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Let G be a graph with order n. A sequence 7 = (n1, ..., np) of positive integers is
said to be admissible for G if it performs a partition of n, that is if Y -7_, n; = n.
When, for such an admissible sequence for G, there exists a partition (V4, ...
of V(@) such that each V; induces a connected subgraph of G on n; vertices, then
is called realizable in G. If every admissible sequence for G is also realizable
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Abstract

A connected graph G is said to be arbitrarily partitionable (AP for
short) if for every partition (n1,...,np) of |[V(G)| there exists a partition
(V1, ..., Vp) of V(G) such that each V; induces a connected subgraph of G
on n; vertices. Some stronger versions of this property were introduced,
namely the ones of being online arbitrarily partitionable and recursively
arbitrarily partitionable (OL-AP and R-AP for short, respectively), in
which the subgraphs induced by a partition of G must not only be con-
nected but also fulfil additional conditions. In this paper, we point out
some structural properties of OL-AP and R-AP graphs with connectivity
2. In particular, we show that deleting a cut pair of these graphs results
in a graph with a bounded number of components, some of whom have a
small number of vertices. We obtain these results by studying a simple
class of 2-connected graphs called balloons.
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The notion of AP graphs was introduced in [1] to deal with the following
problem. Suppose that we want to share a network of n computing resources
among p users, where the i*" user needs n; resources, and that, for the sake
of performance, we do not want the sharing to be performed arbitrarily but in
such a way that the following two conditions are met:

e a resource must be allocated to exactly one user,

e the subnetwork attributed to a user must be connected®.

We can use the previously introduced notions to deduce an optimal sharing
of the resources. Indeed, let G be the graph modelling the network; then we can
satisfy the users with this specific resource demand if the sequence (n1, ...,np)
is realizable in G. Moreover, observe that, regarding this allocation problem,
the networks which are of most interest are those which can be shared among
an arbitrary number of users no matter how many resources they need. Clearly,
these networks are the ones that have an AP graph topology.

It has to be known that the problem of deciding whether a sequence is
realizable in a graph in computationally hard, even when restricted to trees
[2], although some exceptions can be pointed out. As an illustration, let us
mention the early result by Gyori and Lovasz independently, proved long before
the introduction of AP graphs, that states that k-connected graphs are always
partitionable into k£ connected subgraphs no matter what their requested orders
are [9, 11]. For a deeper overview of the background of AP graphs, the interested
reader is referred to [1, 2, 12].

Observe that the definition of AP graphs is quite static and thus not rep-
resentative of the difficulties we can encounter while actually partitioning a
network; notably, one could point out the following two issues:

1. In the definition, a graph is fully partitioned at once; from the network
sharing point of view, this constraint is like waiting for every single re-
source of the network to be needed before eventually satisfying the users.
This is, of course, not satisfying since we would like to satisfy them as
soon as possible (immediately, ideally).

2. When a sequence is realized in a graph, the induced subgraphs must only
meet the connectivity constraint. But according to our network analogy,
it would be more convenient to make sure that the allocated subnetworks
themselves have the property of being shareable at will. This can be
quite useful if, for example, a user wants himself to share his subnetwork
between several other users or if he wants to delimit it to accomplish many
different tasks simultaneously.

Motivated by these deficiencies, the following augmented definitions have
been introduced:

Definition 1. [10] A graph G is said to be online arbitrarily partitionable (OL-
AP for short) if and only if one of the following two conditions holds.

e (G is isomorphic to K.

1In the sense that two resources of a subnetwork must be able to communicate within it.



e G is connected and for every A\ € {1,...,n — 1}, there exists a partition
(Sx, Sn—x) of V(G) such that G[S,] is connected on X vertices and G[Sy,— ]
is OL-AP with order n — A.

Definition 2. [5] A graph G is said to be recursively arbitrarily partitionable
(R-AP for short) if and only if one of the following two conditions holds.

e (G is isomorphic to K.

e G is connected and for every sequence T = (n1,...,n,) admissible for it,
there exists a partition (Vi,...,V,) of V(G) into p parts such that each V;
induces a R-AP subgraph of G on n; vertices.

Observe that the notion of OL-AP graphs (resp. R-AP graphs) can be used
to deal with our network sharing problem taking issue 1 (resp. issue 2) pointed
out above into account. It has to be known that the two properties of being
OL-AP and R-AP are actually quite similar to each other. Indeed, previous
investigations have shown that every R-AP graph is also OL-AP [5] and that,
in the context of some classes of graphs (like trees and so-called suns), there
only exist a few OL-AP graphs which are not R-AP [5, 4].

Theorem 1. [5] Every R-AP graph is also OL-AP, but the contrary does not
necessarily hold.

We here focus on the class of balloon graphs introduced in [5].

Definition 3. Let by, ...,bx be k > 1 positive integers and B, ..., By be paths on
by 4 2,..., by + 2 wertices, respectively, where the endvertices of the it" path are
denoted by u; and v;. The balloon with k branches B(by, ..., by) (sometimes called
k-balloon for short) is the graph obtained by identifying all the u;’s together and
all the v;’s together.

Two examples of such graphs are given in Figure 1. Balloons are interesting
regarding our problem because their structure is closely related to the one of
partitionable graphs with connectivity 2.

71 71

T T2

Figure 1: The balloons B(1,2,3) and B(1,2,2,3)

Observation 1. Let G be a graph with connectivity 2, u and v be two vertices
forming a cut pair of G, and by,...,bx be the numbers of vertices of the k >
2 connected components of G — {u,v}. If G is AP, OL-AP or R-AP, then
B(b1,...,bg) is AP, OL-AP or R-AP, respectively.



Indeed, observe that no graph with order n is easier to partition than the
path on n vertices. Hence, a realization of a sequence 7 in B(b1,...,b;) can
be directly deduced from a realization of 7 in G. By Observation 1, we get
that some properties holding for AP, OL-AP or R-AP balloons also hold for
AP, OL-AP or R-AP graphs with connectivity 2, respectively. In particular, if
¢ > 1 is an upper bound on the number of branches in an AP balloon, then c is
also an upper bound on the number of components resulting from the deletion
of a cut pair in an AP graph. One can also deduce an upper bound on the
number of vertices in some of these components from a bound on the order
of the corresponding branches in an AP balloon. Of course, these statements
also hold for OL-AP and R-AP balloons and OL-AP and R-AP graphs with
connectivity 2. This approach for exhibiting structural properties of AP graphs
with given connectivity was already used in [3].

In this article are exhibited such upper bounds on the structure of OL-
AP and R-AP balloons. After having provided in Section 2 some preliminary
definitions and tools necessary to understand our results, we then show, in
Section 3, that an OL-AP or R-AP balloon has at most 5 branches. In Section 4
is exhibited an infinite family of OL-AP and R-AP 5-balloons showing that the
number of these graphs is not bounded and that our previous bound is tight.
We then give constant upper bounds on the orders of the smallest branches in
an OL-AP or R-AP 4- or 5-balloon in Section 5. Finally, concluding Section 6
outlines some structural properties of OL-AP or R-AP graphs with connectivity
2 that can be derived from our results on OL-AP and R-AP balloons.

2 Terminology and preliminary results

2.1 Terminology and notation

Let « > 1 be an integer. Throughout this paper, we denote by x+ (resp. z7)
an arbitrary integer y such that y > = (resp. y < x).

We deal with connected, non-oriented and simple graphs, using mainly the
terminology of [8]. The vertex and edges sets of a graph G are denoted by V(G)
and E(G), respectively, or simply by V' and E when no ambiguity is possible.
The order of GG, commonly denoted by n, is its number of vertices. Given a
subset of vertices S C V of G, we denote by G[S] the subgraph of G induced by
the vertices of S. We additionally denote by G — S the subgraph of G induced
by all the vertices of V' — S. If F' C FE is a subset of edges of G, we denote by
G — F the partial graph of G obtained by removing all the edges of F' from G.

We denote by P,, the path of order n. Given k > 1 positive integers a, ..., ax,
the k-pode P(aq,...,ar) is the tree obtained by linking one central node to one
extremity of each one of k disjoint paths on aq, ..., ar vertices, respectively. Since
previous investigations [5, 7], a 3-pode P(1, aq, as) is often referenced as a cater-
pillar and is denoted by Cat(as+1,a3+1) for convenience?. Hence, throughout
this paper, every mention to caterpillars actually refers of caterpillars of the form
Cat(a,b).

We now give more notations associated with the notion of balloon graphs.
Let B = B(by,...,b;) be a k-balloon. The vertices 71 and ry of degree k in B
are called the roots of B, while the path of order b; connecting them is said to

20bserve that Cat(a,b) has order a + b.



be the it" branch of B. For every i € {1,...,k}, the vertices of the i** branch of
B are denoted by v, ...,vgi in such a way that U{rl,vgirg € F and v§v§+1 cFE
for every j € {1,...,b; — 1}. Finally, we denote by b;(B) the number of vertices
composing the " branch of B.

We denote by PB(b1, ..., b4, bz11, s baty, botyt1, s botyt-) the graph
B(by,...;byqyyz)— (Ufjjﬂ{vg ra}, Ufjﬁr;rl{v{rl}) obtained by removing y+ 2
edges from a (z + y + z)-balloon. Such a graph is called a partial balloon with
(x + y + 2) branches, or partial (x + y + z)-balloon for short. In this paper,
the notations introduced above for balloons are used in an analogous way for
partial balloons. For convenience, the vertices of a hanging branch with order
b; of a partial balloon B (that is, a branch linked to only one root of B) are
successively denoted by vi,...,v} where v} is the degree-1 vertex of the branch
and Ugi is the vertex adjacent to one root of B. Please refer to Figure 2 for two
examples of partial balloons and their associated notations.
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Figure 2: The partial balloons PB(2,3,3) and PB(1,1,1,2,3)

2.2 Some properties of OL-AP and R-AP graphs

The next two theorems give a complete characterization of OL-AP and R-AP
trees.

Theorem 2. [10] A tree is OL-AP if and only if it is either isomorphic to a

path, to a caterpillar Cat(a,b) with a and b given in Table 1, or to the 3-pode
P(2,4,6).

Theorem 3. [5] A tree is R-AP if and only if it is either isomorphic to a
path, to a caterpillar Cat(a,b) with a and b given in Table 2, or to the 3-pode
P(2,4,6).

Theorems 2 and 3 were proved using the following two observations, which
provide two alternative methods to check whether a graph is OL-AP or R-AP.

Observation 2. A graph G is R-AP if and only if for every A € {1,..., 5]}
there exists a partition (Sx,Sn—x) of V into two parts such that G[S)] and
G[S, -] are connected R-AP graphs on A and n — X vertices, respectively.

Observation 3. The property of being OL-AP (resp. R-AP) is closed under
edge-additions: if a graph has an OL-AP (resp. a R-AP) spanning subgraph,
then it is OL-AP (resp. R-AP).



[ o | b |
2,4 =1 mod 2
3 =1,2mod 3
5 6,7,9, 11, 14, 19
6 =1,5mod 6
7

8

8,9, 11, 13, 15
11, 19
9, 10 11
11 12

Table 1: Values a and b, with b > a, such that Cat(a,b) is OL-AP.

[ a | b |
2,4 = 1 mod 2
3 =1,2mod 3
5 6,7,9, 11, 14, 19
6 7
7 8,9,11, 13, 15

Table 2: Values a and b, with b > a, such that Cat(a,b) is R-AP.

2.3 Some properties of AP, OL-AP and R-AP balloons

First, notice that every path is AP, OL-AP and R-AP. For this reason, it follows
that every traceable graph® is AP, OL-AP and R-AP too. Since 1-, 2- and 3-
balloons are traceable, we are mainly interested in balloons with at least 4
branches in this work.

We now give some properties on the number of vertices of the branches in a
partitionable balloon. It was previously proved that an AP balloon can always
be partitioned in such a way that its branches with order 0 (that is, its branches
with no vertices) are not used by the partition, and thus that B(0, b1, ..., b) is
AP if and only if B(by,...,b;) is AP [5]. We show that this result also holds
when considering OL-AP or R-AP balloons.

Lemma 1. Let by < ... < bi be positive integers with k > 1. The balloon
B(0,by,...,b;) is OL-AP (resp. R-AP) if and only if B(bi,...,b;) is OL-AP
(resp. R-AP).

Proof. The necessary condition follows directly from Observation 3. Let us now
prove the sufficient condition. Whenever k£ < 3, the lemma is true since both
B(0,by,...,b;) and B(by,...,by) are traceable for every by, ...,b; > 1.

Suppose now that there exist OL-AP balloons with at least 4 branches
composed by at least 1 vertex contradicting the claim, and let us denote by
B = B(0,b1,...,b;) one of those with minimum order and k > 4. In particular,
it means, according to Definition 1, that there exists A € {1,...,n — 1} such that
the following two conditions are met.

e The vertex set of B admits a partition (Sy,S,—») such that B[S)] is
connected on A vertices and B[S,,—] is OL-AP with order n — A.

3A graph is traceable if it has a Hamiltonian path.



e The partition (Sy,S,—») is not a satisfying partition of the vertex set of
B’ = B(by, ..., b)) regarding the conditions above.

It follows that the edge 7175 is necessary for the partition, and thus that
either S, or S,_) contains both r; and r,. This implies that the part not
containing r175 only contains some consecutive vertices from one branch of B,
say the one with order b; where b; > 1.

On the one hand, if r1,ry € Sy, then B[S)] remains connected even if we
remove 7179 from it since r; and 7o are also connected in B[S)] thanks to at
least 3 branches of B. In this case, the branch with order 0 of B is useless for
the partition, a contradiction.

On the other hand, if ri,75 € S,_», then B[S,_,] is a partial balloon.
Using Observation 3, we can deduce an OL-AP balloon B” with less vertices
than B and a branch with no vertex. By the minimality of B, it follows that
B remains OL-AP even when the edge linking its two roots is removed from it.
Hence, B[S,,—,] remains OL-AP even if we remove the edge 175 from it, and
we could deduce a partitioning of B’ respecting the conditions above. Again, a
contradiction.

This concludes the proof for OL-AP balloons. A similar proof can be led for
R-AP balloons using the fact that the parts Sy and S, of the partition of B
must induce R-AP subgraphs of B (see Observation 2).

O

Hence, throughout this paper, we will only consider balloons having their
smallest branch composed of at least 1 vertex. We additionally introduce the
following results on the orders of the branches in an AP balloon.

Observation 4. [5] Let B be an AP balloon. If n is odd, then B has at most
8 branches of odd order. If n is even, then B has at most two branches of odd
order.

Lemma 2. [3] Let B(by,...,b;) be an AP balloon with by < ... < by. For every

i€{2,...,k}, we have 2b; > Z;;ll b;.

Since every OL-AP or R-AP graph is also AP, the previous two results
naturally also hold when considering OL-AP and R-AP balloons.

3 OL-AP balloons cannot have more than 5 branches

It is already known that a R-AP ballon has at most 5 branches [5]. In this
section, we prove a more general statement by showing the same upper bound
on the number of branches in an OL-AP balloon. By Theorem 1, this result
also holds for R-AP balloons.

Theorem 4. An OL-AP balloon cannot have more than 5 branches.

Proof. The proof is by contradiction. Let B be the set of OL-AP balloons with
at least 6 branches and B denote a k-balloon of B with the least order.

By Definition 1, B is OL-AP if and only if for every A € {1,....n — 1} we
can partition V' into two parts Sy and S,,_» such that B[S,] is connected on
A vertices and B[S,,—,] is OL-AP on n — A vertices. Observe that, because of



the minimality of B, the subgraph B[S, _,] cannot be a partial k¥’-balloon with
k" > 6 since otherwise there would exist a balloon of B with less vertices than
B (Observation 3). It follows that B[S,—,] is either an OL-AP 5-balloon or an
OL-AP tree (see Theorem 2).

We claim that B has branches with 1, 2, 3, 4, 5 and 6 vertices. Let us
suppose that A € {1,...,6} and that B does not have a branch with order A. We
show that it is not possible to partition V' into two parts with cardinal A and
n — A\, respectively, satisfying the above conditions.

e )\ € {1,2,3}: for every choice of Sy, the subgraph B[S,_,] is either a
partial k-balloon having less vertices than B or a tree with maximum
degree at least 4. In both cases, the subgraph B[S,,_] is not OL-AP.

e )\ = 4: so far, we have shown that B necessarily has branches with order
1, 2 and 3. Similarly as in the previous case, observe that for every choice
of Sy, the subgraph B[S,,_,] is either a partial k-balloon or partial (k+1)-
balloon having less vertices than B or a tree having maximum degree at
least 3. Hence, the only possibility here is to choose S in such a way that
B[S,,—»] is a tree with maximum degree 3, but this is only possible when
B = B(1,1,1,2,3,...). According to Observation 4, such a balloon is not
AP, and thus is not OL-AP.

e )\ = 5: by the previous cases, we know that B has branches composed of
1, 2, 3 and 4 vertices. For the same reasons as before, .S must be chosen
in such a way that B[S, _,] is either a path or an OL-AP 3-pode. Hence,
since B has at least 6 branches, S\ must contain one root of B and all
the vertices of at least 3 of its branches. Observe that Sy can only be
chosen in this way when &k = 6 and B = B(1,1,1,2,3,4). Tt follows that
B has 4 branches of odd order, and thus that it is not AP according to
Observation 4. It cannot be OL-AP.

e A\ = 6: we know that B has branches with 1, 2, 3, 4 and 5 vertices.
Moreover, since k > 6, the balloon B has one additional branch of order
b;. If b; < 7, then B is not AP by Lemma 2, and thus is not OL-AP.
Hence, b; > 8 but, again, we cannot exhibit a correct subset S for the
same reasons as before. Hence B is not OL-AP.

Finally, B is isomorphic to B(1,2,3,4,5,6,...) which is not AP following
Lemma 2; it thus cannot be OL-AP. O

4 There are infinitely many OL-AP and R-AP
4- or 5-balloons

By Theorem 4, we know that the number of branches in an OL-AP or R-AP
balloon is bounded by 5. In what follows, we prove that this bound is tight
by exhibiting two infinite families of R-AP balloons with 4 and 5 branches,
respectively. We use the following two lemmas for this purpose.

Lemma 3. The partial balloon PB(1,1,2,k) is R-AP for every k > 1.



Proof. Observe that this claim is true whenever k = 1, k = 2 or k = 3 since the
corresponding partial balloons are spanned by Cat(2,5), Cat(3,5) and Cat(4, 5),
respectively.

Suppose now that this claim holds for every k up to ¢ — 1 and consider the
partial balloon B = PB(1,1,2,i). By Observation 2, we know that B is R-AP
if it can be partitioned, for every A € {1,...,| 5]}, into two R-AP subgraphs on
A and n — X vertices, respectively. One can consider the following partitions:

e \=1: P, and PB(1,2,i) (traceable).
e \=2: P, and PB(1,1,4) (traceable).

A e {3,4}: P, and P, _».
e A=15: Cat(2,3) and Py;.

A =6: B(1,1,2) (traceable) and P;.
A>T PB(1,1,2, A — 6) (induction hypothesis) and P;_¢.

Lemma 4. The partial balloon PB(1,2,3,k) is R-AP for every k > 1.

Proof. The proof is by induction on k. If we first suppose that k =1, k = 2, or
k = 3, then observe that the corresponding partial 4-balloons are R-AP since
they are spanned by the R-AP caterpillars Cat(2,7), Cat(3,7) and Cat(4,7),
respectively.

Let us secondly suppose that this lemma holds for every & < i — 1, and
consider the partial balloon B = PB(1,2,3,7). Once again, by Observation 2,
it is sufficient to show, to prove that B is R-AP, that we can partition it into two
R-AP subgraphs on A and n — X vertices, respectively, for every A € {1,..., | 5]}.
We show that these partitions exist for every A:

e A\=1: P, and PB(2,3,i) (traceable).
e \=2: P, and PB(1,3,i) (traceable).
e A\ =3: Py and PB(1,2,i) (traceable).

A€ {4,5,6}: Py and P,_).

A=T: C’at(3,4) and Pi+1-

A=8: B(1,2,3) (traceable) and P;.
e A >9: PB(1,2,3, A — 8) (induction hypothesis) and P,,_)4s.
O

Observe that, according to Observation 3, Lemmas 3 and 4 directly imply
that there exist infinitely many R-AP 4-balloons (and, thus, infinitely many
OL-AP 4-balloons, see Theorem 1).

Corollary 1. The 4-balloons B(1,1,2,k) and B(1,2,3,k) are OL-AP and R-
AP for every k > 1.



We now prove that there exists an unbounded family of R-AP 5-balloons.
Theorem 5. The partial balloon PB(1,1,2,3,2k) is R-AP for every k > 1.

Proof. Let B = PB(1,1,2,3,2k) with & > 1. Recall that, according to Obser-
vation 2, the partial balloon B is R-AP if we can partition it into two R-AP
subgraphs B[S)] and B[S,_,] having order A and n — A, respectively, for every
Ae{l,...,[5]}. One can consider the following partitions for the first values of

e A=1: P, and B(1,2,3,2k) (Lemma 4).

(
e A\=2: P, and B(1,1,3,2k) (spanned by Cat(2,5 + 2k)).
P3 and B(1,1,2,2k) (
)

I
e~ w

: Lemma 3).

P, and Cat(4,2k + 1).

5 Cat(2, 3) and P2k+4.

I
u4 o

A
A

o A :
A =6: P and Cat(2,2k + 1).
A :

o Cat(3, 4) and P2k+2.

By now, it should be clear that the proposition holds for every partial balloon
PB(1,1,2,3,2k) such that n < 15 (that is, for each k& € {1,2,3}). Let us
suppose, as an induction hypothesis, that the claim is true for every k < i — 1,
and consider the partition of B = PB(1,1,2,3,2i) into two R-AP subgraphs for
the remaining values of A, that is for every A € {8,..., | 5]}.

e A > 8, X even: observe that A < 2i since A < |§] and we handled the
cases where k < 3. We can thus partition B into Py and either B(1,1,2, 3)
(when ¢ = 4) or PB(1,1,2,3,2i — \) (when ¢ > 4). These graphs are R-
AP according to Lemma 4 and by the induction hypothesis (since 27 — A
is even), respectively.

e A=9: B(1,1,2,3) (spanned by Cat(2,7)) and Ps;.

e A >9 \odd: PB(1,1,2,3,A—9) (induction hypothesis since A — 9 is
even) and P,_xt9.

O

Combining Observation 3 and Theorem 5 we get that the 5-balloon B(1,1,2, 3, 2k)
is R-AP for every k > 1. Since every R-AP graph is also OL-AP (Theorem 1),
we deduce the following:

Corollary 2. The 5-balloon B(1,1,2,3,2k) is OL-AP and R-AP for every
k> 1.

10



5 Constant upper bounds on the orders of the
smallest branches in OL-AP or R-AP 4- or
5-balloons

Let B = (by,...,br) be a k-balloon on n vertices with b; < ... < bg. In this
section, we prove the following result.

Theorem 6. If B is an OL-AP J- or 5-balloon, then by < 11.

The proof of this claim reads as follows. When considering the partition of B
according to Definition 1 for A = 1 (that is, a partition of B into two connected
subgraphs B[S1] and B[S,,_1] that are an isolated vertex and an OL-AP graph
on n — 1 vertices, respectively), the possible ways for choosing B[S,_1] are
actually quite limited. Moreover, it turns out that, under the assumption that
b1 > 12, none of these possibilities leads to a correct partition of B. Hence, B
cannot be OL-AP for such a value of b;. Lemmas 5 to 8 below list these graph
structures that can be obtained while partitioning B.

Lemma 5. The graph PB(12%,12%,Z,y) is not OL-AP for every x,y > 1.

Proof. We prove this claim by induction on z + y. As a base case, consider
x =y = 1 and the partial balloon B = PB(12*,12%,1,1). By Definition 1,
recall that B is OL-AP if and only if, for every A € {1,...,n — 1}, there exists
a partition (Sx,S,—x) of V such that B[S\] and B[S,,—,] are connected on A
vertices and OL-AP on n — X vertices, respectively. In particular, observe here
that B cannot be partitioned in this way for A = 2. Indeed, every possible choice
of Sy makes B[S,,_2| being either disconnected, a caterpillar Cat(13%,13%) or
Cat(117,15%), or a tree with two degree-3 vertices. Since none of these graphs
is OL-AP (Theorem 2), B is not OL-AP.

To complete the base case, let us now suppose that x+y = 3 and denote by B
the partial balloon PB(12%,12%,1,2). As in the previous base case, one has to
observe that B is not OL-AP since it cannot be partitioned in the way specified
by Definition 1 for A = 3. In particular, observe that for every possible choice
of S3, the graph B[S, _3] is not OL-AP for it is disconnected, a non-caterpillar
3-pode different from P(2,4,6), a caterpillar Cat(107,16™) or Cat(13",137),
or a tree with two degree-3 vertices.

Consider now that the claim holds for every partial balloon PB(12%,12%, 7, y)
such that  +y < k — 1 for some k > 4. We now prove that it is also true for
a partial balloon B = PB(12%,12%,%,y) when z +y = k. There are two cases
to consider: B

ez >1and y > 1: B is not OL-AP since we cannot partition its vertex
set as explained above for A = 1. Indeed, we must consider S; = {v}}
or S; = {v}} since otherwise B[S,_1] would be either disconnected, or
isomorphic to a large 3-pode or a tree with two degree-3 vertices. But for
these two choices of S, the remaining graph B[S,,_1] is isomorphic to a
partial balloon PB(12%,12%, 2/ y') with 2’ +y' = 2 +y—1 < k—1, which
is not OL-AP by the induction hypothesis.

e r =1 and y > 2: consider we want to partition B as previously for A = 2.
For the same reasons as above, we have to consider Sy = {v},v3}. But
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then B[S,,_s] is isomorphic to PB(12%,12", %,y — 2) which is not OL-AP
according to the induction hypothesis. Hence, B is not OL-AP. These
arguments hold analogously when x > 2 and y = 1.

O

Since the proofs of Lemmas 6 to 8 are quite similar to the one of Lemma 5,
the reader is referred to Appendix A for in-depth proofs on these statements.

Lemma 6. The graph PB(127,127,12%, 7, y) is not OL-AP for every z,y > 1.

Lemma 7. The graph PB(127,12% 127, %) is not OL-AP for every x > 1.

Lemma 8. The graph PB(127,12% 127, 12%, %) is not OL-AP for every x > 1.
Using Lemmas 5 to 8, we now proof the statement of Theorem 6.

Proof of Theorem 6. Let B = B(12%,127,12%,12%) be a 4-balloon. B is not
OL-AP since its vertex set cannot be partitioned in the way specified by Defini-
tion 1 for A = 1. Indeed, for every choice of S, the graph B[S,,_1] is not OL-AP
since it is either a tree with maximum degree 4 or a partial balloon which is
not OL-AP by Lemma 6 or 7. It follows that an OL-AP 4-balloon must have a
branch of order at most 11.

Now let B = B(12%,12%,12% 127 12%) be a 5-balloon. Similarly as before,
B is not OL-AP since there does not exist a partition of its vertex set respecting
Definition 1 for A = 1. Indeed, every possible choice of S; makes B[S,,_1] being
either a tree with maximum degree 5, a partial balloon which is not OL-AP
according to Lemma 8, or a partial 6-balloon. In the latter case, observe that
B[S,,—1] cannot be OL-AP since otherwise there would exist, by Observation 3,
an OL-AP 6-balloon contradicting Theorem 4. Hence, a 5-balloon cannot be
OL-AP when its smallest branch has order at least 12. O

Since every OL-AP graph is also R-AP (Theorem 1), Theorem 6 directly
implies that R-AP balloons with 4 or 5 branches have their smallest branch
of order at most 11 too. However, using the fact that R-AP caterpillars are
generally smaller than OL-AP caterpillars (see Theorems 3 and 2), one can
easily derive Lemmas 5 to 8 above for R-AP partial balloons to get a better
upper bound on the order of the smallest branch of a R-AP 4- or 5-balloon.
The proof of this statement is omitted in this work since it is very similar to
the proof of Theorem 6.

Theorem 7. If B is a R-AP J- or 5-balloon, then by < 7.

One can also get a similar constant upper bound on the order of the sec-
ond smallest branch in a R-AP 4- or 5-balloon B, that is that by < 39. The
main argument in our proof of Theorem 7 is that partial 4-balloons of the form
PB(8%T,8%,%,y) are generally not R-AP. Because of that fact, plenty of other
partial balloons cannot be R-AP too, and the result follows. Such a statement
is also true when considering that b; < 7 and by > 40. Indeed, most of partial
balloons PB(7~,40",T,y) cannot be R-AP because they cannot be partitioned
into two R-AP subgraphs with order | 5] according to Observation 2: in gen-
eral, one of these two subgraphs necessarily has to be isomorphic to a caterpillar
Cat(a,b) with a and b being greater than the values given by Theorem 3. Once
again, the proof of the following claim is omitted here, but it can be obtained

by deriving Lemmas 5 to 8 adequately.
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Theorem 8. If B is a R-AP J- or 5-balloon, then by < 39.

Unfortunately, we did not manage to derive a similar constant upper bound
on by when B is an OL-AP 4- or 5-balloon. Indeed, when partitioning such a
graph regarding Definition 1, the recursive property only concerns one of the
two induced subgraphs. Hence, it appears tricky to find a constant value k > 1
such that partial balloons of the form PB(117,k™,%,y) are generally not OL-
AP. Because we cannot find such a class of non OL-AP partial balloons, we
cannot derive our proof scheme as it was done before and get a bound on by
for OL-AP 4- or 5-balloons, if such a bound exists. So we leave the following
question unanswered.

Question 1. Is there a positive constant ¢ > 1 such that if B is an OL-AP -
or 5-balloon, then by < c?

Something more can be deduced from the previous bounds. In what follows,
let us denote by LP(G) the length of the longest simple path in a given graph G.
Observe that if B = B(by, ..., bx) is a balloon with k& > 4 such that b; < ... < by,
then LP(B) = by + bg—1 + bi—2 + 1. Therefore, thanks to Theorems 6, 7 and 8,
we get the following result on OL-AP or R-AP balloons.

Corollary 3. Let B be a k-balloon with order n.
e If B is OL-AP and k = 4, then LP(B) > n — 12.
e If B is R-AP and k =4, then LP(B) > n — 8.
o If B is R-AP and k =5, then LP(B) > n —47.
Such a result meets the following question.

Question 2. What are the classes of OL-AP or R-AP graphs C for which there
exists a constant ¢ > 1 such that, for every graph G € C, we have LP(G) > n—c
where n is the order of G?

Note that not all families of graphs have this property since an infinite family
of R-AP graphs that does not meet Question 2 was exhibited in [6]. According
to Theorems 2 and 3, OL-AP and R-AP trees are such classes of graphs. By
Corollary 3, we know that OL-AP 4-balloons and R-AP 4- or 5-balloons are
such classes too. If the bound ¢ on b mentioned in Question 1 exists, then it
would imply that OL-AP 5-balloons perform a satisfying class for Question 2.

6 Structural properties of OL-AP or R-AP graphs
with connectivity 2

As mentioned in the introduction section, properties of OL-AP or R-AP balloons
can be derived to properties of OL-AP or R-AP graphs with connectivity 2,
respectively. In particular, the results on OL-AP or R-AP balloons we pointed
out along Sections 3 to 5 are extendable in the following way.

Corollary 4. Let G be a graph with connectivity 2, u and v be two vertices
forming a cut pair of G, and by < ... < by be the numbers of vertices of the
k > 2 connected components of G — {u,v}. If G is OL-AP or R-AP, then the
following conditions hold:

13



o <5

bi, can be arbitrarily large,

if G is R-AP and k € {4,5}, then by <7 and by < 39,

if G is OL-AP and k € {4,5}, then by < 11.

The first item of Corollary 4 follows directly from Theorem 4, the second
item is derived from Corollaries 1 and 2, while the third and fourth items result
from Theorems 6, 7 and 8.

Since 2- and 3-balloons are always OL-AP and R-AP because they are trace-
able, the only structural property we can derive is that if G is disconnected into
only 2 or 3 components after the removal of v and v, then these components
can all be arbitrarily large.

Notice that Corollary 3 cannot be extended to OL-AP or R-AP graphs with
connectivity 2 as previously. Indeed, there is no direct analogy between the
longest path in a balloon B = B(by, ..., bx), with b; < ... < by, and the longest
path in a graph G that has a cut pair {u,v} whose removal leads to k com-
ponents with orders by, ..., by, respectively. As an illustration, suppose that the
component with order by, in G—{u, v} is a (by —2)-balloon B(1, ..., 1) whose roots
are connected to u and v in GG. Depending on the structure of G, its longest
path may not pass through its component with order b;. In comparison, the
longest path of B generally has to go along its k' branch.

References

[1] D. Barth, O. Baudon, and J. Puech. Decomposable trees: a polynomial
algorithm for tripodes. Discret. Appl. Math., 119(3):205-216, July 2002.

[2] D. Barth and H. Fournier. A degree bound on decomposable trees. Discret.
Math., 306(5):469-477, 2006.

[3] O. Baudon, F. Foucaud, J. Przybylo, and M. WozZniak. Structure
of k-connected arbitrarily partitionable graphs. Manuscript, 2012.
http://hal.archives-ouvertes.fr/hal-00690253.

[4] O. Baudon, F. Gilbert, and M. WoZniak. Recursively arbitrarily vertex-
decomposable suns. Opusc. Math., 31(4):533-547, 2011.

[5] O. Baudon, F. Gilbert, and M. WozZniak. Recursively arbitrarily vertex-
decomposable graphs. Opusc. Math., 32(4):689-706, 2012.

[6] J. Bensmail. On the longest path in a recursively partitionable graph.
Manuscript, 2012. http://hal.archives-ouvertes.fr/hal-00718029.

[7] S. Cichacz, A. Gorlich, A. Marczyk, J. Przybylo, and M. Wozniak. Arbi-
trarily vertex decomposable caterpillars with four or five leaves. Discuss.
Math. Graph Theory, 26:291-305, 2006.

[8] R. Diestel. Graph Theory. Springer, August 2005.
[9] E. Gyéri. On division of graphs to connected subgraphs. In Combinatorics,

pages 485494, Colloq. Math. Soc. Janos Bolyai 18, 1978.

14



[10] M. Hornék, Z. Tuza, and M. Wozniak. On-line arbitrarily vertex decom-
posable trees. Discret. Appl. Math., 155:1420-1429, 2007.

[11] L. Lovédsz. A homology theory for spanning trees of a graph. Acta Math.
Acad. Sci. Hung., 30(3-4):241-251, 1977.

[12] A. Marczyk. An ore-type condition for arbitrarily vertex decomposable
graphs. Discret. Math., 309(11):3588-3594, 2009.

15



A  Appendix

This appendix gathers all the proofs of Lemmas 6 to 8 of Section 5, as well
as some intermediate lemmas needed to prove these statements. Notice that
these proofs often make implicit use of the full characterization of OL-AP trees
(Theorem 2) and the two sufficient conditions for a graph to be OL-AP given by
Observations 2 and 3. In all these proofs, it is assumed that t < yorz <y < z
generally holds when the corresponding elements have been introduced. Given
a graph G and an integer A € {1,...,n — 1}, an OL-AP-partition of G for X is
a partition (Sx,S,—x) of V such that G[S\] and G[S,—] are connected on A
vertices and OL-AP on n — A vertices, respectively. According to Definition 1,
the graph G is OL-AP if and only if either G is an isolated vertex or G admits
an OL-AP-partition for every A € {1,...,n — 1}.

Lemma 9. The graph PB(127,12% %, %) is not OL-AP for every x > 1 and
y > 10.

Proof. Let us prove this claim by induction on z+y as we did to prove Lemma 5.
As a base case, let us consider the graph B = PB(12%,12%,1,10). Observe
that B is not OL-AP since it does not admit an OL-AP-partition for 11.
Indeed, every possible choice of 11 vertices inducing a connected subgraph
of B makes B[S,_11] being either disconnected, a caterpillar Cat(11,13%) or
a tree with maximum degree 4. For similar reasons, observe that neither
PB(127,12%,1,11) nor PB(12%,12%,2,10) are OL-AP since they do not admit
an OL-AP-partition for 12 and 11, respectively.

Let us now suppose that this lemma holds whenever x +y < k — 1 for some
k > 13, and consider a graph B = PB(12%,12%,Z,%) such that z +y = k.
We claim that there exists a A € {1,...,n — 1} such that B does not admit an
OL-AP-partition for A, and thus that B is not OL-AP:

e z > 1 and y > 10: under these conditions, there does not exist an OL-AP-
partition of B for 1. Indeed, every possible choice for S; which does not
make B[S,_1] being disconnected makes this subgraph being isomorphic
to either a non-caterpillar 3-pode different from P(2,4,6), a tree with
maximum degree 4, or a graph not OL-AP according to the induction
hypothesis.

e r =1 and y > 11: observe that there does not exist an OL-AP-partition
of B for 2, since every coherent choice for Sy makes B[S, _2] being dis-
connected or isomorphic to either a caterpillar Cat(131,13%1), a tree with
maximum degree 4, or a partial balloon which is not OL-AP by the in-
duction hypothesis.

e r > 2 and y = 10: once again, B does not admit an OL-AP-partition for
11 since every choice of 11 vertices inducing a connected subgraph of B
makes B[S, —_11] being either disconnected, a tree with maximum degree
4, or a non-OL-AP 3-pode.

O

Lemma 10. The graph PB(12%,127 %, 7, 2) is not OL-AP for every z,y,z > 1.
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Proof. We prove this claim by induction on x +y + z. Let us first suppose that
x =y = 2z = 1 and consider the associated graph B = PB(12*,12%,1,1,1).
Once again, B is not OL-AP since there does not exist an OL-AP-partition of
B for 2. Indeed, every possible for S; makes B[S, 2] being either disconnected,
or isomorphic to either a tree with maximum degree 4 or a tree having two
degree-3 vertices.

To complete the base case, observe that PB(127,12%,1,2,1) and PB(12%,12%,1,1,2)
are not OL-AP for there do not admit an OL-AP-partition for 3: for every co-
herent choice of S5, the subgraph B[S,,_3] is disconnected, or isomorphic to
either a tree with maximum degree 4, a tree having two degree-3 vertices, or a
non-caterpillar 3-pode different from P(2,4,6).

Suppose now that this claim holds whenever z + y + z < k — 1 for some
k > 5, and consider a balloon B = PB(12%,12"7,7,7,2) where z + y + z = k.
Once again, we consider two main cases:

e z > 1: in this case, B is not OL-AP since it cannot be OL-AP-partitioned
for 1. Indeed, observe that removing one vertex from B makes the remain-
ing subgraph being disconnected, isomorphic to a tree with maximum de-
gree 4 or two degree-3 vertices, or isomorphic to a partial balloon which
is not OL-AP according to the induction hypothesis or Lemma 5.

e 2> = 1: once again, B is not OL-AP under this condition since it cannot be
OL-AP-partitioned for 2: for every coherent choice as Ss, the remaining
graph B[S,,_»] is indeed not connected, a tree with maximum degree 4 or
two degree-3 vertices, or a partial balloon which is not OL-AP according
to our induction hypothesis or previous Lemma 5.

O

Proof of Lemma 6. Once more, let us prove this claim by induction on = + y.
Consider first that z = y = 1 and let B = PB(12%,12%7,12%,1,1). Observe
that B is not OL-AP for it cannot be OL-AP-partitioned for 2. Indeed, every
possible choice for Sy makes B[S, _s] being disconnected, isomorphic to a tree
with maximum degree 4, to a partial balloon which is not OL-AP by Lemma 10,
or to a partial 6-balloon. In the latter case, such a graph cannot be OL-AP since
otherwise there would exist an OL-AP 6-balloon contradicting Theorem 4.
Additionally, observe that B = PB(12%7,12% 127 1,2) cannot be OL-AP-
partitioned for 3: for every coherent choice for Sz, the subgraph B[S,,_3] is not
OL-AP for the same reasons as in the previous case. Hence, B is not OL-AP.
We now suppose that this claim holds for every x +y < k—1 for some k > 4,
and consider a partial balloon B = PB(12%,12%, 12", 7, y) where z+y = k. Let
us take the following two cases in consideration to show that B is not OL-AP.

e r > 1 and y > 1: notice that, in this situation, B cannot be OL-AP-
partitioned for 1. Indeed, for some similar reasons as the ones we used for
the base cases, we have to consider S; = {v{} or S; = {v7}. But in both
cases, B[S,,_1] cannot be OL-AP by the induction hypothesis.

e = 1andy > 2: once again, observe that B cannot be OL-AP-partitioned
for 2. Indeed, observe that we must consider Sy = {v},v3} since otherwise
there would exist an OL-AP 6-balloon, an OL-AP tree having maximum
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degree 4, or a graph contradicting Lemma 10. But for this choice of
S, we have B[S, o] = PB(12%,127,12% 1,y — 2) which is not OL-AP
according to our induction hypothesis.

O

Proof of Lemma 7. Once again, this claim is proved by induction on z. Let us
first suppose that z = 1 and let B be the partial balloon PB(12*,12% 12% 1).
This time, B is not OL-AP since it cannot be OL-AP-partitioned for 2: for
every possible choice of Sa, the remaining graph B[S,,_2] is not OL-AP since
it is disconnected, isomorphic to a tree with maximum degree 4, to a non-
caterpillar 3-pode different from P(2,4,6) or to a partial balloon which is not
OL-AP by Lemma 5, 9 or 10.
Let us now suppose that this claim holds for every z < k—1 and some k& > 3.
To complete the proof, observe that a graph B = PB(12F,12%,12% k) is not
OL-AP since it cannot be OL-AP-partitioned for 1. Indeed, for every choice of
S1, the subgraph B[S,,—1] is not OL-AP according to the induction hypothesis,
or because of one reason used for the base case.
O

Lemma 11. The graph PB(127,12%, 7,7, %) is not OL-AP for every z,y,z > 1.

Proof. We prove this claim by induction on x 4+ y + z. First, let us suppose
that x = y = z = 1 and consider the partial balloon B = PB(12*,12%,1,1,1).
Notice that B is not OL-AP since it cannot be OL-AP-partitioned for 2. Indeed,
every choice of Sy implies that B[S, _»] is either disconnected or isomorphic to
a tree with maximum degree at least 4. Analogously, observe that neither
PB(12+,12%,1,1,2) nor PB(12%,12%,1,2,2) are OL-AP since they cannot be
OL-AP-partitioned for 3.

Suppose now that this claim holds by induction whenever x +y+ 2 < k—1
for a k > 6, and consider a partial balloon B = PB(12%,127,%,%,%) where
x +y+ z = k. We distinguish the following two main cases depending on z, y
and z:

ez >1 y>1and z > 1: suppose we want to OL-AP-partition B for 1.
Then, we must consider S; = {v}}, S; = {v}} or S; = {v}} since, for every
other choice of Sy, the remaining graph B[S,,_1] is either disconnected or
isomorphic to a tree having maximum degree at least 4. But in any of
these three choices for Sy, the subgraph B[S,_1] is not OL-AP by the
induction hypothesis. Thus, B is not OL-AP.

e r = 1: let @ = min({2,3,4} — {y,2}). In this situation, B cannot be
OL-AP for the same reason as above but for an OL-AP-partition of B for
a. Indeed, for every coherent choice of Sy, the remaining graph B[S, _4]
is not OL-AP either according to the induction hypothesis, or because it
is isomorphic to a non-connected graph or a tree with maximum degree
at least 4.

O

Lemma 12. The graph PB(12%,12%,12%,7,7%) is not OL-AP for every z,y >
1.
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Proof. Once again, we prove this claim by induction on = +y. We first suppose
that x =y =1 and let B = PB(12*,12%,12%,1,1). Similarly as in the proofs
of the previous lemmas, B is not OL-AP for it cannot be OL-AP-partitioned for
2. Indeed, for every possible choice as So, the remaining graph B[S;,—2] is not
connected, a tree with maximum degree 5, a partial balloon not OL-AP accord-
ing to Lemma 10 or 11, or a partial 6-balloon. For the latter case, recall that a
partial 6-balloon cannot be OL-AP since otherwise there would exist a 6-balloon
contradicting Theorem 4. Similarly, observe that PB(12%,12%,12%,1,2) is not
OL-AP since it cannot be OL-AP-partitioned for 3.

We finally suppose that the induction hypothesis is true whenever z + y <
k—1 for some k > 4, and consider a partial balloon B = PB(12%,12% 12 7, 7)
where x + y = k. We distinguish two main cases, depending on the values of x
and y, to prove that B is not OL-AP.

e z > 1 and y > 1: in this situation, B is not OL-AP since it cannot be
OL-AP-partitioned for 1. Indeed, for every choice of S, the remaining
graph B[S,_1] is not OL-AP either for one of the reasons used for the
base cases or according to the induction hypothesis.

e r =1 and y > 2: the above arguments hold to prove that B cannot be
OL-AP-partitioned for 2. Thus, B is not OL-AP.

O

Proof of Lemma 8. Let us prove this claim by induction on x. We first suppose
that = 1 and consider the OL-AP-partition of B = PB(12%,12% 127,12%,1)
for 2. Such a partition does not exist since for every choice of Ss, the remaining
graph B[S,,_2] cannot be OL-AP: indeed, this subgraph is either not connected,
a tree with maximum degree at least 4, a partial balloon which cannot be OL-
AP according to Lemma 6 or 12, or a partial 6-balloon. In the latter case, such a
graph cannot be OL-AP since otherwise there would exist a graph contradicting
Theorem 4.
Suppose now that PB(12%,12%7,12% 127 ) is not OL-AP for every z < k—
1 and some k > 3, and consider a graph B = PB(12%,12% 12+ 12 k). Once
again, B cannot be OL-AP since it cannot OL-AP-partitioned for 1. Indeed,
for every possible choice for Sy, the graph B[S, _1] cannot be OL-AP either
according to the induction hypothesis or because of one of the reasons used for
the base case.
O
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