(M) is coming
from a finite volume scheme where homogeneous boundary conditions are prescribed on a part
of the boundary. This part of the boundary is denoted by Γ0 ⊂ Γ, Γ0 6= ∅. In this case, the
natural discrete counterparts of the W 1,p-seminorm and W 1,p-norm are defined by (6) and (8).
Moreover, the W 1,p-seminorm becomes a norm on the space of W 1,p functions vanishing on a
part of the boundary and the Gagliardo-Nirenberg-Sobolev inequalities and the Sobolev-Poincaré
inequalities may be rewritten with the W 1,p-seminorm instead of the W 1,p-norm. Our aim in this
Section is to prove the discrete counterpart of such inequalities (see Theorem 5 and Theorem 6).

As in the general case, the starting point will be the continuous embedding from BV (Ω)
into LN/(N−1)(Ω), which rewrites as (12) with homogeneous Dirichlet boundary conditions on
the part of the boundary. However, (12) can not be directly applied to u ∈ X(M). Indeed,
u ∈ X(M) belongs to BV (Ω) and therefore its trace on the boundary is well defined; but it does
not necessarily vanish on Γ0. Some adaptations must be done in order to apply (12) and get its
discrete counterpart. It will be done in Section 4.1 and yield the discrete functional inequalities
presented in Section 4.2 and Section 4.3.

In this section, we assume the open set Ω is also convex. This will be particularly crucial in
Lemma 1.

4.1 Preliminary Lemma

We begin with a Lemma which gives the discrete counterpart of (12). This Lemma is crucial to
prove Theorems 5 and 6.

Lemma 1. Let Ω be an open convex bounded polyhedral domain of RN and Γ0 6= ∅ be a part of
the boundary Γ. Let M be an admissible mesh satisfying (3)-(4). Then there exists a constant
c(Ω) only depending on Ω such that

‖ u ‖0,N/(N−1),M ≤ c(Ω) |u |1,1,Γ0,M, ∀u ∈ X(M).

Proof. Let us consider u ∈ X(M); since u is piecewise constant, u belongs to BV (Ω). Then we
can define the trace Tu of u by: for almost every x ∈ Γ,

lim
r→0

1

m (B(x, r) ∩ Ω)

∫

B(x,r)∩Ω

|v − Tv(x)| dy = 0.

Thus in general Tu|Γ0 6= 0 and in this framework we cannot take into account the prescribed
homogeneous Dirichlet boundary conditions uσ = 0 for σ ∈ E0

ext. Therefore the idea is to thicken
the domain Ω into a larger domain Ωε with Ω ⊂ Ωε and define an extension uε of u to Ωε such
that uε ∈ BV (Ωε) and Tuε = 0 on a non empty part of the boundary ∂Ωε, which allows to apply
Theorem 2 to uε.
Let σ ∈ Eext be a face included in the boundary Γ. Then σ is a part of an hyperplane H in RN .
We denote by nσ the unit vector normal to H outward to Ω. For every x ∈ RN , there exists a
unique (y, y′) ∈ H× R such that x = y + y′ nσ. For ε > 0, we define (see Figure 1)

Kε
σ :=

{

x = y + y′ nσ ∈ RN : y ∈ σ and 0 < y′ < ε
}

.

11



Since Ω is convex, Kε
σ ∩Kε

σ′ is empty for all σ, σ′ ∈ Eext with σ 6= σ′. Now we can define (see
Figure 1)

Ωε := Ω ∪
(

⋃

σ∈Eext

Kε
σ

)

The subset Ωε is polyhedral, then it is a Lipschitz domain. We point out that for all x ∈ Ωε \Ω,
d(x,Ω) ≤ ε and then if we consider a face between two new cells Kε

σ and Kε
σ′ , we have:

m
(

Kε
σ ∩Kε

σ′

)

≤ C εN−1.

Then we define

uKε
σ
:=

{

0 if σ ∈ E0
ext,

uK if σ ∈ Eext \ E0
ext, σ ∈ EK ,

and the function uε in the following way:

uε :=
∑

K∈M

uK1K +
∑

σ∈Eext

uKε
σ
1Kε

σ
.

We have obviously
‖ u ‖0,N/(N−1),M ≤ ‖ uε ‖LN/(N−1)(Ωε).

Moreover, since the function uε is piecewise constant and has a finite number of jumps (which
corresponds to the number of faces σ ∈ E added to the number of faces between the new cells
Kε

σ) we get that uε belongs to BV (Ωε), and

TVΩε(uε) ≤
∑

σ∈E

m(σ)|Dσu|+
∑

Kε
σ∩Kε

σ′ 6=∅

C εN−1
∣

∣

∣uKε
σ
− uKε

σ′

∣

∣

∣ .

Furthermore, since uε = 0 on a non empty part of the boundary ∂Ωε, we can apply the result
(12) of Theorem 2 to uε. We obtain that there exists a constant c(Ωε) such that

‖ u ‖0,N/(N−1),M ≤ c(Ωε)






|u |1,1,Γ0,M + C εN−1

∑

Kε
σ∩Kε

σ′ 6=∅

∣

∣

∣uKε
σ
− uKε

σ′

∣

∣

∣ .






.

Now since the open set Ω is polyhedral, it is a Lipschitz domain then it satisfies the cone
condition [1, Definition 4-6] for some cone C and by construction the open set Ωε also satisfies
the cone condition with the same cone. Therefore, applying Lemma 4-24 in [1], the constant
c(Ωε) only depends on the dimension of this cone, and not on ε > 0. Then passing to the limit
ε → 0 we finally get that

‖ u ‖0,N/(N−1),M ≤ c(Ω) |u |1,1,M.

Now using this Lemma we can prove the discrete Gagliardo-Nirenberg-Sobolev and Sobolev-
Poincaré inequalities in the case with some homogeneous Dirichlet boundary conditions.
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Γ

σ

K

ε

Kε
σ

nσ

Ωε

Ω

ε

Figure 1: Construction of the cell Kε
σ (left) and of the domain Ωε (right).

4.2 Discrete Gagliardo-Nirenberg-Sobolev inequalities

Theorem 5 (Discrete Gagliardo-Nirenberg-Sobolev inequalities). Let Ω be an open convex
bounded polyhedral domain of RN and Γ0 6= ∅ be a part of the boundary. Let M be an ad-
missible mesh satisfying (3)-(4). Then for any 1 < p ≤ N and q ≥ 1, there exists a constant
C > 0 only depending on p, q, N and Ω such that

‖ u ‖0,m,M ≤ C1

ξ(p−1)θ/p
|u |θ1,p,Γ0,M ‖ u ‖1−θ

0,q,M, ∀u ∈ X(M), (31)

where θ and m satisfy (14) and (15).

Proof. The proof is similar to the proof of Theorem 3. Let 1 < p ≤ N and s ≥ 1. For u ∈ X(M),
we apply Lemma 1 to v ∈ X(M) defined by vK = us

K for all K ∈ M. It yields

‖u‖s0,sN/(N−1),M ≤ C

ξ(p−1)/p
|u |1,p,Γ0,M ‖ u ‖(s−1)

0,(s−1)p/(p−1),M

with 1 < p ≤ N and s ≥ 1.

Choosing q = (s− 1)p/(p− 1) (s = 1 + q − q

p
≥ 1), we obtain

‖ u ‖0,sN/(N−1),M ≤ C

ξ(p−1)/ps
|u |1/s1,p,Γ0,M ‖ u ‖(s−1)/s

0,q,M . (32)

Then, using an interpolation inequality as in the proof of Theorem 3, we get

‖ u ‖0,m,M ≤ ‖ u ‖α0,sN/(N−1),M ‖ u ‖1−α
0,q,M ≤ C

ξα(p−1)/ps
|u |α/s1,p,Γ0,M ‖ u ‖1−(α/s)

0,q,M ,

Taking θ = α/s concludes the proof.
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4.3 Discrete Sobolev-Poincaré and Nash inequalities

In the case with some homogeneous Dirichlet boundary conditions, the discrete Sobolev-Poincaré
inequalities rewrite as follows.

Theorem 6 (Discrete Sobolev-Poincaré inequality). Let Ω be an open convex bounded polyhedral
domain of RN . Let M be an admissible mesh satisfying (3)-(4). Let Γ0 ⊂ Γ, with Γ0 6= ∅.
Then there exists a constant C > 0 which only depends on p, q, N and Ω such that:

• if 1 ≤ p < N , for all 1 ≤ q ≤ p∗ :=
pN

N − p

‖ u ‖0,q,M ≤ C

ξ(p−1)/p
|u |1,p,Γ0,M ∀u ∈ X(M), (33)

• if p ≥ N , for all 1 ≤ q < +∞,

‖ u ‖0,q,M ≤ C

ξ(p−1)/p
|u |1,p,Γ0,M ∀u ∈ X(M). (34)

Proof. The proof is similar to the proof of Theorem 4, starting from (32) instead of (19).

Now using Theorems 5 and 6, we easily get a discrete version of Nash inequality:

Corollary 2 (Discrete Nash inequality). Let Ω be an open convex bounded polyhedral domain of
RN . Let M be an admissible mesh satisfying (3)-(4). Let Γ0 ⊂ Γ, with Γ0 6= ∅.
Then there exists a constant C > 0 only depending on Ω and N such that

‖ u ‖1+
2
N

0,2,M ≤ C√
ξ
|u |1,2,M ‖ u ‖

2
N

0,1,M ∀u ∈ X(M). (35)

5 Application to finite volume approximations coming from

DDFV schemes

The discrete duality finite volume methods have been developed for ten years for the approxi-
mation of anisotropic elliptic problems on almost general meshes in 2D and 3D. They are based
on some discrete operators (divergence and gradient), satisfying a discrete Green formula (the
“discrete duality”). The DDFV approximations were first proposed for the discretization of
anisotropic and/or nonlinear diffusion problems on rather general meshes. We refer to the pio-
neer work of F. Hermeline [22, 23, 24, 25, 26] who proposed a new approach dealing with primal
and dual meshes and Y. Coudière, J.-P. Vila anf Ph. Villedieu [11] who proposed a method of
reconstruction for the discrete gradients. Next, K. Domelevo and P. Omnès [14], S. Delcourte,
K. Domelevo and P. Omnès [12] presented the discrete duality finite volume approach (DDFV)
for the Laplace operator. Then, B. Andreianov, F. Boyer and F. Hubert [3] gave a general back-
ground of DDFV methods for anisotropic and nonlinear elliptic problems. Most of these works
treat 2D linear anisotropic, heterogeneous diffusion problems, while the case of discontinuous
diffusion operators have been treated later by F. Boyer and F. Hubert in [6]. F. Hermeline
[25, 26] treats the analogous 3D problems, S. Krell [27] treats the Stokes problem in 2D and in
3D whereas Y. Coudière and G. Manzini [10] treat linear elliptic convection-diffusion equations.
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The construction of DDFV schemes needs the definition of three meshes: a primal mesh, a
dual mesh and a diamond mesh. Then, the approximate solutions are defined both on the pri-
mal and the dual meshes, while the approximate gradients are defined on the diamond meshes.
Therefore, we need to adapt the definition of the spaces of approximate solutions and the defi-
nition of the discrete norms. It will be done in Section 5.1. Then, we will be able to establish
some discrete Gagliardo-Nirenberg-Sobolev and Sobolev-Poincaré inequalities, in the general case
(Section 5.2) as in the case with Dirichlet boundary conditions (Section 5.3) .

5.1 Meshes and functional spaces

Meshes. Let Ω be an open bounded polygonal domain of R2. The mesh construction starts
with the partition of Ω with disjoint open polygonal control volumes. This partition, denoted by
M, is called the interior primal mesh. We then denote by ∂M the set of boundary edges, which
are considered as degenerate control volumes. Then, the primal mesh is defined by M = M∪∂M.
To each primal cell K ∈ M, we associate a point xK ∈ K, called the center of the primal cell.
Notice that for a degenerate control volume K, the point xK is necessarily the midpoint of K.
This family of centers is denoted by X = {xK,K ∈ M}.

Interior and exterior Interior and exterior Diamond mesh
primal meshes dual meshes

Figure 2: Presentation of the meshes

Let X ∗ denote the set of the vertices of the primal control volumes in M. Distinguishing
the interior vertices from the vertices lying on the boundary, we split X ∗ into X ∗ = X ∗

int ∪X ∗
ext.

To any point xK∗ ∈ X ∗
int, we associate the polygon K∗ obtained by joining the centers of the

primal cells whose xK∗ is a vertex. The set of such polygons defines the interior dual mesh
denoted by M

∗. To any point xK∗ ∈ X ∗
ext, we then associate the polygon K∗, whose vertices are

{xK∗}∪{xK ∈ X/xK∗ ∈ K̄,K ∈ M}. It defines the boundary dual mesh ∂M∗ and the dual mesh
is defined by M∗ = M

∗ ∪ ∂M∗.
In the sequel, we will assume that each primal cell K ∈ M is star-shaped with respect to xK

and each dual cell K∗ ∈ M∗ is star-shaped with respect to xK∗ .
For all neighboring primal cells K and L, we assume that ∂K∩∂L is a segment, corresponding

to an edge of the mesh M, denoted by σ = K|L. Let E be the set of such edges. We similarly
define the edges E∗ of the dual mesh M∗: σ∗ = K∗|L∗. For each couple (σ, σ∗) ∈ E × E∗ such
that σ = K|L = (xK∗ , xL∗) and σ∗ = K∗|L∗ = (xK, xL), we define the quadrilateral diamond cell
Dσ,σ∗ whose diagonals are σ and σ∗. If σ ∈ E ∩∂Ω, we note that the diamond degenerates into a
triangle. The set of the diamond cells defines a partition of Ω, which is called the diamond mesh

15



and is denoted by D. Let us note that D can be splitted into D = Dint ∪Dext where Dint is the
set of interior (non degenerate) diamond cells and Dext is the set of degenerate diamond cells.

Finally, the DDFV mesh is made of the triple T = (M,M∗,D). See Figure 2 for an example
of DDFV mesh.

xL∗

xK∗

xL

xK τK
∗
,L

∗

nσK

τK,L

nσ∗K∗

αD

Vertices of the primal mesh

Centers of the primal mesh

σ = K|L, edge of the primal mesh

σ∗ = K∗|L∗, edge of the dual mesh

Diamond Dσ,σ∗

xL∗

xK∗

xL

xK

dK∗,L

dL∗,L

Figure 3: Definition of the diamonds Dσ,σ∗

Let us now introduce some notations associated to the mesh T . For each primal cell or
dual cell V in M or M∗, we define mV , the measure of the cell V , EV , the set of edges of V ,
DV = {Dσ,σ∗ ∈ D, σ ∈ EV }, dV , the diameter of V . For a diamond Dσ,σ∗ , whose vertices are
(xK, xK∗ , xL, xL∗), we define : mσ and mσ∗ the lengths of the primal edge σ and the dual edge
σ∗, mD, the measure of D, dD its diameter and αD the angle between (xK, xL) and (xK∗ , xL∗).
As shown on Figure 3, we will also use two direct basis (τK

∗
,L

∗ ,nσK) and (nσ∗K∗ , τK,L), where
nσK is the unit normal to σ, outward K, nσ∗

K
∗ is the unit normal to σ∗, outward K∗, τK

∗
,L

∗

is the unit tangent vector to σ, oriented from K∗ to L∗, τK,L is the unit tangent vector to σ∗,
oriented from K to L. For a boundary edge σ = [xK∗ , xL∗ ] ∈ ∂M, we define dK∗,L the length of
the segment [xK∗ , xL] and dL∗,L the length of the segment [xL∗ , xL].

In all the sequel, we will assume that the diamonds cannot be flat. It means :

∃αT ∈]0, π
2
] such that | sin(αD)| ≥ sin(αT ) ∀D ∈ D. (36)

As for all Dσ,σ∗ ∈ D, we have 2mD = mσmσ∗ sin(αD), the hypothesis (36) implies

mσmσ∗ ≤ 2mD

sin(αT )
. (37)

We also assume some regularity of the mesh, as in [3], which implies

∃ζ > 0,
∑

Dσ,σ∗∈DK

mσmσ∗ ≤ mK

ζ
∀K ∈ M,

∑

Dσ,σ∗∈DK∗

mσmσ∗ ≤ mK∗

ζ
∀K∗ ∈ M∗.

(38)
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Definition of the approximate solution. A discrete duality finite volume scheme leads
to the computation of discrete unknowns on the primal and the dual meshes : (uK)K∈M

and
(uK∗)K∗∈M∗ . From these discrete unknowns, we can reconstruct two different approximate solu-
tions :

uM =
∑

K∈M

uK1K and u
M∗ =

∑

K∗∈M∗

uK∗1K∗ .

But, in order to use simultaneously the discrete unknowns computed defined on the primal and
the dual meshes, we prefer to define the approximate solution as

u =
1

2
(uM + u

M∗).

Therefore, the space of approximate solutions Z(T ) is defined by:

Z(T ) =

{

u ∈ L1(Ω) / ∃uT =
(

(uK)K∈M
, (uK∗)K∗∈M∗

)

such that u =
1

2





∑

K∈M

uK1K +
∑

K∗∈M∗

uK∗1K∗











.

For a given function u ∈ Z(T ), we define the discrete Lp norm by

‖u‖0,p,T =





1

2

∑

K∈M

mK|uK|p +
1

2

∑

K∗∈M∗

mK∗ |uK∗ |p




1/p

.

Discrete gradient. A key point in the construction of the DDFV schemes is the definition
of the discrete operators (divergence and gradient). We just focus here on the definition of the
discrete gradient, which will be useful for the definition of the discrete W 1,p-seminorms.

Let u ∈ Z(T ). The discrete gradient of u, ∇du is defined as a piecewise constant function on
each diamond cell :

∇du =
∑

D∈D

∇Du1D,

where, for D ∈ D,

∇Du =
1

sin(αD)

(

uL − uK

mσ∗

nσK +
uL∗ − uK∗

mσ
nσ∗K∗

)

.

This discrete gradient has been introduced in [11]. It verifies:

∇Du · τK
∗
,L

∗ =
uL∗ − uK∗

mσ
and ∇Du · τK,L =

uL − uK

mσ∗

.

Using this discrete gradient, we may now define the discrete W 1,p-seminorm and norm of a given
function u ∈ Z(T ):

|u|1,p,T =

(

∑

D∈D

mD|∇Du|p
)1/p

‖u‖1,p,T = ‖u‖0,p,T + |u|1,p,T
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5.2 Discrete functional inequalities in the general case

Our aim is now to extend the results of Section 3 to the case of finite volume approximations
coming from some DDFV schemes: u ∈ Z(T ). We will use that such functions are defined as
u = 1

2 (uM+u
M∗) with uM ∈ X(M) and u

M∗ ∈ X(M∗). Nevertheless, we may take care because

the primal and the dual meshes M and M∗ does not satisfy the admissibility condition required
in Theorems 3 and 4.

Theorem 7 (General discrete Gagliardo-Nirenberg-Sobolev inequality in the DDFV framework).
Let Ω be an open bounded polyhedral domain of R2. Let T = (M,M∗,D) be a DDFV mesh
satisfying (36) and (38).
Then for 1 < p ≤ 2 and q ≥ 1, there exists a constant C > 0 only depending on p, q and Ω such
that

‖ u ‖0,m,T ≤ C

(sin(αT ))θ/pζθ(p−1)/(p)
‖ u ‖θ1,p,T ‖ u ‖1−θ

0,q,T , ∀u ∈ Z(T ), (39)

where
0 ≤ θ ≤ p

p+ q(p− 1)
≤ 1

and
1

m
=

1− θ

q
+

θ

p
− θ

2
.

Proof. We start as in the proof of Theorem 3. Let s ≥ 1 and set q = (s − 1)p/(p− 1) ≥ 1. For
u ∈ Z(T ), as uM ∈ X(M) and u

M∗ ∈ X(M∗), we may write:

‖uM‖s0,2s,M ≤ c(Ω)
(

∣

∣|uM|s
∣

∣

1,1,M
+‖uM‖s0,s,M

)

(40)

∥

∥u
M∗

∥

∥

s

0,2s,M∗ ≤ c(Ω)
(

∣

∣|u
M∗ |s

∣

∣

1,1,M∗+‖u
M∗‖s0,s,M∗

)

(41)

But, following the same computations as in the proof of Theorem 3, we get

∣

∣|uM|s
∣

∣

1,1,M
=

∑

Dσ,σ∗∈Dint

mσ

∣

∣

∣|uK|s − |uL|s
∣

∣

∣

≤ s
∑

Dσ,σ∗∈Dint

mσmσ∗

∣

∣

∣

∣

uK − uL

mσ∗

∣

∣

∣

∣

(|uK|s−1 + |uL|s−1)

≤ s





∑

Dσ,σ∗∈Dint

mσmσ∗

∣

∣

∣

∣

uK − uL

mσ∗

∣

∣

∣

∣

p




1
p




∑

K∈M

∑

Dσ,σ∗∈DK

mσmσ∗ |uK|
(s−1)p
p−1





p−1
p

Using the regularity hypotheses on the mesh, we get

∣

∣|uM|s
∣

∣

1,1,M
≤ C

(sin(αT ))1/pζ(p−1)/p





∑

Dσ,σ∗∈Dint

mD

∣

∣

∣

∣

uK − uL

mσ∗

∣

∣

∣

∣

p




1
p

‖uM‖s−1
0,q,M.

But, by definition,
uK − uL

mσ∗

= ∇Du · τK,L and therefore

∣

∣

∣

∣

uK − uL

mσ∗

∣

∣

∣

∣

≤ |∇Du|. It yields :

∣

∣|uM|s
∣

∣

1,1,M
≤ C

(sin(αT ))1/pζ(p−1)/p
|u|1,p,T ‖uM‖s−1

0,q,M .
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Injecting this last inequality in (40), and using the interpolation inequality (18), we get:

‖uM‖s0,2s,M ≤ C

(sin(αT ))1/pζ(p−1)/p
‖uM‖s−1

0,q,M (|u|1,p,T + ‖uM‖0,p,M)

≤ C

(sin(αT ))1/pζ(p−1)/p
‖uM‖s−1

0,q,M ‖u‖1,p,T

because ‖uM‖0,p,M ≤ 2 ‖u‖1,p,T by definition. Then, using the interpolation inequality (20) with

r = 2s and 1
m = 1−α

q + α
r with 0 ≤ α ≤ 1, as in the proof of Theorem 3, we obtain:

‖uM‖0,m,M ≤ C

(sin(αT ))α/(sp)ζα(p−1)/(sp)
‖u‖α/s1,p,T ‖u‖1−α/s

0,q,T .

With similar computations on the dual mesh, from (41), we get

∥

∥u
M∗

∥

∥

0,m,M∗ ≤ C

(sin(αT ))α/(sp)ζα(p−1)/(sp)
‖u‖α/s1,p,T ‖u‖1−α/s

0,q,T .

Finally, setting θ = α/s with s = (p− 1)q/p+ 1, it yields the expected inequality (39).

As in the classical finite volume framework, we can now prove discrete Sobolev-Poincaré
inequalities. The proof is similar to the proof of Theorem 4; it will not be detailed here.

Theorem 8 (General discrete Sobolev-Poincaré inequality in the DDFV framework). Let Ω be
an open bounded polyhedral domain of R2. Let T = (M,M∗,D) be a DDFV mesh satisfying (36)
and (38).
Then there exists a constant C > 0 only depending on p, q and Ω such that:

• if 1 ≤ p < 2, for all 1 ≤ q ≤ 2p

2− p
,

‖ u ‖0,q,T ≤ C

(sin(αT ))1/pζ(p−1)/(p)
‖ u ‖1,p,T , ∀u ∈ Z(T ), (42)

• if p ≥ 2, for all 1 ≤ q < +∞,

‖ u ‖0,q,T ≤ C

(sin(αT ))1/pζ(p−1)/(p)
‖ u ‖1,p,T , ∀u ∈ Z(T ). (43)

Let us now focus on the Poincaré-Wirtinger inequality in the DDFV case. This result has
been proved recently in [29]. We will give here a proof using the embedding of BV (Ω) into L2(Ω)
(11) recalled in Theorem 2.

Theorem 9 (Discrete Poincaré-Wirtinger inequality in the DDFV framework). Let Ω be an
open bounded polyhedral domain of R2. Let T = (M,M∗,D) be a DDFV mesh satisfying (36).
There exists a constant C > 0 depending only on Ω, such that for all u ∈ Z(T ) satisfying

∑

K∈M

mKuK =
∑

K∈M∗

mK∗uK∗ = 0, (44)

we have

‖u‖0,2,T ≤ C

sin(αT )
|u|1,2,T . (45)
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Proof. Let u ∈ Z(T ). Applying (11) to uM ∈ X(M) and u
M∗ ∈ X(M∗), we get, under the

hypothesis (44),

‖uM‖0,2,M ≤ c(Ω)TVΩ(uM) ≤ c(Ω) |uM|1,1,M
∥

∥u
M∗

∥

∥

0,2,M∗
≤ c(Ω)TVΩ(uM∗) ≤ c(Ω)

∣

∣u
M∗

∣

∣

1,1,M∗

But,

|uM|1,1,M ≤
∑

Dσ,σ∗∈Dint

mσmσ∗

|uK − uL|
mσ∗

≤ 2

sin(αT )

∑

Dσ,σ∗∈Dint

mD
|uK − uL|

mσ∗

≤ 2

sin(αT )
m(Ω)1/2 |u|1,2,T ,

thanks to Cauchy-Schwarz inequality. By the same way, we get the same bound for
∣

∣u
M∗

∣

∣

1,1,M∗

and it finally yields ‖u‖0,2,T ≤ 2

sin(αT )
m(Ω)1/2c(Ω) |u|1,2,T .

5.3 Discrete functional inequalities in the case with Dirichlet boundary

conditions

In this Section, we want to extend the discrete Gagliardo-Nirenberg-Sobolev inequalities of Sec-
tion 4.2 to finite volume approximations obtained from a DDFV scheme. We first recall how
Dirichlet boundary conditions are taken into account in DDFV methods. Let Γ0 be a non empty
part of the boundary. At the discrete level, homogeneous Dirichlet boundary conditions on Γ0

will be written:

uK = 0, ∀K ∈ ∂M, K ⊂ Γ0 and uK∗ = 0, ∀K∗ ∈ ∂M∗, K∗ ∩ Γ0 6= ∅. (46)

Therefore,we consider the corresponding set of finite volume approximations, ZΓ0(T ) defined by:

ZΓ0(T ) = {u ∈ Z(T ) satisfying (46)} .

Let us note that the definition of the discrete W 1,p seminorm is the same on ZΓ0(T ) as on Z(T ).
Indeed, the fact that the approximate solution vanishes at the boundary is taken into account
in the definition of the discrete gradient ∇Du for D ∈ Dext, and therefore in |u|1,p,T .

Finally, combining the techniques of proof of Theorem 5 (using Lemma 1) and Theorem 7,
we establish the following Theorem.

Theorem 10 (Discrete Gagliardo-Nirenberg-Sobolev inequality in the DDFV framework). Let
Ω be an open convex bounded polyhedral domain of R2 and Γ0 be a part of the boundary. Let
T = (M,M∗,D) be a DDFV mesh satisfying (36) and (38).
Then for 1 < p ≤ 2 and q ≥ 1, there exists a constant C > 0 only depending on p, q and Ω such
that

‖ u ‖0,m,T ≤ C

(sin(αT ))θ/pζθ(p−1)/(p)
|u |θ1,p,T ‖ u ‖1−θ

0,q,T , ∀u ∈ ZΓ0(T ), (47)

where
0 ≤ θ ≤ p

p+ q(p− 1)
≤ 1
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and
1

m
=

1− θ

q
+

θ

p
− θ

2
.
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